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QUASI-NEWTON METHODS, MOTIVATION AND THEORY~ 

J. E. DENNIS, JR.t AND JORGE J. MORE+ 

Abstract. This paper is an attempt to motivate and justify quasi-Newton methods as useful 
modifications of Newton's method for general and gradient nonlinear systems of equations. Refer­
ences are given to ample numerical justification; here we give an overview of many of the important 
theoretical results and each is accompanied by sufficient discussion to make the results and hence the 
methods plausible. 

1. Introduction. Nonlinear problems in finite dimensions are generally · 
solved by iteration. Davidon (1959), for the minimization problem, and Broyden 
(1965), for systems of equations, introduced new methods which although itera­
tive in nature, were quite unlike any others in use at the time. These papers 
together with the very important modification and clarification of Davidon's work 
by Fletcher and Powell (1963) have sparked a large amount of research in the late 
sixties and early seventies. This work has led to a new class of algorithms which 
have been called by the names quasi-Newton, variable metric, variance, secant, 
update, or modification methods. Whatever one calls them (we will use quasi­
Newton), they have proved themselves in dealipg with practical problems of the 
two types mentioned; that is, systems of n equations in n unknowns, and the 
unconstrained minimization of functionals. 

A predictable consequence of this research is that there has been a prolifera­
tion of quasi-Newton methods for unconstrained minimization. Moreover, the 
derivation and relationship between these methods has usually been obscured by 
appealing to certain idealized situations such as exact line searches and quadratic 
functionals. This has not happened in nonlinear equations since the only quasi­
Newton method that has been seriously used is the one proposed by Broyden 
(1965). 

In this paper we show that it is possible to derive all of the known practical 
quasi-Newton methods from very natural considerations and in such a way that 
the relationship between these methods is clear. In addition, this paper contains a 
survey of the theoretical results which yield insight into the behavior of quasi­
Newton methods, and in order to motivate these methods, there is also some 
background material in§§ 2 and 6. In either case, we have only given those proofs 
which are either new, give insight, or are simpler than those previously published, 
but references are always given. 

In§§ 4 and 7 we derive the various quasi-Newton updates. This is done by 
taking the point of view that these updates are methods for generating approxima­
tions to derivatives-Jacobians for nonlinear equations and Hessians in uncon­
strained minimization. This point of view suggests how to use quasi-Newton 
methods in other areas such as least squares and constrained optimization. 
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The theoretical results are contained in §§ 5 and 8. These results show, in 
particular, that there are four quasi-Newton updates which are globally and 
superlinearly convergent for linear problems (even in the absence of orthogonal­
ity assumptions or exact line searches), and locally and superlinearly convergent 
for nonlinear problems. These updates·are Broyden's 1965 updat~ for nonlinear 
equations, Powell's symmetric form of Broyden's update, the Davidon-Fletcher­
Powell update, and the Broyden-Fletcher-Goldfarb-Shanno update. The 
theoretical results quoted tend to explain why these four updates are the ones 
most used in practical work. 

In addition to the above material there are some rate of convergence results 
in § 3. In particular, we emphasize superlinear convergence and its geometric 
interpretation. 

We use Rn to denote n-dimensional real Euclidean space with the usual 
inner product (x, y) = x T y while L (R n) is the linear space of all real matrices of 
order n. Moreover, 11·11 stands for either the /2 vector norm llxll = (x, x)112, or for 
any matrix norm which is consistent with (or subordinate to) the /2 vector norm in 
the sense that IIAxll < IIAIIIIxll for eachx inRn and A inL(Rn). In particular, the /2 
operator norm and the Frobenius norm are consistent with the /2 vector norm. For 
future reference we note that the Frobenius norm can be computed by 

n 

(1.1) IIAII~= L 11Avill2 
= tr (A TA), 

i=1 

where {vb · · · , vn} is any orthonormal set in Rn, and that for any pair A, B in 
L(Rn), 

(1.2) IIABIIF<min{IIAibiiBIIF, IIAIIFIIBib}. 

In addition to the above matrix norms, we also make use of the weighted norms 

(1.3) IIA IIM,2 = IIMAMib, 

where M is a nonsingular symmetric matrix in L(Rn). These norms do not satisfy 
the submultiplicative property IIABII <I lA IIIIBII which is usually satisfied by matrix 
norms, but are very useful because they can be used to measure the relative error 
of approximations to symmetric, positive definite matrices. To be specific, 
suppose that A is symmetric and positive definite, and let A - 112 be the symmetric 
positive definite square root of A - 1. Since 

IIB-AII<IIA -1/2(B-A)A -1/211 
IIAII -

for either the /2 operator norm or the Frobenius norm, it is clear that if M= A - 112, 
then IlB- A IIM,2 and IlB- A IIM.F measure the relative error of B as an approxima­
tion to A in the /2 and Frobenius norms, respectively. 

2. Variations on Newton's method for nonlinear equations. Let F:Rn ~ Rn be 
a mapping with domain and range in Rn and consider the problem of finding a 
solution to the system of n equations in n unknowns given by 

1<"< =' =n, 
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where /1, · · · , fn are .the component functions of F. 
The best known method for attacking this problem is Newton's method, but 

sometimes it is modified so as to improve its computational efficiency. In this 
section we examine some of these variations and their corresponding advantages 
and disadvantages. This will help to motivate the introduction of quasi-Newton 
methods as variations of Newton's method. 

For the purpose of analyzing th~ algorithms for solving F(x) = 0, the mapping 
F is assumed to have the following properties. 

(
2 1

) (a) The mapping Pis continuously differentiable in an open convex set D. 
· (b) There is an x* in D such that F(x*) = 0 and F'(x*) is nonsingular. 

The notation F'(x) denotes the Jacobian matrix (ai[;(x)) evaluated at x so that 
(2.1) guarantees that x * is a locally unique solution to the equations F(x) = 0. 

In addition to (2.1) sometimes we will need the stronger requirement that F' 
satisfies a Lipschitz condition at x *: There is a constant K such that 

(2.2) IIF'(x)- F'(x*)ll < Kllx- x*ll, XED. 

Note that if D is sufficiently small then (2.2) is satisfied if, for example, F is twice 
differentiable at x*. 

Newton's method for nonlinear equations can be derived by assuming that we 
have an approximation xk to x* and that in a neighborhood of xk the linear 
mapptng 

Lk(x) = F(xk) + F'(xk)(x- xk) 

is a good approximation to F. If this is the case, then a presumably better 
approximation xk+l to x* can be obtained by solving the linear system Lk(x) = 0. 
Thus Newton's method takes an initial approximation x 0 to x*, and attempts to 
improve x 0 by the iteration 

xk+l = xk- F'(xk)- 1F(xk), k = 0, 1, · · · . 

Actually, this is the form of Newton's method which is convenient for analysis. 
The computational form consists of carrying out the following steps for k ~ 
0, 1, · · ·,m where m is the maximum number of iterations allowed. 

(a) Compute F(xk) and if xk is acceptable, stop. Otherwise, compute 
F'(xk). 

<2·3) (b) Solve the linear system F(xk)sk =-F(xk) for sk and set xk+l = xk + sk. 

The advantages of this algorithm are summarized in the following well­
known result. 

THEOREM 2.1. Let F:R" .... Rn satisfy assumptions (2.1). Then there is an 
open set S which contains x* such that for any x0 E S the Newton iterates are 
well-defined, remain inS and converge to x*. Moreover, there is a sequence {ak} 
which converges to zero and with 

(2.4) k =0, .... 

3



If, in addition, F satisfies (2.2) then there is a constant {3 such that 

(2.5) llxk+l- x*ll < f311xk- x*ll2
, k = 0, .... 

For a proof of this result see, for example, Ortega and Rheinboldt (1970, p. 
312). However, in§ 5 we shall show that if F satisfies (2.2) then the convergence of 
Newton's method follows from a much more general result. Moreover (2.4) and 
(2.5) will follow from results in§ 3. 

Two advantages of Newton's method are expressed by Theorem 2.1. The first 
one is the existence of a domain of attraction S for Newton's method. The 
existence of this domain of attraction implies that if the Newton iterates ever land 
inS, then they will remain inS and eventually converge to x*. This insures some 
measure of stability for the iteration. 

The other advantage is expressed by (2.4) and is known as superlinear 
convergence. Moreover, if (2.2) holds then Theorem 2.1 shows that we obtain (at 
least) second order or quadratic convergence; that is, (2.5) holds. However, the 
example 

f(x) =X+ lxll+a, ae(O, 1), x*=O, 

shows that in general (2.5) does not hold. If f311x*ll is not too large, then an informal 
interpretation of (2.5) is that eventually each iteration doubles the number of 
significant digits in xk as an approximation to x*. 

Also note that Newton's method is self-corrective; that is, xk+l only depends 
upon F and xk so that bad effects from previous iterations are not carried along. 
As we shall see, this is an advantage of Newton's method which is not shared by 
quasi-Newton methods. 

The best known disadvantage of Newton's method is that a particular 
problem may require a very good initial approximation to x* if the iteration is to 
converge. This is due to the fact that the setS in Theorem 2.1 can be very small. To 
overcome this disadvantage, special techniques (e.g. Powell's (1970a)) are 
needed. 

On the other hand, for many problems the most important disadvantage of 
Newton's method is the requirement that F'(xk) be determined for each k. This 
involves the evaluation of n 2 scalar functions at each step and for most functions 
this is a very costly operation. It is usually taken to be equivalent to n evaluations 
of F, but the exact cost varies from problem to problem. If the Jacobian is 
relatively easy to obtain, then Newton's method is very attractive. If obtaining the 
Jacobian is relatively expensive, then this problem can be circumvented in some 
cases by using a finite difference approximation to the Jacobian matrix. 

For example, F'(xk) could be replaced in (2.3) by the computation of 
A(xk, hk) E L(Rn) where 

(2.6) [A (x, h )];,i = [[; (x + 'T/1ei)-[; (x) ]/ 'Tlb 

and h = ('T/b · · ·,'Tin) is some suitably chosen vector. Of course, we now solve the 
system 

(2.7) 
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There is a significant amount of theoretical and computational support for 
this approach. For example, if F satisfies assumptions (2.1) and (2.2), and at each 
iteration llhkll < yiiF(xk)ll for some constant y then all the conclusions of Theorem 
2.1 also hold for the finite difference Newton's method. However the expense of 
computing n 2 scalar functions still remains. A popular technique for trying to 
reduce the overall computational effort of the Newton or the finite difference 
Newton's method is to hold the Jacobian fixed for a given number of iterations. 
This is particularly useful when the Jacobian is not changing very rapidly. 
However, it is always difficult to decide how long the Jacobian should be held 
fixed. Brent (1973) has shown that although this technique decreases the rate of 
convergence, it can increase a certain measure of efficiency. 

Finally, note that all the modifications of Newton's method mentioned in this 
section require the solution of a system of linear equations and therefore O(n 3) 

arithmetic operations per iteration. For some problems, the solution of these 
linear systems is the most expensive part of the iteration, and in these cases one 
should consider holding the Jacobian matrix fixed for a given number of iterations 
since in each such iteration this expense would be reduced to O(n 2

). 

3. Rates of convergence. It is very important to understand something about 
the rate of convergenc~ of different algorithms, since to a certain extent the rate of 
convergence of a method is as important as the fact that it converges; if it 
converges very slowly we may never be able to see it converge. Therefore, in this 
section we shall outline certain results which give insight into rates of con­
vergence. In particular we emphasize the notion of super linear convergence and 
mention its geometrical interpretation. 

A reasonable algorithm should at least be linearly convergent in the sense 
that if {xk} is generated by the algorithm and {xk} converges to x*, then for some 
norm 11 · 11 there is an a E (0, 1) and k 0 > 0 such that 

llxk+l-x*ll<allxk-x*ll, k>ko. 

This guarantees that eventually the error will be decreased by the factor a< 1. 
To be competitive an algorithm should be superlinearly convergent in the sense 
that (2.4) holds for some sequence {ak} which converges to zero. As noted by 
Dennis and ·More (1974) one of the properties of superlinearly convergent 
methods is that 

(3.1) lim llxk+l-xkll!llxk-x*ll=1 k-++00 

provided, of course, that xk ~ x* fork> 0. That (3.1) holds is quite easy to prove 
and follows from (2.4) and the fact that 

lllxk+l-xkll-llxk- x*IJ I< llxk+l-x*ll. 
The importance of (3.1) is that it provides some justification for stopping the 

iteration when llxk+l-xkll< etllxkll for some pre-specified e1. This termination 
criterion is often used together with one of the form IIF(xk)ll < e2 • The reader can 
easily construct one dimensional examples to show the shortcomings of either 
criteria; a good routine should allow the user to select from several reasonable 
choices. 
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The following result of Dennis and More (1974) shows precisely when an 
iteration is superlinearly convergent. 

THEOREM 3.1. Let F:Rn ~Rn satisfy assumptions (2.1), and let {Bk} in 
L(Rn) be a sequence of nonsingular mat~ices. Suppose that for some x0 in D the 
sequence 

(3.2) k=O 1 · · · ' ' ' 
remains in D, xk ~x* for k >0, and converges to x*. Then {xk} converges 
superlinearly to x* if and only if 

(3.3) lim II[Bk- F'(x*)](xk+l- xk)ll = 
0 

k-.+oo llxk+l-xkll · 
Clearly, if {Bk} converges to F'(x*), then (3.3) holds and thus Theorem 3.1 

explains why Newton's method and the finite-difference Newton's method with 
llhkll = O(IIF(xk)ll) converges superlinearly. However, (3.3) only requires that {Bk} 
converge to F'(x*) along the directions sk = xk+l- xk of the iterative method. As 
pointed out in§§ 5 and 8, this is the case for certain quasi-Newton methods, and 
yet for these methods {Bk} does not, in general, converge to F'(x*). 

