
HAL Id: hal-01495707
https://hal.science/hal-01495707v2

Submitted on 22 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene tree species tree reconciliation with gene
conversion

Damir Hasic, Eric Tannier

To cite this version:
Damir Hasic, Eric Tannier. Gene tree species tree reconciliation with gene conversion. Journal of
Mathematical Biology, 2019, 78 (6), pp.1981-2014. �10.1007/s00285-019-01331-w�. �hal-01495707v2�

https://hal.science/hal-01495707v2
https://hal.archives-ouvertes.fr

manuscript No.
(will be inserted by the editor)

Gene tree species tree reconciliation with gene
conversion

Damir Hasić · Eric Tannier

Abstract Gene tree/species tree reconciliation is a recent decisive progress
in phylogenetic methods, accounting for the possible differences between gene
histories and species histories. Reconciliation consists in explaining these dif-
ferences by gene-scale events such as duplication, loss, transfer, which trans-
lates mathematically into a mapping between gene tree nodes and species tree
nodes or branches. Gene conversion is a frequent and important biological
event, which results in the replacement of a gene by a copy of another from
the same species and in the same gene tree. Including this event in reconcil-
iations has never been attempted because this changes as well the solutions
as the methods to construct reconciliations. Standard algorithms based on
dynamic programming become ineffective. We propose here a novel mathe-
matical framework including gene conversion as an evolutionary event in gene
tree/species tree reconciliation. We describe a randomized algorithm giving
in polynomial running time a reconciliation minimizing the number of du-
plications, losses and conversions. We show that the space of reconciliations
includes an analog of the Last Common Ancestor reconciliation, but is not
limited to it. Our algorithm outputs any optimal reconciliation with non null
probability. We argue that this study opens a research avenue on including
gene conversion in reconciliation, which can be important for biology.

This work is funded by the Agence Nationale pour la Recherche, Ancestrome project ANR-
10-BINF-01-01.

Damir Hasić
Department of Mathematics, Faculty of Science, University of Sarajevo, 71000 Sarajevo,
Bosnia and Herzegovina
E-mail: damir.hasic@gmail.com, d.hasic@pmf.unsa.ba

Eric Tannier
Inria Grenoble Rhône-Alpes, F-38334 Montbonnot, France
Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive
UMR5558, F-69622 Villeurbanne, France

2 Damir Hasić, Eric Tannier

Keywords phylogenetic reconciliation · gene conversion · gene duplication ·
gene loss · random algorithms · all optimal solutions

Mathematics Subject Classification (2000) 92D15 · 05C90 · 92-08 ·
68W40

1 Introduction

1.1 Biological motivation

Due to various evolutionary events on a gene level, gene trees (trees used
to describe the evolution of genes) and species trees (trees used to describe
the evolution of species) are often not identical. Identifying these evolution-
ary events, such as speciation, duplication, transfer, conversion, transfer with
replacement, and their positioning inside species tree is called phylogenetic
reconciliation.

Tree reconciliation techniques become widely used in biology. For example
they are used in testing hypotheses of horizontal transfer in some Bacterial and
Archaeal species (Planet et al. 2003); studying parasites infecting tropheine ci-
chlids (Vanhove et al. 2015); finding horizontal gene transfers of RH50 among
prokaryotes (Matassi 2017). Reconciliation tools (Szöllősi et al. 2012, 2013a,b)
are also used to explore the process of shaping gut microbiomes (Groussin
et al. 2017). In Dufayard et al. (2005); Storm and Sonnhammer (2002); van der
Heijden et al. (2007) reconciliations are used ”for inferring orthology relation-
ships” (Doyon et al. 2011), and in Bourgon et al. (2004); Searls (2003) ”for
identifying orthologs for use in function prediction, gene annotation, planning
experiments in model organisms, and identifying drug targets” (Vernot et al.
2008). From Page and Charleston (1998); Brooks and Ferrao (2005) we can see
that ”reconciliation can also be used to study co-evolution between parasites
and their hosts (parasitology), and between organisms and their living areas
(biogeography)” (Doyon et al. 2011).

An evolutionary event of particular interest in this paper is gene conver-
sion. It is a highly important genomic event for evolution and health (Chen
et al. 2007). It results in the replacement of a gene in a genome by another
homologous gene from the same genome, where homologous means that they
have a common ancestor. It has largely contributed to shaping extant eukary-
otic genomes and is involved in several known human genetic diseases (Ko
et al. 2011).

However, gene conversion is nearly absent from the mathematical frame-
work for phylogeny. Phylogenetic methods can handle base substitutions, in-
dels (Felsenstein 2004), genome rearrangements (Hu et al. 2014), duplications,
transfers and losses of genes (Szöllősi et al. 2015) or population scale events
as incomplete lineage sorting (Mirarab et al. 2014). But the detection of gene
conversion is still done with empirical examinations of gene trees combined
with various genomic features (Hsu et al. 2010; Mansai and Innan 2010).

Gene tree species tree reconciliation with gene conversion 3

This absence of gene conversion can strongly bias evolutionary studies.
Indeed, it introduces a discordance between the history of a gene and the
history of a locus (Rasmussen and Kellis 2012) which stays unresolved. It
makes the confusion between duplications and conversions (Boussau et al.
2013), whereas conversions are probably more frequent (Kejnovsky et al. 2007).

