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QUASI-NEWTON METHODS, MOTIVATION AND THEORY~

This paper is an attempt to motivate and justify quasi-Newton methods as useful modifications of Newton's method for general and gradient nonlinear systems of equations. References are given to ample numerical justification; here we give an overview of many of the important theoretical results and each is accompanied by sufficient discussion to make the results and hence the methods plausible.

1. Introduction. Nonlinear problems in finite dimensions are generally • solved by iteration. Davidon (1959), for the minimization problem, and [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF], for systems of equations, introduced new methods which although iterative in nature, were quite unlike any others in use at the time. These papers together with the very important modification and clarification of Davidon's work by [START_REF] Fletcher | A rapidly convergent descent method for minimization[END_REF] have sparked a large amount of research in the late sixties and early seventies. This work has led to a new class of algorithms which have been called by the names quasi-Newton, variable metric, variance, secant, update, or modification methods. Whatever one calls them (we will use quasi-Newton), they have proved themselves in dealipg with practical problems of the two types mentioned; that is, systems of n equations in n unknowns, and the unconstrained minimization of functionals.

A predictable consequence of this research is that there has been a proliferation of quasi-Newton methods for unconstrained minimization. Moreover, the derivation and relationship between these methods has usually been obscured by appealing to certain idealized situations such as exact line searches and quadratic functionals. This has not happened in nonlinear equations since the only quasi-Newton method that has been seriously used is the one proposed by [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF].

In this paper we show that it is possible to derive all of the known practical quasi-Newton methods from very natural considerations and in such a way that the relationship between these methods is clear. In addition, this paper contains a survey of the theoretical results which yield insight into the behavior of quasi-Newton methods, and in order to motivate these methods, there is also some background material in § § 2 and 6. In either case, we have only given those proofs which are either new, give insight, or are simpler than those previously published, but references are always given.

In § § 4 and 7 we derive the various quasi-Newton updates. This is done by taking the point of view that these updates are methods for generating approximations to derivatives-Jacobians for nonlinear equations and Hessians in unconstrained minimization. This point of view suggests how to use quasi-Newton methods in other areas such as least squares and constrained optimization.

The theoretical results are contained in § § 5 and 8. These results show, in particular, that there are four quasi-Newton updates which are globally and superlinearly convergent for linear problems (even in the absence of orthogonality assumptions or exact line searches), and locally and superlinearly convergent for nonlinear problems. These updates•are Broyden's 1965 updat~ for nonlinear equations, Powell's symmetric form of Broyden's update, the Davidon-Fletcher-Powell update, and the Broyden-Fletcher-Goldfarb-Shanno update. The theoretical results quoted tend to explain why these four updates are the ones most used in practical work.

In addition to the above material there are some rate of convergence results in § 3. In particular, we emphasize superlinear convergence and its geometric interpretation.

We use Rn to denote n-dimensional real Euclidean space with the usual inner product (x, y) = x T y while L (R n) is the linear space of all real matrices of order n. Moreover, 11•11 stands for either the /2 vector norm llxll = (x, x) 112 , or for any matrix norm which is consistent with (or subordinate to) the / 2 vector norm in the sense that IIAxll < IIAIIIIxll for eachx inRn and A inL (Rn). In particular, the / 2 operator norm and the Frobenius norm are consistent with the / 2 vector norm. For future reference we note that the Frobenius norm can be computed by n (1.1) IIAII~= L 11Avill 2 = tr (A TA), i=1 where {vb • • • , vn} is any orthonormal set in Rn, and that for any pair A, B in L(Rn), (1.2) IIABIIF<min{IIAibiiBIIF, IIAIIFIIBib}.

In addition to the above matrix norms, we also make use of the weighted norms (1.3) IIA IIM,2 = IIMAMib, where M is a nonsingular symmetric matrix in L(Rn). These norms do not satisfy the submultiplicative property IIABII <I lA IIIIBII which is usually satisfied by matrix norms, but are very useful because they can be used to measure the relative error of approximations to symmetric, positive definite matrices. To be specific, suppose that A is symmetric and positive definite, and let A -112 be the symmetric positive definite square root of A -1 . Since IIB-AII<IIA -1/2(B-A)A -1/211 IIAIIfor either the / 2 operator norm or the Frobenius norm, it is clear that if M= A -112 , then IlB-A IIM,2 and IlB-A IIM.F measure the relative error of B as an approximation to A in the / 2 and Frobenius norms, respectively.

2. Variations on Newton's method for nonlinear equations. Let F:Rn ~ Rn be a mapping with domain and range in Rn and consider the problem of finding a solution to the system of n equations in n unknowns given by

1 <"< =' =n,
where /1, • • • , fn are .the component functions of F.

The best known method for attacking this problem is Newton's method, but sometimes it is modified so as to improve its computational efficiency. In this section we examine some of these variations and their corresponding advantages and disadvantages. This will help to motivate the introduction of quasi-Newton methods as variations of Newton's method.

For the purpose of analyzing th~ algorithms for solving F(x) = 0, the mapping F is assumed to have the following properties. The notation F'(x) denotes the Jacobian matrix (ai[;(x)) evaluated at x so that (2.1) guarantees that x * is a locally unique solution to the equations F(x) = 0.

In addition to (2.1) sometimes we will need the stronger requirement that F' satisfies a Lipschitz condition at x *: There is a constant K such that (2.2)

IIF'(x)-F'(x*)ll < Kllx-x*ll, XED.
Note that if D is sufficiently small then (2.2) is satisfied if, for example, F is twice differentiable at x*.

Newton's method for nonlinear equations can be derived by assuming that we have an approximation xk to x* and that in a neighborhood of xk the linear mapptng

Lk(x) = F(xk) + F'(xk)(x-xk)
is a good approximation to F. If this is the case, then a presumably better approximation xk+l to x* can be obtained by solving the linear system Lk(x) = 0. Thus Newton's method takes an initial approximation x 0 to x*, and attempts to improve x 0 by the iteration

xk+l = xk-F'(xk)-1 F(xk), k = 0, 1, • • • .
Actually, this is the form of Newton's method which is convenient for analysis. The computational form consists of carrying out the following steps for k ~ 0, 1, • • •,m where m is the maximum number of iterations allowed.

(a) Compute F(xk) and if xk is acceptable, stop. Otherwise, compute F'(xk). < 2 •

3 ) (b) Solve the linear system F(xk)sk =-F(xk) for sk and set xk+l = xk + sk.

The advantages of this algorithm are summarized in the following wellknown result.

THEOREM 2.1. Let F:R" .... Rn satisfy assumptions (2.1). Then there is an open set S which contains x* such that for any x 0 E S the Newton iterates are well-defined, remain inS and converge to x*. Moreover, there is a sequence {ak} which converges to zero and with

(2.4) k =0, ....

If, in addition, F satisfies (2.2) then there is a constant {3 such that

(2.5) llxk+l-x*ll < f311xk-x*ll 2 , k = 0, ....

For a proof of this result see, for example, Ortega and Rheinboldt (1970, p. 312). However, in § 5 we shall show that if F satisfies (2.2) then the convergence of Newton's method follows from a much more general result. Moreover (2.4) and (2.5) will follow from results in § 3.

Two advantages of Newton's method are expressed by Theorem 2.1. The first one is the existence of a domain of attraction S for Newton's method. The existence of this domain of attraction implies that if the Newton iterates ever land inS, then they will remain inS and eventually converge to x*. This insures some measure of stability for the iteration.

The other advantage is expressed by (2.4) and is known as superlinear convergence. Moreover, if (2.2) holds then Theorem 2.1 shows that we obtain (at least) second order or quadratic convergence; that is, (2.5) holds. However, the example

f(x) =X+ lxll+a, ae(O, 1), x*=O,
shows that in general (2.5) does not hold. If f311x*ll is not too large, then an informal interpretation of (2.5) is that eventually each iteration doubles the number of significant digits in xk as an approximation to x*.

Also note that Newton's method is self-corrective; that is, xk+l only depends upon F and xk so that bad effects from previous iterations are not carried along. As we shall see, this is an advantage of Newton's method which is not shared by quasi-Newton methods.

The best known disadvantage of Newton's method is that a particular problem may require a very good initial approximation to x* if the iteration is to converge. This is due to the fact that the setS in Theorem 2.1 can be very small. To overcome this disadvantage, special techniques (e.g. Powell's (1970a)) are needed.

On the other hand, for many problems the most important disadvantage of Newton's method is the requirement that F'(xk) be determined for each k. This involves the evaluation of n 2 scalar functions at each step and for most functions this is a very costly operation. It is usually taken to be equivalent to n evaluations of F, but the exact cost varies from problem to problem. If the Jacobian is relatively easy to obtain, then Newton's method is very attractive. If obtaining the Jacobian is relatively expensive, then this problem can be circumvented in some cases by using a finite difference approximation to the Jacobian matrix.

For example, F'(xk) could be replaced in (2.3) by the computation of A(xk, hk) E L(Rn) where

(2.6) [A (x, h )];,i = [[; (x + 'T/ 1 ei)-[; (x) ]/ 'Tlb and h = ('T/b • • •,'Tin)
is some suitably chosen vector. Of course, we now solve the system (2.7)

There is a significant amount of theoretical and computational support for this approach. For example, if F satisfies assumptions (2.1) and (2.2), and at each iteration llhkll < yiiF(xk)ll for some constant y then all the conclusions of Theorem 2.1 also hold for the finite difference Newton's method. However the expense of computing n 2 scalar functions still remains. A popular technique for trying to reduce the overall computational effort of the Newton or the finite difference Newton's method is to hold the Jacobian fixed for a given number of iterations. This is particularly useful when the Jacobian is not changing very rapidly. However, it is always difficult to decide how long the Jacobian should be held fixed. [START_REF] Brent | Some efficient algor.ithms for solving systems of nonlinear equations[END_REF] has shown that although this technique decreases the rate of convergence, it can increase a certain measure of efficiency.

Finally, note that all the modifications of Newton's method mentioned in this section require the solution of a system of linear equations and therefore O(n 3 ) arithmetic operations per iteration. For some problems, the solution of these linear systems is the most expensive part of the iteration, and in these cases one should consider holding the Jacobian matrix fixed for a given number of iterations since in each such iteration this expense would be reduced to O(n 2 ).

Rates of convergence.

It is very important to understand something about the rate of convergenc~ of different algorithms, since to a certain extent the rate of convergence of a method is as important as the fact that it converges; if it converges very slowly we may never be able to see it converge. Therefore, in this section we shall outline certain results which give insight into rates of convergence. In particular we emphasize the notion of super linear convergence and mention its geometrical interpretation.

A reasonable algorithm should at least be linearly convergent in the sense that if {xk} is generated by the algorithm and {xk} converges to x*, then for some norm 11 • 11 there is an a E (0, 1) and k 0 > 0 such that llxk+l-x*ll<allxk-x*ll, k>ko.

This guarantees that eventually the error will be decreased by the factor a< 1.

To be competitive an algorithm should be superlinearly convergent in the sense that (2.4) holds for some sequence {ak} which converges to zero. As noted by [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF] one of the properties of superlinearly convergent methods is that

(3.1) lim llxk+l-xkll!llxk-x*ll=1 k-++00
provided, of course, that xk ~ x* fork> 0. That (3.1) holds is quite easy to prove and follows from (2.4) and the fact that lllxk+l-xkll-llxk-x*IJ I< llxk+l-x*ll.

The importance of (3.1) is that it provides some justification for stopping the iteration when llxk+l-xkll< etllxkll for some pre-specified e1. This termination criterion is often used together with one of the form IIF(xk)ll < e 2 • The reader can easily construct one dimensional examples to show the shortcomings of either criteria; a good routine should allow the user to select from several reasonable choices.

The following result of [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF] shows precisely when an iteration is superlinearly convergent. THEOREM 3.1. Let F:Rn ~Rn satisfy assumptions (2.1), and let {Bk} in L(Rn) be a sequence of nonsingular mat~ices. Suppose that for some x 0 in D the sequence (3.2) 

(3.3) lim II[Bk-F'(x*)](xk+l-xk)ll = 0 k-.+oo llxk+l-xkll • Clearly, if {Bk} converges to F'(x*), then (3.
3) holds and thus Theorem 3.1 explains why Newton's method and the finite-difference Newton's method with llhkll = O(IIF(xk)ll) converges superlinearly. However, (3.3) only requires that {Bk} converge to F'(x*) along the directions sk = xk+l-xk of the iterative method. As pointed out in § § 5 and 8, this is the case for certain quasi-Newton methods, and yet for these methods {Bk} does not, in general, converge to F'(x*).

An equivalent but more geometric formulation of (3.3) is that it requires sk = xk+l-xk in the iterative method to asymptotically approach the Newton correction sr: = -F'(xk)- Equation (3.4) shows that the relative error of sk as an approximation to sr: approaches zero, and it is fairly easy to prove that this is equivalent to requiring that sk approach sr: in both length and direction. For future reference, we state this formally.

