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whole-building hygrothermal simulation

Suelen Gasparin∗, Julien Berger, Denys Dutykh, and Nathan Mendes

Abstract. Although implicit methods require extra calculation, they have been largely

used for obtaining numerical approximations of time-dependent differential conservation

equations in the building science domain, thanks to their stability conditions that enable

the use of larger time steps. Nevertheless, they require important sub-iterations when

dealing with highly nonlinear problems such as the combined heat and moisture transfer

through porous building elements or when the whole-building is simulated and there is im-

portant coupling among the building elements themselves and among neighbouring zones

and HVAC systems. On the other hand, the classical explicit Euler scheme is generally

not used because its stability condition imposes very fine time discretisation. Hence, this

paper explores the use of an improved explicit approach - the Dufort–Frankel scheme -

to overcome the disadvantage of the classical explicit one and to bring benefits that cannot

be obtained by implicit methods. The Dufort–Frankel approach is first compared to

the classical implicit and explicit Euler schemes to compute the solution of both linear

and nonlinear heat and moisture transfer through porous materials. Then, the analysis of

the Dufort–Frankel unconditionally stable explicit scheme is extended to the coupled

heat and moisture balances on the scale of a one- and a two-zone building models. The

Dufort–Frankel scheme has the benefits of being unconditionally stable, second-order

accurate in time O(∆t 2) and to compute explicitly the solution at each time step, avoiding

costly sub-iterations. This approach may reduce the computational cost by twenty as well

as it may enable perfect synchronism for whole-building simulation and co-simulation. In

addition, it can be easier parallelised on high-performance computer systems.
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1. Introduction

Models for the combined heat and moisture transfer through porous building elements
have been implemented in building simulation tools since the 1990’s in software such as
Delphin [2], MATCH [25], MOIST [5], WUFI [11] and UMIDUS [9, 19, 21] among others.
More recently, those models have been implemented in whole-building simulation tools
and tested in the frame of the International Energy Agency Annex 41, which reported
on most of detailed models and their successful applications for accurate assessment of
hygrothermal transfer in buildings [31].

The Euler and Crank–Nicolson implicit schemes have been used in many studies
and implemented in building simulation tools, as reported in the literature [2, 11, 15, 16,
18, 20, 26, 27, 30], due to their numerical property of unconditional stability. Nevertheless,
at every time step, one has to use a tridiagonal solver to invert the linear system of
equations to determine the solution value at the following time layer. For instance in
[20], a multi-tridiagonal matrix algorithm has been developed to compute the solution
of coupled equations of nonlinear heat and moisture transfer, using an Euler implicit
scheme. Furthermore, when dealing with nonlinearities, as when material properties are
moisture content or temperature dependent, one has to perform sub-iterations to linearise
the system, increasing the total CPU time. In [15], thousands of sub-iterations are reported
to converge to the solution of a mass diffusion problem. Another disadvantage of implicit
schemes appears when coupling the wall model, representing the transfer phenomena in
porous building elements, to the room air model. The wall and the room air models must
iterate within one time step until reaching a given tolerance [14]. If it does not impose any
limitation on the choice of the time discretisation, it induces sub-iterations that increase
the computational time of the simulation of the whole-building model. Moreover, it is
valuable to decrease this computational cost knowing that the hygrothermal and energy
building simulation is generally carried out for time scale periods as long as one year, or
even more. However, the phenomena and particularly the boundary conditions evolve a
time scale of seconds.

Recently, in [12], the improved explicit Dufort–Frankel scheme was explored for the
solution of moisture diffusion equation highlighting that the standard stability limitation
can be overcome, which inspired to investigate the use of the Dufort–Frankel scheme for
the solution of the combined heat and moisture transfer through porous building elements
coupled with room air models.

In this way, this paper first describes in Section 2 the heat and moisture transfer model.
In Section 3, basics of the Dufort–Frankel explicit scheme is detailed before exploring
the features of the scheme applied to linear and nonlinear cases, presented in Section 4.
Then, the benefits of using an unconditionally stable explicit scheme are investigated to
perform a whole-building hygrothermal simulation based on coupling the porous element
model to a room air multizone model.
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2. Porous building element hygrothermal model

The physical problem considers one-dimensional heat and moisture transfer through a
porous material defined by the spatial domain Ωx = [ 0, L ]. The following convention is
adopted: x = 0 corresponds to the surface in contact with the inside room and, x = L,
corresponds to the outside surface. The moisture transfer occurs due to capillary migration
and vapour diffusion. The heat transfer is governed by diffusion and latent mechanisms.
The physical problem can be formulated as [15, 28]:

∂ρw

∂t
=

∂

∂x

(

k l
∂P c

∂x
+ δ v

∂P v

∂x

)

, (2.1a)

(

ρ 0 c 0 + ρw cw
) ∂T

∂t
+ cw T

∂ρw

∂t
=

∂

∂x

(

λ
∂T

∂x
+ L v δ v

∂P v

∂x

)

, (2.1b)

where ρw is the volumetric moisture content of the material, δ v and k l, the vapour and
liquid permeabilities, P v, the vapour pressure, T , the temperature, R v, the water vapour
gas constant, P c the capillary pressure, c 0, the material heat capacity, ρ 0, the material
density, cw the water heat capacity, λ the thermal conductivity, and, L v the latent heat
of evaporation. Eq. (2.1a) can be written using the vapour pressure P v as the driving
potential. For this, we consider the physical relation, known as the Kelvin equation,
between P v and P c, and the Clausius–Clapeyron equation:

P c = ρ l R v T ln

(

P v

P s(T )

)

,

∂P c

∂P v
=

R v T

P v
.

Neglecting the variation of the capillary pressure and the mass content with temperature
[26], the partial derivative of P c can be written as:

∂P c

∂x
=

∂P c

∂P v

∂P v

∂x
+

∂P c

∂T

∂T

∂x
≃

R v T

P v

∂P v

∂x
.

In addition, we have:

∂ρw

∂t
=

∂ρw

∂φ

∂φ

∂P v

∂P v

∂t
+

∂ρw

∂T

∂T

∂t
≃

∂ρw

∂φ

∂φ

∂P v

.

Considering the relation ρw = f(φ), obtained from material properties, and from the
relation between the vapour pressure P v and the relative humidity φ, we get:

∂ρw

∂t
=

f ′(φ)

P s

∂P v

∂t
.
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We denote by

kM
def
:= k l

R v T

P v

+ δ v the total moisture transfer coefficient under vapour pressure gradient ,

kTM
def
:= L v δ v the heat coefficient due to a vapour pressure gradient ,

kTT
def
:= λ the heat transfer coefficient under temperature gradient ,

cM
def
:=

f ′(φ)

P s(T )
the moisture storage coeficient ,

cTT
def
:= ρ 0 c 0 + f(φ) cw the energy storage coeficient ,

cTM
def
:= cw T the coupling storage coefficient .