1.2 Mathematical and computational aspects of the problem

With V (T) we denote the set of all nodes, and L(T) is the set of all leaves of
a tree T . We assume that a gene tree G and a species tree S are given, as well
as a mapping φ : L(G)→ L(S) that places extant genes into extant species.

The problem is to find a mapping ρ : V (G) → V (T) that optimizes some
objective function. How to determine ρ depends on a model that describes
a problem of reconciliation. The model includes the set of allowed evolution-
ary events (speciation is usually always included) and the objective function,
which is usually the likelihood of a reconciliation (maximization problem) or
the weight of a reconciliation (minimization problem). The weight of a recon-
ciliation, which is the sum of costs of all evolutionary events in a reconciliation,
is a sort of measure of dissimilarity between G and S.

In this paper, the objective function is the weight of a reconciliation. Con-
versions are modeled as a pair of duplication and loss. Since we are pairing
gene losses with gene duplications, there is a need to introduce lost subtrees,
i.e. subtrees of the gene tree that were not given in the input. This means
that, in order to obtain an optimal solution, we need to extend given gene tree
G, and this extension we denote by G′. Because of pairing losses with duplica-
tions, we obtain that disjoint subtrees of G are not independent anymore. The
loss of independence and the need to extend the given gene tree are things
that make the problem harder than the usual duplication/loss reconciliation.

1.3 A review of some previous results

The first model of reconciliation to mention is the one with duplications, spe-
ciations and losses. A natural way to form a reconciliation, in this model, is
to position every node from the gene tree as low as possible inside the species
tree. This type of reconciliation is called the Last Common Ancestor (LCA).
LCA minimizes the number of duplications and losses (Górecki and Tiuryn
2006), the number of duplications (Górecki and Tiuryn 2006), and the num-
ber of losses (Chauve and El-Mabrouk 2009; Chauve et al. 2008). LCA is the
only reconciliation that minimizes duplications and losses (Górecki and Tiuryn
2006). These reconciliations can be found in linear time. There is a polynomial
algorithm in Vernot et al. (2008) that finds the minimum number of duplica-
tions even when S is polytomous. The problem of reconciliation between a
polytomous gene tree and a binary species tree minimizing the number of
mutations (duplications + losses) is polynomial (Chang and Eulenstein 2006;

4 Damir Hasić, Eric Tannier

Lafond et al. 2012). In Zheng and Zhang (2017), O(|G| + |S|) algorithms for
reconciling a nonbinary gene tree and a binary species tree in the duplication,
loss, mutation, and deep coalescence models are given.

A biologically important and mathematically much studied evolutionary
event is gene transfer. Models that include duplications, losses, and transfer
are called DTL models. When the transfers are included, then time constraints
are introduced, because direct gene transfer can happen only between species
that exist in the same moment. There are two ways of considering time con-
straints in reconciliations. One is to use an undated species tree but imposing
a consistency between found transfers. This variant has been proved to be
NP-hard in Tofigh et al. (2011) (while without time consistency it is solvable
in time O(m2n), where m is the number of extant species and n is the number
of extant genes). Another is to use a fully dated species tree as an input, that
is, there is a total order on the internal nodes. In that case a reconciliation
algorithm with duplications, transfers and losses is given in Doyon et al. (2010)
with time complexity Θ(m2n). In Chan et al. (2015) the space of all reconcil-
iations is explored and formula for its size is given. Discrete and continuous
cases for DTL model are equivalent (Ranwez et al. 2016). In Chan et al. (2017),
duplications, transfers, losses, and incomplete lineage sorting are included in
the model and the FPT (fixed-parameter-tractable) algorithm for the most
parsimonious reconciliation is given. If a gene that is transfered replaces an-
other gene, then we have transfer with replacement, which is to transfer what
conversion is to duplication (see Hasić and Tannier (2017) for NP-hardness
proof, and FPT algorithm) For a more detailed review on reconciliations see
Szöllősi et al. (2015), Nakhleh (2013), and Doyon et al. (2011).

1.4 The contribution of this paper

Gene conversion can be modeled in the gene tree/species tree reconciliation
framework. It consists in coupling a duplication (the donor sequence) and a
loss (the receiver sequence). It is usually not included in reconciliation models
because the usual algorithmic toolbox of gene tree/species tree reconciliation,
based on dynamic programming assuming a statistical independence between
lineages, does not allow to couple events from different lineages.

Our contribution is to explore the algorithmic possibilities of introducing
conversion in reconciliations. We formally define a reconciliation with duplica-
tions, losses and conversions. We define the algorithmic problem of computing,
given a gene tree and a species tree, a reconciliation minimizing a linear com-
bination of the number of events of each type. We fully solve the problem in
the particular case when all events are equally weighted. More precisely, we
construct an algorithm which gives, in polynomial running time, an optimal
solution, and we prove that any optimal solution can be output by the algo-
rithm with a non null probability. The algorithm can be used as a polynomial
delay enumeration of the whole space of solutions.

Gene tree species tree reconciliation with gene conversion 5

The space of solutions is non trivial. In contrast with the duplication and
loss only reconciliations, solutions are not unique, they are not all given by the
standard Last Common Ancestor (LCA) technique. Moreover, easy examples
show that the LCA technique does not give the optimal solution if events
are weighted differently. This opens a wide range of new open algorithmic
problems related to gene tree/species tree reconciliations.