An equivalent but more geometric formulation of (3.3) is that it requires 
sk = xk+l- xk in the iterative method to asymptotically approach the Newton 
correction sr: = -F'(xk)-1F(xk) in both length and direction. To see this note that 
since F(xk) = ~Bksk, 

and thus (3.3) is equivalent with 

(3.4) lim llsk -s~l = 0 ·. 
k-.+oo llsk 11 · 

Equation (3.4) shows that the relative error of sk as an approximation to sr: 
approaches zero, and it is fairly easy to prove that this is equivalent to requiring 
that sk approach sr: in both length and direction. For future reference, we state 
this formally. 

LEMMA 3.2. Let u, v belong to Rn with u, v ~ 0 and let a E (0, 1). If 
llu- vi I< allull, then (u, v) is positive and 

(3.5) I 
llvlll< 1_((u,v)) 2 < 2 l-M =a, llullllvll =a· 

Conversely, if (u, v) is positive and (3.5) holds, then 

llu- vll < 3allull. 

Proof. Assume first that llu- vi I< allull. Then 

l
llull-llvlll <llu-vll< 

llull = llull _a, 

and thus the first partof (3.5) holds. For the second part let w = (u, v )/(llull llvll) and 
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note that 

llu- vll2 = llull2
- 2llull llvllw +llvll2 

> llull2(1-w 2
). 

This proves (3.5). Now note that if w <0 then the equality above shows that 
llu- vll >!lull. Hence, a< 1 implies that (u, v) is positive. For the converse note 
that 

llu- vll2 = (llull-llvll) 2 + 2(1-w)llull llvll < a 2llull2[1 +2(1 +a)] 

and since a< 1, it certainly follows, that llu- vll < 3allull as desired. 
Lemma 3.2 shows that (3.4) is equivalent to 

lim lis t'JI = lim / _!!:..._ s t" ) = 1 
k-+oo llskll k-+oo \llskll' lls~ll ' 

and thus an iterative method is super linearly convergent if and only if its directions 
asymptotically approach the Newton direction in both length and direction. 

We would also like to explore second order convergence and for this we need 
the following estimate. 

LEMMA 3.3. LetF:Rn ~Rn satisfy assumptions (2.1) (a) and (2.2). Then for 
any x* in D, 

(3.6) IIF(v)- F(u)- F'(x*)(v- u)ll < K max {llv- x*ll, llu- x*ll}llv- ull 

for all v and u in D. 
The proof of this result follows immediately from Theorem 3.2.5 of Ortega 

and Rheinboldt (1970); note that the assumption F(x*) = 0 is not necessary for 
Lemma 3.3 nor is the invertibility of F'(x*). 

Using Lemma 3.3 it is not difficult to modify the proof of Theorem 3.1 as 
given by Dennis and More (1974) and show that if the assumptions of Theorem 
3.1 are satisfied and (2.2) holds then there is a constant JL 1 such that 

llxk+l- x*ll < JL1IIxk- x*IIP, k = 0, 1, · · · , 

for some p E (1, 2) if and only if there is a constant JL 2 such that 

k =0 1 ... 
' ' 

However, we have not found any use for this result. The following well-known 
result is much easier to prove and is apparently just as useful. 

THEOREM 3.4. Let F:Rn~Rn satisfy assumptions (2.1) and (2.2), and let 
{Bk} be a sequence of nonsingular matrices. Assume that for some x0 in D the 
sequence (3.2) remains in D and converges to x*. If 

(3.7) IIBk- F'(x*)ll < 11llxk-x*ll, k =O 1 · · · ' ' ' 

then {xk} converges quadratically to x*. 
Proof. Since {xk} converges to x*, inequality (3.7) and the Banach lemma (e.g. 

Ortega and Rheinboldt (1970, p. 45)) imply that there is a constant y such that 
11Bk"1 ll < y fork sufficiently large. Since 

xk+l- x* = -Bk"1{[F(xk)- F(x*)- F'(x*)(xk- x*)] + (F'(x*)- Bk)(xk- x*)}, 
7



Lemma 3.3 together with (3.7) show that 

llxk+l-x*ll < y{KIIxk- x*fl2 + 11lfxk-x*ll2
}, 

and it follows that {xk} converges quadratically to x*. 
The most natural way to guarantee that (3.7) holds is to require that 

(3.8) k>O. 

If this is the case then 

IIBk-F'(x*)ll ~ TJt)IF(xk)ll + Kllxk- x*ll, 
and Lemma 3.3 implies that (3.7) holds. Not¥ that Newton's method and the finite 
difference Newton's method with llhkll = O(lfF(xk)IJ) satisfy (3.8). 

4. B_royden's method. In § 2 we saw that two disadvantages of Newton's 
method were its need for n 2 + n scalar function evaluations and its use of O(n 3) 

arithmetic operations at each iteration. We shall now derive Broyden's method 
(1965) and show how it affects an order of magnitude reduction in each of these 
expenses. The price paid is a reduction from second order to superlinear con- · 
vergence. 

From the point of view taken here Broyden's 1965 proposal is a method for 
approximating Jacobian matrices. As pointed out in § 2, one of the major 
expenses of Newton's method is the calculation of F'(xk); let us now show how 
Broyden derived an approximation Bk to F'(xk) such that Bk+l can be obtained 
from Bk in O(n 2) arithmetic operations per iteration and evaluating Fat only xk 
and xk+l· 

To derive this method, assume that F: R n -+ R n is continuously differentiable 
in an open convex set D and that for given x in D and s =1: 0, the vector x = x + s 
belongs to D. You should associate x with Xk and .x·with xk+t, so that what we want 
is a good approximation to F'(x). 

Since F' is continuous at x, given e > 0 there is a 8 > 0 such that 

IIF(x)-F(x)- F'(x)(x- x)ll < e lfx- xll 
provided llx- x 11 < 8. It follows that 

F(x)::: F(x) + F'(x)(x- x), 

the degree of approximation increasing as llx - xll decreases. Hence, if B is to 
denote our approximation to F'(x), it seems reasonable to require that B satisfy 
the equation 

F(x) =F(x)+ B(x -x). 

This is generally written 

(4.1) Bs = y =F(x)-F(x), 

where s = x - x. 
In the case of n = 1, equation (4.1) completely determines Band the secant 

method would result from using this approximate derivative in a Newton-like 
iteration. For n > 1, we can still argue that the only new information about F has 
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been gained in the direction determined by s. Now suppose we, had an approxima­
tion B to F'(x ). Broyden reasoned that there really is no justification for having B 
differ from B on the orthogonal complement of s. This can be expressed as the 
requirement 

(4.2) Bz=Bz if(z,s)=O. 

Clearly (4.1) and (4.2) uniquely determine B from B and in fact 

(4.3) B=B+(y-Bs)sT. 
(s, s) 

Equation ( 4.1) is central to the development of quasi-Newton methods, and 
therefore it has often been called the quasi -Newton: equation. In fact, it also plays a 
role in a second derivation of Broyden's update. 

The second derivation:again starts from the assumption-that a.ny matrix that 
satisfies thequasi~Newton equation (4.1) is a good candidate for B. However, now 
it is argued that out of all the matrices that satisfy the quasi-Newton equation, B 
should be the closest to B. The next result establishes that this matrix is again given 
by (4.3) if "closest" is measured by the Frobenius norm. 

THEOREM 4.1. Given Be L(Rn), ye Rn and some nonzero se Rn, define B 
by (4.3). · Then B is the unique solution to the problem 

min {IlB - ·BIIF :'Bs = y }. 

Proof. To show that B is a solution note that ify =:Jls then 

IlB-BIIF = IJ(B-B)(:~ :)JL < IlB-BIIF 

That B is the unique solution follows from the fact that the mapping/ :L(Rn)-+ R 
defined by f(A) = IlB -A IIF is strictly convex in L (R 11

) · arid that the set of 
A A 

B e L (R n) such that Bs = y is convex. . . 
By now it should be clear how (4.3) can be used in an iterative method. For 

example, in its most basic form Broyden's method is defined by 

(4.4) k =0 1 ... 
' ' ' 

where the matrices Bk~ L (R n) are generated by 

(4.5} k =0 1 ... 
' ' ' 

with 

(4.6) 

As it stands, it is clear that given x0 and B 0 , Broyden's method can be carried out 
with n scalar function evaluations per iteration. However, (4.4) and (4.5) seem to 
indicate that the solution of the linear system Bksk ,::;: ~F(x~c)-is required. One way 
to overcome this difficulty requires · the following result which is due to Sherman 
and Morrison (1949). 
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LEMMA 4.2. Let u, v eRn and assume that A·eL(Rn)'is nonsingular.· Then 
A + uv T is nonsingular if and only if u .;___ 1.+ ( v, A - 1 u) =fi 0. If ·u =fi 0, then 

(4.7) (A +uvT)-1 =A - 1 -(1/u)A-1uvTA - 1
• 

Proof. That A + uv T is nonsingular if and only if u =fi 0 follows from Lemma 
4.4 which will be proved later. It is e-asy to verify (4.7) because if the matrix on the 
right-hand side is multiplied by A + uv T then the result is the identity matrix. 

FromLemma4.2 it follows that ifHk = B"k\ thenHk+1 ·· B"k!1 is defined by 

(4.S) Hk+l = Hk +(sk-Hkyk)skTHk 
(sk, Hkyk) 

provided (sk, Hkyk) =fi 0. Therefore, Broyden's method can also be implemented as 

xk+1 = xk- HkF(xk), 

where {Hk} is generated by (4.8), and in this form Broyden's method only requires 
n scalar function evaluations and O(n 2) arithmetic operations per iteration. 

It is also possible to implement (4.5) and use only O(n 2
) arithmetic opera­

tions per iteration. For example, Gill anQ Murray (1972) describe a method by 
which if Bk = QkRk where Qk is orthogonal and Rk is upper triangular, then the 
corresponding factorization of Bk+1 can be obtained in O(n 2

) operations. Of 
course, if Bk ---·QkRk is given, then the solution of the linear system Bksk = -F(xk) 
only involves O{n 2

) operations. One reason why this approach .would be prefera­
ble over (4.8) is because in (4.5) th~re are no matrix-vector multiplications; the 
termBksk is j~st -F(xk). Another reason is that the analysis of§ 5 shows that (4.5) 
is more stable. 

Note that we don't need to choose sk = xk+1- xk (see, however, the remarks 
after Theorem 5.4) in either (4.5) or (4.8). It is entirely reasonable to choosesk to 
be any vector such that F is defined at xk + sk and then set Yk = F(xk + sk)- F(xk). 
For example, if we set sk = 17ei for some scalar 1], then (4.5) shows that Bk+1 only 
differs from Bk in the jth column, and that this .column is now 

[F(x + 17ei)-F(x )]/ 11· 

Of course, if sk =fi xk+1- xk, then each iteration requires t~o function evaluations 
instead of one. 

As the6retical justification for his ·method, Broyden only offered the fact that 
for affine functions it is norm-reducing with respect to the ~~ operator norm. The 
following well-known result shows that a slightly stronger result holds in the 
Frobenh.1s norni. .· ' · · 

THEOREM 4.3. Let A eL(Rn) satisfy y =As for·some nonzero s eRn and 
ye Rn. Moreover, give~·~·e L(Rn) define B:by (4.3). Then 

IlB-A IIF < I~B-A IIF 
with equality if and only if B =B. . . . 

Proof. Since 'A 'lies in the affine S"Qbspace{B: x- Bs} and since by Theorem 
4.1, the matrix Bis the orthogonal projection of B. onto.thjs .. subspace, 

'- ' ' If • ' 

. IlB ~All~= IlB -Bit~+ fiB~ All~. . 
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The result follows from this relationship. 
If {xk} is any sequence, and sk, Yk are defined by (4.6), then Yk =Ask for 

A = 11 

F(xk + esk) de. 

Thus, Theorem 4.3 guarantees that in the Frobenius norm, Bk+l is a better 
approximation than Bk to the average ofF' on the line segment from xk to xk+l· Of 
course, if F: R n ~ R n is affine, then A is the coefficient matrix, and therefore for 
affine functions Broyden's method is norm-reducing in the Frobertius norm. 

To conclude this section we point out that ,Broyden's method is sometimes 
implemented in the form 

(4.9) jj = B + () (y - Bs )s T 

(s, s) 

where flis chosen so as to avoid singularity in B. The following result can be used 
to decide how to choose 0. 

LEMMA 4.4. Let V, w in R n be given. Then 

(4.10) det (I +vwT) = 1 +(v, w). 

Proof. Let P =I+ vw T and assume that v -:1: 0 for otherwise the result is trivial. 
Then any eigenvector of P is either orthogonal to w or a.multiple of v. If the 
eigenvector is orthogonal tow, then the eigenvalue is unity while if it is parallel to 
V then the eigenvalue is 1 +(v, w). Equation (4.10) follows. 

To avoid singularity in B note that if B is defined by (4.9), then Lemma 4.4 
yields 

.... [ (y, B-
1s)J 

detB=detB (1-(J)+(J (s,s) . 