Considering the previous notation, Eq. (2.1) can be rewritten as:

cM
∂P v

∂t
=

∂

∂x

(

kM
∂P v

∂x

)

, (2.2a)

cTT
∂T

∂t
+ cTM

∂P v

∂t
=

∂

∂x

(

kTT
∂T

∂x
+ kTM

∂P v

∂x

)

(2.2b)

The boundary conditions at the interface between the porous material and the air are
expressed as:

kM
∂P v

∂x
= hM

(

P v − P v,∞

)

− g∞ , (2.3a)

kTT
∂T

∂x
+ kTM

∂P v

∂x
= hT

(

T − T∞

)

+ L v hM

(

P v − P v,∞

)

− q∞ , (2.3b)

where P v,∞ and T∞ stand for the vapour pressure and temperature of the air and hM and
hT are the convective transfer coefficients. If the bounding surface is in contact with the
outside building air, g∞ is the liquid flux from wind driven rain and q∞ is the total heat
flux from radiation and the heat contribution from the inward liquid water penetration.
If the bounding surface is in contact with the inside building air, g∞ = 0 and q∞ is
the distributed short-wave radiative heat transfer rate q rw in the enclosure and long-wave
radiative heat exchanged among the room surfaces:

q rw =
m
∑

w=1

s ǫ σ

(

(

Tw( x = 0 )

) 4

−

(

T ( x = 0 )

) 4
)

,

where s is the view factor between two surfaces, σ is the Stefan–Boltzmann constant,
ǫ is the emissivity of the wall surface, w represents the m bounding walls. We consider a
uniform vapour pressure and temperature distributions as initial conditions:

P v = P v, i , t = 0 , (2.4a)

T = T i , t = 0 . (2.4b)
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The governing equations can be written in a dimensionless form as:

c ⋆M
∂v

∂t ⋆
= FoM

∂

∂x ⋆

(

k ⋆
M

∂v

∂x ⋆

)

, (2.5a)

c ⋆TT

∂u

∂t ⋆
+ c ⋆TM γ

∂v

∂t ⋆
= FoTT

∂

∂x ⋆

(

k ⋆
TT

∂u

∂x ⋆

)

+ FoTM γ
∂

∂x ⋆

(

k ⋆
TM

∂v

∂x ⋆
.

)

(2.5b)

and the boundary condition as:

k ⋆
M

∂v

∂x ⋆
= BiM

(

v − v∞

)

− g ⋆
∞
, (2.6a)

FoTT k
⋆
TT

∂u

∂x ⋆
+ k ⋆

TMFoTMγ
∂v

∂x ⋆
= BiTT

(

u− u∞

)

+ BiTM

(

v − v∞

)

− q ⋆
∞
, (2.6b)

where the dimensionless quantities are defined as:

u
def
:=

T

T i
, v

def
:=

P v

P v, i
, u∞

def
:=

T∞

T i
, v∞

def
:=

P v,∞

P v, i
,

x ⋆ def
:=

x

L
, t ⋆

def
:=

t

t 0
, c ⋆M

def
:=

cM
cM, 0

, c ⋆TT

def
:=

cTT

cTT, 0
,

c ⋆TM

def
:=

cTM

cTM,0
, k ⋆

M

def
:=

kM

kM, 0
, k ⋆

TT

def
:=

kTT

kTT,0
, k ⋆

TM

def
:=

kTM

kTM, 0
,

FoM
def
:=

t 0 · kM, 0

L · cM, 0
, FoTT

def
:=

t 0 · kTT, 0

L · cTT, 0
, FoTM

def
:=

t 0 · kTM, 0

L · cTM, 0
, γ

def
:=

cTM, 0 · P v, i

cTT, 0 · T i
,

BiM
def
:=

hM · L

kM, 0
, BiTT

def
:=

hT · L

kTT, 0
, BiTM

def
:=

L v · hM · L · P v, i

kTT, 0 · T i
, g ⋆

∞

def
:=

L

P v, i · kM, 0
g∞,

q ⋆
∞

def
:=

L

T i · kTT,0
q∞.

The dimensionless formulation enables to determine important scaling parameters (Biot

and Fourier numbers for instance). Henceforth, solving one dimensionless problem is
equivalent to solve a whole class of dimensional problems sharing the same scaling param-
eters. Then, dimensionless equations allow to estimate the relative magnitude of various
terms, and thus, eventually to simplify the problem using asymptotic methods [22]. Finally,
the floating point arithmetics is designed such as the rounding errors are minimal if you
manipulate the numbers of the same magnitude [17]. Moreover, the floating point numbers
have the highest density in the interval ( 0, 1 ) and their density decays exponentially when
we move further away from zero. So, it is always better to manipulate numerically the
quantities at the order of O(1) to avoid severe round-off errors and to likely improve the
conditioning of the problem in hands.
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(a) Euler Explicit (b) Crank–Nicolson

(c) Dufort–Frankel

Figure 1. Stencils of the numerical schemes.

3. Numerical schemes

Let us consider a uniform discretisation of the interval Ωx  ΩL x
:

Ωh =
N−1
⋃

j =0

[ x j, x j+1 ] , xj+1 − x j ≡ ∆x , ∀j ∈
{

0, 1, . . . , N − 1
}

.

The time layers are uniformly spaced as well tn = n∆t , ∆t = const > 0 , n =
0, 1, 2, . . . , N t The values of the function u(x, t) in discrete nodes will be denoted by

un
j

def
:= u (x j, t

n ) .
For the sake of simplicity and without loosing generality, simple diffusion equation is

considered:

∂u

∂t
= ∇ · ( ν∇u ) . (3.1)

First, the numerical schemes are explained considering the linear case. Then, the extension
to the nonlinear case is described.
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3.1. The Euler explicit scheme

The standard explicit Euler scheme can be written as:

un+1
j − un

j

∆t
= ν

un
j−1 − 2 un

j + un
j+1

∆x 2
, j = 1, . . . , N − 1 , n > 0 . (3.2)

The stencil of this scheme is shown in Figure 1(a). The discretisation is completed using
the two boundary conditions:

un
0 = ψL (t

n, un
1 , . . . ) ,

un
N = ψR (tn, un

N−1, . . . ) ,

where functions ψL,R ( • ) may depend on adjacent values of the solution whose number
depends on the approximation order of the scheme (here we use the second order in space).

By solving Eq. (3.2) with respect to un+1
j , we obtain a discrete dynamical system

un+1
j = un

j + ν
∆t

∆x 2

(

un
j−1 − 2 un

j + un
j+1

)

, n > 0 ,

whose starting value is directly obtained from the initial condition:

u 0
j = 1 .

It is well-known that scheme (3.2) approximates the continuous operator to order O(∆t +
∆x 2) . The explicit scheme is conditionally stable under the following Courant–Friedrichs–
Lewy (CFL) condition:

∆t 6
1

2 ν
∆x 2 . (3.3)

Unfortunately, this condition is too restrictive for sufficiently fine discretisations so that
this approach is hardly used in building simulation tools. In the case of linear weakly
coupled equations, as Eq. (2.5), the CFL condition is calculated as the more restrictive
one.

For the nonlinear case, the Euler scheme yields to:

un+1
j − un

j

∆t
=

1

∆x

[

(

ν
∂u

∂x

)n

j+
1
2

−

(

ν
∂u

∂x

)n

j−
1
2

]

, (3.4)

with
(

ν
∂u

∂x

)n

j+
1
2

=
1

2 ∆x
ν n

j+
1
2

(

un
j+1 − un

j

)

.
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3.2. The Euler implicit scheme

In order to overcome the stability condition Eq. (3.3), the Euler implicit scheme can
be used, written as:

un+1
j − un

j

∆t
= ν

un+1
j−1 − 2 un+1

j + un+1
j+1

∆x 2
, j = 1, . . . , N − 1 , n > 0 .

(3.5)

The finite-difference stencil of this scheme is depicted in Figure 1(b). These relations have
to be properly initialized and supplemented with numerical boundary conditions. The
scheme (3.5) has the same order of accuracy as the explicit scheme (3.2), i.e. O(∆t + ∆x 2) .
However, the implicit scheme (3.5) is unconditionally stable, which constitutes its major
advantage.

The most important difference with the explicit scheme (3.2) is that a tridiagonal system

of linear algebraic equations to determine the numerical solution values
{

un+1
j

}N

j=0
on the

following time layer t = tn+1 has to be solved, which determines the algorithm complexity.
A tridiagonal system of equations are solved in O(N) operations (using the simple Thomas

algorithm, for example) at every iteration step.
The straightforward application of the scheme for the nonlinear case yields the following

scheme:

un+1
j − un

j

∆t
=

1

∆x

[

(

ν
∂u

∂x

)n+1

j+
1
2

−

(

ν
∂u

∂x

)n+1

j−
1
2

]

, (3.6)

with
(

ν
∂u

∂x

)n+1

j+
1
2

=
1

2 ∆x
ν n+1

j+
1
2

(

un+1
j+1 − un+1

j

)

.