The paper is organized as follows. Section 2 introduces a gene tree/species
tree reconciliation including gene conversion events, and states the relations
with the classical duplication loss reconciliation. Section 3 is devoted to the
presentation of an algorithm to find one optimal solution, which is called an
LCA completion. In Section 4, we give an algorithm to find all optimal solu-
tions, by the definition of a class of optimal solutions called zero-flow, contain-
ing but not limited to LCA completions. We prove that an algorithm finding
all zero-flow reconciliations is sufficient to access the whole solution space,
and we write such an algorithm. In Section 5 we complete the proof that the
presented algorithm always gives an optimal solution, and that every optimal
solution can be output with a non null probability.

2 Reconciliations with Duplication, Loss, Conversion

In this section we define the mathematical problem modeling the presence of
gene conversion in gene tree species tree reconciliations. We start with the defi-
nition of the standard duplication and loss model, and then add the possibility
of conversions.

2.1 Duplication-Loss reconciliations

Let us begin with some generalities about phylogenetic trees. All phylogenetic
trees are binary rooted trees where the root node has degree 1, and its incident
edge is called the root edge. The root edge of T is denoted by rootE(T), and
the root node by root(T). If x is a node in a tree, then L(x) denotes the set
of leaves of the maximal subtree rooted at x. If x ∈ V (T)\L(T) then xr, xl
denote the two children of x. Similarly, we can define the children er, el of an
edge e. If x is a leaf or an edge incident to a leaf, then their children are NULL
and f(NULL) = 0 for any function/procedure which returns some value. If x
is a node/edge in a rooted tree T , then pT (x) = p(x) denotes its parent. Let
e = (x, p(x)) be an edge, then T (e) denotes the maximal rooted subtree with
root edge e. If x is on the path from y to root(T) then we say that x is an
ancestor of y, or that y is a descendant of x, and we write y ≤T x or y ≤ x,
defining a partial order on the nodes. If x is neither ancestor nor descendant
of y, we say that x and y are incomparable. Let x and y be comparable nodes
in a rooted tree T , then with dT (x, y) or d(x, y) we denote the distance, i.e.
the number of edges in the path between x and y. For a partially ordered set
A, we use minimal to denote an element m such that x ≤ m =⇒ x = m,

6 Damir Hasić, Eric Tannier

∀x ∈ A. We use this terminology for the partial order defined by rooted trees.
For example, if V ′ is a subset of nodes of a tree, their Last Common Ancestor
(LCA) is the minimal node which is an ancestor of all nodes in V ′. We also
use it for partial orders defined by inclusion on sets or by subtrees in trees. In
particular we can use it for the partial order defined by the extension relation.

Definition 1 (Extension) A tree G′ is said to be an extension of a gene tree
G if G can be obtained from G′ by pruning some subtrees and suppressing
nodes of degree 2.

We define the gene tree species tree duplication loss (DL) reconciliation.
We suppose we have two trees G and S, respectively called the gene tree
and the species tree. Nodes of G (S) are called genes (species). A mapping
φ : L(G) → L(S) indicates the species in which genes are found in the data.
Without loss of generality we suppose that φ verifies that the last common
ancestor of all the leaves of S that are in the image of φ is the node adjacent to
the root node (recall the root node has degree 1). The reconciliation is based
on a function ρ, which is an extension of φ to all genes and species, including
internal nodes.

Definition 2 (Consistency) A function ρ : V (G′) → V (S) on the nodes of
a tree G′ is said to be consistent with a species tree S if ρ(root(G′)) = root(S)
and for every x ∈ V (G′)\L(G′) one of the conditions holds (D) ρ(x) = ρ(xl) =
ρ(xr) or (S) ρ(x)l = ρ(xl) and ρ(x)r = ρ(xr). We also say that G′ is ρ-
consistent with S.

Obviously, both conditions (D) and (S) cannot hold for a single node.

Definition 3 (DL reconciliation) Let G and S be a gene and a species
trees and φ : L(G)→ L(S). A DL reconciliation between G and S is a 5-tuple
(G,G′, S, φ, ρ) such that G′ is an extension of G, G′ is ρ-consistent with S,
and ρ/L(G) = φ.

Note that we allow some extant species not to have genes. The definition is
equivalent to the standard ones Arvestad et al. (2004); Górecki and Tiuryn
(2006); Chauve and El-Mabrouk (2009), although they can present some varia-
tions between them. For example we do no impose that losses are represented
by subtrees extended to the leaves of S (which is the case for example in
Chauve and El-Mabrouk (2009)), because of the particular use we make of
loss subtrees in the sequel. An example of DL reconciliation is given in Figure
1 (a).

Gene tree species tree reconciliation with gene conversion 7

(a) e (b) e (c) e

×

×× × × ××

Fig. 1 Examples of reconciliations. The gene tree is depicted inside the species tree to signify
the mapping ρ. Duplication nodes are black circles, speciation nodes are white circles, losses
are leaves with crosses and conversions are duplication nodes which are also a leaf of the lost
subtrees, which are dashed. (a) An LCA reconciliation. Total cost: 3l+ 4d = 7. (b) An LCA
completion, obtained from LCA by extending losses and assigning them to duplications.
Total cost: l + d+ 3c = 5. (c) A non-optimal reconciliation. Total cost: 3l + 2d+ 2c = 7

Definition 4 (Duplication) Let R = (G,G′, S, φ, ρ) be a DL reconciliation
and x ∈ V (G′)\L(G′) satisfies condition (D). Then x is called a duplication.
The set of all duplications is denoted by ∆ = ∆(R).