We can now follow a suggestion of Powell (1970a) and choose () as a number 
closest to unity such that ldet .81 > o-1 det Bl for some u in (0, 1); Powell uses 
u=0.1. 

5. Local convergence results. We now would like to present a local con­
vergence result that is available for Broyden's method and some of its variations. 
The importance of this result lies in the fact that the techniques used in its proof 
are applicable to other methods and in particular, to the double-rank updates of 
§ 7. 

In this analysis it is assumed that x0 and B 0 are sufficiently close to x* and 
F'(x*), respectively, where F satisfies assumptions (2.1) and (2.2). The con­
vergence follows from a very general theorem due to Broyden, Dennis and More 
(1973). This result was developed to extend, to other quasi-Newton methods, the 
analysis given by Dennis (1971) for Broyden's method. 

To describe the algorithms that this result handles, we shall need the concept 
of an update function. Update functions are only a means to denote the various 
J acobian approximations which might be used in iterative processes. For example, 
consider iteration (3.2) where the matrices {Bk} lie in a set DM in L(Rn) and F is 
defined on a set D. The method for generating {Bk} can then be described by 
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specifying for each (xk, Bk) a nonempty set U(xk, Bk) of possible candidates for 
Bk+l· Iteration (3.2) then becomes 

xk+l = xk- B"k1F(xk), 
(5.1) 

k = 0, 1, .... 

Thus U is a set-valued mapping whose domain, do m U, is a subset of D x DM and 
whose range is contained in DM. Note that DM denotes the matrix part of the 
domain of U. 

To illustrate these concepts note that for Newton's method U(x, B)= {F'(x)} 
where x- x-B-1F(x ), while for Broyden's method U(x, B)= B where jj is 
defined by (4.3) with y = F(x) and s = x- x. Also note that the finite difference 
form of Newton's method defined by (2.4) and (2.5) can be described by 
·U(x, B)= {A (x, h): llhll < yllF(x )11} where y is a fixed nonnegative constant. This 
description has the advantage of not requiring a precise specification of the choice 
of h. Another illustration of the ease of description furnished by update functions 

A 

is the following. Let U be given and for (x, B) E do m U, set U(x, B) = 
A 

U(x,B)U{B}. Then U defines the modification to (5.1) in which Bk is not 
necessarily changed at each iteration. Finally note that in the above examples we 
can take DM = L(Rn). 

Update functions also apply to the minimization algorithms of §§ 6 and 7. 
These algorithms are of the form (5.1), at least in a neighborhood of a local 
minimizer, where U is an update function for a gradient mapping. In this case DM 
is usually the set of all symmetric matrices in L(Rn). 

The above examples lead us to the following definition. Given a set DM in 
L (R n) and a mapping F: R n ~ R n defined on a set D, an update function U for F on 
D is a set-valued mapping from D x DM into DM. Thus U(x, B) is a nonempty 
subset of DM for each (x, B) in dam U. 

The domain of U depends on the particular algorithm. For Newton's method 
the domain of the update function consists of all (x, B) in D x L (R n) such that B is 
nonsingular and x = x-B-1F(x) belongs to D. The domain of U for Broyden's 
method has the traditional restriction that x =P x. Of course, if x = x, then F(x) = 0 
and the algorithm stops. For iteration (5.1) it is convenient to define dam U as the 
set of all (x, B) in D x DM such that B is nonsingular and x - x - B -l F(x) belongs 
to D and differs from x. 

THEOREM 5.1. LetF: Rn ~ Rn satisfy assumptions (2.1) and (2.2), and let U 
·be an update function for F such that for all (x, B) E do m U and Be U(x, B), 

(5.2) IlB- F'(x*)ll < [1 + alu(x, x)]IIB- F'(x*)ll + a2u(x, x) 

for some constants al and a2 where X= X- B-1F(x) and 

(5.3) u(x, x) = max {llx- x*ll, llx -x*ll}. 

Then there are positive constants e and 8 such that if x 0 E D and B 0 E DM satisfy 
llxo-x*ll<e and IIBo-F'(x*)ll<8, then iteration (5.1) is well-defined and con­
verges linearly to x *. 

By definition, iteration (5.1) is locally convergent at x* if there is an e > 0 and 
a 8 > 0 such that · whenever x 0 E D and Bo E DM satisfy llxo- x *11 < e and 
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IIB0 - F'(x*)ll < 8, then {xk} is well-defined and converges to x*. Thus Theorem 5.1 
guarantees the local and linear convergence of (5.1). Note that local convergence 
depends on DM but since DM is usually L(Rn) or the set of symmetric matrices, 
DM is large enough to make Theorem 5.1 meaningful. Also note that there is no 
restriction on the matrix norm in (5.2) because given any matrix norm 11 · 11 there is 
a constant y > 0 such that the matrix norm yJI · 11 is consistent with the 12 vector 
norm. Hence,' if (5.2) holds for some matrix norm, .it also holds for a matrix norm 
consistent with the 12 vector norm. 

Now obviously Theorem 5.1 cannot guarantee better than linear con­
vergence since the stationary iteration U(x, B)= {B} satisfies (5.2) with a 1 = a 2 = 
0. The usual procedure is to use this theorem to prove the existence and 
convergence of {xk} and then apply Theorem 3.1 or Theorem 3.4 to make a more 
precise statement about the rate of convergence. We illustrate this below. 

If F satisfies (2.2), then for Newton's method, U(x, B)= {F'(.i)} satisfies (5.2) 
with a 1 = 0, a 2 = K and DM = L(Rn). This proves the local convergence of 
Newton's method. The quadratic convergence follows from Theorem 3.4. 

The proof of Theorem 2.1 that we have just given generalizes quite readily to 
the finite difference Newton's method defined· by xk+l · . xk + sk where sk satisfies 
(2.6) and (2. 7) with llhll < yJIF(x )JI for some constant y. We now turn to the 
application of Theorem 5.1 to Broyden's method. 

THEOREM 5.2. Let F: Rn ~ Rn satisfy assumptions (2.1) and (2.2), and 
consider Broyden's method as defined by equations (4.4), (4.5) and (4.6). Then 
Broyden 's method is locally and superlinearly convergent at x *. 

Proof. We shall prove that Broyden's method is locally convergent atx* by 
showing that (5.2) is satisfied with D,.,1 = L(Rn). For this note· that (4.5) implies 
that 

B-F(x*) = [B- F'(x*)][I- ss T J + (y- F(x*,)s)sT. 
(s, s) (s, s) . 

In particular, 

(5.4) 

where the matrix norm is either the 12 operator norm or the Frobenius norm. 
Therefore Lemma 3.3 implies that (5.2) is satisfied with a 1 = 0 and a 2 :::: K. This 
proves the linear convergence of Broyden's method. 

Like Newton's method, the more precise rate of convergence requires further 
work. In fact, we shall show that (3.3) holds. For this, note that direct computation 
using IIAII~= tr (A r A) shows ·that 

(5.5) IIE[/-~JJJ2 =11£11~-(IIEsll)z (s, s) F llsll . 

E[I-~] <liE IIF- (2IIEIIF )--l(IIEsll)
2 

• (s, s) F llsll 
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Now define 11k = IIBk-F'(x*)IIF and use the above inequality and Lemma 3.3 in 
(5.4) to obtain that 

17k+l < (1- (217~)- 1 «/J~J17k + KUk, 

where uk = max Hlxk+l- x*lf, llxk- x*ll} and 

,
11 

_II[Bk- F'(x*)]skll 
'Pk- llskll · 

Since 17k+l < 11k + Kuk and {xk} is linearly convergent, it follows that {17k} is 
bounded, and if 17 is an upper bound, then 

(217 )- 1 «/J~ < 11k -11k+l + KUk· 

Thus 

00 00 

(217)-1 L «fJ~<11o+K L uk, 
k=O k=O 

forcing { «//k} to converge to zero. Hence, (3 .3) holds and this concludes the proof. 
There are several interesting points about the proof of Theorem 5 .2. The first 

is that although (3.3) holds, it does not necessarily follow that {Bk} converges to 
F'(x*). 

Example 5.3. Let F:R 2 -+R 2 be defined by x=(~t,~2)T and F(x)= 
(~h ~2 +~~)T, _ and consider Broyden's method with x0 = (0, e)T and 

B =(1+5 0) 
0 0 1 . 

It is easy to verify that the (1, 1) element of Bk is always 1 + 8 and thus {Bk} does 
not converge to F'(x*). · 

The above example points out that one of the disadvantages of Broyden's 
method is that it is not self -correcting. In particular, Bk depends upon each Bi ~ith 
j < k and thus it may retain information which is irrelevant or even harmful. 

Another point of interest about this proof is that it generalizes to the 
modification of Broyden's method given by (4.9). Thus More and Trangenstein 
(1976) prove that a parameter f)k can be chosen so that if (4.5) is replaced by 

B _ B O (yk- Bksk)s[ 
k+l- k + k ( ) ' sk, sk 

(5.6a) 

(5.6b) Bk+l nonsingular IOk -11 < 8 and 0 e (0, 1), 

then Theorem 5.2 holds. They also noted that if F is affine, then for this 
modification thee and 8 in Theorem 5.1 are infinite. 

THEOREM 5.4. Let F:Rn-+Rn be defined by F(x)=Ax-b, where Ae 
L (R n) is nonsingular and b E R n, and consider Broyden 's method as defined by 
(4.4), (4.6) and (5.6). Then Broyden's method is globally and superlinearly 
convergent to A - 1b. 

The proof of Theorem 5.2 shows that Broyden's method is linearly con­
vergent even if sk ~ xk+l- xk. Thus, if we decide that sk = xk+l- xk is not a suitable 
direction, we can use (4.4), (4.5) but replace (4.6) by Yk =F(xk+sk)-F(xk), 
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where sk is any nonzero vector such that 

llskll < 11 max {llxk+1- x*ll, llxk- x*ll} 
for some constant 'YI· For example, the choice sk = IIF(xk+1)llei is suitable for eachj. 
Of course, if sk "=F xk+1- xk, then the computation of Yk involves two evaluations of 
F and moreover, super linear convergence will be lost unless, for example, the {sk} 
are uniformly linearly independent. For a discussion of this point, see More and 
Trangenstein (1976). 

There is a variation of Broyden's method which is of interest in the case that 
F'(x) is sparse. In this variation equations (4.4), (4.5) and (4.6) are used to define 
Bk+1 from Bk but before it is used, Bk+1 is forced to have the same sparsity pattern 
as F'(x ). That Theorem 5.2 holds follows from the observation that forcing Bk to 
have the same sparsity pattern as F'(x) decreases IIBk- F'(x*)ll. Schubert (1970) 
has proposed an algorithm along these lines and Broyden (1971a) has shown that 
it is locally convergent. A graduate student at Cornell University, E. Marwil, has 
recently shown that Schubert's algorithm is superlinearly convergent. 

We conclude this section by discussing two important variations of Theorem 
5.2. The following variation arises because for some algorithms it is more natural 
to think of them as generating approximations to the inverse of the Jacobian. In 
this case do m U will be the set of all (x, H) in D x DM such that x = x - HF(x) 
belongs to D and differs from x. · 

THEOREM 5.5. LetF: Rn ~Rn satisfy assumptions (2.1) and (2.2), and let U 
be an update function for F such that for all (x, H) Edam U and HE U(x, H), 

(5. 7) IIH-F'(x*)-1
11 < [1 + a1u(x, x)JIIH-F'(x*)-1

11 +a2u(x, x) 

for some constants a1 and a 2 where x = x-HF(x) and u(x, x) is defined by (5.3). 
Then there are e > 0 and 8 > 0 such that if x0 E D and H 0 E DM satisfy llxo- x *11 < e 
and IIH0 -F'(x*)ll<8, then the iteration 

(5.8) 
xk+1 = xk-HkF(xk), 

Hk+1 E U(xk, Hk), 

is well-defined and converges linearly to x*. 

k=O 1 · · · ' ' 

The same remarks that we made after Theorem 5.2 for iteration (5.1) also 
apply, with suitable modifications, to (5.8). In particular, if (5.8) satisfies the 
conclusions of Theorem 5.5, then by definition (5.8) is locally and, of course, 
linearly convergent at x*. 

We also note that although Theorems 5.1 and 5.5 as well as their proofs are 
very similar, the two results are independent of each other. In fact, in§ 8 we will 
discuss two important algorithms and show that the local convergence of one of 
these algorithms follows from Theorem 5.1 while the other needs Theorem 5.5. 

Finally we note that it is possible to generalize both these theorems by 
showing that the conclusions still hold if instead of (5.1) and (5.8) we consider the 
sequence 

xk+1 = xk- A.kBk_1F(xk) =xk- A.kHkF(xk) 

provided the sequence {X.k} satisfies IAk -11 <A for some A E (0, 1). 
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6. Variations of Newton's method for unconstrained minimization. Let 
f:Rn -+R be a functional defined on an open set D and consider the problem of 
finding a z in D such that f(z) < f(x) for each x in D. In this case z is a global 
minimizer off and even if it is known to exist, finding it is usually an intractable 
task. Generally, one seeks z among the local minimizers off; that is, find x* in D 
such that for some 8 > 0, 

(6.1) f(x*)<f(x), llx-x*ll<8, xeD. 

In this section we provide some background material and outline some of the 
methods that are used to solve (6.1). In particular, we stress the differences and 
analogies between the methods considered here and those in previous sections. 
This will help to motivate the introduction of quasi-Newton methods for uncon­
strained minimization. 