LEMMA 3.2. Let u, v belong to Rn with u, v ~ 0 and let a E (0, 1). If llu-vi I< allull, then (u, v) is positive and Conversely, if (u, v) is positive and (3.5) holds, then llu-vll < 3allull.

(3.5) I llvlll< 1 _((u,v)) 2 < 2 l-M =a, llullllvll =a•
Proof. Assume first that llu-vi I< allull. Then This proves (3.5). Now note that if w <0 then the equality above shows that llu-vll >!lull. Hence, a< 1 implies that (u, v) is positive. For the converse note

that llu-vll 2 = (llull-llvll) 2 + 2(1-w)llull llvll < a 2 llull 2 [1 +2(1 +a)]
and since a< 1, it certainly follows, that llu-vll < 3allull as desired.

Lemma 3.2 shows that (3.4) is equivalent to lim lis t' JI = lim / _!!:..._ s t"

) = 1 k-+oo llskll k-+oo \llskll' lls~ll '
and thus an iterative method is super linearly convergent if and only if its directions asymptotically approach the Newton direction in both length and direction.

We would also like to explore second order convergence and for this we need the following estimate.

LEMMA 3.3. LetF:Rn ~Rn satisfy assumptions (2.1) (a) and (2.2). Then for any x* in D,

(3.6) IIF(v)-F(u)-F'(x*)(v-u)ll < K max {llv-x*ll, llu-x*ll}llv-ull for all v and u in D.
The proof of this result follows immediately from Theorem 3.2.5 of Ortega and Rheinboldt (1970); note that the assumption F(x*) = 0 is not necessary for Lemma 3.3 nor is the invertibility of F'(x*).

Using Lemma 3.3 it is not difficult to modify the proof of Theorem 3.1 as given by [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF] and show that if the assumptions of Theorem 3.1 are satisfied and (2.2) holds then there is a constant JL 1 such that

llxk+l-x*ll < JL1IIxk-x*IIP, k = 0, 1, • • • ,
for some p E (1, 2) if and only if there is a constant JL 2 such that k =0 1 ... ' ' However, we have not found any use for this result. The following well-known result is much easier to prove and is apparently just as useful.

THEOREM 3.4. Let F:Rn~Rn satisfy assumptions (2.1) and (2.2), and let {Bk} be a sequence of nonsingular matrices. Assume that for some x 0 in D the sequence (3.2) remains in D and converges to x*. If

(3.7) IIBk-F'(x*)ll < 11llxk-x*ll, k =O 1 • • • ' ' '
then {xk} converges quadratically to x*. Proof. Since {xk} converges to x*, inequality (3.7) and the Banach lemma (e.g. Ortega and Rheinboldt (1970, p. 45)) imply that there is a constant y such that 11Bk" 1 l l < y fork sufficiently large. Since and it follows that {xk} converges quadratically to x*.

xk+l-x* = -Bk" 1 {[F(xk)-F(x*)-F'(x*)(xk-x*)] + (F'(x*)-Bk)(xk-x*)},
The most natural way to guarantee that (3.7) holds is to require that (3.8) k>O.

If this is the case then

IIBk-F'(x*)ll ~ TJt)IF(xk)ll + Kllxk-x*ll, and Lemma 3.3 implies that (3.7) holds. Not¥ that Newton's method and the finite difference Newton's method with llhkll = O(lfF(xk)IJ) satisfy (3.8).

4. B_royden's method. In § 2 we saw that two disadvantages of Newton's method were its need for n 2 + n scalar function evaluations and its use of O(n 3 ) arithmetic operations at each iteration. We shall now derive Broyden's method (1965) and show how it affects an order of magnitude reduction in each of these expenses. The price paid is a reduction from second order to superlinear con-• vergence.

From the point of view taken here Broyden's 1965 proposal is a method for approximating Jacobian matrices. As pointed out in § 2, one of the major expenses of Newton's method is the calculation of To derive this method, assume that F: R n -+ R n is continuously differentiable in an open convex set D and that for given x in D and s =1: 0, the vector x = x + s belongs to D. You should associate x with Xk and .x•with xk+t, so that what we want is a good approximation to F'(x).

Since F' is continuous at x, given e > 0 there is a 8 > 0 such that IIF(x)-F(x)-F'(x)(x-x)ll < e lfx-xll provided llxx 11 < 8. It follows that

F(x)::: F(x) + F'(x)(x-x),
the degree of approximation increasing as llx -xll decreases. Hence, if B is to denote our approximation to F'(x), it seems reasonable to require that B satisfy the equation

F(x) =F(x)+ B(x -x).
This is generally written (4.1)

Bs = y =F(x)-F(x),
where s = xx.

In the case of n = 1, equation (4.1) completely determines Band the secant method would result from using this approximate derivative in a Newton-like iteration. For n > 1, we can still argue that the only new information about F has been gained in the direction determined by s. Now suppose we, had an approximation B to F'(x ). Broyden reasoned that there really is no justification for having B differ from B on the orthogonal complement of s. This can be expressed as the requirement (4.2)

Bz=Bz if(z,s)=O.

Clearly (4. As it stands, it is clear that given x 0 and B 0 , Broyden's method can be carried out with n scalar function evaluations per iteration. However, (4.4) and (4.5) seem to indicate that the solution of the linear system Bksk ,::;: ) operations. Of course, if Bk ---•QkRk is given, then the solution of the linear system Bksk = -F(xk) only involves O{n 2 ) operations. One reason why this approach .would be preferable over (4.8) is because in (4.5) th~re are no matrix-vector multiplications; the termBksk is j~st -F(xk). Another reason is that the analysis of § 5 shows that (4.5) is more stable.

Note that we don't need to choose sk = xk+ 1 -xk (see, however, the remarks after Theorem 5.4) in either (4.5) or (4.8). It is entirely reasonable to choosesk to be any vector such that F is defined at xk + sk and then set Yk = F(xk + sk)-F(xk).

For example, if we set sk = 17ei for some scalar 1], then (4.5) shows that Bk+ 1 only differs from Bk in the jth column, and that this .column is now Thus, Theorem 4.3 guarantees that in the Frobenius norm, Bk+l is a better approximation than Bk to the average ofF' on the line segment from xk to xk+l• Of course, if F: R n ~ R n is affine, then A is the coefficient matrix, and therefore for affine functions Broyden's method is norm-reducing in the Frobertius norm.

[F(x + 17ei)-F(x )]/ 11• Of course, if sk =fi xk+ 1 -
To conclude this section we point out that ,Broyden's method is sometimes implemented in the form (4.9)

jj = B + () (y -Bs )s T (s, s)
where flis chosen so as to avoid singularity in B. The following result can be used to decide how to choose 0.

LEMMA 4.4. Let V, w in R n be given. Then

(4.10) det (I +vwT) = 1 +(v, w).
Proof. Let P =I+ vw T and assume that v -:1: 0 for otherwise the result is trivial.

Then any eigenvector of P is either orthogonal to w or a.multiple of v. If the eigenvector is orthogonal tow, then the eigenvalue is unity while if it is parallel to

V then the eigenvalue is 1 +(v, w). Equation (4.10) follows.

To avoid singularity in B note that if B is defined by (4.9), then Lemma 4.4 yields .... [ (y, B-

1 s)J detB=detB (1-(J)+(J (s,s) .
We can now follow a suggestion of Powell (1970a) and choose () as a number closest to unity such that ldet .81 > o-1 det Bl for some u in (0, 1); Powell uses u=0.1.

Local convergence results.

We now would like to present a local convergence result that is available for Broyden's method and some of its variations. The importance of this result lies in the fact that the techniques used in its proof are applicable to other methods and in particular, to the double-rank updates of § 7.

In this analysis it is assumed that x 0 and B 0 are sufficiently close to x* and F'(x*), respectively, where F satisfies assumptions (2.1) and (2.2). The convergence follows from a very general theorem due to Broyden, [START_REF] Broyden | On the local and superlinear convergence of quasi-Newton methods[END_REF]. This result was developed to extend, to other quasi-Newton methods, the analysis given by [START_REF] Dennis | On the convergence of Broyden 's method for nonlinear systems of equations[END_REF] for Broyden's method.

To describe the algorithms that this result handles, we shall need the concept of an update function. Update functions are only a means to denote the various J acobian approximations which might be used in iterative processes. For example, consider iteration (3.2) where the matrices {Bk} lie in a set DM in L(Rn) and F is defined on a set D. The method for generating {Bk} can then be described by specifying for each (xk, Bk) a nonempty set U(xk, Bk) of possible candidates for Bk+l• Iteration (3.2) then becomes

xk+l = xk-B"k 1 F(xk), (5.1) k = 0, 1, ....
Thus U is a set-valued mapping whose domain, do m U, is a subset of D x DM and whose range is contained in DM. Note that DM denotes the matrix part of the domain of U.

To illustrate these concepts note that for Newton's method U(x, B)= {F'(x)}

where x-x-B-1 F(x ), while for Broyden's method U(x, B)= B where jj is defined by (4.3) with y = F(x) and s = x-x. Also note that the finite difference form of Newton's method defined by (2.4) and (2.5) can be described by

•U(x, B)= {A (x, h): llhll < yllF(x )11}
where y is a fixed nonnegative constant. This description has the advantage of not requiring a precise specification of the choice of h. Another illustration of the ease of description furnished by update functions A is the following. Let U be given and for

(x, B) E do m U, set U(x, B) = A U(x,B)U{B}.
Then U defines the modification to (5.1) in which Bk is not necessarily changed at each iteration. Finally note that in the above examples we can take DM = L(Rn).

Update functions also apply to the minimization algorithms of § § 6 and 7. These algorithms are of the form (5.1), at least in a neighborhood of a local minimizer, where U is an update function for a gradient mapping. In this case DM is usually the set of all symmetric matrices in L(Rn).

The above examples lead us to the following definition. Given a set DM in L (R n) and a mapping F: R n ~ R n defined on a set D, an update function U for F on D is a set-valued mapping from D x DM into DM. Thus U(x, B) is a nonempty subset of DM for each (x, B) in dam U.

The domain of U depends on the particular algorithm. For Newton's method the domain of the update function consists of all (x, B) in D x L (R n) such that B is nonsingular and x = x-B-1 F(x) belongs to D. The domain of U for Broyden's method has the traditional restriction that x =P x. Of course, if x = x, then F(x) = 0 and the algorithm stops. For iteration (5.1) it is convenient to define dam U as the set of all (x, B) in D x DM such that B is nonsingular and x -x -B -l F(x) belongs to D and differs from x.

THEOREM 5.1. LetF: Rn ~ Rn satisfy assumptions (2.1) and (2.2), and let U

•be an update function for F such that for all (x, B) E do m U and Be U(x, B),

(5.2) IlB-F'(x*)ll < [1 + alu(x, x)]IIB-F'(x*)ll + a2u(x, x)
for some constants al and a2 where X= X-B-1 F(x) and

(5.3) u(x, x) = max {llx-x*ll, llx -x*ll}.
Then there are positive constants e and 8 such that if x 0 E D and B 0 E DM satisfy llxo-x*ll<e and IIBo-F'(x*)ll<8, then iteration (5.1) is well-defined and converges linearly to x *.

By definition, iteration (5.1) is locally convergent at x* if there is an e > 0 and a 8 > 0 such that • whenever x 0 E D and Bo E DM satisfy llxo-x *11 < e and IIB 0 -F'(x*)ll < 8, then {xk} is well-defined and converges to x*. Thus Theorem 5.1 guarantees the local and linear convergence of (5.1). Note that local convergence depends on DM but since DM is usually L(Rn) or the set of symmetric matrices, DM is large enough to make Theorem 5.1 meaningful. Also note that there is no restriction on the matrix norm in (5.2) because given any matrix norm 11 • 11 there is a constant y > 0 such that the matrix norm yJI • 11 is consistent with the 1 2 vector norm. Hence,' if (5.2) holds for some matrix norm, .it also holds for a matrix norm consistent with the 1 2 vector norm. Now obviously Theorem 5.1 cannot guarantee better than linear convergence since the stationary iteration U(x, B)= {B} satisfies (5.2) with a 1 = a 2 = 0. The usual procedure is to use this theorem to prove the existence and convergence of {xk} and then apply Theorem 3.1 or Theorem 3.4 to make a more precise statement about the rate of convergence. We illustrate this below.

If F satisfies (2.2), then for Newton's method, U(x, B)= {F'(.i)} satisfies (5.2)

with a 1 = 0, a 2 = K and DM = L(Rn). This proves the local convergence of Newton's method. The quadratic convergence follows from Theorem 3.4. The proof of Theorem 2.1 that we have just given generalizes quite readily to the finite difference Newton's method defined• by xk+l • . xk + sk where sk satisfies (2.6) and (2. 7) with llhll < yJIF(x )JI for some constant y. We now turn to the application of Theorem 5.1 to Broyden's method. THEOREM 5.2. Let F: Rn ~ Rn satisfy assumptions (2.1) and (2.2), and consider Broyden's method as defined by equations (4.4), (4.5) and (4.6). Then Broyden 's method is locally and superlinearly convergent at x *.