Definition 5 (Speciation) Let R = (G,G′, S, φ, ρ) be a DL reconciliation
and x ∈ V (G′)\L(G′) satisfies condition (S). Then x is called a speciation.
The set of all speciations is denoted by Σ = Σ(R).

Definition 6 (Loss) Let R = (G,G′, S, φ, ρ) be a DL reconciliation and x ∈
L(G′)\L(G). Then x is called a loss. The set of all losses is denoted by Λ =
Λ(R).

We say that a duplication, loss or speciation x is assigned to s if ρ(x) = s.
Let L(s,R) = L(s) = |ρ−1(s) ∩ Λ(R)| and D(s,R) = D(s) = |ρ−1(s) ∩∆(R)|
be the number of losses and the number of duplications assigned to s ∈ V (S)
in the reconciliation R. If e = (s, p(s)) ∈ E(S), then L(e,R) = L(e) = L(s,R)
and D(e,R) = D(e) = D(s,R).

The next definition extends the notion of loss.

Definition 7 (Lost subtree) Let R = (G,G′, S, φ, ρ) be a DL reconciliation.
A maximal subtree T of G′ such that V (T)∩V (G) = ∅ is called a lost subtree.

The next lemma introduces the standard Last Common Ancestor reconcili-
ation, and its proof can be found in Chauve and El-Mabrouk (2009) or Chauve
et al. (2008).

Lemma 1 Let G and S be a gene and a species tree, and φ : L(G) → L(S).
There exists a DL reconciliation R = (G,G′, S, φ, ρ) such that ρ(x) is the root
of the minimal subtree of S containing L(φ(x)), ∀x ∈ V (G).

Definition 8 (LCA reconciliation) The DL reconciliation from Lemma 1
that minimizes |Λ(R)| is called the Last Common Ancestor (LCA) reconcilia-
tion and is noted Rlca = (G,G′lca, S, φ, ρlca).

Note that the LCA reconciliation is the unique reconciliation minimizing
the number of duplications, or the number of losses, or any linear combination

8 Damir Hasić, Eric Tannier

of these two numbers Chauve and El-Mabrouk (2009). In Section 3 we will
construct equivalents of the LCA reconciliation including conversions, called
LCA completions, which will have the property of minimizing the sum of the
number of duplications, losses and conversions. However in contrast it is not
unique, it does not contain all optimal solutions (as we show it in Section 4)
and does not optimize over any linear combinations of these numbers (see the
conclusion for such an example).

2.2 Duplication-Loss-Conversion reconciliations

In the next definition we introduce an additional event, called gene conversion,
which is a function δ pairing some losses and duplications. This models the
replacement of a gene by a copy of another one from the same family.

Definition 9 (Conversion) Let (G,G′, S, φ, ρ) be a DL reconciliation. Let
δ : ∆→ Λ be an injective partial function such that ρ(x) = ρ(δ(x)) for all x ∈
δ−1(Λ). If x ∈ δ−1(Λ), then x is called a conversion, and δ(x) is its associate
loss. The set of all conversions is denoted by ∆′ and the set of associate losses
by Λ′. The 6-tuple (G,G′, S, φ, ρ, δ) is called a DLC reconciliation.

We see that every DL reconciliation is also a DLC reconciliation with ∆′ = ∅.
From now on, reconciliation stands for DLC reconciliation. Examples of DLC
reconciliations are drawn on Figure 1.

The following properties are equivalents of standard properties of DL rec-
onciliations Chauve et al. (2008), which have to be checked in the DLC case.

Lemma 2 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, x, y ∈ V (G′) and
x < y. Then ρ(x) ≤ ρ(y).

Proof If x < y, then we have x1, ..., xk ∈ V (G′) so that x = x0 < x1 < x2 <
... < xk < xk+1 = y, and xi is a child of xi+1. From Definition 2, we have that
(D) or (S) holds, i.e. ρ(x) ≤ ρ(p(x)), therefore ρ(x) ≤ ρ(x1) ≤ ρ(x2) ≤ ... ≤
ρ(xk) ≤ ρ(y). ut

Lemma 3 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, s ∈ V (S)\L(S),
x ∈ V (G′)\L(G′) such that ρ(x) = s. Then x ∈ Σ(R) if and only if x is
a minimal element of ρ−1(s).

Proof Let x be a minimal element of ρ−1(s). Assume the opposite, then x ∈
∆(R). Let xl, xr be the children of x in G′, hence xl < x, xr < x and ρ(x) =
ρ(xl) = ρ(xl) = s, which contradicts the minimality of x.

Let x ∈ Σ(R). Assume the opposite, that x is not a minimal element of
ρ−1(s). Let x′ < x, ρ(x′) = s. Then x′ ≤ xl or x′ ≤ xr. Let x′ ≤ xl, hence
ρ(x′) ≤ ρ(xl) ≤ ρ(x). Therefore ρ(x) = ρ(xl), which contradicts x ∈ Σ(R). ut

Next lemma states that we cannot have two comparable speciations as-
signed to the same node from V (S).