We only consider the solution of (6.1) if/ is differentiable. In this case (6.1) is 
usually attacked by trying to find a zero of V f-the gradient of f. This approach is 
based on the fact that if x * is a local minimizer of f in the open set D and f is 
differentiable at x*, then Vf(x*) = 0. Moreover, in this section only descent 
methods are considered. 

A descent method for solving (6.1) generates for each iterate xk a direction Pk 
of local descent in the sense that there is a At such that f(xk + Apk) <f(xk) for 
A e (0, At]. The next iterate is of the form xk+l = xk + Akpk, where the parameter Ak 
is chosen so that f(xk+l) <f(xk). The directions Pk and the parameters should be 
chosen in such a way that {Vf(xk)} converges to zero. If IIVf(xk)ll is small then 
usually xk is near a zero of V f while the fact that {f(xk)} is decreasing indicates that 
this zero of Vf is probably a local minimizer of f. 

The simplest example of a descent method is the method of steepest descent. 
In this method we ask for the vector p of unit length (in the 12 norm) such that for 
someA>O, 

f(x +Ap) <f(x +Ap), "" "" AE(O,A), p~p, 

for all IIPII = 1. It is not difficult to show that if Vf(x) ~ 0 then p = -Vf(x )/IIVf(x )11. 
Therefore, the method of steepest descent is given by 

(6.2) xk+l = xk- Ak Vf(xk), k = 0, 1, · · · , 

where the parameter Ak is needed to guarantee that f(xk+l) <f(xk); that such a 
parameter exists is a consequence of the following simple result. 

LEMMA 6.1. Let f: R n -+ R be defined in an open set D and differentiable at x 
in D. If (Vf(x), p) < 0 for some p inRn then there is a A*= A *(x, p) such that A*> 0 
and 

f(x +Ap) <f(x), A E (0, A*). 

The proof of this well-known result is quite easy and follows from the fact that 

lim [f(x + Ap)- f(x )]/A = (Vf(x ), p ). 
A-+0+ 

Lemma 6.1 guarantees, in particular, that the parameter Ak in the steepest 
descent method can be chosen so that f(xk+t) < f(xk). This is not sufficient to show 
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that {xk} gets close to a zero of Vf since Ak may be arbitrarily small. In fact, Ak > 0 
can be chosen so that llxk+l- xkll < e/2k and therefore {xk} converges to a point x* 
with llx0 - x*ll < 2e~ If Vf(x 0 ) :F 0 and Vf is continuous at Xo, then e can be chosen so 
that Vf(x*) :F 0. At the end of this section we discuss a specific method for 
choosing Ak which avoids this problem, and note that if Ak is chosen appropriately, 
then the following result holds. 

THEOREM 6.2. Let f: R n ~ R be continuously differentiable and bounded 
below on R ", and assume that x0 is such that V f is uniformly continuous on the level 
set 

L(xo) = {x ER" :f(x) <f(xo)}. 

Then there is a sequence {Ak} such that the steepest descent sequence (6.2) is well 
defined, {f(xk)} is decreastng, and {Vf(xk)} converges to zero. 

One of the first proofs of 1'heorem 6.2 is that of Goldstein (1965). Since then 
this result has been generalized and refined; most of these extensions are 
discussed by Ortega and Rheinboldt (1970, Chap. 14) and Daniel (1971, Chap. 4 
and 6). 

If f is continuously differentiable on R" and L (x0) is compact, then the rest of 
the assumptions of Theorem 6.2 are automatically satisfied and in addition, f·has a 
global minimizer and {Vf(xk)} converges to zero. However, not even in this case is 
the steepest descent sequence guaranteed to converge to a local minimizer of f. An 
example reported by Wolfe (1971) shows that the steepest descent sequence may 
converge to a saddle point of f. Nevertheless, Theorem 6.2 is quite a strong 
convergence result. The fact that {Vf(xk)} converges to zero implies that any limit 
point of {xk} is a zero of Vf and that for any e > 0 the stopping criterion I!Vf(xk)ll < e 
will be satisfied in a finite number of steps. Unfortunately, steepest descent usually 
converges linearly. 

The slow rate of convergence of steepest descent can be improved by 
switching to a faster method in a neighborhood of a zero of V f. Since F= Vf is a 
mapping fromR" toR", any of the methods discussed in §§.2 and 4 could be used. 
For example, if f is twice differentiable, then Newton's method is given by 

(6.3) xk+l = xk-V2f(xk)- 1Vf(xk), k = 0, 1, · · · , 

where V2f(x) is the Hessian matrix of f at x; that is, V2f(x) is just the J acobian 
matrix of V f. It should be clear that Theorem 2.1 applies to (6.3) with F= Vf, and 
that under the appropriate conditions we ob~ain local and quadratic convergence 
of (6.3) to a zero of V f. 

In view of the global convergence of steepest descent and the fast local 
convergence of Newton's method, it would be desirable to have a method that 
behaves like Newton's method near a local minimizer but like steepest descent far 
from a local minimizer. Most descent methods of this type are of the form 

(6.4) k=O 1 · · · ' ' ' 

where Bk is a symmetric, positive definite matrix which resembles V2f(xk), at least 
in a neighborhood of a local minimizer. 

As an.example of such a method, Goldfeldt, Quandt and Trotter (1966) 
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suggested the iteration 

(6.5) xk+l = xk- Ak(V2f(xk) + f..Lkl)- 1Vf(xk), k =0 1 ... 
' ' ' 

where the scalar f..Lk > 0 is chosen so that V 2f(xk) + f..Lk/ is positive definite. To 
justify the claim that (6.5) behaves like Newton's method in a neighborhood of a 
local minimizer, recall that if f is differentiable in an open set D and twice 
differentiable at a local minimizer x * off in D then V 2f(x *) is positive semidefin­
ite. Therefore if xk is in a neighborhood of a local minimizer, then very small 
values of f..Lk will suffice to make V 2f(xk) + f..Lk/ positive definite. Also note that if 

s(J.L) = -(V2/(x) + J.Ll)- 1V[(x ), 

then s(O) is the Newton direction while as f..L-+ +oo the angle between s(J.L) and 
-Vf(x) decreases monotonically to zero. Thus for large f..L iteration (6.5) behaves 
like steepest descent. 

In order to preserve, in (6.5), the good local properties of Newton's method, 
one has to choose f..Lk and Ak with some care. It is easy to see from Theorem 3.1 
that as long as {J.Lk} and {Ak} converge to zero and unity, respectively, iteration 
(6.5) is superlinearly convergent. Moreover, Theorem 3.4 shows that if f..Lk < 

1711Vf(xk)ll for some constant 17 and Ak = 1 for all sufficiently large k, then (6.5) 
converges quadratically. Unfortunately, these results do not indicate how to 
choose {pk} globally, and in fact, this has turned out to be a hard problem. 

There is a method of the form (6.4) which avoids the problem of choosing f..Lk 
in (6.5) and yet resembles (6.5). In this method we try to obtain a Cholesky 
decomposition of V2f(xk); that is, we try to find a nonsingular, lower triangular 
matrix Lk such that V2f(xk) = LkLl. Of course, if V 2f(xk) is not positive definite 
then this decomposition does not even exist, but the idea is that as the decomposi­
tion proceeds it is possible to add to the diagon~l of V 2f(xk) and ensure that we 
obtain the Cholesky decomposition of a well-conditioned, positive definite matrix 
which differs from V 2f(xk) in some minimal way. In particular, if V 2f(xk) is a 
well-conditioned positive definite matrix then V 2f(xk) = LkL f. The details are 
given by Murray (1972, p. 64). A more. sophisticated version of the algorithm is 
given by Gill and Murray ( 197 4), but for a factorization of the form LkDki f where 
ik is a unit lower triangular matrix and Dk is a diagonal matrix with positive 
diagonal elements. Of course, the Cholesky decomposition can be obtained by 
realizing that Lk = ikDl12

. 

In the remainder of this section we describe some of the selection rules for Ak 
which are used in methods of the form (6 .. 4) and more generally, in any descent 
method of the form 

(6.6) k =0 1 ... 
' ' ' 

where (Vf(xk), Pk) < 0. The development of these particular rules are due to the 
initial work of Goldstein (1965) and Armijo (1966). Other selection rules for Ak 
are discussed by Ortega and Rheinboldt (1970, pp. 249-258) and Jacoby, 
Kowalik and Pizzo (1972, Chap. 3). 

In a descent method Ak should satisfy f(xk+l) <f(xk) but we have already 
noted that this requirement can be satisfied by arbitrarily small Ak and then {xk} 
may converge to a point at which V/ is not zero. A more reasonable requirement 
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(see Fig. 1) is that 

(6.7) f(xk + Akpk) <f(xk) + aAk(Vf(xk), Pk), a E (0, 1/2). 

The reason for choosing a< 1/2 is that with this choice, Theorem 6.4 shows that if 
{xk} converges to a local minimizer off at which V 2f(x*) is positive definite, and 
{pk} converges to the Newton step -V2f(xk)- 1Vf(xk) in both length and direction, 
then Ak = 1 will satisfy ( 6. 7) for all sufficiently large k. 

If a is close to zero then ( 6. 7) is not a very stringent requirement, and a is 
generally chosen in this way with [10-4

, 10-1
] being the usual range. However, it is 

not a good idea to fix Ak by just requiring that it satisfy ( 6. 7) since, for instance, 
Ak = 0 is then admissible. In general, unreasonably small Ak are. ruled out by the 
numerical search procedure but theoretically we need to impose another require­
ment. One such requirement is that 

(6.8) {3 E (a, 1). 

The Ak which satisfy (6.7) and (6.8) in Fig. 1lie in the intervals J1 and J2 • At 
the left endpoint of each of these intervals equality holds in ( 6.8) while at the right 
end point equality holds in (6. 7). To show that there are Ak which satisfy (6. 7) and 
(6.8) assume that/ is defined on R" andf(xk + Apk) is bounded below for A> 0. It 
is then geometrically obvious that there are Ak > 0 for which equality holds in 
( 6. 7). If ik is the first such Ak then the mean value theorem implies that 

A A A A 

Ak(Vf(xk + OkAkPk), Pk) = f(xk +Akpk)- f(xk) = aAk(Vf(xk), Pk) 

for some (}k E (0, 1), and since a< {3, 

(Vf(xk + OkAkpk), Pk) > {3(Vf(xk), Pk>· 

Thus Ak = okf.k satisfies (6.7) and (6.8). However, we emphasize that a search 
routine for A should not necessarily try to satisfy (6. 7) and (6.8). In fact, the 
intervals which satisfy these two conditions can be quite small (as for example, 
interval J2 in Fig. 1) and therefore difficult to find. Moreover, to test whether or 
not (6.8) is satisfied requires the evaluation of Vf. Instead, the search routine 

f(xk) + aA (Vf(xk ), Pk) 

FIG. 1 
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should produce a Ak which satisfies (6. 7) and is not too small; (6.8) just guarantees 
that Ak is not too small. 

THEOREM 6.3. Let f:R" ~R satisfy the assumptions of Theorem 6.2, and 
consider an iteration of the form (6.6) where the search directions Pk satisfy 
(Vf(xk), Pk) < 0. Then there is a sequence {Ak} which satisfies (6.7) and (6.8) and 

(6.9) k~Too ( Vf(xk), ~~: 11) = 0. 

Theorem 6.3 is due to Wolfe (1969) who also pointed out that for many 
iterations (6.9) implies that {IIVf(xk)ll} converges to zero; it is only necessary to 
verify that the angle between Pk and Vf(xk) stays bounded away from ninety 
degrees. For example, if Pk = -Vf(xk), or more generally, if Pk = -B;1Vf(xk) 
where {Bk} is a sequence of symmetric, positive definite matrices with uniformly 
bounded condition numbers, then 

- ( Vf(xk), 1 ~: 11) > P-IIVf(xk)ll, 

where f..L -I is an upper bound on the condition number of Bk. Hence, (6.9) ensures 
that {IIVf(xk)ll} converges to zero. 

To conclude this section we assume that the vectors Pk converge in direction 
and length to the Newton step and show that Ak = 1 will eventually satisfy (6.7) 
and (6.8) .. 

THEOREM 6.4. Let f: R n ~ R be twice continuously differentiable in an open 
· set D and consider iteration (6.6), where (Vf(xk), Pk) < 0 and Ak is chosen to satisfy 

(6.7) and (6.8). If {xk} converges to a point x* in D at which V2f(x*) is positive 
definite and 

(6.10) lim IIVf(xk) + V 2
f(xdpkll = 0 

k-+00 IIPkll ' 

then there is an index k 0 > 0 such that Ak = 1 is admissible for k > k 0 • Moreover, 
Vf(x*) = 0 and {xk} converges superlinearly to x*. 

Proof. As a first step note that a consequence of (6.10) is that there is an TJ > 0 
such that 

(6.11) 

for all k large enough. This follows since 

- (Vf(xk), Pk) = (V2f(xk)pk, Pk)- (V2f(xk)Pk + Vf(xk), Pk), 

so that (6.11) follows from (6.10) and the fact that V2f(x) is positive definite for all 
x close enough to x *. 