However, this approach inevitably leads to deal with nonlinearities due to the evaluation
of thermal properties at the upcoming time layer t = tn+1. To deal with this issue, local
linearisation techniques such as fixed-point or local linearisation strategies [6, 23] can be
used, requiring a relatively high number of sub-iterations.

3.3. Improved explicit scheme: Dufort–Frankel method

Using the so-called Dufort–Frankel method, the numerical scheme is expressed as:

un+1
j − un−1

j

2∆t
= ν

un
j−1 −

(

un−1
j + un+1

j

)

+ un
j+1

∆x 2
, j = 1, . . . , N − 1 , n > 1 ,

(3.7)

where the term 2 un
j is replaced by un−1

j + un+1
j . The scheme (3.7) has the stencil depicted

in Figure 1(c). At a first glance, the scheme (3.7) looks like an implicit scheme, however, it
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is not truly the case. Eq. (3.7) can be easily solved for un+1
j to give the following discrete

dynamical system:

un+1
j =

1 − λ

1 + λ
un−1

j +
λ

1 + λ

(

un
j+1 + un

j−1

)

, n > 1 ,

where:

λ
def
:= 2 ν

∆t

∆x 2
.

The standard von Neumann stability analysis shows that the Dufort–Frankel scheme
is unconditionally stable [12, 24, 29]. The consistency error analysis of the scheme (3.7)
shows the following result:

L
n
j = ν

∆t 2

∆x 2

∂2u

∂t2
+

∂u

∂t
− ν

∂2u

∂x2
+

1

6
∆t 2

∂3u

∂t3

−
1

12
ν∆x 2 ∂

4u

∂x4
−

1

12
ν∆t 2∆x

∂5u

∂x3 ∂t2
+ O

(∆t 4

∆x 2

)

, (3.8)

where

L
n
j

def
:=

un+1
j − un−1

j

2∆t
− ν

un
j−1 −

(

un−1
j + un+1

j

)

+ un
j+1

∆x 2
.

So, from the asymptotic expansion for Ln
j one can see the Dufort–Frankel scheme is

second-order accurate in time and:

• First-order accurate in space if ∆t ∝ ∆x 3/2

• Second-order accurate in space if ∆t ∝ ∆x 2.

In the nonlinear case, the numerical scheme can be derived as follows:

un+1
j − un−1

j

2∆t
=

1

∆x

[

(

ν
∂u

∂x

)n

j+
1
2

−

(

ν
∂u

∂x

)n

j−
1
2

]

. (3.9)

The right-hand side term can be expressed as:

1

∆x

(

(

ν
∂u

∂x

)n

j+
1
2

−

(

ν
∂u

∂x

)n

j−
1
2

)

=
1

∆x2

(

ν n

j+
1
2

un
j+1 − ν n

j−
1
2

unj−1 −

(

ν n

j+
1
2

− ν n

j−
1
2

)

un
j

)

.

(3.10)

Using the Dufort–Frankel stencil (see Figure 1(c)), the term un
j is replaced by

un+1
j + un−1

j

2
. Thus, considering Eq. (3.9), the Dufort–Frankel schemes can be ex-

pressed as an explicit scheme:

un+1
j =

λ 1

λ 0 + λ 3
· un

j+1 +
λ 2

λ 0 + λ 3
· un

j−1 +
λ 0 − λ 3

λ 0 + λ 3
· un−1

j , n > 1 ,
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with

λ 0
def
:= 1 , λ 1

def
:=

2∆t

∆x2
ν n

j+
1
2

,

λ 2
def
:=

2∆t

∆x2
ν n

j−
1
2

, λ 3
def
:=

∆t

∆x2

(

ν n

j+
1
2

+ ν n

j−
1
2

)

.

When dealing with the nonlinearities of the material properties, an interesting feature of
explicit schemes is that it does not require any sub-iterations (using Newton–Raphson

approach for instance). At the time layer n , the material properties ν
j+

1
2

, ν
j−

1
2

are explic-

itly calculated at tn . It should be noted that the material properties evaluated at j + 1
2

is formulated as:

ν n

j+
1
2

= ν

(

un
j + un

j+1

2

)

.

3.4. Validation of the numerical solution

One possible comparison of the numerical schemes can be done by computing the L∞

error between the solution u num and a reference solution u ref :

ε
def
:=

∣

∣

∣

∣ u ref − u num

∣

∣

∣

∣

∞

The reference solution is computed using the Matlab open source package Chebfun [10].
Using the function pde23t, it enables to compute a numerical solution of a partial derivative
equation using the Chebyshev polynomials adaptive spectral methods.

The L∞ error can be computed along the space or time domains, according to:

ε ( x )
def
:= sup

t∈
[

0 ,τ
]

∣

∣ u ref ( x, t ) − u num ( x, t )
∣

∣ ,

ε ( t )
def
:= sup

x∈

[

0 ,L
]

∣

∣ u ref ( x, t ) − u num ( x, t )
∣

∣ .

When dealing with two fields u and v , as it is the case for the heat and moisture transfer,
the L∞ error is computed using:

ε
def
:= max

{

∣

∣

∣

∣u ref − u num

∣

∣

∣

∣

∞
,
∣

∣

∣

∣ v ref − v num

∣

∣

∣

∣

∞

}

.

4. Numerical application
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4.1. Linear case

A linear heat ad moisture transfer problem is first considered to confirm the features
of the proposed explicit scheme. The material length is L = 0.1m. The hygrothermal
properties of the material are cM = 6.1 · 10−2 s 2/m 2, kM = 5.47 · 10−10 s, cTT =
8.61 · 10 5 W . s/(K .m 3), cTM = 5.09 · 103 W . s 3/(kg .m 2), kTT = 3.87 · 10−1 W/(m .K) and
kTM = 1.53 · 10−2 W . s 2/kg. It corresponds to the properties of the load bear material
for T = 20 ◦C and φ = 50 % [13, 15]. At t = 0 h, the material has uniform
temperature T i = 20 ◦C and relative humidity φ i = 50 % fields. The boundary
conditions, represented by the relative humidity φ and temperature T , are given in Figure 2.
They oscillate between dry and moist states during 120 hours, allowing not to reach the
steady state. No additional source term is considered for the moment. The convective
mass and heat transfer coefficients are set to hM = 2 · 10−7 s/m, hT = 25 W/(m 2 .K)

and hM = 3 · 10−8 s/m, hT = 8 W/(m 2 .K) , for the left and right boundary conditions,
respectively. The dimensionless numerical values of this case are provided in B.

The solution of the problem has been first computed for a discretisation ∆x ⋆ = 10−2 and
∆t ⋆ = 10−4 , respecting the CFL condition. Physically, those values correspond to ∆x =
1 mm and ∆t = 3.6 s . The physical phenomena are thus well represented, as illustrated
in Figure 3. The field variations follow the boundary conditions. A good agreement is
noticed between the three numerical schemes and the reference solution. Furthermore, the
temperature and relative humidity profiles are shown in Figure 4 for t = 10 h , t = 20 h
and t = 40 h . All numerical methods give accurate results as illustrated with the L∞

error, calculated as a function of x, in Figures 5(a) and 5(b). The numerical methods have
the same accuracy of order ε = 5 · 10−5 .

A numerical analysis of the behaviour of the three numerical schemes has been carried
out for different values of the temporal discretisation ∆t . The spatial discretisation is
maintained to ∆x ⋆ = 10−2 . Results of the L∞ error ε are shown in Figures 6(b)
and 6(a), for the temperature and the relative humidity, respectively. As expected, the
explicit Euler scheme enables to compute the solution as far as the CFL condition is
respected. The stability condition has a slightly higher constraint for the heat transfer
equation Eq. (2.5a), ∆t ⋆ 6 3 · 10−4, than for the moisture equation Eq. (2.5b), ∆t ⋆ 6
4 · 10−3 . As Eq. (2.5) is a system of weakly coupled linear equations, even if the CFL of
the heat transfer equation Eq. (2.5a) is not respected, the solution of the moisture transfer
equation Eq. (2.5b) can be computed (until its own CFL condition is met). The implicit
Euler and Dufort–Frankel schemes are unconditionally stable and enable to compute
the solution after the CFL limit. It also confirms that the Dufort–Frankel scheme is
second-order accurate in time O(∆t2) while the implicit Euler is first-order accurate in
time O(∆t) . The error ε reaches a lower bound, corresponding to the constant absolute
accuracy of the case.
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Figure 2. Boundary conditions at x = 0 m (a,c) and x = 0.1 m (b,d).