Gene tree species tree reconciliation with gene conversion 9

Lemma 4 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation and x, y ∈ V (G′),
x < y, ρ(x) = ρ(y). Then y ∈ ∆(R).

Proof Follows directly from Lemma 3. ut

Lemma 5 Let R1 = (G,G′1, S, φ, ρ1, δ1) and R2 = (G,G′2, S, φ, ρ2, δ2) be rec-
onciliations, and x ∈ V (G). Then ρ1(x) and ρ2(x) are comparable.

Proof Assume the opposite, i.e. ρ1(x) and ρ2(x) are incomparable. Then T (ρ1(x))
and T (ρ2(x)) are disjoint, and in particular L(ρ1(x)) ∩ L(ρ2(x)) = ∅. Let
l ∈ L(x). Then l ≤ x, therefore φ(l) = ρ1(l) ≤ ρ1(x) and φ(l) = ρ2(l) ≤ ρ2(x),
hence φ(l) ∈ L(ρ1(x)) and φ(l) ∈ L(ρ2(x)), a contradiction. ut

Definition 10 (The cost/weight of a reconciliation) Let R = (G,G′, S, φ, ρ, δ)
be a reconciliation, d, l, c ∈ N weights associated with duplication, loss and
conversion. The cost (or weight) of R is given by

ω(R) = l · |Λ\Λ′|+ d · |∆\∆′|+ c · |∆′|.

Examples of computations of this cost are given on Figure 1. As we can
see, losses from Λ′ are not counted as losses in the formula, so we call them
free losses. If a lost subtree has only free losses then it is called a free subtree.

Definition 11 (Minimum/optimal reconciliation) Let R = (G,G′, S, φ, ρ, δ)
be a reconciliation that minimizes ω(R), for given G, S, and φ. Then it is called
minimum (or optimal) reconciliation.

In the sequel we give an algorithm that is able to output all optimal recon-
ciliations for d = l = c, so unless specified, we assume from now, and without
loss of generality, that they are all equal to 1. We come back to the general
case in the conclusion, stating open problems.

2.3 Completions and minimizations of reconciliations

Recall that any DL reconciliation is a DLC reconciliation by definition. How-
ever an optimal DL reconciliation is not an optimal DLC reconciliation. Com-
pletions and minimizations are operations on reconciliations that help con-
structing nonetheless a relation between optimal DL and DLC reconciliations.

Definition 12 (Loss extension) Let R = (G,G′, S, φ, ρ, δ) be a reconcilia-
tion. The reconciliation R′ = (G,G′′, S, φ, ρ′, δ′) is said to be obtained from
R by loss extension if G′′ is an extension of G′, ρ = ρ′/V (G′), R and R′ have
the same number of lost subtrees.

Definition 13 (Completion) Let R be a reconciliation, and R′ is a recon-
ciliation with minimum weight among all reconciliations obtained from R by
extending some losses. Then R′ is called a completion of R.

10 Damir Hasić, Eric Tannier

It is obvious, by definition, that an optimal reconciliation is a completion,
i.e a completion of a reconciliation R has always a lower or equal cost than
R itself. The set of all completions of R is denoted by c(R). When useful,
c(R) can also be used to denote one arbitrary completion if it is clear that
any completion works. For example the cost of a completion can be written
ω(c(R)) since by definition they all have the same cost.

The converse of a completion is a minimization. It is based on the following
definition and lemma.

Definition 14 (Minimal reconciliation) A reconciliation R = (G,G′, S, φ, ρ, δ)
is called minimal if there does not exist G′′ such that G′ is a proper extension
of G′′, G′′ is an extension of G, and G′′ is ρ′′-consistent, where ρ′′ = ρ/V (G′′).

An example of minimal reconciliation is the LCA reconciliation. The next
lemma shows how to construct a minimal reconciliation from any reconcilia-
tion.

Lemma 6 Let G and S be a gene and a species tree, and ρ′ : V (G) → V (S)
such that

– ρ′(x) = φ(x), ∀x ∈ L(G),
– x < y =⇒ ρ′(y) ≤ ρ′(y),
– ρ′(x) belongs to the path from ρlca(x) to root(S).

Then there exists a unique (up to δ) minimal reconciliation R = (G,G′, S, φ, ρ, δ)
such that ρ/V (G) = ρ′.

Proof Assume that there exists a reconciliation R1 = (G,G′1, S, φ, ρ1, δ1) such
that ρ1/V (G) = ρ′. Let x ∈ V (G) with children xl, xr (in G). In the next three
cases we show how to construct G′.

Case 1, ρ1(xl) = ρ1(x) and ρ1(xr) < ρ1(x). In that case x /∈ Σ(R1), hence
x ∈ ∆(R1). Therefore ∃x′ ∈ V (G′1) such that x′ is the right child of x and
ρ1(x′) = ρ1(x). Since xr < x′ < x, x′ is not a leaf and it has the left subtree.
Therefore ∃x′′ ∈ V (G′1) such that x′′ is a descendant of x′ and ρ1(x′′) = ρ1(x′)l.
We have a similar situation for the case ρ1(xr) = ρ1(x) and ρ1(xl) < ρ1(x).