To show that (6.7) is eventually satisfied by Ak = 1 use the mean value 
theorem to obtain uk in the line segment from xk to xk + Pk such that 

Now (6.9) and (6.11) show that {pk} converges to zero; therefore (6.10) implies 
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that for all k sufficiently large 

(6.12) f(xk + Pk)- f(xk) -!(Vf(xk), Pk) < (!-a)TJIIPkll 2
, 

and thus (6.11) and (6.12) show that (6. 7) is satisfied by Ak = 1. To prove that (6.8) 
is also eventually satisfied by Ak - 1 we agairi use the mean value theorem to show 
that the're is a vk such that 

(Vf(xk + Pk}, Pk) = (Vf(xk) + V 2f(vk)pk, Pk). 

Thus (6.10) and (6.11) imply that for all k large enough, 

(Vf(xk + Pk), Pk) < TJ~IIPkll2 < -~(Vf(xk), Pk>· 

Hence Ak = 1 satisfies (6.8) and this concludes the first part of the proof. For the 
remainder, note that since {pk} converges to zero, (6.10) shows that Vf(x*) = 0. 
The superlinear convergence of {xk} follows from Theorein 3.1. 

7. Quasi-Newton methods for unconstrained minimization. The derivation 
of updates suitable for unconstrained optimization proceeds along lines similar to 
the development in § 4. For nonlinear equations only Broyden's method appears 
to be satisfactory, but here some notable differences, motivated by the discussion 
in § 6, will lead us to single out four reasonable update formulas. 

One important consideration is the desire to have the quasi-Newton step 
-Bk1Vf(xk) define a descent direction. In fact, the most widespread use of these 
methods is in conjunction with iterations of the form (6.4). In this context the 
update formula should generate a sequence of symmetric positive definite mat­
rices {Bk} such that Bk resembles V 2f(xk), at least when xk is near a local minimizer 
of f. We will examine these updates in§ 7.2. 

In§ 7.1 we examine quasi-Newton methods which can be used to approxi­
mate the Hessian in such a way that the direction Pk =-Bk1Vf(xk) resembles the 
true Newton direction. In this case Pk may not be a descent direction, so that the 
direction is usually further modified. For example, it may be modified by adding to 
Bk a suitable multiple of the identity matrix as in iteration (6.5). 

It is also possible to look at the updates of§§ 7.1 and 7.2 from an "inverse" 
point of view in which we try to generate approximations to the inverse of ,the 
Hessian. It turns out that this gives rise to at least one other important update. 
These inverse updates and their relationship to the updates of §§ 7.1 and 7.2 are 
examined in§ 7.3. 

Throughout this section we assume f: Rn ~R to be twice differentiable in 
the open convex set D, and that we have an approximation B to V 2f(x) for some X 

in D, and a directions such that x + s belongs to D. We now want to obtain a good 
approximation B to V2/(i) where i = x + s. 

7.1 Symmetry and the quasi-Newton equation .. In view of the above 
discussion, and since the Hessian is symmetric, we want the update formula to 
have the property of hereditary symmetry; that is, 

(7.1) B symmetric implies B symmetric. 

21



Moreover, because of our desire to approximate the Hessian, arguments similar to 
those in § 4 lead us to require that B satisfy 

(7.2) Bs = y =Vf(x)-Vf(x). 

Note that (7.2) is just the quasi-Newton equation (4.1) for F =V f. 
It is natural to ask whether it is possible to satisfy (7 .1) and (7 .2) with a rank 

one update formula. To see whether this can be done, first note that the general 
single-rank update that satisfies the quasi-Newton equation (7.2) is given by 

(7.3) .ii=B+(y-Bs)cT 
(c, s) 

forcE Rn with (c, s) ~ 0. If B is to satisfy (7.1), then it is easy to show that 

(7.4) .ii=B+(y-Bs)(y-Bsf 
(y-Bs, ~) 

is the only solution provided (y-Bs, s) ~ 0. If y = Bs, then B = B is the solution 
while if y ~ Bs but (y - Bs, s) = 0, then there is no solution. 

This update is known as the symmetric single-rank formula. It seems to have 
been first published by Davidon (1959, Appendix), although Broyden (1967) and 
others discovered it independently later on. If H = B-1 and ii = B-1 both exist 
and B is symmetric then the inverse relation 

(7.5) 
fi=H + (s- Hy)(s- Hy)T 

(s-Hy, y) 

holds. The following theorem, essentially due to Fiacco and McCormick (1968), 
shows that this method has very interesting behavior when it is applied to a 
quadratic functional. 

THEOREM 7 .1. Let A E L (R n) be a nons in gular symmetric matrix, and set 
Yk =Ask for 0 < k <m where {s0 , • · • , sm} spans Rn. Let H 0 be symmetric and for 
k = 0, · · · , m generate the matrices 

(7.6) 
"C..J -H· (sk-Hkyk)(sk-Hkyk)r 
Llk+1- k + < ) ' sk -Hkyb Yk 

where it is assumed that 

(7.7) 

Then Hm+1 =A - 1
. 

The proof of this result consists of verifying, by induction, that 

Hkyi=sb O<j<k, fork=1,···,m+1. 

Once this is done, 

and the result follows from the assumption that {s0 , • • • , sm} spans Rn. 

0 <"< =]=m, 

The gist of Theorem 7 .1lies in the fact that if we have an iteration of the form 
xk+1 = xk +sk and· (7.7) holds, then the use of (7.6) allows one to minimize a 
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quadratic functional in a finite number of steps. Unfortunately, there is no 
guarantee that (7.7) will hold although it is not difficult to show (Goldfarb (1969)) 
that if A -l_ H 0 is semidefinite {positive or negative) and if {Hk} is generated by 
(7 .6) when (7. 7) holds, and Hk+l = Hk otherwise, then Hm+l =A - 1

• 

The fact that the vectors s - Hy and y can be orthogonal forces a certain 
amount of numerical instability on the symmetric single-rank method. In particu­
lar, update (7 .4) does not satisfy (5.2) or (5. 7). These. difficultie~ have led to several 
improvements in the basic algorithm, and in its modified form the method has 
been quite successful. See, for example, the numerical results of Dixon (1972b). 

The numerical difficulties with the symmetric single-rank method have led to 
a whole class of updates which satisfy (7 .1) and (7 .2). The technique used to derive 
this class is due to Powell (1970d) who used it to obtain a double-rank version of 
Broyden's method~ Dennis (1972) then showed that Powell's technique could be 
used to derive most of the well-known quasi-Newton updates. 

In this derivation we begin with a symmetric BE L(Rn) and consider 

C 
_ B (y '7 Bs )c r 

1- +---­
(c, s) 

as a possible candidate for B. In general C1 is not symmetric, so consider 

c2 =(Cl+ cf)/2. 

However, since C2 does not satisfy the quasi-Newton equation, we repeat the 
process. In this way a sequence { Ck} is generated by 

(y- C2kS)CT 
c2k+l = c2k + < > , c,s 

(7.8) 
C2k+2 = (C2k+l + Cik+l)/2, 

where C0 =B. It turns out that {Ck} has a limit B given by 

(7.9) jj = B + (y-Bs)c T +c(y-Bs)T (y-Bs, s) cc T 
(c,s) (c,s)2 

and it is clear that this update satisfies (7.1) and (7.2). 

k=O 1 · · · ' ' ' 

LEMMA 7 .2. Let B EL (R n) be symmetric and let c, s, and y be in R n with 
(c, s) #- 0. If the sequence { Ck} is defined by (7.8) with C0 = B, then { Ck} converges 
to B as defined by (7.9). 

Proof. We only need to prove that the sequence {C2k} converges. If Gk = C2k, 
then (7.8) shows that 

1 T T 
G _ G . wkc + cw k 

k+l- k+2 (c,s) (7.10) 

where wk = y- Gks. In particular, 

P=~[I-(~~:J 
It is clear that P has one zero eigenvalue and all other eigenvalues equal to !, so 
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that the Neumann lemma (e.g. Ortega and Rheinboldt (1970, p. 45) implies that 

00 00 

(7 .11) L wk = L pk(y- Bs) =(I-P)-1(y- Bs). 
k=O k=O 

Since 

00 

lim Gk = B + L (Gk+l- Gk), 
k .... oo k=O 

it follows from (7.10) and (7.11) that {Gk} converges. Thus since Lemma 4.2 
shows that 

(I- P)-
1 = 2[ I- (1/2) (~~ :)J, 

equations (7 .10) and (7 .11) also imply that the limit of { Gk} is B as defined by 
(7.9). 

Once c is chosen, (7.9) is a rank two update which satisfies (7.1) and (7.2). 
Before looking at special cases of (7 .9), we show that this update solves a problem 
similar to the one specified in Theorem 4.1. 

THEOREM 7.3. Let B eL(Rn) be symmetric, and letc, s, and y be in Rn with 
(c, s) > 0. Assume that ME L(Rn) is any nonsingular, symmetric matrix such that 
Me= M-1 s. Then B as defined by (7 .9) is the unique solution to the problem 

(7.12) 
A A A 

min {IlB- BIIM,F: B symmetric, Bs = y} 

where ll·IIMF is defined by (1.3). 
Proof. 'Let B be any symmetric matrix such that y = Bs, and pre- and 

post-multiply (7.9) by M If Me= M- 1s = z it follo_ws that 

- Ezzr +zzrE (Ez, z) r 
E= - 2 zz 

(z,z) (z,z) ' 

where E = M(B- B)M and E = M(B- B)M. Now it is clear that IIEzll=IIEzll, and 
that if vis orthogonal to z then IIEvll < IIEvll. Thus IIEIIF < IIEIIF as desired. To show 
uniqueness just note that the mapping/: L(Rn) ~~defined qy [(A)= IlB- AIIM,F 
is strictly convex on the convex set of symmetric B such that Bs = y. 

Theorem 7.3 was inspired and is closely related to the results of Greenstadt 
(1970) and Goldfarb (1970) and it shows that the updates ob~~~nerl by Greenstadt 
(1970) could also have been obtained by the symmetrization argument of Lemma 
7 .2. Also note that a minor modification of the proof of Theor~m 7.3 shows that 
the solution to the problem 

min{IIB- BIIM,F:Bs = y} 

is given by (7.3). 
Powell (1970d) used the argument of Lemma 7.2 to obtain formula (7.9) in 

the case c = s. Since in this case the underlying single-rank method is Broyden's, 
the double-rank formula is often called the Powell symmetric Broyden update, or 
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the PSB update: 

(7.13) 
jj -B (y-Bs)sr+s(y-Bs)T (y-Bs,s)ssr 

PSB - + ( ) ( )2 · s, s s, s 

Theorem 7.3 implies that BPsB is the unique solution to the problem 

min {IlB-BIIF: B symmetric, Bs = y} 

and this property is reminiscent of Theorem 4.1. Because of this property it 
follows that if A is any symmetric matrix with y =As, then 

IlB- A 11}= IIBPsB- Bll}+ IIBPsB- A 11}. 
These considerations lead us to believe that BPsB is a good approximation to the 
Hessian. To further justify this claim note that (7.13) implies that for any 
symmetric A and Bin L(Rn), 

Bpss- A =PT(B-A)P+[(y-As)sr +s(y- As)TP]/(s, s) 

with P=I -ssr/(s, s). Therefore (1.2) shows that 

- , IIY -Asll 
IIBPss- A IIF <liB-A IIF + 2 llsll · 

If A =.'\12f(x) and V2f is Lipschitz continuous (with constant K) in the open convex 
set D, then Lemma 3.3 implies that 

whenever x and x lie in D. This relationship shows that the absolute error of Bk as 
an approximation to V2f(xk) grows linearly with IJskJI, and that this holds indepen­
dent of the position of xin D. 

7.2. Positive definiteness. We now turn to updates which in addition to 
satisfying (7.1) and (7.2) generate positive definite matrices. For this, let us 
investigate the property of hereditary positive definiteness; that is, 

(7.14) B positive definite implies B positive definite. 

Note that if an update satisfies (7.2) and (7.14), then y =Bs and therefore 
(y, s) > 0 whenever B is positive definite. This imposes a restriction on the angle 
between y and s, which although not severe, must be kept in mind. In fact, if 
(Vf(x), s)<O then (y, s)>O is equivalent to the existence of a {3 e (0, 1) such that 
(Vf(x), s) > {3('\lf(x), s). For this reason the requirement (6.8) is very natural for 
quasi-Newton methods. 

To investigate the property of hereditary positive definiteness, we need a 
result from the perturbation theory of symmetric matrices, e.g. Wilkinson (1965, 
pp. 95-98): 

LEMMA 7 .4. Let A EL (R n) be symmetric with eigenvalues 
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and let A* = A + uuu T for some u E R n. If u > 0 then A* has eigenvalues A r such 
that 

while if u < 0 then the eigenvalues of A* can be arranged so that 

A f <A1 <A!<··· <A! <An. 

Lemma 7.4 and the next two results will lead us to a choice of c in (7.9) which 
naturally satisfies (7 .14 ). This development is a bit long, but it gives a lot of insight. 

THEOREM 7.5. Let B EL (R ") be symmetric and positive definite, and let c, s, 
and y be in R" with (c, s) :;C 0. Then B as defined by (7.9) is positive definite if and 
only if det B > 0. 