4.2. Nonlinear case

As heat and moisture transfer are strongly nonlinear due to the variation of the material
properties with the field, a second case study is investigated considering these effects.
The same boundary conditions, given in Figure 2, with equivalent convective mass and
heat transfer coefficients, are taken into account. The hygrothermal material properties
corresponds to a load bearing material, similar to the one considered in [12, 13, 15]. At
t = 0 h, the material has uniform temperature T i = 20 ◦C and relative humidity
φ i = 50 % fields.
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Figure 3. Time evolution of the temperature and relative humidity at x = 0 m

(a,c) and x = 0.1 m (b,d).

As for the previous linear case study, the solution was computed using three numerical
schemes, considering a spatial discretisation parameter ∆x ⋆ = 10−2. For the time
domain, the discretisation parameter equals ∆t ⋆ = 10−3 for the Dufort–Frankel and
implicit Euler scheme. A tolerance η 6 10−2 ∆t ⋆ has been used for the convergence of
the sub-iterations of the implicit scheme, using a fixed-point algorithm. For the explicit
Euler scheme, a time discretisation ∆t ⋆ = 10−5 has been used, to respect the CFL
stability condition. The latter has been computed using for the heat transfer equation
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Figure 4. Temperature and relative humidity profiles at t = 10 h, t = 20 h
and t = 40 h .
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Figure 5. L∞ error between the reference solution and the ones computed with

the numerical schemes, for temperature (a) and relative humidity (b).

Eq. (2.5a):

∆t ⋆ 6

(

∆x ⋆
) 2

2
min
u ,v

{

c ⋆TT ( u , v )

FoTT k ⋆
TT ( u , v )

,
c ⋆TT ( u , v )

FoTM k ⋆
TM( u , v )

,
c ⋆TT ( u , v ) c

⋆
M( u , v )

c ⋆TM( u , v ) γ FoM k ⋆
M( u , v )

}

,

(4.1)



An improved explicit scheme for building simulation 17 / 44

∆t (-)
10

-4
10

-3
10

-2
10

-1
10

0

ε
(-
)

10
-4

10
-3

10
-2

10
-1

10
0

Dufort

Euler explicit

Euler implicit

O(∆t 2)
O(∆t)

CFL

(a)

∆t (-)
10

-4
10

-3
10

-2
10

-1
10

0

ε
(-
)

10
-4

10
-3

10
-2

10
-1

10
0

Dufort

Euler explicit

Euler implicit

O(∆t 2)
O(∆t)

CFL

(b)

Figure 6. L∞ error as a function of ∆t for the implicit Euler, explicit

Euler and Dufort–Frankel schemes for temperature T (a) and relative
humidity φ (b).

and for the mass transfer equation Eq. (2.5b):

∆t ⋆ 6

(

∆x ⋆
) 2

2
min
u ,v

{

c ⋆M( u , v )

FoM k ⋆
M( u , v )

}

, (4.2)

which give the numerical values of ∆t ⋆ 6 3 · 10−4 and ∆t ⋆ 6 7.4 · 10−5, corresponding
to physical values of ∆t ⋆ 6 1.08 s and ∆t ⋆ 6 0.2 s , respectively. It can be noted that
the stability of the coupled equation is given by the moisture equation stability.

The time evolution of the fields is presented in Figure 7, showing a good agreement
between the solution of each numerical scheme. The coupling effect between heat and
mass transfer can be specially noted in Figure 7(a). The temperature at x = 0 m
varies according to both frequencies of the left side air temperature and relative humidity,
illustrated in Figures 2(c) and 2(a). The relative humidity rises until 98 % at t = 40 h,
demonstrating that the material is solicited until the saturation state during the simulation.
Figure 8 represents the field profiles at different time. We recall that the properties of the
material of the previous linear case corresponds to the one of the load bear material for
T = 20 ◦C and φ = 50 % . Moreover, the same boundary conditions were taken into
account. Thus, the influence of considering the material nonlinearities can be observed
when comparing the results between both case studies. The temperature and relative
humidity profiles are relatively different between Figures 4 and 8. The error between the
reference solution and the ones computed with the different numerical scheme is given in
Figures 9(b) and 9(a). It confirms that all the numerical schemes enable to compute an
accurate solution, at the order of 10−4 for both fields and considered spatial and temporal
discretisations.
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For the implicit Euler and the explicit Dufort–Frankel schemes, the CPU time has
been calculated, using Matlab platform on a computer with Intel i7 CPU and 32GB of
RAM, and shown in Table 2. The implicit scheme requires around 9 sub-iterations per
time step to treat the nonlinearities of the problem. The Dufort–Frankel approach
computes directly the solution and therefore has a reduced computational costs, around
15% of the implicit Euler scheme based algorithm.

A convergence study was also performed for the explicit Euler and the Dufort–
Frankel numerical schemes by fixing the discretisation parameter ∆x ⋆ = 10−2 and
varying ∆t ⋆. Results are shown in Figure 10. As expected, the explicit Euler scheme was
not able to compute a solution when the stability CFL condition is not respected (around
∆t ⋆ 6 8 ·10−5). The values computed from Eq. (4.1) and (4.2) are in accordance with the
results from the convergence study. It also confirms that the Dufort–Frankel scheme
is unconditionally stable, as it computes a solution for any discretisation parameter ∆t ⋆.
The error of the numerical scheme is second-order accurate in time O(∆t 2) .

5. Whole-building hygrothermal model

5.1. Coupling the lumped air multizone model with the transfer

through porous walls

The lumped multizone model divides the whole-building into N z perfectly mixed air
zones. For each zone, the evolutions of the air temperature T a and the humidity ratio w a

are given by the equations [3, 4, 28]:

ρ a V
(

c p,a + c p,v w a

) dT a

dt
= Q o + Q v + Q inz +

Nw
∑

i=1

Qw, i , (5.1a)

ρ a V
dw a

dt
= G o + G v + G inz +

Nw
∑

i=1

Gw, i . (5.1b)

Besides the dependence of the air heat capacity on the humidity ratio, the right-hand
terms of the room air energy balance equation (5.1a) can also be strongly dependent on
the humidity ratio, which may lead to a highly nonlinear problem.

Equation (5.1b) can be expressed using the vapour pressure of the air zone P v, a, by
means of the following relation:

w a =
M v

M a

P v, a

P a − P v, a
≃
P v

P ◦

v



An improved explicit scheme for building simulation 19 / 44

t (h)
0 20 40 60 80 100 120

T
(◦
C
)

0

5

10

15

20

25

Euler explicit

Dufort

Euler implicit

Cheb.

(a)

t (h)
0 20 40 60 80 100 120

T
(◦
C
)

10

15

20

25

Euler explicit

Dufort

Euler implicit

Cheb.

(b)

t (h)
0 20 40 60 80 100 120

φ
(-
)

0

0.2

0.4

0.6

0.8

1

Euler explicit

Dufort

Euler implicit

Cheb.

(c)

t (h)
0 20 40 60 80 100 120

φ
(-
)

0.2

0.3

0.4

0.5

0.6

0.7

Euler explicit

Dufort

Euler implicit

Cheb.