Case 2, e = (s, p(s)) ∈ E(S), s ∈ V (S) and ρ1(pG(x)) > s and ρ1(x) < s.
We will prove that there exists a node x1 ∈ V (G′1) such that ρ(x1) = s and
x < x1 < pG(x). Let x′ be a minimal node of V (G′1) such that x′ ≤ pG(x) and
ρ(x′) > s. From Lemma 3, we have x′ ∈ Σ(R1). Therefore it has children x′l,x

′
r

(in G′1) such that ρ1(x′l) < ρ1(x′) and ρ1(x′r) < ρ1(x′). From the properties of
x′, we get that one of the children maps to s. Let ρ(x′r) = s, and we need to
insert an additional child for x′r, since x′r cannot be a leaf.

Case 3, ρ1(xl) ≤ ρ1(x)l and ρ1(xr) ≤ ρ1(x)l. Let x′ be a child of x in G′1.
Therefore x′ is comparable to xl or xr, and ρ1(x′) is comparable to ρ1(xl) or
ρ1(xr), hence ρ1(x′) is comparable to ρ1(x)l. Next, ρ1(x′) is incomparable to
ρ1(x)r, hence x /∈ Σ(R1) and x ∈ ∆(R1). If x′l, x

′
r are the children of x in G′1,

then ρ1(x′l) = ρ1(x′r) = ρ1(x). This means that we need to insert x′l, x
′
r and

additional children for x′l, x
′
r.

Gene tree species tree reconciliation with gene conversion 11

Insertions, described in the previous three cases, are for any reconciliation
R1. Let us prove that they are enough to form a reconciliation. From this will
follow minimization and uniqueness.

Let us form G′ and ρ in a way described in the previous three cases. We
need to prove that G′ is ρ-consistent. Let x ∈ V (G′)\L(G′) and xl, xr are the
children of x in G′. We will prove that x satisfies condition (D) or (S) from
Definition 2. If ρ(x) = ρ(xl) = ρ(xr), then condition (D) is satisfied. Now
assume that condition (D) is not satisfied, i.e. ρ(x) 6= ρ(xl) or ρ(x) 6= ρ(xr).
Take ρ(xr) < ρ(x). From the Case 2, we get ρ(xr) = ρ(x)r. We are left to
prove ρ(xl) = ρ(x)l. Assume the opposite, let ρ(xl) = ρ(x)r or ρ(xl) = ρ(x).
From Case 3 and the definition of duplication, we get that x is a duplication,
this contradicts our assumption that ρ(xl) 6= ρ(x)l. ut

The unique minimal reconciliation obtained from a reconciliation is called
its minimization. In the next section we prove that minimization and comple-
tion are complementary operations, that is, an optimal reconciliation is always
the completion of its minimization. This will lead to the important result that
completions of the LCA reconciliations are optimal.

3 A family of optimal reconciliations: LCA reconciliations

In this section we provide a polynomial running time algorithm which finds
an LCA completion, and prove that it is an optimal reconciliation. We present
a more general algorithm, which finds a completion of any reconciliation. To
this aim we present the important notion of flow, constantly used all along the
paper. This settles the complexity of the defined problem when the weights
d, l, c are all equal. However the algorithm described here does not find all LCA
completions, and moreover the space of optimal reconciliations is not limited
to LCA completions. Finding all solutions will be the subject of next section.
Here we begin by stating general properties of reconciliations and optimal
reconciliations, showing that they all share some important properties with
LCA reconciliations.

3.1 Similarities of any reconciliation with the LCA reconciliation

Some properties of the LCA reconciliation are shared by all reconciliations.

Lemma 7 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G). Then
ρ(x) is not lower than ρlca(x).

Proof Follows directly from the definition of Last Common Ancestor. ut

Lemma 8 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G)\L(G).
Then ρ(x) is in the path in S from ρlca(x) to root(S).

Proof Follows directly from Lemmas 5 and 7. ut

12 Damir Hasić, Eric Tannier

The next lemma states that if a node is a speciation in an arbitrary recon-
ciliation then it is also a speciation in the LCA.

Lemma 9 Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G). If
x ∈ Σ(R), then x ∈ Σ(Rlca), and ρ(x) = ρlca(x).

Proof Let x ∈ V (G) ∩ Σ(R). Let x′′l , x
′′
r be the children of x in R, x′l, x

′
r the

children of x in Rlca, and xl, xr be the children of x in G. We have ρ(x)l =
ρ(x′′l) and ρ(x)r = ρ(x′′r). From Lemma 8 we have ρlca(x) ≤ ρ(x).

Assume that ρlca(x) < ρ(x). Hence ρ(x)l or ρ(x)r is incomparable to
ρlca(x). Assume that ρ(x)r = ρ(x′′r) is incomparable to ρlca(x). Next, xr ≤
x′r < x, xr ≤ x′′r < x, hence ρlca(xr) ≤ ρlca(x′r) ≤ ρlca(x) and ρ(xr) ≤
ρ(x′′r) ≤ ρ(x). Therefore, ρ(xr) is incomparable to ρlca(x), hence incomparable
to ρlca(xr), which contradicts Lemma 5. Therefore ρlca(x) = ρ(x).