Proof. If B is positive definite, then clearly det B > 0. For the converse first 
riote that we can write 

B = B + vw T + wv T' 

where w = c and 

y~Bs 1 (y-Bs,s) · 
v= c 

(c,s) 2 (c,s)2 
• 

Therefore, 
- 1 T T B=B+2[(v+w)(v+w) -(v-w)(v-w) ], 

and thus we have written B as B plus the sum of two symmetric rank one matrices. 
If B is positive definite then Lemma 7.4 implies that B can have at most Qne 
nonpositive eigenvalue. Therefore, if det B > 0, then all the eigenvalues must be 
positive and thus B is positive definite: 

In view of Theorem 7 .5, conditions (7.1) and (7 r14) for the updates defined by 
(7 .9) require that if B is symmetric and positive definite then det B > 0. To find out 
what choices of c satisfy this requirement we need an expression for det B. 

LEMMA 7.6. Let U; ER" fori= 1, 2, 3, 4. Then 

det(I+u1uf+u3uJ)=(1+(uh u2))(1+(u3, u4))-(uh u4)(u2, u3). 

Proof. A proof of this result can be found in Pearson (1969); the following is 
an alternative argument. 

Assume for the moment that (uh u2) :F -1. Then/+ u 1ufis nonsingular and 

I+u1uf+u3uJ , (I+u1ui)(I+(I+u1uD-1 u3uJ). 

The result now follows by using Lemmas 4.2 and 4.4. Since it holds for 
(uh u2) :F -1, a continuity argument shows that it holds in general. 

Now apply Lemma 7.6 to (7.9). After some algebra it follows that 

(7.15) det B= det B[((c, Hy)2-(c, 1-/c)(y, Hy)+(c, Hc)(y, s))/(c, s)2], 

where H = B-1
• If we assume that B is positive definite and let v = H 112y and 

w = H 112c, then 

(7.16) 
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and Theorem 7.5 implies that B is positive definite if and only if 

(7.17) 

It is now apparent that the most natural way to satisfy (7 .17) is to choose w to 
be a multiple of v so that (7.17) only requires that (y, s) be positive. In this case c is 
a multiple of y and then (7.9) reduces to an update introduced by Davidon (1959), 
and later clarified and improved by Fletcher and Powell (1963). The DFP update 
is then given by 

B
- -B . (y-Bs)yT +y(y-Bs)T (y-Bs,s)yyT 
DFP- + 2 (y,s) (y,s) 

( 
ys T ) ( sy T ) yy T 

= /-(y,s) B l-(y,s) +(y,s)' 

(7.18) 

Some of its properties are given in the following result, but first we note that the 
underlying single-rank formula (7 .3) where c is a multiple of y is an update due to 
Pearson (1969). 

THEOREM 7. 7. Let B E L (R n) be a nonsingular, symmetric matrix and define 
BoppE L(Rn) by (7.18) for any vectors y and sin Rn with (y, s) ~ 0. Then BoFP is 
nonsingular if and only if (y, Hy) ~ 0, where H = B-1

• If BoFP is nonsingular, then 
- --1 

HoFP=BoFP can be expressed as 

- SST HyyTH 
HoFP=H+-( )-( H). s, y y, y 

(7.19) 

Furthermore, if B is positive definite, then BoFP is positive definite if and only if 
(y, s) >0. 

Proof. Recall that for the DPP update c is a multiple of y so that (7 .16) 
reduces to 

(7.20) - [(y,Hy)] 
detBoFP = det B (y, s) . 

Thus BoFP is nonsingular if and only if (y, Hy) ~ 0. To verify that fioFP is given by 
(7 .19) one can either show that fioFPBDFP =I or one can use Lemma 4.2 twice on 
(7.18). In either case the proof is straightforward but tedious and is therefore 
omitted. Finally, assume that B is positive definite. If (y,s) is positive, then (7.20) 
shows that detBoFP is also positive and thus Theorem 7.5 implies that BoFP 
is positive definite. Conversely, if BoFP is positive definite, then 

(y, s) = (BoppS, s) >0 

which is the. desired result. 
One way to use the DFP update to generate a quasi-Newton direction and 

only use O(n 2
) arithmetic operations per iteration would be to generate B"k 1 = Hk 

via equation (7.19). Another approach is based on the fact that if A is positive 
definite and A = LL r for some lower triangular matrix, then the corresponding 
decomposition of 

A =A+azzT 
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cart be obtained in O(n 2) operations provided A is positive definite. Methods for 
doing this are surveyed by Gill, Golub, Murray and Saunders (1974). That these 
techniques apply to (7.18) follows from the proof of Theorem 7.5 which shows 
that (7.18) can be written as 

BnFP=B+!z1z1r -!z2zi, 

where z 1 and z 2 are linear combinations of Bs and y. If the D FP update is used in a 
method of the form (6.4) then an advantage of the latter approach is that (7.18) 
requires no matrix-vector products. 

Finally we remark that the matrices generated by the DFP formula are good 
approximations to the Hessian. In fact in§ 8 (see (8.16)) we shall derive a general 
result which can be interpreted as follows: If llsll is small then the relative error (as 
measured in§ 1) of BnFP as an approximation to a positive definite V2f(x) cannot 
be much larger than the corresponding error in B. Moreover the possible increase 
in this error is governed by a relative measure of how much f differs from a 
quadratic on D. 

7.3. Inverse updates. So far we have been thinking in terms of obtaining an 
approximation to the Hessian, but it is perhaps equally reasonable to try to obtain 
an approximation to the inverse of the Hessian. In particular, it should be clear 
that it is possible to use the techniques that we have been discussing to develop 
updating formulas for the inverse. These updates are sometimes called inverse 
updates while the updates developed in §§ 7.1 and 7.2 could be called direct 
updates. 

To develop inverse updates, assume that we have an approximation H to 
V2f(x )-1 and try to obtain a good approximation ii to V2f(x)- 1 where x = x + s. 
For inverse updates the analogue of the quasi-Newton equation is 

(7.21) Hy=s, 

and therefore, the general single rank formula which satisfies (7.21) is 

(7.22) H=H + (s- Hy)dT 
(d,y) 

for any dE R n with (d, y)-:/; 0. 
It is important to realize the relationship between (7 .3) and (7 .22). If Lemma 

4.2 is applied to (7.3) we obtain 

( B -1 ) TB-1 
.B-l=B-1+ s- y c . 

(c, B-1y) 

Therefore, (7.3) and (7.22) represent the same update if c =Brd. 
Just as in§ 7.1, it is possible to study the property of hereditary symmetry, 

which for inverse updates is 

(7 .23) H symmetric implies ii symmetric. 

It is easy to verify that the only single rank formula which satisfies the 
quasi-Newton equation (7.21) and the hereditary symmetric property (7.23) is 
again given by the symmetric single rank formula (7.5). 
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To obtain other inverse updates which satisfy (7.21) and (7.23) we carry ou~ 
the symmetrization argument of Lemma 7.2 on (7.22) to obtain 

(7.24) 
fi=H + (s- Hy)dT +d(s -Hy)T _(s-Hy, y) ddT 

(d, y) (d, y )2 
• 

This result is due to Dennis (1972) who also noted that if Band ii are defined by 
(7.9) and (7.24), respectively, then in general Bii~I even if B is symmetric, 
BH = I and c = Bd. At first this is surprising because under these assumptions 
(7.3) and (7.22) represent the same update; however, in the argument of Lemma 
7.3 we used the symmetrization operation (A +A T)/2, and in general, the 
symmetrization and inversion operations do not commute. 

It is also possible to prove an analogue of Theorem 7.3 for updates (7.24). In 
particular, if His symmetric, then the unique solution to the problem 

min {IlB-HIIF : H symmetric, Hy = s} 

is given by (7.24) with d = y. This update was proposed by Greenstadt (1970), but 
it has not received any more attention in the literature since it does not perform as 
well as the PSB update (7.13). It is interesting that the underlying single rank 
method was obtained by Broyden (1965), but that this update has also been 
neglected because of its poor numerical performance. 

The most important instance of (7.24) was given by Broyden (1969), (1970), 
and independently by Fletcher (1970), Goldfarb (1970) and Shanno (1970). This 
update can be obtained by asking for the update of the general form (7 .24) which 
"naturally" has the property of hereditary positive definiteness for inverse 
updates; that is, H positive definite implies ii positive definite. It sh<?uld be clear 
from the development in Section 7.2 that this update corresponds to choosing 
d = s in (7 .24) and therefore the Broyden-Fletcher-Goldfarb-Shanno or BFGS 
update can be written in the form 

(7.25) - ( - sy T )H( ys T) SS T HaFas= 1--- 1--- +--
(y,s) (y,s) (y,s) 

At this point we note that the BFGS update is sometimes called the complemen­
tary DFP update and th.at the underlying single rank method (7.22) in which d = s 
was proposed by G. McCormick (see Pearson (1969)). 

There is growing .evidence that the BFGS is the best current update formula 
·for use in unconstrained minimization. For example, see the results of Dixon 
(1972b). For this reason, and for future reference we state the following analogue 
of Theorem 7. 7. 

THEOREM 7. 8. Let HE L (R ") be a nonsingular symmetric matrix, and define 
HsFas E L(R") by (7.25) for any vectors y ands inR" with (y, s) ~ 0. ThenfisFas is 
nonsingularifand only if (s, Bs) ~ 0, where B =111

. IfHsFas is nonsingular, then 
- --1 

BsFas = H BFGs can be expressed as 

- yyT BssTB 
BsFas=B+-( )-( B). y, s s, s 
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Furthermore, ifH is positive definite, then HsFas is positive definite if and only if 
(y, s)>O. 

The remark at the end of § 7.2 about the behavior of BnFP as a relative 
approximation to the Hessian holds for HsFas as a relative approximation to the 
inverse Hessian. (See (8.18)). Also note that there is a close relationship between 
the matrices generated by the DPP and BFGS updates for it is easy to verify that if 
His positive definite, then 

(7.26) - - T 
HsFas=HnFP+vv , 

where v is the vector 

(7.27) V =(y,Hy)l/2L/y)-(y~yJ 
while if B is positive definite, then 

(7.28) 
- - T 

Bnpp=BsFas+ww , 

where w is the vector 

(7.29) 1;2[ Y Bs J 
w = (s, Bs) (s, y) - (s, Bs) . 

By virtue of Lemma 7 .4, relations (7 .26) and (7 .28) imply that the eigenvalues of 
HsFas(BsFas) are larger (smaller) than t~e eigenvalues of H 0 pp(B0 pp). However, 
there does not seem to be any relationship between the condition number of 
HsFas and the condition number of HnFP· 

From a purely algebraic point of view, the developments of§§ 7.1 and 7.2 are 
identical to those in§ 7.3. This follows from the fact that (7.22) and (7.24) can be 
obtained from (7.3) and (7.9), respectively, by interchanging y and s, replacingB's 
by H's and c by d. In particular Theorems 7.7 and 7.8 are identical since both of 
them follow from a more general res-ult which relates A and A, where 

T T T 

A =(I- uv )A(I- vu )+ uu 
( U, V) ( U, V) ( U, V) 

and (u, v) -:1:- 0. In spite of these remarks we have opted for a separate development 
for expository purposes. Nevertheless, it is useful to note that the DPP and BFGS 
updates are related by the transformation 

(7.30) 

In fact, Fletcher's (1970) derivation of the BFGS update was through this 
transformation. 

Finally, we note that if a direct and inverse update are related by the 
transformation (7.30) then these updates are sometimes called "dual" or "com­
plementary" updates, and this is the reason why the BFGS is also called the 
complementary DPP formula. 
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8. Convergence results for rank-two quasi-Newton methods. Let f: R" ~ R 
be continuously differentiable in an open set D and consider a method of the form 

(8.1) xk+l = xk- A.kHk Vf(xk), k = 0, 1, · · · , 

where the matrices Hk are generated by one of the methods of § 7 and A.k is 
suitably chosen. In this section ~e examine some of the convergence and rate of 
convergence results that are available for (8.1). 

In a .lot of theoretical work sufficient conditions are assumed so that A.k can be 
chosen by an exact line search. This usually means that either 

(8.2) 

where Pk = -Hk Vf(xk), or that A.k is the first local minimizer of f(xk + A.pk) for 
A. > 0. Either choice is unrealistic as usually it is not possible to find A.k to much 
accuracy in a reasonable amount of time unless, for example, f is a quadratic, 
positive definite functional. In this case 

(8.3) f(x) =!(x, Ax)-(x, b)+c 

for some symmetric positive definite A E L(R"), and the A.k which satisfies (8.2) is 
given by 

(8.4) 

The earlier convergence results for quasi-Newton methods were given for f 
defined by (8.3) and A.k chosen by (8.4). It was shown that if {xk} is generated by 
(8.1) and Hk correspond to, say the DFP or BFGS updates, then x1 =A -lb for 
some 0 <I< n, and if I= n then Hn =A - 1

. This type of finite termination property 
has sometimes been called quadratic termination. The relevance of the quadratic 
termination property to the general nonlinear problem was originally based on the 
assumption that if a method terminates in a finite number of steps for a quadratic 
then this implies superlinear convergence for nonlinear functionals. There has 
never been any theoretical or numerical support for this belief. (See, however, the 
discussion following Theorem 8.10). Nevertheless, quadratic termination seems 
to be a desirable property although as Broyden's method shows, it is not 
indispensable for superlinear convergence. 