Proof. We shall prove that Broyden's method is locally convergent atx* by showing that (5.2) is satisfied with D,., 1 = L(Rn). For this note• that (4.5) implies that

B-F(x*) = [B-F'(x*)][I-ss T J + (y-F(x*,)s)sT.
(s, s) (s, s) .

In particular,

(5.4)

where the matrix norm is either the 1 2 operator norm or the Frobenius norm. Therefore Lemma 3.3 implies that (5.2) is satisfied with a 1 = 0 and a 2 :::: K. This proves the linear convergence of Broyden's method. Like Newton's method, the more precise rate of convergence requires further work. In fact, we shall show that (3.3) holds. For this, note that direct computation using IIAII~= tr (A r A) shows •that (5.5)

I I E[/-~JJJ2 =11£11~-(IIEsll)z (s, s) F llsll . E[I-~] <liE IIF-(2IIEIIF )--l(IIEsll) 2 • (s, s) F llsll
Now define 11k = IIBk-F'(x*)IIF and use the above inequality and Lemma 3.3 in (5.4) to obtain that

17k+l < (1-(217~)- 1 «/J~J17k + KUk,
where uk = max Hlxk+l-x*lf, llxk-x*ll} and

, 11 _II[Bk-F'(x*)]skll 'Pk- llskll •
Since 17k+l < 11k + Kuk and {xk} is linearly convergent, it follows that {17k} is bounded, and if 17 is an upper bound, then

(217 )- 1 «/J~ < 11k -11k+l + KUk• Thus 00 00 (217)- 1 L «fJ~<11o+K L uk, k=O k=O
forcing { «//k} to converge to zero. Hence, (3 .3) holds and this concludes the proof.

There are several interesting points about the proof of Theorem 5 .2. The first is that although (3.3) holds, it does not necessarily follow that {Bk} converges to F'(x*).

Example 5.3. Let F:R 2 -+R 2 be defined by x=(~t,~2)T and F(x)= (~h ~2 +~~)T, _ and consider Broyden's method with x 0 = (0, e)T and

B =(1+5 0) 0 0 1 .
It is easy to verify that the (1, 1) element of Bk is always 1 + 8 and thus {Bk} does not converge to F'(x*).

• The above example points out that one of the disadvantages of Broyden's method is that it is not self -correcting. In particular, Bk depends upon each Bi ~ith j < k and thus it may retain information which is irrelevant or even harmful.

Another point of interest about this proof is that it generalizes to the modification of Broyden's method given by (4.9). Thus [START_REF] More And 1 | On the global convergence of Broyden's method[END_REF] prove that a parameter f)k can be chosen so that if (4.5) is replaced by

B _ B O (yk-Bksk)s[ k+l-k + k ( ) '
sk, sk (5.6a) (5.6b) Bk+l nonsingular IOk -11 < 8 and 0 e (0, 1), then Theorem 5.2 holds. They also noted that if F is affine, then for this modification thee and 8 in Theorem 5.1 are infinite. THEOREM 5.4. Let F:Rn-+Rn be defined by F(x)=Ax-b, where Ae L (R n) is nonsingular and b E R n, and consider Broyden 's method as defined by (4.4), (4.6) and (5.6). Then Broyden's method is globally and superlinearly convergent to A -1 b.

The proof of Theorem 5.2 shows that Broyden's method is linearly convergent even if sk ~ xk+l-xk. Thus, if we decide that sk = xk+l-xk is not a suitable direction, we can use (4.4), (4.5) but replace (4.6) by Yk =F(xk+sk)-F(xk),

where sk is any nonzero vector such that llskll < 11 max {llxk+1x*ll, llxk-x*ll} for some constant 'YI• For example, the choice sk = IIF(xk+1)llei is suitable for eachj. Of course, if sk "=F xk+ 1 -xk, then the computation of Yk involves two evaluations of F and moreover, super linear convergence will be lost unless, for example, the {sk} are uniformly linearly independent. For a discussion of this point, see [START_REF] More And 1 | On the global convergence of Broyden's method[END_REF].

There is a variation of Broyden's method which is of interest in the case that F'(x) is sparse. In this variation equations (4.4), (4.5) and (4.6) are used to define Bk+ 1 from Bk but before it is used, Bk+ 1 is forced to have the same sparsity pattern as F'(x ). That Theorem 5.2 holds follows from the observation that forcing Bk to have the same sparsity pattern as F'(x) decreases IIBk-F'(x*)ll. [START_REF] Schubert | Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian[END_REF] has proposed an algorithm along these lines and Broyden (1971a) has shown that it is locally convergent. A graduate student at Cornell University, E. Marwil, has recently shown that Schubert's algorithm is superlinearly convergent.

We conclude this section by discussing two important variations of Theorem 5.2. The following variation arises because for some algorithms it is more natural to think of them as generating approximations to the inverse of the Jacobian. In this case do m U will be the set of all (x, H) in D x DM such that x = x -HF(x) belongs to D and differs from x.

• THEOREM 5.5. LetF: Rn ~Rn satisfy assumptions (2.1) and (2.2), and let U be an update function for F such that for all (x, H) Edam U and HE U(x, H),

(5. 7)

IIH-F'(x*)-1 11 < [1 + a1u(x, x)JIIH-F'(x*)-1 11 +a2u(x, x)
for some constants a1 and a 2 where x = x-HF(x) and u(x, x) is defined by (5.3).

Then there are e > 0 and 8 > 0 such that if x 0 E D and H 0 E DM satisfy llxo-x *11 < e and IIH 0 -F'(x*)ll<8, then the iteration

(5.8) xk+1 = xk-HkF(xk), Hk+1 E U(xk, Hk),
is well-defined and converges linearly to x*.

k=O 1 • • • ' '
The same remarks that we made after Theorem 5.2 for iteration (5.1) also apply, with suitable modifications, to (5.8). In particular, if (5.8) satisfies the conclusions of Theorem 5.5, then by definition (5.8) is locally and, of course, linearly convergent at x*.

We also note that although Theorems 5.1 and 5.5 as well as their proofs are very similar, the two results are independent of each other. In fact, in § 8 we will discuss two important algorithms and show that the local convergence of one of these algorithms follows from Theorem 5.1 while the other needs Theorem 5.5.

Finally we note that it is possible to generalize both these theorems by showing that the conclusions still hold if instead of (5.1) and (5.8) we consider the sequence

xk+ 1 = xk-A.kBk_ 1 F(xk) =xk-A.kHkF(xk)
provided the sequence {X.k} satisfies IAk -11 <A for some A E (0, 1).

6. Variations of Newton's method for unconstrained minimization. Let f:Rn -+R be a functional defined on an open set D and consider the problem of finding a z in D such that f(z) < f(x) for each x in D. In this case z is a global minimizer off and even if it is known to exist, finding it is usually an intractable task. Generally, one seeks z among the local minimizers off; that is, find x* in D such that for some 8 > 0, (6.1) f(x*)<f(x), llx-x*ll<8, xeD.

In this section we provide some background material and outline some of the methods that are used to solve (6.1). In particular, we stress the differences and analogies between the methods considered here and those in previous sections. This will help to motivate the introduction of quasi-Newton methods for unconstrained minimization.

We only consider the solution of (6.1) if/ is differentiable. In this case (6.1) is usually attacked by trying to find a zero of V f-the gradient of f. The simplest example of a descent method is the method of steepest descent.

In this method we ask for the vector p of unit length (in the 1 2 norm) such that for someA>O,

f(x +Ap) <f(x +Ap), "" "" AE(O,A), p~p, for all IIPII = 1. It is not difficult to show that if Vf(x) ~ 0 then p = -Vf(x )/IIVf(x )11.
Therefore, the method of steepest descent is given by (6.2)

xk+l = xk-Ak Vf(xk), k = 0, 1, • • • ,
where the parameter Ak is needed to guarantee that f(xk+l) <f(xk); that such a parameter exists is a consequence of the following simple result. The proof of this well-known result is quite easy and follows from the fact that

lim [f(x + Ap)-f(x )]/A = (Vf(x ), p ).
A-+0+ Lemma 6.1 guarantees, in particular, that the parameter Ak in the steepest descent method can be chosen so that f(xk+t) < f(xk). This is not sufficient to show that {xk} gets close to a zero of Vf since Ak may be arbitrarily small. In fact, Ak > 0 can be chosen so that llxk+l-xkll < e/2k and therefore {xk} converges to a point x* with llx 0 -x*ll < 2e~ If Vf(x 0 ) :F 0 and Vf is continuous at Xo, then e can be chosen so that Vf(x*) :F 0. At the end of this section we discuss a specific method for choosing Ak which avoids this problem, and note that if Ak is chosen appropriately, then the following result holds.

THEOREM 6.2. Let f: R n ~ R be continuously differentiable and bounded below on R ", and assume that x 0 is such that V f is uniformly continuous on the level set

L(xo) = {x ER" :f(x) <f(xo)}.
Then there is a sequence {Ak} such that the steepest descent sequence (6.2) is well defined, {f(xk)} is decreastng, and {Vf(xk)} converges to zero.

One of the first proofs of 1'heorem 6.2 is that of [START_REF] Goldstein | On steepest descent[END_REF]. Since then this result has been generalized and refined; most of these extensions are discussed by Ortega and Rheinboldt (1970, Chap. 14) and Daniel (1971, Chap. 4 and 6).

If f is continuously differentiable on R" and L (x 0 ) is compact, then the rest of the assumptions of Theorem 6.2 are automatically satisfied and in addition, f•has a global minimizer and {Vf(xk)} converges to zero. However, not even in this case is the steepest descent sequence guaranteed to converge to a local minimizer of f. An example reported by Wolfe (1971) shows that the steepest descent sequence may converge to a saddle point of f. Nevertheless, Theorem 6.2 is quite a strong convergence result. The fact that {Vf(xk)} converges to zero implies that any limit point of {xk} is a zero of Vf and that for any e > 0 the stopping criterion I!Vf(xk)ll < e will be satisfied in a finite number of steps. Unfortunately, steepest descent usually converges linearly.

The slow rate of convergence of steepest descent can be improved by switching to a faster method in a neighborhood of a zero of V f. Since F= Vf is a mapping fromR" toR", any of the methods discussed in § §.2 and 4 could be used.

For example, if f is twice differentiable, then Newton's method is given by (6.3)

xk+l = xk-V 2 f(xk)-1 Vf(xk), k = 0, 1, • • • ,
where V 2 f(x) is the Hessian matrix of f at x; that is, V 2 f(x) is just the J acobian matrix of V f. It should be clear that Theorem 2.1 applies to (6.3) with F= Vf, and that under the appropriate conditions we ob~ain local and quadratic convergence of (6.3) to a zero of V f.

In view of the global convergence of steepest descent and the fast local convergence of Newton's method, it would be desirable to have a method that behaves like Newton's method near a local minimizer but like steepest descent far from a local minimizer. Most descent methods of this type are of the form (6.4)

k=O 1 • • • ' ' '
where Bk is a symmetric, positive definite matrix which resembles V 2 f(xk), at least in a neighborhood of a local minimizer.

As an.example of such a method, [START_REF] Goldfeldt | Maxitnization by quadratic hill-climbing[END_REF] suggested the iteration (6.5)

xk+l = xk-Ak(V 2 f(xk) + f..Lkl)-1 Vf(xk), k =0 1 ... ' '
'

where the scalar f..Lk > 0 is chosen so that V 2 f(xk) + f..Lk/ is positive definite. To justify the claim that (6.5) behaves like Newton's method in a neighborhood of a local minimizer, recall that if f is differentiable in an open set D and twice differentiable at a local minimizer x * off in D then V 2 f(x *) is positive semidefinite. Therefore if xk is in a neighborhood of a local minimizer, then very small values of f..Lk will suffice to make V 2 f(xk) + f..Lk/ positive definite. Also note that if

s(J.L) = -(V 2 /(x) + J.Ll)-1 V[(x ),
then s(O) is the Newton direction while as f..L-+ +oo the angle between s(J.L) and -Vf(x) decreases monotonically to zero. Thus for large f. . L iteration (6.5) behaves like steepest descent.

In order to preserve, in (6.5), the good local properties of Newton's method, one has to choose f..Lk and Ak with some care. It is easy to see from Theorem 3.1 that as long as {J.Lk} and {Ak} converge to zero and unity, respectively, iteration (6.5) is superlinearly convergent. Moreover, Theorem 3.4 shows that if f..Lk < 1711Vf(xk)ll for some constant 17 and Ak = 1 for all sufficiently large k, then (6.5) converges quadratically. Unfortunately, these results do not indicate how to choose {pk} globally, and in fact, this has turned out to be a hard problem.