Let us prove that x ∈ Σ(Rlca). Assume the opposite, x ∈ ∆(Rlca). Thus
ρlca(x) = ρlca(x′l) = ρlca(x′r), and from LCA reconciliation, we have ρlca(x) =
ρlca(xr) or ρlca(x) = ρlca(xl). Next, ρlca(xr) = ρlca(x) = ρ(x) > ρ(xr) or
ρlca(xl) = ρlca(x) = ρ(x) > ρ(xl), which contradicts Lemma 7. ut

Thanks to these properties we can define a distance from an arbitrary
reconciliation to the LCA reconciliation. This distance will be used in the
proofs of several properties, stating that there is always a way to lower the
distance to the LCA without increasing the cost of a reconciliation.

Definition 15 Let R = (G,G′, S, φ, ρ, δ) be any reconciliation. Let distlca(R) =∑
d∈V (G) dS(ρ(d), ρlca(d)) be the distance from R to the LCA reconciliation

Rlca = (G,G′lca, S, φ, ρlca).

Lemma 10 If for a reconciliation R distlca(R) > 0, there exists a reconcili-
ation R′ such that distlca(R′) < distlca(R) and ω(R′) ≤ ω(R).

Proof Take any d′ ∈ V (G) so that ρ(d′) > ρlca(d′) and let d be a minimal
element of V (G) such that ρ(d) = ρ(d′) and d ≤ d′. Since d ≤ d′, we have
ρlca(d) ≤ ρlca(d′) < ρ(d′) = ρ(d), therefore ρlca(d) < ρ(d). By Lemma 9
d /∈ Σ(R), so d ∈ ∆(R).

Let d1l , d
1
r be the children of d in R. Since d ∈ ∆(R), we have ρ(d) =

ρ(d1l) = ρ(d1r), and because of the minimality of d, we get d1l , d
1
r /∈ V (G).

Similarly, all descendants of d in G′, with the same ρ-value, are not in V (G).
Let d1, ...dk be these descendants and let T1, ..., Tk be lost subtrees such

that root(Ti) = di, (i = 1, . . . , k). Prune all these subtrees, contract nodes of
degree two (i.e. d1, . . . , dk), and let G′′ denotes the obtained extension of gene
tree G. Let d2l , d

2
r be the children of d in G′′.

If ρ(d2l) 6= ρ(d2r), then G′′ generates a new reconciliation R′, where d is a
speciation, and ρ′(d) = ρ(d). By Lemma 9, ρ′(d) = ρlca(d), which contradicts
ρ(d) > ρlca(d).

Let ρ(d2l) = ρ(d2r). Since ρ(d2l) < ρ(d), we don’t have consistency. Put
ρ′(d) = ρ(d2l) and insert x1 into G′′ so that d < x1 < pG′(d), ρ′(x1) = ρ(d),
and x1 is the root of some of the pruned subtrees Ti (reinsert Ti). In this way we

Gene tree species tree reconciliation with gene conversion 13

get a new reconciliation R′′, and d is a duplication in R′′. Also ω(R′′) ≤ ω(R)
and distlca(R′′) < distlca(R).

If d ∈ ∆′(R) and corresponding loss is l, then extend l so that one loss
extensions follows d and the other can be some of the pruned subtrees Ti
(reinsert Ti). ut

The next lemma states that with LCA we get the smallest set of duplica-
tions.

Lemma 11 Let Rlca be the LCA reconciliation and R be any reconciliation.
Then ∆(Rlca) ⊆ ∆(R) ∩ V (G).

Proof Let x ∈ ∆(Rlca), then x /∈ Σ(Rlca) and x ∈ V (G). Assume the opposite,
that x /∈ ∆(R) ∩ V (G), then x ∈ Σ(R). From Lemma 9 we get x ∈ Σ(Rlca),
a contradiction. Therefore x ∈ ∆(R) ∩ V (G). ut

3.2 Properties of optimal reconciliations

We examine some properties of optimal reconciliations. Note that optimal
reconciliations are not necessarily minimal, but we will state the relation be-
tween the two classes (see Lemma 15). The next lemma states that optimal
reconciliations never contain duplication nodes in lost subtrees.

Lemma 12 Let R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation. Then
∆(R) ⊆ V (G), i.e. all duplications nodes are in G.

Proof Assume the opposite. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and
x is a minimal node of ∆(R)\V (G). Let us prove that R cannot be optimal.
Let xl, xr ∈ V (G′) be the children of x. Since x is a duplication, we have
ρ(x) = ρ(xl) = ρ(xr). Observe two cases.

Case 1, xl, xr /∈ V (G)
Case 1.1, x is a conversion, and l is the corresponding loss. Remove l and

x, connect xl with pG′(l), and xr with pG′(x). In this way we get G′′. Let
ρ′ = ρ/G′′, and δ′ = δ/G′′. We get a reconciliation R′ = (G,G′′, S, φ, ρ′, δ′)
which has one duplication less, i.e. ω(R′) = ω(R)− 1. Hence R cannot be an
optimal reconciliation.

Case 1.2, x is not a conversion. Remove T (xl) and x, then connect xr with
pG′(x). By a similar argument, we get a reconciliation with one duplication and
all non-free losses from T (xl) less, i.e. we get a reconciliation with a strictly
lower cost. Indeed, since x is a minimal duplication, subtree T (xl) cannot have
any duplications, i.e. by removing T (xl) we cannot get to the situation where
some free loss becomes non-free.