In order to describe the quadratic termination properties for symmetric rank 
two quasi-Newton methods, consider the following class of updates: 

(8.5) 

where 4> is a parameter which may depend on s, y, Hand the iteration counter. 
This class of updates was introduced by Broyden (1967) although not in the form 
(8.5). It was Fletcher (1970) who showed that Broyden's class, which had been 
given in terms of a parameter {3, could be written in the form (8.5) and that the 
relationship between 4> and {3 is that 4> = {3(y, s). Fletcher also noted that if His 
positive definite, then equation (7 .26) implies that update (8.5) can be written as 

- - T 
Hf!> =HnFP+lfJvv , 

where the vector vis defined by (7.27). It is immediate from this expression that if 
4> > 0, then fif!> shares the property of hereditary positive definiteness with HnFP· 
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Another interesting consequence of this expression is that 
- - T - -

Bc/J = BsFas + <l>ww = (1- <I>)BsFas + <I>BnFP 

where w is defined by (7.29) and 

<P = <P( 4>) = . ( 1 - 4> )(s, y f 
2 (s, y)2 +c/J[(y, Hy)(s, Bs)-(y, s) J 

This result can be obtained by using Lemma 4.2 to express Bc/J in terms of Bnpp, 

BnppV and c/J, and then noting that (7.18) and (7.29) relate these quantities to 
BsFas, w and c/J. 

For future reference and to state the quadratic termination properties of 
(8.5), note that Broyden's class is generated by 

sksl HyYkYkTHk r 
Hk+1 =Hk +< )- ( LT ) +cfJkvkvk, 

sk, Yk Yk, .nkYk 
(8.6a) 

112[ sk Hkyk ] 
vk = (yk, Hkyk) ( )-( LT ) ' 

sk,Yk Yk,.nkYk 

and where the vectors sk and Yk are usually defined by 

(8.6b) 

THEOREM 8.1. Assume that f: R n ~ R is the positive definite quadratic func­
tional (8.3) and that H 0 E L(R") is symmetric and positive definite. For any given 
Xo ER", let {xk} be generated by· (8.1) where Ak, Hk satisfy (8.4) and (8.6), 
respectively, and cPk may depend on sk, Yk and Hk. If cPk > 0, then there is an integer 
0</<n such that x1 =A -tb and if I =n, t}J,en Hn =A - 1

• 

A typical proof of Theorem 8.1 proceeds by induction to show that the 
directions sk are A -conjugate in the sense that 

(si, Asi) = 0, i > j, 
and that also 

~Yi =sb i >j. 

This was the argument used by Broyden (1967); it shows that xk+1 minimizes fin 
the hyperplane xo+L where Lis the linear span of s0 , • • ·, sk. Broyden (1971b) 
and Powell (1973), (1974) have extended and refined Theorem 8.1; in particular, 
Powell (1974) shows that A 112HkA 112 has at least k unit eigenvalues. However, 
in all these results finite termination depends on choosing Ak by (8.4). Also note 
that if 

tf>k = (yk> sk) 
(sk - Hkyk, Yk )' 

then (8.6a) reduces to the symmetric rank one formula (7.6) but Theorems 7.1 and 
8.1 are not comparable. 

Powell (1971), (1972), (1975) has proved two analogues of Theorem 8.1 for 
nonlinear functionals. In the following result recall that L(x0 ) was defined in 
Theorem 6.2. 
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THEOREM 8.2. Let f:R" ~R be twice differentiable and convex on R" and 
assume that for a given x0 ER" the level set L(x0 ) is bounded. Suppose that {xk} is 
generated by (8.1) and that Ak, Hk are chosen in one of the following two ways: 

(a) An exact line search and the DPP update. 
(b) The line search of Theorem 6.3 and the BFGS update. 

Then for any symmetric, positive definite H 0 E L(R") and e >0 there is an index k 
such that IIVf(xk)ll<e. 

Part (a) of Theorem 8.2 was proved by Powell (1971), (1972). Part (b) is of 
course, much more interesting, and was only proved recently by Powell (1976). 
Moreover, the proof of this second part is radically different from any that we have 
seen before and interestingly enough, does not seem to generalize to the DFP 
method. That part (a) of Theorem 8.2 extends to other methods in the Broyden 
class (8.5) follows from the following remarkable result of Dixon (1972a). 

THEOREM 8. 3. Let f: R" ~ R be differentiable on R ", and assume that for a 
given Xo ERn the level set L (xo) is bounded. Given a symmetric positive definite 
H 0 EL(R") suppose that {xk} is generated by (8.1) where Ak,Hk are chosen 
according to (8.2) and (8.6), respectively. If l/Jk > 0, then the sequence {xk} is 
independent of {l/>k}. 

Dixon's result is actually more general than Theorem 8.3 since it allows 
negative values of 4>k· However, the above formulation suffices for our purposes, 
and moreover, the more general formulation requires additional assumptions on 
{Hk}. 

All the results presented so far on the convergence of rank-two quasi­
Newton methods choose l/Jk E [0, oo) since, if the line search guarantees that 
(sk, yk) is positive, then each Hk is positive definite. Of course, if[ is strictly convex 
then (sk, yk) is always positive regardless of the line search. The following result of 
Fletcher (1970) shows that for quadratic functionals the updates with 4>k E [0, 1] 
have a very desirable property which does not depend on any line searches. 

THEOREM 8.4. Assume that f:R" ~ R is the positive definite quadratic func­
tional (8.3) and that H 0E L(Rn) is symmetric and positive definite. Let {sk} be any 
sequence of nonzero vectors, let {Hk} be generated by (8.6a) with Yk =Ask, and let 
.A ~k\ i = 1, · · · , n, be the eigenvalues of A 112 HkA 112 in increasing order of mag­
nitude. If l/Jk E [0, 1] then 

min {A ~k>, 1} <A ~k+l) < max {.A ~k>, 1}. 

Since Fletcher (1970) showed that Theorem 8.4 fails if l/Jk e [0, 1], this result 
indicates that the most reasonable updates in Broydep.'s class (8.5) correspond to 
4> E [0, 1]. In fact, numerical results of Dixon (1972b), and Gill, Murray and 
Pitfield (1972) suggest that 4> = 1 is to be preferred over 4> = 0. Of course, 
Theorem 8.4 does not say anything about the PSB update since it is not of the form 
(8.5). 

We have surveyed the global convergence results for rank-two quasi-Newton 
methods; since the analysis of the asymptotic rate of convergence is of major 
importance, \Ve now investigate this topic as well as the local convergence 
properties of the BFGS and DFP methods. 

For the local convergence of these updates we show how to choose a norm so 
that (5.2) ·and (5.7) hold, respectively. First consider the DFP method and recall 
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that BnFP and Bare related by (7 .18). It follows that for any symmetric_A and Bin 
L(Rn), 

(8.7) BnFP- A= Pr(B -A)P+[(y--:- As)y r + y(y- As)rP]/(y, s), 

where 

(8.8) 
syr 

P=l--.­
(y, s)" 

A similar relationship holds between Hand fisFGs for the BFGS update. In this 
case HsFGs and Hare related by (7 .25) so that if A and Hare symmetric, and A is 
.nonsingular, then 

(8.9) HsFas -· .c4 --l = P(H ---A ·- 1)Pr +[(s-A -ly )s r +s(s-A - 1y )rpr]/(y, s) 

where Pis again defined by (8.8). In order to show that (8.7) satisfies (5.2), and 
(8.9) satisfies (5.7), we need the following result of Broyden (1970). 

LEMMA 8.5. If Q E L(Rn) is defined by 

(8.10) 
T 

Q=I- uv 
(u, v) 

with u, v in Rn and (u, v) ":/= 0, th~n 

llOib =!lull llvll. 
l(u, v >I 

Proof. The most straightforward way to verify this result is to recall that IIOil~ 
is the largest eigenvalue of Qr Q and to calculate the eigenvalues of Q r Q with 
Lemma 7.6. 

Lemma 8.5 shows that IIPib is the secant of the angle between y and s, and 
since y and s are not in general parallel, IIPib may be arbitrarily large. Therefore 
the /2 norm does not seem to be suitable for estimating (8.7) or (8.9). However, 
near x* we do have that A - 112y and A 112s are nearly parallel if A= V2f(x*) and 
this suggests the use of a weighted norm. For the DFP method an appropriate 
norm is defined by 

(8.11) 

Then Lemma 8.5 and (1.2) imply that 

(8.12) IIPT (B- A)PIIoFP < IIA 112PA -l/
211211B- AlloFP =~IlB-AIIDFP• 

(J) 

where 

(8.13) 
(y, s) (A -tl2y, A l/2s) 

w = IIA -1/2YII IIA l/2sll = IIA -1/2YII IIA l/2sll" 
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Similar estimates of the other terms in (8.7) yield 

ll

y(y """-- As)rPII <_!__ JIA -t!zy-A t;zsll 
(8·14) (y,s) -loFP=w2 IIA 112sll ' 

ll

(y-As )y 
11

11 < _!_ I lA - 112
y- A 

112sll 
(8·15) (y, s) oFP- w IIA 112sll · 

Now place (8.12), (8.14) and (8.15) together to obtain 

- 1 . 2 IIA -112y-A 112sll 
(8.16) JIBoFP- AJioFP< wzliB -AJioFP+ wz JIA 1/2sJI · 

An analogous relationship holds for the BFGS update. In this case the appropriate 
norm is defined by 

(8.17) 

and it is not difficult to verify that the analogue of (8.16) is 

- -1 < 1 -1 2 IIA 112s-A -112YII 
(8.18) JIHsFGs-A llsFGS=wzJIH-A llsFGs+ wz JIA-1/2yJI · 

As noted in § 7, an interpretation of (8.18) is that if A = V2f(x) is positive 
definite and llsll is small, then the relative error of fisFGs as an approximation to 
V2f(x )-1 is not too much larger than the relative error of Has an approximation to 
V2f(x)- 1

• Furthermore, the possible growth in this relative error is determined by 
how much f differs on the points x and .i from the quadratic whose Hessian is A. 
This difference is measured in two ways but both have to do with how well A - 112y 
is approximated by A 112s; there is an additive term which is the relative error in 
this approximation and a multiplicative term which is the square. of the secant of 
the angle between these two vectors. Of. course, we easily see that the additive 
term does not exceed the product of the square root of the condition number of A 
and the relative error in the approximation of y by As. An analogous discussion 
holds for (8.16). 

Another consequence of (8.16) and (8.18) is the local convergence of the 
DPP and BFGS methods as given by Broyden, Dennis and More (1973). 

THEOREM 8.6. Let f: R" ~ R be twice continuously differentiable in an open 
convex set D, and assume that Vf(x*) = 0 and V2f(x*) is positive definite for some 
x * in D. Suppose, in addition, that 

(8.19) XED, 

and consider the DPP and BFGS methods as defined by (8: 1) with Ak = 1. Then the 
DPP and BPGS methods are locally and linearly convergent at x*. 

Proof. To prove that these methods are locally and linearly convergent at x*, 
we only need to show that (5.2) and (5.7) are satisfied when DM is the set of all 
symmetric matrices and P=Vf For the DPP method, first note that (8.13) with 
A= V2f(x*) and Lemmas 3.2 and 3.3 imply that 

2 < [ IIY-V
2f(x*)siiJ 2 

< _ 2 
1-W = 1J- llsll = [~J,KlT(X, X)] , 
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where u(x, .i) is defined by (4.3) and J.L = IIV2f(x*)- 1ll. Thus if x and .i lie in a 
neighborhood N 1 of x* such that u(x, .i) < (2J.LK )-1

, then w 2 > !. In particular, 

1 1-w2 

(8.20) 2 = 1 + 2 < 1 + KJ.LU(X, X). 
w w 

Therefore (8.16) with A= V2f(x*) and Lemma 3.2 imply that (5.2) r-.""lds with 
a1 = KJ.L and az = 4KJ.L and where 11 · 11 is the matrix norm defined by (8.11). This 
proves the local convergence of the DFP method. For the BFGS first let e be a 
positive lower bound for the eigenvalues of V2f(x) in a neighborhood N 2 of x * so 
that IIYII>ellsll provided x and .i lie in N 2 • If N 2 cNb then (8.18) with A= 
V2f(x*), (8.20) and Lemma 3.3 imply that (5.7) holds with a 1 = KJ.L and 
a 2 = 4(J.Lp )112

K/ e. Here p = IIV2f(x*)ll and 11 · 11 is the norm defined by (8.17). 
· As noted at the end of § 5, Theorem 8.6 still holds if instead of choosing 

Ak = 1, it is chosen by a line search which guarantees that IIAk -11 <A for some 
A 

A E (0, 1). However, Stoer (1975) has recently been able to prove a much more 
powerful result. 

THEOREM 8. 7. Let f: R n ~ R satisfy the assumptions of Theorem 8.6 and 
consider iteration (8.1) with Hk generated by (8.6) with 4>k E [0, 1] and 

where 0 < J.Lk < ji < 1 and Pk = -Hk Vf(xk). Then for-any T >0 there is an e > 0 
such that if the condition number of H 0 does not exceed T and llxo- x*ll < e, then 
{xk} is well-defined and converges linearly to x*. 

The line search of Theorem 8.7 is not very practical, but the proof of 
Theorem 8. 7 clearly shows that the purpose of this particular search is to enforce a 
sufficient decrease on f and to guarantee that the iterates remain in a compact 
convex set D 0 c D with x *in its interior and on which f is uniformly convex. Thus, 
if f is uniformly convex on R n then any reasonable line search could be used in 
Theorem 8.7. 