There is a method of the form (6.4) which avoids the problem of choosing f..Lk in (6.5) and yet resembles (6.5). In this method we try to obtain a Cholesky decomposition of V 2 f(xk); that is, we try to find a nonsingular, lower triangular matrix Lk such that V 2 f(xk) = LkLl. Of course, if V 2 f(xk) is not positive definite then this decomposition does not even exist, but the idea is that as the decomposition proceeds it is possible to add to the diagon~l of V 2 f(xk) and ensure that we obtain the Cholesky decomposition of a well-conditioned, positive definite matrix which differs from V 2 f (xk) in some minimal way. In particular, if V 2 f(xk) is a well-conditioned positive definite matrix then V 2 f(xk) = LkL f. The details are given by Murray (1972, p. 64). A more. sophisticated version of the algorithm is given by Gill and Murray ( 197 4), but for a factorization of the form LkDki f where ik is a unit lower triangular matrix and Dk is a diagonal matrix with positive diagonal elements. Of course, the Cholesky decomposition can be obtained by realizing that Lk = ikDl 12 .

In the remainder of this section we describe some of the selection rules for Ak which are used in methods of the form (6 . . 4) and more generally, in any descent method of the form (6.6) k =0 1 ... ' ' '

where (Vf(xk), Pk) < 0. The development of these particular rules are due to the initial work of [START_REF] Goldstein | On steepest descent[END_REF] and [START_REF] Armijo | Minimization of functions having Lipschitz continuous first partial derivatives[END_REF]. Other selection rules for Ak are discussed by Ortega and Rheinboldt (1970, pp. 249-258) and Jacoby, Kowalik and Pizzo (1972, Chap. 3).

In a descent method Ak should satisfy f(xk+l) <f(xk) but we have already noted that this requirement can be satisfied by arbitrarily small Ak and then {xk} may converge to a point at which V/ is not zero. A more reasonable requirement (see Fig. 1) is that (6.7)

f(xk + Akpk) <f(xk) + aAk(Vf(xk), Pk), a E (0, 1/2).
The reason for choosing a< 1/2 is that with this choice, Theorem 6.4 shows that if {xk} converges to a local minimizer off at which V 2 f(x*) is positive definite, and {pk} converges to the Newton step -V 2 f(xk)-1 Vf(xk) in both length and direction, then Ak = 1 will satisfy ( 6. 7) for all sufficiently large k.

If a is close to zero then ( 6. 7) is not a very stringent requirement, and a is generally chosen in this way with [10-4

, 10-1 ] being the usual range. However, it is not a good idea to fix Ak by just requiring that it satisfy ( 6. 7) since, for instance, Ak = 0 is then admissible. In general, unreasonably small Ak are. ruled out by the numerical search procedure but theoretically we need to impose another requirement. One such requirement is that (6.8)

{3 E (a, 1).

The Ak which satisfy (6.7) and (6.8) in Fig. 1lie in the intervals J 1 and J 2 • At the left endpoint of each of these intervals equality holds in ( 6.8) while at the right end point equality holds in (6. 7). To show that there are Ak which satisfy (6. 7) and (6.8) assume that/ is defined on R" andf(xk + Apk) is bounded below for A> 0. It is then geometrically obvious that there are Ak > 0 for which equality holds in ( 6. 7). If ik is the first such Ak then the mean value theorem implies that

A A A A Ak(Vf(xk + OkAkPk), Pk) = f(xk +Akpk)-f(xk) = aAk(Vf(xk), Pk
) for some (}k E (0, 1), and since a< {3, (Vf(xk + OkAkpk), Pk) > {3(Vf(xk), Pk>• Thus Ak = okf.k satisfies (6.7) and (6.8). However, we emphasize that a search routine for A should not necessarily try to satisfy (6. 7) and (6.8). In fact, the intervals which satisfy these two conditions can be quite small (as for example, interval J 2 in Fig. 1) and therefore difficult to find. Moreover, to test whether or not (6.8) is satisfied requires the evaluation of Vf. Instead, the search routine 1 should produce a Ak which satisfies (6. 7) and is not too small; (6.8) just guarantees that Ak is not too small. THEOREM 6.3. Let f:R" ~R satisfy the assumptions of Theorem 6.2, and consider an iteration of the form (6.6) where the search directions Pk satisfy (Vf(xk), Pk) < 0. Then there is a sequence {Ak} which satisfies (6.7) and (6.8) and (6.9) k~Too ( Vf(xk), ~~: 1 1 ) = 0. Theorem 6.3 is due to [START_REF] Wolfe | Convergence conditions for ascent methods[END_REF] who also pointed out that for many iterations (6.9) implies that {IIVf(xk)ll} converges to zero; it is only necessary to verify that the angle between Pk and Vf(xk) stays bounded away from ninety degrees. For example, if Pk = -Vf(xk), or more generally, if Pk = -B; 1 Vf(xk) where {Bk} is a sequence of symmetric, positive definite matrices with uniformly bounded condition numbers, then

f(xk) + aA (Vf(xk ), Pk) FIG.
-( Vf(xk), 1 ~:1 1 ) > P-IIVf(xk)ll,
where f..L -I is an upper bound on the condition number of Bk. Hence, (6.9) ensures that {IIVf(xk)ll} converges to zero.

To conclude this section we assume that the vectors Pk converge in direction and length to the Newton step and show that Ak = 1 will eventually satisfy (6.7) and (6.8) .. • set D and consider iteration (6.6), where (Vf(xk), Pk) < 0 and Ak is chosen to satisfy (6.7) and (6.8). If {xk} converges to a point x* in D at which V 2 f(x*) is positive definite and

(6.10) lim IIVf(xk) + V 2 f(xdpkll = 0 k-+00 IIPkll '
then there is an index k 0 > 0 such that Ak = 1 is admissible for k > k 0 • Moreover, Vf(x*) = 0 and {xk} converges superlinearly to x*. Proof. As a first step note that a consequence of (6.10) is that there is an TJ > 0 such that (6.11) for all k large enough. This follows since

-(Vf(xk), Pk) = (V 2 f(xk)pk, Pk)-(V 2 f(xk)Pk + Vf(xk), Pk),
so that (6.11) follows from (6.10) and the fact that V 2 f(x) is positive definite for all

x close enough to x *.

To show that (6.7) is eventually satisfied by Ak = 1 use the mean value theorem to obtain uk in the line segment from xk to xk + Pk such that Now (6.9) and (6.11) show that {pk} converges to zero; therefore (6.10) implies that for all k sufficiently large (6.12)

f(xk + Pk)-f(xk) -!(Vf(xk), Pk) < (!-a)TJIIPkll 2 ,
and thus (6.11) and (6.12) show that (6. 7) is satisfied by Ak = 1. To prove that (6.8) is also eventually satisfied by Ak -1 we agairi use the mean value theorem to show that the're is a vk such that

(Vf(xk + Pk}, Pk) = (Vf(xk) + V 2 f(vk)pk, Pk).
Thus (6.10) and (6.11) imply that for all k large enough,

(Vf(xk + Pk), Pk) < TJ~IIPkll 2 < -~(Vf(xk), Pk>•
Hence Ak = 1 satisfies (6.8) and this concludes the first part of the proof. For the remainder, note that since {pk} converges to zero, (6.10) shows that Vf(x*) = 0. The superlinear convergence of {xk} follows from Theorein 3.1.

7. Quasi-Newton methods for unconstrained minimization. The derivation of updates suitable for unconstrained optimization proceeds along lines similar to the development in § 4. For nonlinear equations only Broyden's method appears to be satisfactory, but here some notable differences, motivated by the discussion in § 6, will lead us to single out four reasonable update formulas.

One important consideration is the desire to have the quasi-Newton step -Bk 1 Vf(xk) define a descent direction. In fact, the most widespread use of these methods is in conjunction with iterations of the form (6.4). In this context the update formula should generate a sequence of symmetric positive definite matrices {Bk} such that Bk resembles V 2 f(xk), at least when xk is near a local minimizer of f. We will examine these updates in § 7.2.

In § 7.1 we examine quasi-Newton methods which can be used to approximate the Hessian in such a way that the direction Pk =-Bk 1 Vf(xk) resembles the true Newton direction. In this case Pk may not be a descent direction, so that the direction is usually further modified. For example, it may be modified by adding to Bk a suitable multiple of the identity matrix as in iteration (6.5).

It is also possible to look at the updates of § § 7.1 and 7.2 from an "inverse" point of view in which we try to generate approximations to the inverse of ,the Hessian. It turns out that this gives rise to at least one other important update. These inverse updates and their relationship to the updates of § § 7.1 and 7.2 are examined in § 7.3.

Throughout this section we assume f: Rn ~R to be twice differentiable in the open convex set D, and that we have an approximation B to V 2 f(x) for some X in D, and a directions such that x + s belongs to D. We now want to obtain a good approximation B to V 2 /(i) where i = x + s.

7.1 Symmetry and the quasi-Newton equation .. In view of the above discussion, and since the Hessian is symmetric, we want the update formula to have the property of hereditary symmetry; that is, (7.1)

B symmetric implies B symmetric.
Moreover, because of our desire to approximate the Hessian, arguments similar to those in § 4 lead us to require that B satisfy (7.2)

Bs = y =Vf(x)-Vf(x).
Note that (7.2) is just the quasi-Newton equation (4.1) for F =V f.

It is natural to ask whether it is possible to satisfy (7 .1) and (7 .2) with a rank one update formula. To see whether this can be done, first note that the general single-rank update that satisfies the quasi-Newton equation (7.2) is given by

(7.3)
.ii=B+(y-Bs)cT (c, s)

forcE Rn with (c, s) ~ 0. If B is to satisfy (7.1), then it is easy to show that ( 7 .4) .ii=B+(y-Bs)(y-Bsf (y-Bs, ~)

is the only solution provided (y-Bs, s) ~ 0. If y = Bs, then B = B is the solution while if y ~ Bs but (y -Bs, s) = 0, then there is no solution.

This update is known as the symmetric single-rank formula. It seems to have been first published by Davidon (1959, Appendix), although Broyden (1967) and others discovered it independently later on. If H = B-1 and ii = B-1 both exist and B is symmetric then the inverse relation holds. The following theorem, essentially due to [START_REF] Fiacco | Nonlinear Programming: Sequential Unconstrained Minimization Techniques[END_REF], shows that this method has very interesting behavior when it is applied to a quadratic functional.

THEOREM 7 .1. Let A E L (R n) be a nons in gular symmetric matrix, and set Yk =Ask for 0 < k <m where {s 0 , • • • , sm} spans Rn. Let H 0 be symmetric and for k = 0, • • • , m generate the matrices

(7.6) "C..J -H• (sk-Hkyk)(sk-Hkyk)r Llk+1- k + < ) ' sk -Hkyb Yk
where it is assumed that

(7.7) Then Hm+1 =A -1 .

The proof of this result consists of verifying, by induction, that

Hkyi=sb O<j<k, fork=1,•••,m+1.

Once this is done, and the result follows from the assumption that {s 0 , • • • , sm} spans Rn.

0 <"< =]=m,
The gist of Theorem 7 .1lies in the fact that if we have an iteration of the form xk+1 = xk +sk and• (7.7) holds, then the use of (7.6) allows one to minimize a quadratic functional in a finite number of steps. Unfortunately, there is no guarantee that (7.7) will hold although it is not difficult to show [START_REF] Goldfarb | Sufficientconditionsfortheconvergenceofa variable metric method[END_REF]) that if A -l _ H 0 is semidefinite {positive or negative) and if {Hk} is generated by (7 .6) when (7. 7) holds, and Hk+l = Hk otherwise, then Hm+l =A -1

•

The fact that the vectors s -Hy and y can be orthogonal forces a certain amount of numerical instability on the symmetric single-rank method. In particular, update (7 .4) does not satisfy (5.2) or (5. 7). These. difficultie~ have led to several improvements in the basic algorithm, and in its modified form the method has been quite successful. See, for example, the numerical results of Dixon (1972b).

The numerical difficulties with the symmetric single-rank method have led to a whole class of updates which satisfy (7 .1) and (7 .2). The technique used to derive this class is due to Powell (1970d) who used it to obtain a double-rank version of Broyden's method~ Dennis (1972) then showed that Powell's technique could be used to derive most of the well-known quasi-Newton updates.