(d)

Figure 7. Time evolution of the temperature and relative humidity at x = 0 m

(a,c) and x = 0.1 m (b,d).

where P ◦

v = 1.61 · 10 5 Pa . In addition, according to the notation used before, we have:

κTT, 0
def
:=

ρ a V c p,a
P ◦

v

, κTT, 1
def
:=

ρ a V c p,v
P ◦

v

,

κTT
def
:= κTT, 0 + κTT, 1 P v , κM

def
:= ρ a V .

The terms G and Q are associated to occupants and their activities, denoted with the
subscript o, as well as air flow from ventilation systems or infiltration, denoted with the
subscript v. The sources due to interzone airflow are designated by Q inz and G inz corre-
spondingly. Interested readers may find a detailed list of these sources and their physical
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Figure 8. Temperature and relative humidity profiles at t = 10 h, t = 20 h
and t = 40 h .
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Figure 9. L∞ error between the reference solution and the ones computed with
the numerical schemes, for temperature (a) and relative humidity (b).

description in [9]. The first can be expressed as:

Q o = L v g o( t ) , G o = g o( t ) ,
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Figure 10. L∞ error as a function of ∆t for the implicit Euler, explicit

Euler and Dufort–Frankel schemes for temperature (a) and relative
humidity (b).

where g o is the time variant vapour production. The sources due to ventilation system are
written as:

Q v = g v

(

cw T∞ − cw T a

)

+ L v g v

(

w∞ − w a

)

,

G v = g v

(

w∞ − w a

)

,

where g v stands for the air flow rate due to ventilation and infiltration, T∞ and w∞ are
the outside temperature and humidity ratio, and cw the water heat capacity depending on
the air temperature and humidity ratio. In a similar way, the sources due to an airflow
g inz between zones i and j are given by:

Q inz = g inz

(

cw j T j − cw i T i

)

+ L v g inz

(

w j − w i

)

,

G inz = g inz

(

w j − w i

)

.

Here, a mean value of the latent heat of evaporation L v, evaluated at the considered
temperatures, is used for numerical application.The terms Qw and Gw represent the mass
and heat quantities exchanged between the air room and the the Nw bounding walls:

Qw = hT A
(

T s − T a

)

+ L v hM A
(

P v, s − P v, a

)

, (5.2a)

Gw = hM A
(

P v, s − P v, a

)

, (5.2b)

where A is the wall surface area. The terms T s and P v, s are the wall surface temperature
and vapour pressure. Considering Eq. (2.2), they correspond to T s = T (x = 0) and
P v, s = P v(x = 0) (with the adopted convention). Thus, the coupling between the wall
model Eq. (2.2) and the lumped multizone model Eq. (5.1) is operated by the sources Gw

and Qw from Eq. (5.2).
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The temperature and vapour pressure in the zone are initially at T = T i and P v = P v, i .
To write a dimensionless formulation of Eq. (5.1), the following quantities are defined:

u a
def
:=

T a

T i
, v a

def
:=

P v, a

P v, i
, κ ⋆

aTT, 1

def
:=

κTT, 1

κTT, 0
P v, i ,

g ⋆
o

def
:=

t 0
P v, i · κM

g o , q ⋆
o

def
:=

t 0
T i · κTT, 0

L v g o , g ⋆
v

def
:=

g v t 0
P ◦

v κM

,

q ⋆
v, 1

def
:=

cw g v t 0 P v, i

P ◦

v κTT, 0
, q ⋆

v, 2

def
:=

L v g v t 0 P v, i

P ◦

v κTT, 0 T i
g ⋆
inz

def
:=

g inz t 0
P ◦

v κM
,

q ⋆
inz, 1

def
:=

cw g inz t 0 P v, i

P ◦

v κTT, 0

, q ⋆
inz, 2

def
:=

L v g inz t 0 P v, i

P ◦

v κTT, 0 T i

θT
def
:=

kTT, 0 · A · t 0
L · κTT, 0

,

θM
def
:=

kM, 0 · A · t 0
L · κM

Thus, the dimensionless formulation of Eq. (5.1) can be written as:

(

1 + κ ⋆
aTT, 1

)du a

dt ⋆
= q ⋆

o + q ⋆
v, 1

(

u∞ v∞ − u a v a

)

+ q ⋆
v, 2

(

u∞ − u a

)

+ q ⋆
inz, 1

(

u a,2 v a,2 − u a v a

)

+ q ⋆
inz, 2

(

u a,2 − u a

)

+

Nw
∑

i=1

BiTT, i θT, i
(

u i − u a

)

+ BiTM, i θT, i
(

v i − v a

)

, (5.3a)

dv a

dt ⋆
= g ⋆

o + g ⋆
v

(

v∞ − v a

)

+ g ⋆
inz

(

v a,2 − v a

)

+
Nw
∑

i=1

BiM, i θM, i

(

v a − v i

)

. (5.3b)

The quantities u∞ , v∞ and u a,2 , v a,2 come from building outside (provided by weather
data) and from the adjacent zone. The coupling between the wall model Eq. (2.5) and
the lumped multizone model Eq. (5.3) is operated through the wall source terms. The
dimensionless parameters BiTT , BiTM and BiM qualify the penetration of the heat and
moisture through the wall according to the physical mechanism. The parameters θT, i and
θM, i depend on the wall surface on the room air, providing the weighted contribution of
the wall to the energy and moisture balances.

5.2. Implicit scheme for the whole-building energy simulation:

problem statement

For the sake of simplicity and without loosing the generality, the coupling procedure is
explained considering only the linear heat diffusion equation Eq. (3.1) for one wall model
with the following boundary conditions for the surface in contact with the outside (x = 0)
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and inside(x = 1) air of the building:

∂u

∂x
= BiTT

(

u − u∞

)

x = 0 , (5.4a)

∂u

∂x
= −BiTT

(

u − u a

)

x = 1 . (5.4b)

The room air energy conservation equation for the multizone model is expressed as:

du a

dt
= Q + BiTT ΘT

(

u − u a

)

, (5.5)

Many whole-building models reported in the literature, such as MATCH [25], MOIST
[5] and DOMUS [8, 19, 21], use implicit (Euler or Crank–Nicolson) approaches to
solve these equations, mainly due to the unconditional stability property. Thus, using an
Euler implicit approach, the discretisations of Eqs. (3.1), (5.4a), (5.4b) yield to:

1

∆t

(

un+1
j − un

j

)

=
ν

∆x2
(

un+1
j+1 − 2 un+1

j + un+1
j−1

)

,

1

∆x

(

un+1
1 − un+1

0

)

= BiTT

(

un+1
0 − un+1

∞

)

,

1

∆x

(

un+1
N − un+1

N−1

)

= −BiTT

(

un+1
N − un+1

a

)

.

Therefore, at iteration tn, solution un+1, of the wall model, is computed using the resolvent
operator Rw

imp written as:

un+1 = R
w
imp

(

un, un+1
a , un+1

∞

)

,

In the same way, the discretisation of Eq. (5.5) yields to:

1

∆t

(

un+1
a − un

a

)

= Qn+1 + BiTT ΘT

(

un+1
N − un+1

a

)

,

and, at iteration tn, solution un+1
a , of the multizone model, is computed using the resolvent

operator R a
imp written as:

un+1
a = R

a
imp

(

un
a , u

n+1
)

.

By coupling the wall and the multizone models to perform a whole-building energy
simulation, ones must solve at each time iteration the following system of equations:

un+1 = R
w
imp

(

un, un+1
a , un+1

∞

)

, (5.6a)

un+1
a = R

a
imp

(

un
a , u

n+1
)

. (5.6b)

As the system Eq. (5.6) is nonlinear, it is not possible to solve it directly. Thus,
(

un+1, un+1
a

)

are computed using, for instance, a fixed point algorithm, until reaching a prescribed tol-
erance η , as illustrated in Alg. 1. The number of subiterations should increase with the
number of walls considered in the whole-building model, when dealing with nonlinear mod-
els and when considering interzone airflows. Interested readers may report to [8] for more
details on this problem statement. Indeed, authors investigate the influence of the time
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step on the computational time of a whole-building simulation model, considering only
heat transfer, for different numerical schemes and analytical solution.