Theorem 8.7 represents a type of result that is somewhat different from a 
local result like Theorem 8.6 and a global result like Theorem 8.2. Even if we 
restrict ourselves to the DFP and BFGS updates, Theorems 8.6 and 8.7 are not 
comparable because Ak = 1 will not be an admissible value for the line search of 
Theorem 8.7 unless it can be established, a priori, that Pk is sufficiently close to the 
Newton step in both length and direction. On the other hand, Theorems 8.2 and 
8. 7 are comparable for the DFP and BFGS updates if we assume that f satisfies the 
hypothesis of Theorem 8.6 with D = Rn and in addition, assume that f is convex 
on Rn. In this case, given any symmetric positive definite H 0 , Theorem 8.2 implies 
that the DFP and BFGS methods converge to x* for any x0 while Theorem 8.7 
imposes some restrictions on x0 • 

To prove that the DFP and BFGS methods are superlinearly convergent 
requires careful estimation of the terms liP r (B -A )PIIoFP and IIP(H­
A - 1)PrllsFas respectively. These estimates were obtained by Broyden, Dennis 
and More (1973) and then used by Dennis and More (1974) to prove superlinear 
convergence for various choices of Ak in (8.1). 

THEOREM 8.8. Let f: R n ~ R satisfy the assumptions of Theorem 8.6, and 
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suppose that {xk} is a sequence in D such that 

00 

(8.21) L llxk-x*ll<+oo. 
k=O 

If the sequence {Hk} is defined by (8.6) with either lPk = 0 or lPk = 1 and (yb sk) is 
positive fork> 0, then for any symmetric positive definite H 0 in L(Rn) the matrices 
Hk are well-defined and positive definite with uniformly bounded condition num­
bers. Moreover, if Bk = H;i, then 

(8.22) lim ii[Bk- V
2
f(x*)]skll = O 

k-.oo llskll · 

Since (yk, sk) is positive for k > 0, Theorems 7. 7 and 7.8 imply that in either 
case Hk is well-defined and positive definite. The remainder of the proof is 
somewhat long, so we only outline it. First it is shown that {IIBkll} is bounded and 
(8.22) holds for the DFP method. A similar argument for BFGS shows that {IIHkll} 
is bounded and instead of (8.22), 

(8.23) 
lim li[Hk- V

2
f(x*)-

1
]Ykll = O 

k-+OO IIYkll . 

However, if {IIBkll} is bounded, then 

[Bk- V2f(x*)]sk =[I-Bk V2f(x*)- 1](yk-V2f(x*)sk)- Bk[Hk-V2f(x*)- 1]Yk 

shows that (8.23) implies (8.22). Hence, the final step in the proof consists of using 
the techniques of Powell (1971, pp. 31-32) to prove that {IIBkll} and {IIHkll} are 
bounded for the BFGS and DFP methods respectively. 

Dennis and More (1974) elaborate on Theorem 8.8 and give examples due to 
Powell which show that (8.22) does not necessarily imply that {Bk} converges to 
V2f(x*). Also note that Theorem 8.8 implies that the DFP and BFGS methods of 
Theorem 8.6 are supetlinearly convergent. This is also a consequence of the 
following more general result. 

THEOREM 8.9. Let f:Rn ~R satisfy the assumptions of Theorem 8.6 and 
consider the DFP and BFGS methods as defined by (8.1) with Ak determined by any 
strategy such that (8.22) implies that {Ak} converges to unity. If the sequence {xk} 
generated by the DFP and BFGS method satisfies (8.21), then {xk} converges 
superlinearly to x *. 

Proof. Theorem 3.1 implies that {xk} converges superlinearly to x* if 

(8.24) 
lim II[A k1 

Bk- V
2
f(x*)]skll = 0 

k-.oo llskll · 

On the other hand, Theorem 8.8 and our assumptions show that (8.22) holds and 
hence {Ak} converges to unity. Thus (8.24) also holds and hence {xk} converges 
superlinearly to x*. 

There are a number of line searches which satisfy the requirements of 
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Theorem 8.9: 
(a) Exact line searches. This result is due to Dennis and More (1974). 
(b) The line search of Theorem 6.3. This is the content of Theorem 6.4. 
(c) The line search of Theorem 8.7 provided {J.Lk} converges to zero. This is 

not difficult to prove and in fact, the proof is very similar to that of 
Theorem 6.4. 

The above remarks and Theorems 8.8 and 8.9 show that the DFP and BFGS 
methods of Theorems 8.2, 8. 7 and 8.8 are super linearly convergent. It is an open 
problem to prove, under the conditions of Theorem 8.6, that iteration (8.1) is 
superlinearly convergent when {Hk} is defined by (8.6) for {cfJk}c [0, 1] and Ak 
chosen in some reasonable (certainly not by exact line searches) manner. 

It would be interesting to prove Theorem 8.8 assuming only that {xk} 
converges to x* instead of (8.21). However, as it stands Theorem 8.9 shows that 
either the DFP and BFGS methods converge superlinearly or they converge 
sublinearly in the sense that 

lim sup llxk - x *11 11 
k = 1. 

k-++00 

In practice, sub linear convergence is essentially equivalent to nonconvergence, so 
Theorem 8.9 covers all the computationally interesting cases. 

If the line search is appro.priately restricted then more is known about the rate 
of convergence. 

THEOREM 8.10. Letf:Rn -+Rand x 0 satisfy the assumptions of Theorem 8.2 
and let {xk} be generated by the DPP method with perfect line searches. If {xk} 
converges to a point x* at which V 2f(x*) is positive definite and (8.19) holds, then 
V f(x *) = 0 and {xk} converges superlinearly to x *.In addition, there is an T/ > 0 such 
that 

(8.25) k>O. 

That {xk} converges superlinearly to x* is due to Powell (1971), but (8.25)­
which is known as n-step quadratic convergence- is due to Burmeister (1973) 
and later but independently, to Schuller and Stoer (1974). The proofs of these two 
results are completely different; the proof of (8.25) depends on the finite termina­
tion property of DFP while, as pointed out by Dennis and More (1974), Powell's 
result can be proved by showing that (8.21) holds and then applying Theorem 8.9. 
Note that Theorem 8.10 extends to other methods in Broyden's class with cPk > 0 
via Dixon's result (Theorem 8.3). If cPk E [0, 1] it is possible to extend Theorem 
8.10 for nonexact line searches: Stoer (1975) has shown that if in Theorem 8.10 
we have 

for some constant y, then (8.25) holds. 
It should be appreciated that a sequence may converge n -step quadratically 

but not be superlinearly convergent and conversely. However, n-step quadratic 
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convergence does imply that 

lim llxk -x*ll 11k = 0, 
k-+00 

and thus {xk} is R -super linearly convergent in the terminology of Ortega and 
Rheinboldt (1970); Q-superlinear convergence corresponds to the notion used in 
this paper. 

THEOREM 8.11. Let f: R n ~ R be the strictly convex quadratic functional 
(8.3). Then for Ak = 1 the DPP and BFGS methods converge globally and super­
linearly to A - 1b. 

Proof. It is clear that the iterations are well defined. To prove the result for the 
DFP method note that since y =As, equation (8. 7) implies that 

(8.26) IIBnFP- AllnFP = IIOT[A - 112(B- A)A - 112]QIIp, 

where z =A 112s and 

ZZT 

Q=I-( ). z,z 

However, in the proof of Theorem 5. 2 we showed that for any E E L (R n) and 
zERn 

' 

IIEOIIF < IIEIIF- (2JIEIIF) -l ( 1~ji1) 
2

. 

Thus, if we let 'Ylk = IIBk- Allnpp, and use (1.2) and the above estimate in (8.26), 
then 

where 

IIA - 112(Bk- A)skll 
l{!~c = JJA 112skll · 

It is now clear that {17k} is monotone decreasing and hence convergent. If 11 is an 
upper bound for {17k}, then 

and since {17k} is converging it follows that {l/lk} tends to zero. Consequently, 

(8.27) 

Moreover, 

implies that 
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and thus (8.27) shows that {xk} converges superlinearly to x*. 
For the BFGS method similar calculations with (8.9) yield 

(8.28) lim II[Hk- A -l]Ykll = 0 
k~oo IIYklf · . 

Moreover, Theorem 8.4 shows that {IIBkll} is bounded. Thus, as noted after 
Theorem 8.8, (8.28) implies that (8.27) holds and now the proof is completed as 
before. 

Theorem 8.11 seems to be just a curiosity since if Ak is chosen by an exact line 
search, then convergence will take place in at most n steps. However, it does give 
an indication of the stability of the DFP and BFGS updates without exact line 
searches. " 

We have now finished our study of the asymptotic behavior of the DFP and 
BFGS methods. It is also possible to study the PSB update, but since it does not 
generate positive definite matrices, results like Theorem 8.9 have to be modified 
for the PSB update. 

The PSB update is not generally used in a descent implementation, but 
Powell (1970c), 1970d) has described and analyzed a quite competitive algorithm 
which uses the PSB algorithm in a hybrid implementation, and has shown that if 
certain "special iterations" are taken then the algorithm converges globally and 
superlinearly. These special iterations guarantee that the directions used by the 
PSB update are uniformly linearly independent and therefore, that the sequence 
{Bk} generated by the PSB update converges to the Jacobian evaluated at the 
solution-for a discussion of the concept of uniform linear independence and its 
relationship to the Broyden arid PSB update see More and Trangenstein (1976). 
Powell (1975) later proved that in theory the algorithm co~nverged globally and 
super linearly even if these special iterations are not used. In practice however they 
cannot be taken away from the algorithm, without a .significant loss in efficiency. 

The above results of Powell deserve further investigation. In fact, the whole 
question of how to globalize an algorithm is very important and represents an 
open field of research. 

In its simplest form the PSB method is given by 

(8.29) 

where {Bk} is generated by 

(8.30) 

and as usual 

(8.31) 

Note that since the matrices {Bk} are not necessarily positive definite it is not 
possfble to carry out the above iteration by updating an LDL r decomposition of 
Bk. To avoid O(n 3) operations per step it is usual to generate Hk = B-;1

• An 
alterna~ive would be to update a factorization of the form QTQ r, where Q is 
orthogonal and T is tridiagonal, but this approach has not been investigated. 
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The following result of Broyden, Dennis and More (1973) covers the above 
iteration. 

THEOREIVt 8.12. Let f: Rn ~ R satisfy the assumptions of Theorem 8.6 except 
that now V2f(x *) is not required to be positive definite, and consider the PSB method 
as defined by (8.29), (8.30) and (8.31). Then the PSB method is locally and 
superlinearly convergent. 

Since the proof of this result is so similar to that of Theorem 5.2 we omit it. It 
is also worthwhile noting that the remarks made about Broyden's method after 
Theorem 4.2 apply, with obvious modifications, to the PSB method, and that 
Dennis (1971), (1972) has given Kantorovich theorems for the Broyden and PSB 
methods. 

To conclude this section we point out that the PSB method, if properly 
modified, is globally and superlinearly convergent for the quadratic functional 
(8.3) if A is any nonsingular, symmetric matrix. It is only necessary to modify Bk+l 
so that it is nonsingular. For example, if instead of (8.10) we define 

B 
-B +fJ ·(yk-Bksk)sl+sk(yk-Bksk)r 02 (yk-Bksk,sk) · r 

k+l- k k ( ) k ( )2 sks k 
~'~ ~'~ 

(8.32) 

and Bk is nonsingular, then it is possible to choose (}k so that 

(8.33) Bk+l is nonsingular, IOk -11 < 8 for some 8 E (0, 1). 

More and Trangenstein (1976) elaborate on how this can be done, and also prove 
the following result. 

THEOREM 8.13. Let f:R" ~R be given by (8.3) where A EL(R") is any 
nonsingular, symmetric matrix and consider the PSB method (8.29) where {Bk} is 
generated by (8.32), (8.31) and (}k satisfies (8.33). Then the PSB method is globally 
and superlinearly conv~rgent to A - 1b. 

More and Trangenstein (1976) also point out that Theorem 8.12 holds if the 
PSB method (8.29) is defined by (8.32), (8.31) and (}k satisfies (8.33). 

9. Concluding remarks. We have tried to write this survey in such a way that 
the important problems suggest themselves, so instead of ending with remarks 
about directions for future research, we end with an admission of certain 
omissions. 

Although we have indicated several approaches to the computation of the 
updates, all these approaches are based on an additive correction of rank at most 
two. Other approaches are possible; Brodlie, Gourlay and Greenstadt (1973) 
discuss multiplicative corrections so that their direct updates are of the form 

jj =(I+ uv T)B(I +vu T), 

and show that the DFP and BFGS can be written in this facto red form. 
We have not mentioned any particular implementation because there are a 

number of very promising algorithms (e.g. Davidon (1975)) now being tested and 
such remarks would likely be out of date before their publication. See, however, 
the paper of Fletcher (1972), which discusses several of the currently available 
algorithms. . · 
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We have also not mentioned several excellent papers which only deal with 
quasi-Newton methods as applied to strictly convex quadratic functionals. In 
particular, the paper of Huang (.1970) introduces a class of updates which has 
many of the properties of the Broyden class. We have restricted our attention to 
the Broyden class since it is that subclass of the Huang class which satisfies the 
quasi-Newton equation and has the hereditary symmetry property. 

Finally, we point out that this survey was not meant to be exhaustive even in 
matters related to quasi-Newton methods; in particular, no mention has been 
made of the use of quasi-Newton methods in connection with· constrained 
optimization. Readers interested in this connection should consult the book 
edited by Gill and Murray (1974). 
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