In this derivation we begin with a symmetric BE L(Rn) and consider

C _ B (y '7 Bs )c r 1 - + ---- (c, s)
as a possible candidate for B. In general C 1 is not symmetric, so consider

c2 =(Cl+ cf)/2.
However, since C 2 does not satisfy the quasi-Newton equation, we repeat the process. In this way a sequence { Ck} is generated by

(y-C2kS)CT c2k+l = c2k + < > , c,s (7.8) C2k+2 = (C2k+l + Cik+l)/2,
where C 0 =B. It turns out that {Ck} has a limit B given by ( 7 . 9

) jj = B + (y-Bs)c T +c(y-Bs)T (y-Bs, s) cc T (c,s) (c,s) 2
and it is clear that this update satisfies (7.1) and (7.2).

k=O 1 • • • ' ' ' LEMMA 7 .2. Let B EL (R n
) be symmetric and let c, s, and y be in R n with (c, s) #-0. If the sequence { Ck} is defined by (7.8) with C 0 = B, then { Ck} converges to B as defined by (7.9).

Proof. We only need to prove that the sequence {C 2 k} converges.

If Gk = C 2 k, then (7.8) shows that 1 T T G _ G . wkc + cw k k+l-k+2 (c,s) (7.10)
where wk = y-Gks. In particular,

P=~[I-(~~:J

It is clear that P has one zero eigenvalue and all other eigenvalues equal to !, so 7.11) also imply that the limit of { Gk} is B as defined by (7.9).

Once c is chosen, (7.9) is a rank two update which satisfies (7.1) and (7.2).

Before looking at special cases of (7 .9), we show that this update solves a problem similar to the one specified in Theorem 4.1.

THEOREM 7.3. Let B eL(Rn) be symmetric, and letc, s, and y be in Rn with (c, s) > 0. Assume that ME L(Rn) is any nonsingular, symmetric matrix such that Me= M-1 s. Then B as defined by (7 .9) is the unique solution to the problem (7.12)

A A A min {IlB-BIIM,F: B symmetric, Bs = y}
where ll•IIMF is defined by (1.3).

Proof. 'Let B be any symmetric matrix such that y = Bs, and pre-and post-multiply (7.9) by

M If Me= M-1 s = z it follo_ws that -Ezzr +zzrE (Ez, z) r E= - 2 zz (z,z) (z,z) '
where E = M(B-B)M and E = M(B-B)M. Now it is clear that IIEzll=IIEzll, and that if vis orthogonal to z then IIEvll < IIEvll. Thus IIEIIF < IIEIIF as desired. To show uniqueness just note that the mapping/:

L(Rn) ~~defined qy [(A)= IlB-AIIM,F
is strictly convex on the convex set of symmetric B such that Bs = y.

Theorem 7.3 was inspired and is closely related to the results of [START_REF] Greenstadt | Variations on variable-metric methods[END_REF] and Goldfarb (1970) and it shows that the updates ob~~~nerl by [START_REF] Greenstadt | Variations on variable-metric methods[END_REF] could also have been obtained by the symmetrization argument of Lemma 7 .2. Also note that a minor modification of the proof of Theor~m 7.3 shows that the solution to the problem min{IIB-BIIM,F:Bs = y} is given by (7.3). Powell (1970d) used the argument of Lemma 7.2 to obtain formula (7.9) in the case c = s. Since in this case the underlying single-rank method is Broyden's, the double-rank formula is often called the These considerations lead us to believe that BPsB is a good approximation to the Hessian. To further justify this claim note that (7.13) implies that for any symmetric A and Bin L(Rn),

Bpss-A =PT(B-A)P+[(y-As)sr +s(y-As)TP]/(s, s)

with P=I -ssr/(s, s). Therefore (1.2) shows that

- , IIY -Asll IIBPss-A IIF <liB-A IIF + 2 llsll • If A =.'\1 2 f(x) and V 2 f is Lipschitz continuous (with constant K) in the open convex
set D, then Lemma 3.3 implies that whenever x and x lie in D. This relationship shows that the absolute error of Bk as an approximation to V 2 f(xk) grows linearly with IJskJI, and that this holds independent of the position of xin D.

Positive definiteness.

We now turn to updates which in addition to satisfying (7.1) and (7.2) generate positive definite matrices. For this, let us investigate the property of hereditary positive definiteness; that is, (7.14) B positive definite implies B positive definite.

Note that if an update satisfies (7.2) and (7.14), then y =Bs and therefore (y, s) > 0 whenever B is positive definite. This imposes a restriction on the angle between y and s, which although not severe, must be kept in mind. In fact, if (Vf(x), s)<O then (y, s)>O is equivalent to the existence of a {3 e (0, 1) such that (Vf(x), s) > {3 ('\lf(x), s). For this reason the requirement (6.8) is very natural for quasi-Newton methods.

To investigate the property of hereditary positive definiteness, we need a result from the perturbation theory of symmetric matrices, e.g. Wilkinson (1965, pp. 95-98):

LEMMA 7 .4. Let A EL (R n) be symmetric with eigenvalues and let A* = A + uuu T for some u E R n. If u > 0 then A* has eigenvalues A r such that while if u < 0 then the eigenvalues of A* can be arranged so that

A f <A1 <A!<••• <A! <An.
Lemma 7.4 and the next two results will lead us to a choice of c in (7.9) which naturally satisfies (7 .14 ). This development is a bit long, but it gives a lot of insight.

THEOREM 7.5. Let B EL (R ") be symmetric and positive definite, and let c, s, and y be in R" with (c, s) :;C 0. Then B as defined by (7.9) is positive definite if and only if det B > 0.

Proof. If B is positive definite, then clearly det B > 0. For the converse first riote that we can write

B = B + vw T + wv T'
where w = c and

y~Bs 1 (y-Bs,s) • v= c (c,s) 2 (c,s) 2 • Therefore, - 1 T T B=B+2[(v+w)(v+w) -(v-w)(v-w) ],
and thus we have written B as B plus the sum of two symmetric rank one matrices.

If B is positive definite then Lemma 7.4 implies that B can have at most Qne nonpositive eigenvalue. Therefore, if det B > 0, then all the eigenvalues must be positive and thus B is positive definite:

In view of Theorem 7 .5, conditions (7.1) and (7 r14) for the updates defined by (7 .9) require that if B is symmetric and positive definite then det B > 0. To find out what choices of c satisfy this requirement we need an expression for det B.

LEMMA 7.6. Let U; ER" fori= 1, 2, 3, 4. Then

det(I+u1uf+u3uJ)=(1+(uh u2))(1+(u3, u4))-(uh u4)(u2, u3).
Proof. A proof of this result can be found in [START_REF] Pearson | Variable metric methods of minimization[END_REF]; the following is an alternative argument.

Assume for the moment that (uh u 2 ) :F -1. Then/+ u 1 ufis nonsingular and

I+u1uf+u3uJ , (I+u1ui)(I+(I+u1uD-1 u3uJ).
The result now follows by using Lemmas 4.2 and 4.4. Since it holds for (uh u 2 ) :F -1, a continuity argument shows that it holds in general. Now apply Lemma 7.6 to (7.9). After some algebra it follows that where It is now apparent that the most natural way to satisfy (7 .17) is to choose w to be a multiple of v so that (7.17) only requires that (y, s) be positive. In this case c is a multiple of y and then (7.9) reduces to an update introduced by Davidon (1959), and later clarified and improved by [START_REF] Fletcher | A rapidly convergent descent method for minimization[END_REF] ) arithmetic operations per iteration would be to generate B"k 1 = Hk via equation (7.19). Another approach is based on the fact that if A is positive definite and A = LL r for some lower triangular matrix, then the corresponding decomposition of

H = B-
A =A+azzT cart be obtained in O(n 2
) operations provided A is positive definite. Methods for doing this are surveyed by Gill, Golub, Murray and Saunders (1974). That these techniques apply to (7.18) follows from the proof of Theorem 7.5 which shows that (7.18) can be written as

BnFP=B+!z1z1r -!z2zi,

where z 1 and z 2 are linear combinations of Bs and y. If the D FP update is used in a method of the form (6.4) then an advantage of the latter approach is that (7.18) requires no matrix-vector products.

Finally we remark that the matrices generated by the DFP formula are good approximations to the Hessian. In fact in § 8 (see (8.16)) we shall derive a general result which can be interpreted as follows: If llsll is small then the relative error (as measured in § 1) of BnFP as an approximation to a positive definite V 2 f(x) cannot be much larger than the corresponding error in B. Moreover the possible increase in this error is governed by a relative measure of how much f differs from a quadratic on D.

7.3. Inverse updates. So far we have been thinking in terms of obtaining an approximation to the Hessian, but it is perhaps equally reasonable to try to obtain an approximation to the inverse of the Hessian. In particular, it should be clear that it is possible to use the techniques that we have been discussing to develop updating formulas for the inverse. These updates are sometimes called inverse updates while the updates developed in § § 7.1 and 7.2 could be called direct updates.

To develop inverse updates, assume that we have an approximation H to V 2 f(x )-1 and try to obtain a good approximation ii to V 2 f(x)-1 where x = x + s.

For inverse updates the analogue of the quasi-Newton equation is (7.21) Hy=s,

and therefore, the general single rank formula which satisfies (7.21) is

(7.22) H=H + (s-Hy)dT (d,y)
for any dE R n with (d, y)-:/; 0.

It is important to realize the relationship between (7 .3) and (7 .22). If Lemma 4.2 is applied to (7.3) we obtain

( B -1 ) TB-1 .B-l=B-1+ s- y c . (c, B-1 y)
Therefore, (7.3) and (7.22) represent the same update if c =Brd.

Just as in § 7.1, it is possible to study the property of hereditary symmetry, which for inverse updates is (7 .23)

H symmetric implies ii symmetric.
It is easy to verify that the only single rank formula which satisfies the quasi-Newton equation (7.21) and the hereditary symmetric property (7.23) is again given by the symmetric single rank formula (7.5).

To obtain other inverse updates which satisfy (7.21) and (7.23) we carry ou~ the symmetrization argument of Lemma 7.2 on (7.22) to obtain (7.24) fi=H + (s-Hy)dT +d(s -Hy)T _(s-Hy, y) ddT

(d, y) (d, y ) 2 •
This result is due to Dennis (1972) who also noted that if Band ii are defined by (7.9) and (7.24), respectively, then in general Bii~I even if B is symmetric, BH = I and c = Bd. At first this is surprising because under these assumptions (7.3) and (7.22) represent the same update; however, in the argument of Lemma 7.3 we used the symmetrization operation (A +A T)/2, and in general, the symmetrization and inversion operations do not commute.

It is also possible to prove an analogue of Theorem 7.3 for updates (7.24). In particular, if His symmetric, then the unique solution to the problem min {IlB-HIIF : H symmetric, Hy = s} is given by (7.24) with d = y. This update was proposed by [START_REF] Greenstadt | Variations on variable-metric methods[END_REF], but it has not received any more attention in the literature since it does not perform as well as the PSB update (7.13). It is interesting that the underlying single rank method was obtained by [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF], but that this update has also been neglected because of its poor numerical performance.

The most important instance of (7.24) was given by Broyden (1969Broyden ( ), (1970)), and independently by [START_REF] Fletcher | A new approach to variable metric algorithms[END_REF], Goldfarb (1970) and [START_REF] Shanno | Conditioning of quasi-Newton methods for function minimization[END_REF]. This update can be obtained by asking for the update of the general form (7 .24) which "naturally" has the property of hereditary positive definiteness for inverse updates; that is, H positive definite implies ii positive definite. It sh<?uld be clear from the development in Section 7.2 that this update corresponds to choosing d = s in (7 .24) and therefore the Broyden-Fletcher-Goldfarb-Shanno or BFGS update can be written in the form

(7.25) - ( -sy T )H( ys T) SS T HaFas= 1 --- 1 ---+-- (y,s) (y,s) (y,s)
At this point we note that the BFGS update is sometimes called the complementary DFP update and th.at the underlying single rank method (7.22) in which d = s was proposed by G. McCormick (see [START_REF] Pearson | Variable metric methods of minimization[END_REF]).

There is growing . evidence that the BFGS is the best current update formula •for use in unconstrained minimization. For example, see the results of Dixon (1972b). For this reason, and for future reference we state the following analogue of Theorem 7. 7. THEOREM 7. 8. Let HE L (R ") be a nonsingular symmetric matrix, and define HsFas E L(R") by (7.25) for any vectors y ands inR" with (y, s) ~ 0. ThenfisFas is nonsingularifand only if (s, Bs) ~ 0, where B =11 1

. IfHsFas is nonsingular, then

- --1
BsFas = H BFGs can be expressed as

- yyT BssTB BsFas=B+-( )-( B). y, s s, s
Furthermore, ifH is positive definite, then HsFas is positive definite if and only if (y, s)>O.