1 u k = un ;

2 u k
a = un ;

3 while
∣

∣

∣

∣ u k+1 − u k, u k+1
a − u k

a

∣

∣

∣

∣ > η do

4 u k+1 = Rw
imp

(

un, u k
a, u

n+1
∞

)

;

5 u k+1
a = R a

imp

(

un
a , u

k+1
)

;

6 u k = u k+1 ;

7 u k
a = u k+1

a ;

8 end

9 un+1 = u k+1 ;

10 un+1
a = u k+1

a ;

Algorithm 1: Fixed point algorithm to compute
(

un+1, un+1
a

)

, using implicit numerical

schemes, within the framework of whole-building simulation energy.

5.3. Improved explicit schemes for the whole-building energy

simulations

Using the improved explicit Dufort–Frankel scheme, results from Section 3.3 have
shown that the discretisation of Eqs. (3.1), (5.4a), (5.4b) is given by:

un+1
j =

1 − λ

1 + λ
un−1

j +
λ

1 + λ

(

un
j+1 + un

j−1

)

.

Moreover, to solve equation Eq. (5.5), we get the scheme:

1

∆t

(

un+1
a − un

a

)

= Qn + BiTT ΘT

(

un
N − un

a

)

.

Therefore, by coupling the wall and the multizone models, at each time iteration, the
solution of the equations is directly computed:

un+1 = R
w
exp

(

un, un
a , u

n
∞

)

, (5.7a)

un+1
a = R

a
exp

(

un
a , u

n
)

. (5.7b)

Thus, the use of improved explicit schemes, such as the Dufort–Frankel one, is
particularly advantageous to avoid subiterations at each time step to compute the depen-
dent variable fields. In addition, the numerical property of unconditional stability avoids
any limitation on the values of the time step ∆t , which is chosen only according to the
characteristic time of the physical phenomena [12].

6. Numerical application
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6.1. Linear case

A single zone, surrounded by four walls is considered, as illustrated in Figure 11(a).
The physical properties of the materials constituting the walls are linear and shown in
Table 1. Their dimensionless values are provided in B. The convective mass and heat
transfer coefficients are set to hM = 3 · 10−8 s/m and hT = 8 W/(m 2 .K) between the
inside air zone and the walls. It is assumed that no transfer occurs through the ceiling
and the floor. The zone has a floor area of 18 m 2 and a volume of 54 m 3. The room
is subjected to a constant moisture load of 25 g/h with an increase of 400 g/h from 6 h
to 9 h each day. External air enters the room through ventilation and infiltrations at
a constant rate of g v = 0.5 h−1. There are no radiative heat exchange among the
walls. The initial temperature and relative humidity in the zone are T i = 20 ◦C and
φ i = 50 %, respectively. The outside boundary conditions T∞ and φ∞ are given in
Figures 11(b) and 11(c). The convective transfer coefficients between the walls and the
outside conditions are also provided in Table 1. For this case, neither radiation or rain
sources are considered for the boundary conditions. The whole simulation is performed
for 80 h. The walls and zone fields are computed using the implicit Euler and explicit
Dufort–Frankel schemes. The explicit Euler scheme has stability restrictions and, to
our knowledge, is not commonly used in building simulation programs. Thus, it was not
included in this case study. The space and time discretisation parameters are ∆x ⋆ = 10−2

and ∆t ⋆ = 10−3, corresponding, from a physical point of view, to ∆x = 10−3 m and
∆t = 3.6 s, and each solution is compared with the one computed using the Chebfun

package for Matlab.
The time evolution of the temperature and relative humidity for different walls and for

the air zone are given in Figures 12 and 13. The solutions computed with the Euler and
Dufort–Frankel schemes are in very good agreement with the ones from Chebfun.
As for the material properties of the wall, differences between the field evolution can be
observed. Particularly, in Figures 12(a) and 12(c), the increase and decrease of temperature
at x = 0 m are higher for the Eastern wall than for the Northern one. It is due to a
higher Biot number for the latter: BiTT = 3.1 against BiTT = 1.7. In Figures 13(a)
and 13(b) the increase and decrease of relative humidity are different at x = 0 m between
the Northern and Southern walls. In Figure 13(d), a slight increase of relative humidity
due to moisture generation in the zone from 6 to 9 h can be observed. The L∞ in space x
has been computed for the fields in the four walls, as illustrated in Figure 14(a). Moreover,
the L∞ error with respect to t for the fields in the zone is given in Figure 14(b). The error
is approximately O(10−4) for both models, proving the accuracy of the solution computed
with the implicit Euler and explicit Dufort–Frankel schemes. For each scheme, the
CPU time has been calculated, using Matlab platform on a computer with Intel i7 CPU
and 32GB of RAM, and is shown in Table 2. The explicit Dufort–Frankel scheme
requires less than 10% of the time needed for the implicit Euler one, to compute the
solution. This difference is due to the sub-iterations needed to solve the nonlinear system
composed by equations of the wall and zone models. In this case, a fixed-point algorithm
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Parameter North Wall South Wall
East and West

walls

cM ( s 2/m 2 ) 1.82 · 10−2 1.18 · 10−1 6.09 · 10−2

kM ( s ) 5.89 · 10−9 2.92 · 10−8 5.47 · 10−9

cTT

(

W . s/(K .m 3)
)

7.7 · 10 5 1.28 · 10 6 8.61 · 10 5

kTT

(

W/(m .K)
)

2.94 · 10−1 8.41 · 10−1 3.87 · 10−1

cTM

(

W . s 3/(kg .m 2)
)

1.52 · 10 3 9.88 · 10 3 5.09 · 10 3

kTM

(

W . s 2/kg ) 1.59 · 10−2 2.96 · 10−3 1.53 · 10−2

A (m 2 ) 18 18 9

hT

(

W/(m 2 .K)
)

5 25 12

hM ( s/m ) 2 · 10−7 8 · 10−7 4 · 10−7

Table 1. Wall material properties.

with tolerance parameter η = 0.01 ·∆t , as the one illustrated in Algorithm 1, has been
used. As emphasized in Figure 15, this algorithm required almost three sub-iterations to
compute the solution at each time iteration.

A convergence study of the whole-building model has been carried out by fixing the space
discretisation to ∆x = 10−2 and varying the time discretisation. Results are reported
in Figures 16(a) and 16(b), for each field. The error with the reference solution has been
computed for each field (temperature and relative humidity) and for each model (wall and
zone). As expected, the explicit Dufort–Frankel scheme is second-order accurate in
time O(∆t2) for both models and both fields. On the contrary, the implicit Euler scheme
is first-order accurate in time. It can be noted that the wall model reach a constant absolute
accuracy lower than the one for the zone.

6.2. Nonlinear case

Previous case study considered a single zone building hygrothermal simulation with
linear wall material properties. It enabled to enhance the sub-iterations required using
implicit Euler scheme when coupling the wall and zone models. The present case focus
on a bi-zone building, as shown in Figure 17(a), and take into account the variation of the
wall material properties with temperature and relative humidity, such as the ones used in
Section 4.2. Furthermore, the radiative heat exchanged among the room air surfaces are
included. All the inside walls have an emissivity ǫ = 0.5 except the wall 7, which have a
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Figure 11. Illustration of the case study (a) and the boundary conditions T∞

(b) and φ∞ (c) for the linear case.
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Figure 12. Evolution of the temperature for the North (a), South (b) and East
(c) walls and for the air zone (d) for the linear case.

higher value ǫ = 0.9. The view factor is set to s = 0.2 . Incident radiation is considered
for the outside boundary condition, shown in Figure 17(b). An airflow of g inz = 0.3 h−1

occurs between both zones. Only zone 1 is subjected to moisture sources due to occupants
and to air ventilation. Zone 2 receives a heat source qh = 500 W from 3 to 4 h . The
other parameters have the same numerical values as in the previous case study. This case
study was designed in order to enforce the nonlinearities of the whole-building model, to
increase the sub-iterations of the implicit Euler approach and thus enhance the efficiency
of the Dufort–Frankel explicit scheme. The solution is computed using both schemes,
with a time and space discretisations ∆t ⋆ = 10−3 and ∆x ⋆ = 10−2, equivalent to
∆x = 10−3 m and ∆t = 3.6 s .
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Figure 13. Evolution of the relative humidity for the North (a), South (b) and

East (c) walls and for the air zone (d) for the linear case.