The remark at the end of § 7.2 about the behavior of BnFP as a relative approximation to the Hessian holds for HsFas as a relative approximation to the inverse Hessian. (See (8.18)). Also note that there is a close relationship between the matrices generated by the DPP and BFGS updates for it is easy to verify that if His positive definite, then (7.26)

- - T HsFas=HnFP+vv ,
where v is the vector (7.27)

V =(y,Hy)l/2L/y)-(y~yJ

while if B is positive definite, then (7.28) - - T Bnpp=BsFas+ww ,
where w is the vector

(7.29) 1;2[ Y Bs J w = (s, Bs) (s, y) -(s, Bs) .
By virtue of Lemma 7 .4, relations (7 .26) and (7 .28) imply that the eigenvalues of HsFas(BsFas) are larger (smaller) than t~e eigenvalues of H 0 pp(B 0 pp). However, there does not seem to be any relationship between the condition number of HsFas and the condition number of HnFP• From a purely algebraic point of view, the developments of § § 7.1 and 7.2 are identical to those in § 7.3. This follows from the fact that (7.22) and (7.24) can be obtained from (7.3) and (7.9), respectively, by interchanging y and s, replacingB's by H's and c by d. In particular Theorems 7.7 and 7.8 are identical since both of them follow from a more general res-ult which relates A and A, where

T T T A =(I-uv )A(I-vu )+ uu ( U, V) ( U, V) ( U, V)
and (u, v) -:1:-0. In spite of these remarks we have opted for a separate development for expository purposes. Nevertheless, it is useful to note that the DPP and BFGS updates are related by the transformation (7.30)

In fact, [START_REF] Fletcher | A new approach to variable metric algorithms[END_REF] derivation of the BFGS update was through this transformation.

Finally, we note that if a direct and inverse update are related by the transformation (7.30) then these updates are sometimes called "dual" or "complementary" updates, and this is the reason why the BFGS is also called the complementary DPP formula. 

xk+l = xk-A.kHk Vf(xk), k = 0, 1, • • • ,
where the matrices Hk are generated by one of the methods of § 7 and A.k is suitably chosen. In this section ~e examine some of the convergence and rate of convergence results that are available for (8.1). In a .lot of theoretical work sufficient conditions are assumed so that A.k can be chosen by an exact line search. This usually means that either (8.2)

where Pk = -Hk Vf(xk), or that A.k is the first local minimizer of f(xk + A.pk) for A. > 0. Either choice is unrealistic as usually it is not possible to find A.k to much accuracy in a reasonable amount of time unless, for example, f is a quadratic, positive definite functional. In this case

(8.3) f(x) =!(x, Ax)-(x, b)+c
for some symmetric positive definite A E L(R"), and the A.k which satisfies (8.2) is given by (8.4)

The earlier convergence results for quasi-Newton methods were given for f defined by (8.3) and A.k chosen by (8.4). It was shown that if {xk} is generated by (8.1) and Hk correspond to, say the DFP or BFGS updates, then x 1 =A -lb for some 0 <I< n, and if I= n then Hn =A -1 . This type of finite termination property has sometimes been called quadratic termination. The relevance of the quadratic termination property to the general nonlinear problem was originally based on the assumption that if a method terminates in a finite number of steps for a quadratic then this implies superlinear convergence for nonlinear functionals. There has never been any theoretical or numerical support for this belief. (See, however, the discussion following Theorem 8.10). Nevertheless, quadratic termination seems to be a desirable property although as Broyden's method shows, it is not indispensable for superlinear convergence.

In order to describe the quadratic termination properties for symmetric rank two quasi-Newton methods, consider the following class of updates:

(8.5)
where 4> is a parameter which may depend on s, y, Hand the iteration counter. This class of updates was introduced by Broyden (1967) although not in the form (8.5). It was [START_REF] Fletcher | A new approach to variable metric algorithms[END_REF] who showed that Broyden's class, which had been given in terms of a parameter {3, could be written in the form (8.5) and that the relationship between 4> and {3 is that 4> = {3(y, s). Fletcher also noted that if His positive definite, then equation (7 .26) implies that update (8.5) can be written as

- - T Hf!> =HnFP+lfJvv ,
where the vector vis defined by (7.27). It is immediate from this expression that if 4> > 0, then fif!> shares the property of hereditary positive definiteness with HnFP•

Another interesting consequence of this expression is that

- - T - - Bc/J = BsFas + <l>ww = (1-<I>)BsFas + <I>BnFP
where w is defined by (7.29) and <P = <P( 4>) = .

( 

(si, Asi) = 0, i > j,
and that also ~Yi =sb i >j.

This was the argument used by Broyden (1967); it shows that xk+ 1 minimizes fin the hyperplane xo+L where Lis the linear span of s 0 , • • • , sk. Broyden (1971b) and Powell (1973Powell ( ), (1974) ) have extended and refined Theorem 8.1; in particular, Powell (1974) shows that A 112 HkA 112 has at least k unit eigenvalues. However, in all these results finite termination depends on choosing Ak by (8.4). Also note that if tf>k = (yk> sk) (sk -Hkyk, Yk )' then (8.6a) reduces to the symmetric rank one formula (7.6) but Theorems 7.1 and 8.1 are not comparable. Powell (1971Powell ( ), (1972Powell ( ), (1975) ) has proved two analogues of Theorem 8.1 for nonlinear functionals. In the following result recall that L(x 0 ) was defined in Theorem 6.2. THEOREM 8.2. Let f:R" ~R be twice differentiable and convex on R" and assume that for a given x 0 ER" the level set L(x 0 ) is bounded. Suppose that {xk} is generated by (8.1) and that Ak, Hk are chosen in one of the following two ways:

(a) An exact line search and the DPP update.

(b) The line search of Theorem 6.3 and the BFGS update. Then for any symmetric, positive definite H 0 E L(R") and e >0 there is an index k such that IIVf(xk)ll<e.

Part (a) of Theorem 8.2 was proved by Powell (1971Powell ( ), (1972)). Part (b) is of course, much more interesting, and was only proved recently by Powell (1976). Moreover, the proof of this second part is radically different from any that we have seen before and interestingly enough, does not seem to generalize to the DFP method. That part (a) of Theorem 8.2 extends to other methods in the Broyden class (8.5) follows from the following remarkable result of Dixon (1972a).

THEOREM 8. 3. Let f: R" ~ R be differentiable on R ", and assume that for a given Xo ERn the level set L (xo) is bounded. Given a symmetric positive definite H 0 EL(R") suppose that {xk} is generated by (8.1) where Ak,Hk are chosen according to (8.2) and (8.6), respectively. If l/Jk > 0, then the sequence {xk} is independent of {l/>k}.

Dixon's result is actually more general than Theorem 8.3 since it allows negative values of 4>k• However, the above formulation suffices for our purposes, and moreover, the more general formulation requires additional assumptions on {Hk}.

All the results presented so far on the convergence of rank-two quasi-Newton methods choose l/Jk E [0, oo) since, if the line search guarantees that (sk, yk) is positive, then each Hk is positive definite. Of course, if[ is strictly convex then (sk, yk) is always positive regardless of the line search. The following result of Fletcher (1970) shows that for quadratic functionals the updates with 4>k E [0, 1] have a very desirable property which does not depend on any line searches.

THEOREM 8.4. Assume that f:R" ~ R is the positive definite quadratic functional (8.3) and that H 0 E L(Rn) is symmetric and positive definite. Let {sk} be any sequence of nonzero vectors, let {Hk} be generated by (8.6a) with Yk =Ask, and let

.A ~k\ i = 1, • • • , n, be the eigenvalues of A 112 HkA 112 in increasing order of mag- nitude. If l/Jk E [0, 1] then min {A ~k>, 1} <A ~k+l) < max {.A ~k>, 1}.
Since [START_REF] Fletcher | A new approach to variable metric algorithms[END_REF] showed that Theorem 8.4 fails if l/Jk e [0, 1], this result indicates that the most reasonable updates in Broydep.'s class (8.5) correspond to 4> E [0, 1]. In fact, numerical results of Dixon (1972b), andGill, Murray and[START_REF] Gill | The implementation of two revised quasi-Newton algorithms for unconstrained optimization[END_REF] suggest that 4> = 1 is to be preferred over 4> = 0. Of course, Theorem 8.4 does not say anything about the PSB update since it is not of the form (8.5).

We have surveyed the global convergence results for rank-two quasi-Newton methods; since the analysis of the asymptotic rate of convergence is of major importance, \Ve now investigate this topic as well as the local convergence properties of the BFGS and DFP methods.

For the local convergence of these updates we show how to choose a norm so that (5.2) •and (5.7) hold, respectively. First consider the DFP method and recall that BnFP and Bare related by (7 .18). It follows that for any symmetric_A and Bin where Pis again defined by (8.8). In order to show that (8.7) satisfies (5.2), and (8.9) satisfies (5.7), we need the following result of Broyden (1970). LEMMA 8.5.

If Q E L(Rn) is defined by (8.10) T Q=I-uv (u, v)
with u, v in Rn and (u, v) ":/= 0, th~n llOib =!lull llvll. l(u, v >I

Proof. The most straightforward way to verify this result is to recall that IIOil~ is the largest eigenvalue of Qr Q and to calculate the eigenvalues of Q r Q with Lemma 7.6.

Lemma 8.5 shows that IIPib is the secant of the angle between y and s, and since y and s are not in general parallel, IIPib may be arbitrarily large. Therefore the / 2 norm does not seem to be suitable for estimating (8.7) or (8.9). However, near x* we do have that A -112 y and A 112 s are nearly parallel if A= V 2 f(x*) and this suggests the use of a weighted norm. For the DFP method an appropriate norm is defined by 

= V 2 f(x) is positive
definite and llsll is small, then the relative error of fisFGs as an approximation to V 2 f(x )-1 is not too much larger than the relative error of Has an approximation to V 2 f(x)-1

• Furthermore, the possible growth in this relative error is determined by how much f differs on the points x and .i from the quadratic whose Hessian is A.

This difference is measured in two ways but both have to do with how well A -112 y is approximated by A 112 s; there is an additive term which is the relative error in this approximation and a multiplicative term which is the square. of the secant of the angle between these two vectors. Of. course, we easily see that the additive term does not exceed the product of the square root of the condition number of A and the relative error in the approximation of y by As. An analogous discussion holds for (8.16). Another consequence of (8.16) and (8.18) is the local convergence of the DPP and BFGS methods as given by Broyden, [START_REF] Broyden | On the local and superlinear convergence of quasi-Newton methods[END_REF]. Proof. To prove that these methods are locally and linearly convergent at x*, we only need to show that (5.2) and (5.7) are satisfied when DM is the set of all symmetric matrices and P=Vf For the DPP method, first note that (8.13) with A= V 2 f(x*) and Lemmas 3.2 and 3.3 imply that

2 < [ IIY-V 2 f(x*)siiJ 2 < _ 2 1-W = 1J- llsll = [~J,KlT(X, X)] ,
where u(x, .i) is defined by (4.3) and J.L = IIV 2 f(x*)-1 ll. Thus if x and .i lie in a neighborhood N 1 of x* such that u(x, .i) < (2J.LK )-1 , then w 2 > !. In particular, 11-w 2 (8.20)

2 = 1 + 2 < 1 + KJ.LU(X, X).
w w Therefore (8.16) with A= V 2 f(x*) and Lemma 3.2 imply that (5.2) r-.""lds with a1 = KJ.L and az = 4KJ.L and where 11 • 11 is the matrix norm defined by (8.11). This proves the local convergence of the DFP method. For the BFGS first let e be a positive lower bound for the eigenvalues of V 2 f(x) in a neighborhood N 2 of x * so that IIYII>ellsll provided x and .i lie in N 2 • If N 2 cNb then (8.18) with A= V 2 f(x*), (8.20) and Lemma 3.3 imply that (5.7) holds with a 1 = KJ.L and a 2 = 4(J.Lp ) 112 K/ e. Here p = IIV 2 f(x*)ll and 11 • 11 is the norm defined by (8.17).

• As noted at the end of § 5, Theorem 8.6 still holds if instead of choosing Ak = 1, it is chosen by a line search which guarantees that IIAk -11 <A for some

A A E (0, 1). However, [START_REF] Stoer | On the convergence rate of imperfect minimization algorithms in Broyden's {3-class[END_REF] has recently been able to prove a much more powerful result. THEOREM 8. 7. Let f: R n ~ R satisfy the assumptions of Theorem 8.6 and consider iteration (8.1) with Hk generated by (8.6) with 4>k E [0, 1] and where 0 < J.Lk < ji < 1 and Pk = -Hk Vf(xk). Then for -any T >0 there is an e > 0 such that if the condition number of H 0 does not exceed T and llxo-x*ll < e, then {xk} is well-defined and converges linearly to x*.

The line search of Theorem 8.7 is not very practical, but the proof of Theorem 8. 7 clearly shows that the purpose of this particular search is to enforce a sufficient decrease on f and to guarantee that the iterates remain in a compact convex set D 0 c D with x *in its interior and on which f is uniformly convex. Thus, if f is uniformly convex on R n then any reasonable line search could be used in Theorem 8.7.

Theorem 8.7 represents a type of result that is somewhat different from a local result like Theorem 8.6 and a global result like Theorem 8.2. Even if we restrict ourselves to the DFP and BFGS updates, Theorems 8.6 and 8.7 are not comparable because Ak = 1 will not be an admissible value for the line search of Theorem 8.7 unless it can be established, a priori, that Pk is sufficiently close to the Newton step in both length and direction. On the other hand, Theorems 8.2 and 8. 7 are comparable for the DFP and BFGS updates if we assume that f satisfies the hypothesis of Theorem 8.6 with D = Rn and in addition, assume that f is convex on Rn. In this case, given any symmetric positive definite H 0 , Theorem 8.2 implies that the DFP and BFGS methods converge to x* for any x 0 while Theorem 8.7 imposes some restrictions on x 0 •

To prove that the DFP and BFGS methods are superlinearly convergent requires careful estimation of the terms liP r (B -A )PIIoFP and IIP(H-A -1 )PrllsFas respectively. These estimates were obtained by [START_REF] Broyden | On the local and superlinear convergence of quasi-Newton methods[END_REF] and then used by [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF] 

lim li[Hk-V 2 f(x*)- 1 ]Ykll = O k-+OO IIYkll .
However, if {IIBkll} is bounded, then

[Bk-V 2 f(x*)]sk =[I-Bk V 2 f(x*)-1 ](yk-V 2 f(x*)sk)-Bk[Hk-V 2 f(x*)-1 ]Yk
shows that (8.23) implies (8.22). Hence, the final step in the proof consists of using the techniques of Powell (1971, pp. 31-32) to prove that {IIBkll} and {IIHkll} are bounded for the BFGS and DFP methods respectively. [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF] There are a number of line searches which satisfy the requirements of Theorem 8.9: (a) Exact line searches. This result is due to [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF].

(b) The line search of Theorem 6.3. This is the content of Theorem 6.4. (c) The line search of Theorem 8.7 provided {J.Lk} converges to zero. This is not difficult to prove and in fact, the proof is very similar to that of Theorem 6.4. The above remarks and Theorems 8.8 and 8.9 show that the DFP and BFGS methods of Theorems 8.2, 8. 7 and 8.8 are super linearly convergent. It is an open problem to prove, under the conditions of Theorem 8.6, that iteration (8.1) is superlinearly convergent when {Hk} is defined by (8.6) for {cfJk}c [0, 1] and Ak chosen in some reasonable (certainly not by exact line searches) manner.

It would be interesting to prove Theorem 8.8 assuming only that {xk} converges to x* instead of (8.21). However, as it stands Theorem 8.9 shows that either the DFP and BFGS methods converge superlinearly or they converge sublinearly in the sense that lim sup llxkx *11 11 k = 1.

k-++00

In practice, sub linear convergence is essentially equivalent to nonconvergence, so Theorem 8.9 covers all the computationally interesting cases.

If the line search is appro. priately restricted then more is known about the rate of convergence. That {xk} converges superlinearly to x* is due to Powell (1971), but (8.25)which is known as n-step quadratic convergence-is due to [START_REF] Burmeister | Die konvergenzordnung des Fletcher-Powell Algorithmus[END_REF] and later but independently, to [START_REF] Schuller | Uber die konvergenzordnung gewisser rang-2 verfahren zur minimierung von funktionen[END_REF]. The proofs of these two results are completely different; the proof of (8.25) depends on the finite termination property of DFP while, as pointed out by [START_REF] Dennis | A characterization ofsuperlinearconvergence and its application to quasi-Newton methods[END_REF], Powell's result can be proved by showing that (8.21) holds and then applying Theorem 8.9.

Note that Theorem 8.10 extends to other methods in Broyden's class with cPk > 0 via Dixon's result (Theorem 8.3). If cPk E [0, 1] it is possible to extend Theorem 8.10 for nonexact line searches: [START_REF] Stoer | On the convergence rate of imperfect minimization algorithms in Broyden's {3-class[END_REF] has shown that if in Theorem 8.10 we have for some constant y, then (8.25) holds.

It should be appreciated that a sequence may converge n -step quadratically but not be superlinearly convergent and conversely. However, n-step quadratic convergence does imply that lim llxk -x*ll 11 k = 0, k-+00 and thus {xk} is R -super linearly convergent in the terminology of Ortega and Rheinboldt (1970); Q-superlinear convergence corresponds to the notion used in this paper. Proof. It is clear that the iterations are well defined. To prove the result for the DFP method note that since y =As, equation (8. 7) implies that (8.26)

IIBnFP-AllnFP = IIOT[A -112 (B-A)A -112 ]QIIp,
where z =A 112 s and ZZT

Q=I-(

).

z,z

However, in the proof of Theorem 5. 2 we showed that for any For the BFGS method similar calculations with (8.9) yield Moreover, Theorem 8.4 shows that {IIBkll} is bounded. Thus, as noted after Theorem 8.8, (8.28) implies that (8.27) holds and now the proof is completed as before. Theorem 8.11 seems to be just a curiosity since if Ak is chosen by an exact line search, then convergence will take place in at most n steps. However, it does give an indication of the stability of the DFP and BFGS updates without exact line searches.

" We have now finished our study of the asymptotic behavior of the DFP and BFGS methods. It is also possible to study the PSB update, but since it does not generate positive definite matrices, results like Theorem 8.9 have to be modified for the PSB update.

The PSB update is not generally used in a descent implementation, but Powell (1970cPowell ( ), 1970d) ) has described and analyzed a quite competitive algorithm which uses the PSB algorithm in a hybrid implementation, and has shown that if certain "special iterations" are taken then the algorithm converges globally and superlinearly. These special iterations guarantee that the directions used by the PSB update are uniformly linearly independent and therefore, that the sequence {Bk} generated by the PSB update converges to the Jacobian evaluated at the solution-for a discussion of the concept of uniform linear independence and its relationship to the Broyden arid PSB update see [START_REF] More And 1 | On the global convergence of Broyden's method[END_REF]. Powell (1975) later proved that in theory the algorithm co~nverged globally and super linearly even if these special iterations are not used. In practice however they cannot be taken away from the algorithm, without a .significant loss in efficiency.

The above results of Powell deserve further investigation. In fact, the whole question of how to globalize an algorithm is very important and represents an open field of research.

In its simplest form the PSB method is given by (8.29)

where {Bk} is generated by (8.30) and as usual (8.31)

Note that since the matrices {Bk} are not necessarily positive definite it is not possfble to carry out the above iteration by updating an LDL r decomposition of Bk. To avoid O(n 3

) operations per step it is usual to generate Hk = B-; 1

• An alterna~ive would be to update a factorization of the form QTQ r, where Q is orthogonal and T is tridiagonal, but this approach has not been investigated.

The following result of [START_REF] Broyden | On the local and superlinear convergence of quasi-Newton methods[END_REF] covers the above iteration.

THEOREIVt 8.12. Let f: Rn ~ R satisfy the assumptions of Theorem 8.6 except that now V 2 f(x *) is not required to be positive definite, and consider the PSB method as defined by (8.29), (8.30) and (8.31). Then the PSB method is locally and superlinearly convergent.

Since the proof of this result is so similar to that of Theorem 5.2 we omit it. It is also worthwhile noting that the remarks made about Broyden's method after Theorem 4.2 apply, with obvious modifications, to the PSB method, and that [START_REF] Dennis | On the convergence of Broyden 's method for nonlinear systems of equations[END_REF]Dennis ( ), (1972) ) has given Kantorovich theorems for the Broyden and PSB methods.

To conclude this section we point out that the PSB method, if properly modified, is globally and superlinearly convergent for the quadratic functional (8.3) if A is any nonsingular, symmetric matrix. It is only necessary to modify Bk+l so that it is nonsingular. For example, if instead of (8.10) we define and Bk is nonsingular, then it is possible to choose (}k so that (8.33)

Bk+l is nonsingular, IOk -11 < 8 for some 8 E (0, 1).

More and Trangenstein (1976) elaborate on how this can be done, and also prove the following result. THEOREM 8.13. Let f:R" ~R be given by (8.3) where A EL(R") is any nonsingular, symmetric matrix and consider the PSB method (8.29) where {Bk} is generated by (8.32), (8.31) and (}k satisfies (8.33). Then the PSB method is globally and superlinearly conv~rgent to A -1 b. [START_REF] More And 1 | On the global convergence of Broyden's method[END_REF] also point out that Theorem 8.12 holds if the PSB method (8.29) is defined by (8.32), (8.31) and (}k satisfies (8.33). 9. Concluding remarks. We have tried to write this survey in such a way that the important problems suggest themselves, so instead of ending with remarks about directions for future research, we end with an admission of certain omissions.

Although we have indicated several approaches to the computation of the updates, all these approaches are based on an additive correction of rank at most two. Other approaches are possible; [START_REF] Brodlie | Rank-one and rank-two corrections to positive definite matrices expressed in product form[END_REF] discuss multiplicative corrections so that their direct updates are of the form jj =(I+ uv T)B(I +vu T), and show that the DFP and BFGS can be written in this facto red form.

We have not mentioned any particular implementation because there are a number of very promising algorithms (e.g. Davidon (1975)) now being tested and such remarks would likely be out of date before their publication. See, however, the paper of Fletcher (1972), which discusses several of the currently available algorithms. . •

We have also not mentioned several excellent papers which only deal with quasi-Newton methods as applied to strictly convex quadratic functionals. In particular, the paper of [START_REF] Huang | Unified approach to quadratically convergent algorithms for function minimization[END_REF]) introduces a class of updates which has many of the properties of the Broyden class. We have restricted our attention to the Broyden class since it is that subclass of the Huang class which satisfies the quasi-Newton equation and has the hereditary symmetry property.

Finally, we point out that this survey was not meant to be exhaustive even in matters related to quasi-Newton methods; in particular, no mention has been made of the use of quasi-Newton methods in connection with• constrained optimization. Readers interested in this connection should consult the book edited by Gill and Murray (1974).

  The mapping Pis continuously differentiable in an open convex set D. • (b) There is an x* in D such that F(x*) = 0 and F'(x*) is nonsingular.

  l llull-llvlll <llu-vll< llull = llull _a, and thus the first partof (3.5) holds. For the second part let w = (u, v )/(llull llvll) and note that llu-vll 2 = llull 2 -2llull llvllw +llvll 2 > llull 2

  Lemma 3.3 together with (3.7) show that llxk+l-x*ll < y{KIIxk-x*fl 2 + 11lfxk-x*ll 2 },

LEMMA 6. 1 .

 1 Let f: R n -+ R be defined in an open set D and differentiable at x in D. If (Vf(x), p) < 0 for some p inRn then there is a A*= A *(x, p) such that A*> 0 and f(x +Ap) <f(x), A E (0, A*).

  THEOREM 6.4. Let f: R n ~ R be twice continuously differentiable in an open

L

  that the Neumann lemma (e.g.Ortega and Rheinboldt (1970, p. 45wk = L pk(y-Bs) =(I-P)-1 (y-Bs). k=O k=O Since 00 lim Gk = B + L (Gk+l-Gk), k .... oo k=O it follows from (7.10) and (7.11) that {Gk} converges. Thus since Lemma 4

  (7.15) det B= det B[((c, Hy) 2 -(c, 1-/c)(y, Hy)+(c, Hc)(y, s))/(c, s) 2 ],

8.

  Convergence results for rank-two quasi-Newton methods. Let f: R" ~ R be continuously differentiable in an open set D and consider a method of the form (8.1)

  Pr(B -A)P+[(y--:-As)y r + y(y-As)rP]/(y, holds between Hand fisFGs for the BFGS update. In this case HsFGs and Hare related by (7 .25) so that if A and Hare symmetric, and A is .nonsingular, then (8.9)HsFas -• .c4 --l = P(H ---A •-1 )Pr +[(s-A -ly )s r +s(s-A -1 y )rpr]/(y, s)

  12) IIPT (B-A)PIIoFP< IIA 112 PA -l/ 2 11211B-AlloFP =~IlB-AIIDFP• (J)where (8.13) (y, s) (A -tl2y, A l/2s)w = IIA -1/2YII IIA l/2sll = IIA -1/2YII IIA l/2sll"

THEOREM 8. 6 .

 6 Let f: R" ~ R be twice continuously differentiable in an open convex set D, and assume that Vf(x*) = 0 and V 2 f(x*) is positive definite for some x * in D. Suppose, in addition, that (8.19) XED, and consider the DPP and BFGS methods as defined by (8: 1) with Ak = 1. Then the DPP and BPGS methods are locally and linearly convergent at x*.

  THEOREM 8.10. Letf:Rn -+Rand x 0 satisfy the assumptions of Theorem 8.2 and let {xk} be generated by the DPP method with perfect line searches. If {xk} converges to a point x* at which V 2 f(x*) is positive definite and (8.19) holds, then V f(x *) = 0 and {xk} converges superlinearly to x *.In addition, there is an T/ > 0 such that(8.25) k>O.

  THEOREM 8.11. Let f: R n ~ R be the strictly convex quadratic functional (8.3). Then for Ak = 1 the DPP and BFGS methods converge globally and superlinearly to A -1 b.