Figures 18(a) and 18(b) present the time evolution of the dependent variable fields
for the wall 1, showing a very good agreement among the three solutions. By comparing
Figures 12(a), 13(a), 18(a) and 18(b), the effect of considering nonlinear material properties
can be observed. Similar observations can be done by analysing Figures 19(a), 19(b), 19(c)
and 19(d). The moisture production in zone 1 is enhanced by an increase of the relative
humidity from 6 to 9 h . As the moisture generation only occurs in this zone, there is no
increase of the relative humidity in zone 2 due to this phenomena. Moreover, the heat
production in zone 2 is highlighted from 2 to 6 h . The temperature reach 24 ◦C . A slight
increase is observable in zone 1 during this period due to the heat generation in zone 2 and
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Figure 14. Error of the solutions computed with the implicit Euler and
explicit Dufort–Frankel schemes for the walls (a) and for the air zone (b) for
the linear case.
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Figure 15. Sub-iterations required for the implicit Euler scheme compute the
solution of the whole-building energy model for the linear case.

to the airflow between both zones. The error with the reference solution is of the order of
O(10−4) for the wall and zone fields, as shown in Figures 20(a) and 20(b).

By considering nonlinear wall material properties, the implicit Euler scheme require
more sub-iterations at each time iteration as illustrated in Figure 21. In the previous
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Figure 16. L∞ error as a function of ∆t for the implicit Euler and
explicit Dufort–Frankel schemes for temperature (a) and relative
humidity (b) for the linear case.

linear case study, the algorithm required around 3 iterations whereas for the present case,
it needs at least 6 to achieve the same accuracy. Therefore, the CPU time of the implicit
Euler scheme to compute the numerical solution increases, as reported in Table 2. As no
sub-iterations are necessary for the explicit Dufort–Frankel scheme, the computation
gain rises compared to the previous case study. It needs only 5 % of the CPU time of the
implicit Euler scheme. These gains might considerably increase when considering highly
nonlinear phenomena such as driving rain and iteration with HVAC systems [1].

7. Conclusion

Notwithstanding implicit methods are extensively used in building simulation codes, due
to their stability conditions, they may require important extra computation when dealing
with highly nonlinear problems such as the combined heat and moisture transfer through
porous building elements or when the whole-building is simulated, demanding a perfect
synchronism. In this way, this study aimed at exploring the use of the improved explicit
Dufort–Frankel scheme first for computing the solution of a highly coupled heat and
moisture transfer problem through a porous building element. Both Linear and nonlinear
material properties were considered and the advantages of this approach were highlighted to
perform whole-building hygrothermal simulation. Both single-zone and a two-zone building
models were analysed for the sake of simplicity.

The results have shown that the Dufort–Frankel scheme enables to compute an ac-
curate solution. The solution was compared to the one computed with the implicit and
explicit Euler schemes and to a reference solution obtained using the Matlab Chebfun
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Figure 17. Illustration of the case study (a) and outside radiative heat flux (b)
for the nonlinear case.
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Figure 18. Evolution of the temperature (a) and relative humidity (b) for the

wall 1 for the nonlinear case.

Wall model with nonlinear wall material properties

Numerical Scheme CPU time (s) CPU time (%) Average number of iterations

explicit Dufort–Frankel 150 28 -

implicit Euler 530 100 3

whole-building model with linear wall material properties

Numerical Scheme CPU time (s) CPU time (%) Average number of iterations

explicit Dufort–Frankel 8.5 9 -

implicit Euler 95 100 2.95

whole-building model with nonlinear wall material properties

Numerical Scheme CPU time (s) CPU time (%) Average number of iterations

explicit Dufort–Frankel 480 5.1 -

implicit Euler 8900 100 6

Table 2. Computer run time required for the numerical schemes.

package. It also enhanced that the Dufort–Frankel scheme can overcome the disad-
vantages of the implicit and explicit Euler approaches. First, it is unconditionally stable,
enabling to compute the solution for any choice of the time discretisation ∆t . The time
step is chosen only in accordance with the characteristic time of the physical phenomena
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Figure 19. Evolution of the temperature and relative humidity for zone 1 (a-b)

and zone 2 (c-d) for the nonlinear case.

[12]. It has also been confirmed that the Dufort–Frankel scheme is second-order accu-
rate in time O(∆t2) whereas Euler schemes are first-order only. Then, when dealing with
nonlinearities, the scheme does not require any sub-iteration at each time step. The solu-
tion is directly computed, reducing consequently the computational cost of the algorithm.
For the case study considering only heat and moisture transfer through a porous material,
the implicit Euler scheme requires around 9 sub-iterations. Therefore the computational
cost is reduced by the factor of fifteen using the Dufort–Frankel scheme. When cou-
pling the wall and zone models using implicit schemes, a nonlinear system of equations
has to be solved. For the case study, this nonlinearity induces around 3 sub-iterations
at each time iteration. When using the explicit Dufort–Frankel scheme, the system
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Figure 20. Error of the solutions computed with the implicit Euler and
explicit Dufort–Frankel schemes for the walls (a) and for the air zones (b)
for the nonlinear case.
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Figure 21. Sub-iterations required for the implicit Euler scheme compute the
solution of the whole-building energy model for the nonlinear case.

of equations becomes linear and no sub-iterations are necessary. Therefore, within the
Dufort–Frankel approach, the algorithm requires 9% of the CPU time of the implicit
based approach. When considering the nonlinearities of the wall material properties and
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long-wave ratiative heat transfer among the room surfaces, the computational savings rise
to 95%.

These results are encouraging to apply the Dufort–Frankel approach in building
simulation tools. The computational gains should increase with the number of rooms, walls,
partitions and furniture. Besides, this improved explicit method can also bring important
computational benefits for simulation of building communities, mainly when considering
all the interaction among all neighboring outdoor surfaces and elements that affect their
energy performance. In addition, this approach is more easily parallelised, achieving almost
perfect scaling on high-performance computer systems [7]. To conclude, explicit methods
applied to building simulation tools enable perfect synchronism for simulation and co-
simulation, which can reduce even more the computation efforts and might be a future
trend for complex and accurate energy assessment of a whole-building or even communities
of buildings.
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A. The Dufort–Frankel scheme for weakly coupled

equations

This appendix details the application of the Dufort–Frankel approach for two weakly
coupled equations, as the ones describing the heat and moisture transfer in porous materials
(Section 2). For this purpose, we consider a uniform discretisation as described in Section 3
and the following linear coupled diffusion equation:

∂v

∂t
= FoM

∂ 2v

∂x 2
, (A.1a)

∂u

∂t
+ γ

∂v

∂t
= FoTT

∂ 2u

∂x 2
+ γ FoTM

∂ 2v

∂x 2
. (A.1b)

The boundary conditions associated to Eq. (A.1) are written as:

∂v

∂x
= BiM

(

v − v∞

)

, (A.2a)

FoTT
∂u

∂x
+ γ FoTM

∂v

∂x
= BiTT

(

u− u∞

)

+ BiTM

(

v − v∞

)

, (A.2b)

Considering Eq. (A.1a) and the straightforward application of the Dufort–Frankel scheme
described in Section 3.3, we get:

v n+1
j =

1 − λ

1 + λ
v n−1
j +

λ

1 + λ

(

v n
j+1 + v n

j−1

)

, j = 1, . . . , N , n > 1 , (A.3)
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where:

λ
def
:= 2 FoM

∆t

∆x 2
.