  •(yk-Bksk)sl+sk(yk-Bksk)r 02(yk-Bksk,sk) • r k+l-

  F'(xk); let us now show how Broyden derived an approximation Bk to F'(xk) such that Bk+l can be obtained from Bk in O(n 2 ) arithmetic operations per iteration and evaluating Fat only xk and xk+l•

  1) and (4.2) uniquely determine B from B and in fact Given Be L(Rn), ye Rn and some nonzero se Rn, define B

	(4.3)	B=B+(y-Bs)sT.	
		(s, s)	
	Equation ( 4.1) is central to the development of quasi-Newton methods, and
	therefore it has often been called the quasi -Newton: equation. In fact, it also plays a
	role in a second derivation of Broyden's update.	
	The second derivation:again starts from the assumption-that a. ny matrix that
	satisfies thequasi~Newton equation (4.1) is a good candidate for B. However, now it is argued that out of all the matrices that satisfy the quasi-Newton equation, B
	should be the closest to B. The next result establishes that this matrix is again given
	by (4.3) if "closest" is measured by the Frobenius norm.	
	by (4.3). • Then B is the unique solution to the problem	
		min {IlB -•BIIF :'Bs = y }.	
	Proof. To show that B is a solution note that ify =:Jls then	
		IlB-BIIF = IJ(B-B)(:~ :)JL < IlB-BIIF	
	That B is the unique solution follows from the fact that the mapping/ :L(Rn)-+ R defined by f(A) = IlB -A IIF is strictly convex in L (R 11 ) • arid that the set of A A B e L (R n) such that Bs = y is convex. . .
	By now it should be clear how (4.3) can be used in an iterative method. For
	example, in its most basic form Broyden's method is defined by	
	(4.4)	k =0 1 ... ' '	'
	where the matrices Bk~ L (R n) are generated by	
	(4.5}	k =0 1 ... ' '	'
	with		
	(4.6)		

THEOREM 4.1.

  Let u, v eRn and assume that A•eL(Rn)'is nonsingular.• Then A + uv T is nonsingular if and only if u . ; ___ 1.+ ( v, A -1 u) =fi 0. If •u =fi 0, then Proof. That A + uv T is nonsingular if and only if u =fi 0 follows from Lemma 4.4 which will be proved later. It is e-asy to verify (4.7) because if the matrix on the right-hand side is multiplied by A + uv T then the result is the identity matrix. Bk = QkRk where Qk is orthogonal and Rk is upper triangular, then the corresponding factorization of Bk+ 1 can be obtained in O(n 2

	(4.7)	(A +uvT)-1 =A -1 -(1/u)A-1 uvTA -1 •
	FromLemma4.2 it follows that ifHk = B"k\ thenHk+ 1 • • B"k! 1 is defined by
	( 4 .S)	Hk+l = Hk +(sk-Hkyk)skTHk (sk, Hkyk)
	provided (sk, Hkyk) =fi 0. Therefore, Broyden's method can also be implemented as
		xk+1 = xk-HkF(xk),
	where {Hk} is generated by (4.8), and in this form Broyden's method only requires
	n scalar function evaluations and O(n 2	) arithmetic operations per iteration.
	It is also possible to implement (4.5) and use only O(n 2	) arithmetic opera-
	tions per iteration. For example, Gill anQ Murray (1972) describe a method by
	which if	

~F(x~c)-is required. One way to overcome this difficulty requires • the following result which is due to

[START_REF] Sherman | Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix[END_REF]

. LEMMA 4.2.

  result follows from this relationship. If {xk} is any sequence, and sk, Yk are defined by (4.6), then Yk =Ask for

	A = 1 1					
	xk, then each iteration requires t~o function evaluations
	instead of one.					
	As the6retical justification for his •method, Broyden only offered the fact that
	for affine functions it is norm-reducing with respect to the ~~ operator norm. The
	following well-known result shows that a slightly stronger result holds in the
	Frobenh.1s norni.				. •	'	• •
	THEOREM 4.3. Let A eL(Rn) satisfy y =As for•some nonzero s eRn and
	ye Rn. Moreover, give~•~•e L(Rn) define B:by (4.3). Then	
	IlB-A IIF < I~B-A IIF	
	with equality if and only if B =B.				. .	.
	' -	'	'	I f	•		'

Proof. Since 'A 'lies in the affine S"Qbspace{B: x-Bs} and since by Theorem 4.1, the matrix Bis the orthogonal projection of B. onto.thjs . . subspace, . IlB ~All~= IlB -Bit~+ fiB~ All~. .

The F(xk + esk) de.

  This approach is based on the fact that if x * is a local minimizer of f in the open set D and f is

differentiable at x*, then Vf(x*) = 0. Moreover, in this section only descent methods are considered.

A descent method for solving (6.1) generates for each iterate xk a direction Pk of local descent in the sense that there is a At such that f(xk + Apk) <f(xk) for A e (0, At]. The next iterate is of the form xk+l = xk + Akpk, where the parameter Ak is chosen so that f(xk+l) <f(xk). The directions Pk and the parameters should be chosen in such a way that {Vf(xk)} converges to zero. If IIVf(xk)ll is small then usually xk is near a zero of V f while the fact that {f(xk)} is decreasing indicates that this zero of Vf is probably a local minimizer of f.

  Theorem 7.3 implies that BPsB is the unique solution to the problem min {IlB-BIIF: B symmetric, Bs = y} and this property is reminiscent of Theorem 4.1. Because of this property it follows that if A is any symmetric matrix with y =As, then IlB-A 11}= IIBPsB-Bll}+ IIBPsB-A 11}.

	PSB -+	( ) s, s	( )2 • s, s

Powell symmetric Broyden update, or the PSB update: (7.13) jj -B (y-Bs)sr+s(y-Bs)T (y-Bs,s)ssr

  Theorem 7.5 implies that B is positive definite if and only if(7.17) 

1 • If we assume that B is positive definite and let v = H 112 y and w = H 112 c, then (7.16) and

  Some of its properties are given in the following result, but first we note that the underlying single-rank formula (7 .3) where c is a multiple of y is an update due to[START_REF] Pearson | Variable metric methods of minimization[END_REF].THEOREM 7. 7. Let B E L (R n) be a nonsingular, symmetric matrix and define BoppE L(Rn) by (7.18) for any vectors y and sin Rn with (y, s) ~ 0. Then BoFP is nonsingular if and only if (y, Hy) ~ 0, where H = B-1• If BoFP is nonsingular, then Hy) ~ 0. To verify that fioFP is given by (7 .19) one can either show that fioFPBDFP =I or one can use Lemma 4.2 twice on (7.18). In either case the proof is straightforward but tedious and is therefore omitted. Finally, assume that B is positive definite. If (y,s) is positive, then(7.20) 

				. The DFP update
	is then given by	
	(7.18)	B -	-B . (y-Bs)yT +y(y-Bs)T (y-Bs,s)yyT DFP-+ 2 (y,s) (y,s)
			ys T ) ( = /-(y,s) B l-(y,s) +(y,s)' sy T ) yy T (
	-HoFP=BoFP can be expressed as --1
	(7.19)		-HoFP=H+-( )-( H). SST HyyTH s, y y, y
	Furthermore, if B is positive definite, then BoFP is positive definite if and only if
	(y, s) >0.		
	Proof. Recall that for the DPP update c is a multiple of y so that (7 .16)
	reduces to		
	(7.20)		-	[(y,Hy)]
	shows that detBoFP is also positive and thus Theorem 7.5 implies that BoFP
	is positive definite. Conversely, if BoFP is positive definite, then
			(y, s) = (BoppS, s) >0
	which is the. desired result.
	One way to use the DFP update to generate a quasi-Newton direction and
	only use O(n 2		

detBoFP = det B (y, s) .

Thus BoFP is nonsingular if and only if (y,

  1 -4> )(s, y fThis result can be obtained by using Lemma 4.2 to express Bc/J in terms of Bnpp, BnppV and c/J, and then noting that (7.18) and (7.29) relate these quantities to BsFas, w and c/J. Assume that f: R n ~ R is the positive definite quadratic functional (8.3) and that H 0 E L(R") is symmetric and positive definite. For any given Xo ER", let {xk} be generated by• (8.1) where Ak, Hk satisfy (8.4) and (8.6), respectively, and cPk may depend on sk, Yk and Hk. If cPk > 0, then there is an integer 0</<n such that x 1 =A -tb and if I =n, t}J,en Hn =A -1 • A typical proof of Theorem 8.1 proceeds by induction to show that the directions sk are A -conjugate in the sense that

		2 (s, y) 2 +c/J[(y, Hy)(s, Bs)-(y, s) J
	For future reference and to state the quadratic termination properties of
	(8.5), note that Broyden's class is generated by	
	(8.6a)	sksl HyYkYkTHk Hk+1 =Hk +< )-( LT ) +cfJkvkvk, r sk, Yk Yk, .nkYk
		112[ sk vk = (yk, Hkyk) ( sk,Yk	)-(	Hkyk ] LT ) Yk,.nkYk	'
	and where the vectors sk and Yk are usually defined by
	(8.6b)			

THEOREM 8.1.

  Similar estimates of the other terms in (8.7) yield

	( 8 •	14 )		(y,s) -loFP=w 2	IIA 112 sll	'
	( 8 •	15 )	ll	(y-As )y (y, s)	11 11	< _!_ I lA -112 y-A 112 sll oFP-w IIA 112 sll	•
	Now place (8.12), (8.14) and (8.15) together to obtain
	-(8.16) JIBoFP-AJioFP< wzliB -AJioFP+ wz 1 . 2 IIA -112 y-A 112 sll JIA 1/2sJI	•
	An analogous relationship holds for the BFGS update. In this case the appropriate
	norm is defined by					
	(8.17)					
	and it is not difficult to verify that the analogue of (8.16) is
	-(8.18) JIHsFGs-A llsFGS=wzJIH-A llsFGs+ wz -1 < 1 -1 2 IIA 112 s-A -112 YII JIA-1/2yJI	•
		As noted in § 7, an interpretation of (8.18) is that if A

ll y(y """--As)rPII <_!__ JIA -t!zy-A t;zsll

  to prove superlinear convergence for various choices of Ak in (8.1). sequence {Hk} is defined by (8.6) with either lPk = 0 or lPk = 1 and (yb sk) is positive fork> 0, then for any symmetric positive definite H 0 in L(Rn) the matrices Since (yk, sk) is positive for k > 0, Theorems 7. 7 and 7.8 imply that in either case Hk is well-defined and positive definite. The remainder of the proof is somewhat long, so we only outline it. First it is shown that {IIBkll} is bounded and (8.22) holds for the DFP method. A similar argument for BFGS shows that {IIHkll} is bounded and instead of (8.22),

	Hk are well-defined and positive definite with uniformly bounded condition num-
	bers. Moreover, if Bk = H;i, then
	(8.22)	lim ii[Bk-V 2 f(x*)]skll = O k-.oo llskll •
	(8.23)	

THEOREM 8.8. Let f: R n ~ R satisfy the assumptions of Theorem 8.6, and suppose that {xk} is a sequence in D such that 00 (8.21) L llxk-x*ll<+oo. k=O If the

  elaborate on Theorem 8.8 and give examples due toPowell which show that (8.22) does not necessarily imply that {Bk} converges to V 2 f(x*). Also note that Theorem 8.8 implies that the DFP and BFGS methods of Theorem 8.6 are supetlinearly convergent. This is also a consequence of the following more general result.THEOREM 8.9. Let f:Rn ~R satisfy the assumptions of Theorem 8.6 and consider the DFP and BFGS methods as defined by (8.1) with Ak determined by any strategy such that (8.22) implies that {Ak} converges to unity. If the sequence {xk} generated by the DFP and BFGS method satisfies (8.21), then {xk} converges superlinearly to x *. . Theorem 3.1 implies that {xk} converges superlinearly to x* if

	Proof(8.24)	lim II[A k 1 Bk-V 2 f(x*)]skll = 0

k-.oo llskll •

On the other hand, Theorem 8.8 and our assumptions show that (8.22) holds and hence {Ak} converges to unity. Thus (8.24) also holds and hence {xk} converges superlinearly to x*.

  IIBk-Allnpp, and use(1.2) and the above estimate in (8.26),It is now clear that {17k} is monotone decreasing and hence convergent. If 11 is an upper bound for {17k}, then and since {17k} is converging it follows that {l/lk} tends to zero. Consequently,

	then			
	where			
	l{!~c =	IIA -	112 (Bk-A)skll JJA 112 skll	•
	(8.27)			
	Moreover,			
	implies that			

E E L (R n) and zERn ' IIEOIIF < IIEIIF-(2JIEIIF) -l ( 1 ~ji 1 ) 2 .

Thus, if we let 'Ylk = and thus (8.27) shows that {xk} converges superlinearly to x*.