For Eq. (A.1b), the numerical scheme is expressed as:

un+1
j − un−1

j

2∆t
+ γ

v n+1
j − v n−1

j

2∆t
= FoTT

un
j−1 −

(

un−1
j + un+1

j

)

+ un
j+1

∆x 2

+ γ FoTM

v n
j−1 −

(

v n−1
j + v n+1

j

)

+ v n
j+1

∆x 2
,

j = 1, . . . , N , n > 1 , (A.4)

With Eq. (A.3) and rearranging the terms of Eq. (A.4), the numerical scheme is derived
as follows for the field u:

un+1
j =

1 − µ

1 + µ
un−1

j +
µ

1 + µ

(

un
j+1 + un

j−1

)

+
γ − β

1 + µ
v n−1
j +

β

1 + µ

(

v n
j+1 + v n

j−1

)

−
γ + β

1 + µ
v n+1
j , n > 1 , (A.5)

where:

β
def
:= 2 FoTM γ

∆t

∆x 2
and µ

def
:= 2 FoTT

∆t

∆x 2
.

For the boundary conditions, the application of the Dufort–Frankel scheme to
Eq. (A.2a) gives:

v n
2 − v n

0

2∆x
= BiM

(

v n+1
1 + v n−1

1

2
− v∞

)

. (A.6)

Here, the node j = 0 is a ghost one located a distance ∆x from the node j = 1. From
Eq. (A.6), we can deduce v 0:

v n
0 = v n

2 − 2BiM ∆x

(

v n+1
1 + v n−1

1

2
− v∞

)

. (A.7)

In a similar way for Eq. (A.2b), we get:

un
0 = un

2 +
FoTM

FoTT

γ
(

v n
2 − v n

0

)

− 2BiTT ∆x

(

un+1
1 + un−1

1

2
− u∞

)

− 2BiTM ∆x

(

v n+1
1 + v n−1

1

2
− v∞

)

. (A.8)

Using Eqs. (A.7) and (A.8), it is possible to compute Eqs. (A.3) and(A.5) for j = 1 . A
similar approach is adopted for node j = N .
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B. Dimensionless numerical values

This Appendix provides the dimensionless values of the linear case study considered in
this work.

B.1. Wall model with linear material properties

In Section 4.1, the dimensionless properties of the material are:

FoM = 1.16 · 10−2 , FoTT = 1.61 · 10−1 , FoTM = 1.08,, γ = 2.35 · 10−2 ,

and

c ⋆M = k ⋆
M = c ⋆TT = c ⋆TM = k ⋆

TT = k ⋆
TM = 1 .

The Biot numbers are BiM = 3.65 , BiTT = 6.45 and BiTM = 5.14 · 10−1 at x = 0
and BiM = 5.48 · 10−1 , BiTT = 2.06 and BiTM = 7.72 · 10−2 at x = 1 , respectively.
The boundary conditions are expressed as:

At x = 0 , u∞ = 1 − 0.02 sin

(

2 π
t

60

) 2

, v∞ = 1 + 0.3 sin

(

2 π
t

5

)

,

At x = 1 , u∞ = 1 + 0.01 sin

(

2 π
t

10

)

, v∞ = 1 + 0.5 sin

(

2 π
t

8

)

.

The final simulation time is fixed to τ ⋆ = 120 .

B.2. Whole-building model with linear material properties

The dimensionless properties of the wall materials, considered in Section 6.1, are:

N. Wall: FoM = 1.16 · 10−1, FoTT = 1.37 · 10−1, FoTM = 3.76, γ = 7.87 · 10−3,

S. Wall: FoM = 8.9 · 10−2, FoTT = 2.36 · 10−1, FoTM = 1.07 · 10−1, γ = 3.07 · 10−2,

E. and W.: FoM = 3.23 · 10−2, FoTT = 1.61 · 10−1, FoTM = 1.08, γ = 2.35 · 10−2,

and for all the walls:

c ⋆M = k ⋆
M = c ⋆TT = c ⋆TM = k ⋆

TT = k ⋆
TM = 1 .

At x = 0, the Biot numbers are:

North Wall: BiM = 3.39 , BiTT = 1.7 , BiTM = 6.78 · 10−1 ,

South Wall: BiM = 2.73 , BiTT = 2.97 , BiTM = 9.48 · 10−1 ,

East and West Walls: BiM = 7.31 , BiTT = 3.1 , BiTM = 1.03 ,
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and at x = 1

North Wall: BiM = 5.09 · 10−1 , BiTT = 2.72 , BiTM = 1.01 · 10−1 ,

South Wall: BiM = 1.02 · 10−1 , BiTT = 9.5 · 10−1 , BiTM = 3.55 · 10−2 ,

East and West Walls: BiM = 5.48 · 10−1 , BiTT = 2.06 , BiTM = 7.72 · 10−2 ,

For the zone model, the properties are κTT, 0 = 1, κTT, 1 = 1.43 · 10−2 and the coupling
parameter θ:

North Wall: θT = 3.45 , θM = 111.1 ,

South Wall: θT = 9.89 , θM = 55.3 ,

East and West Walls: θT = 2.27 , θM = 5.18 ,

The source term due to ventilation system equals:

q ⋆
v, 1 = 7.1 · 10−3 , q ⋆

v, 2 = 3.09 · 10−2 , g ⋆
v = 0.5 .

The source term due to moisture load equals:

q ⋆
o = 3.8 · 10−3 +



























6.1 · 10−2 , t ∈
[

6 , 9
]

6.1 · 10−2 , t ∈
[

6 , 9
]

+ 24

6.1 · 10−2 , t ∈
[

6 , 9
]

+ 48

0 otherwise

g ⋆
o = 6.25 · 10−2 +



























1 , t ∈
[

6 , 9
]

1 , t ∈
[

6 , 9
]

+ 24

1 , t ∈
[

6 , 9
]

+ 48

0 otherwise

The outside boundary conditions are expressed as:

u∞ = 1 − 0.02 sin

(

2 π
t

24

) 2

, v∞ = 1 + 0.06 sin

(

2 π
t

24

)

.

The final simulation time is fixed to τ ⋆ = 80 .
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Nomenclature

Latin letters

A surface [m2]

c p,a air specific heat capacity [J/kg.K]

c p,v vapour specific heat capacity [J/kg.K]

c 0 material specific heat capacity [J/kg.K]

cw liquid water specific heat capacity [J/kg.K]

cM moisture storage coefficient [s
2

/m2]

cTM coupling storage coefficient [W.s3/kg.m3]

cTT energy storage coefficient [W.s/m3.K]

hM convective vapour transfer coefficient [s/m]

hT convective heat transfer coefficient [w/m2.K]

g inf liquid flow [kg/m2.s]

g flow [kg/m2.s]

G room moisture source term [kg/s]

k l liquid permeability [kg/m3/Pa]

kM moisture transf. coeff. under vap. press. grad. [s]

k TM heat transf. coeff. under vap. press. grad. [W.s2/kg]

k TT heat transf. coeff. under temp. grad. [W/m.K]

L length [m]

L v latent heat of evaporation [J/kg]

P a air pressure [Pa]

P c capillary pressure [Pa]

P s saturation pressure [Pa]

P v vapour pressure [Pa]

Q room heat source term [W/m3]

q heat flux [W/m2]

R v water gas constant [J/kg.K]

T temperature [K]

s view factor [−]

V volume [m3]

w a humidity ratio [kg/kg]
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Greek letters

δ v permeability [s]

σ Stefan–Boltzmann constant [−]

φ relative humidity [−]

ρ specific mass [kg/m3]

Parameters involved in the dimensionless representation

Bi Biot number [−]

c, κ storage coefficient [−]

Fo Fourier number [−]

k permeability coefficient [−]

q, g source terms [−]

u, u a, v, v a field [−]

θ weighted contribution [−]

ν diffusion coefficient [−]
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