Case 2, xl ∈ V (G), xr /∈ V (G). Similarly, if x is not a conversion, remove
T (xr) suppress x, and we get a reconciliation with strictly less cost. If x is a
conversion and l is associate loss, then remove l, suppress x and connect xr
and pG′(l). We again obtain a cheaper reconciliation. ut

14 Damir Hasić, Eric Tannier

The next lemma is a version of Lemma 10 for an optimal reconciliation.

Lemma 13 Let Rlca be the LCA reconciliation, and let R be an optimal rec-
onciliation. If distlca(R) > 0, there exists an optimal reconciliation R′ such
that ∆(R′) = ∆(R) and distlca(R′) < distlca(R).

Proof Follows directly from the proof of Lemma 10. We constructed R′ by
pruning some of the lost subtrees and lowering duplication, which remained a
duplication in R′. By Lemma 12 lost subtrees in optimal reconciliation cannot
contain duplications, hence the set of duplications remained unchanged, i.e.
∆(R′) = ∆(R). ut

Next theorem states that all optimal reconciliations have the same sets of
duplications.

Theorem 1 Let Rlca = (G,G′lca, S, φ, ρlca) be the LCA reconciliation and
R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation. Then ∆(Rlca) = ∆(R).

Proof Assume the opposite, there exist G, S and R such that R is an optimal
reconciliation and ∆(Rlca) 6= ∆(R). By Lemma 11 and Lemma 12 we get
∆(Rlca) ⊂ ∆(R)∩V (G) = ∆(R). Assume that R is an optimal reconciliation
with ∆(Rlca) ⊂ ∆(R) and minimum distlca(R). We have distlca(R) = 0, oth-
erwise we could get an optimal reconciliation R′ with distlca(R′) < distlca(R)
and ∆(R′) = ∆(R) (Lemma 13). From distlca(R) = 0, we obtain ρ(x) =
ρlca(x), ∀x ∈ V (G).

Let x′ ∈ ∆(R)\∆(Rlca). By Lemma 12, we have x′ ∈ V (G). From x′ /∈
∆(Rlca) we get that x′ ∈ Σ(Rlca). We will continue in a similar way as in the
proof of Lemma 10. Let x1, ..., xk be descendants of x′ in V (G′) with the same
ρ-value as x′.

Assume x1 ∈ V (G). Since ρ(x) = ρlca(x), ∀x ∈ V (G) and ρ(x1) = ρ(x′)
we get ρlca(x1) = ρlca(x′), hence (Lemma 4) x′ ∈ ∆(Rlca), a contradiction.
Therefore x1 /∈ V (G).

By a similar argument, x1, . . . , xk /∈ V (G). Let Ti be the lost subtrees
rooted at xi (i = 1, . . . , k). By pruning Ti and suppressing xi (i = 1, . . . , k)
we get G′′, and a new reconciliation where node x′ is a speciation. Hence we
get a reconciliation with strictly lower cost, which contradicts the optimality
of R. ut

Next lemma states that, in an optimal reconciliation, we cannot have two
comparable nodes x, y ∈ V (G′)\V (G) such that ρ(x) = ρ(y).

Lemma 14 Let R be an optimal reconciliation and x, y ∈ V (G′) such that
ρ(x) = ρ(y) and x < y. Then y ∈ V (G) ∩∆(Rlca) = ∆(Rlca) = ∆(R).

Proof From Lemma 4 we have y ∈ ∆(R). From Theorem 1, we obtain ∆(R) =
∆(Rlca). From Lemma 12, we have y ∈ V (G) ⊇ ∆(R) = ∆(Rlca). Therefore
y ∈ V (G) ∩∆(Rlca). ut

Next lemma states the relation between minimal and optimal reconcilia-
tions.

Gene tree species tree reconciliation with gene conversion 15

Lemma 15 Let R be an optimal reconciliation. Then there exists R′, a min-
imal reconciliation such that R is a completion of R′.

Proof Let R′ be the reconciliation obtained from R by deleting all lost subtrees
except their root edges. So R is a completion of R′. We prove that R′ is
minimal. Suppose the opposite. There is e′ = (x′, pG′(x′)) ∈ E(G′)\E(G) such
that by removing e′ and suppressing pG′(x′) we obtain again a reconciliation,
denoted by R′′. From the proof of Lemma 6, Case 2, we have that ∀s ∈ V (S)
and x, y ∈ V (G′), such that x < y, ρ(x) < s < ρ(y), ∃z ∈ V (G′) such that
ρ(z) = s and x < z < y. Let x1 be another child of pG′(x′). Since there is no
lost subtrees with more than one edge, we have x1 ∈ V (G).

Let s = ρ(pG′(x′)). Since R′′ is a reconciliation, ∃x′′ ∈ V (G′′) such that
s = ρ(x′′) and x′′ comparable to x1. Take minimal x′′ with these properties,
then (Lemma 3) x′′ ∈ Σ(R′′). After bringing back e, we get that pG′(x′) or
x′′ becomes a duplication (Lemma 4). Hence ∆(R′′) ⊂ ∆(R′) = ∆(R), which
contradicts the optimality of R (Lemma 11 and Theorem 1). ut

3.3 LCA completions are optimal

Theorem 2 A completion of the LCA reconciliation is an optimal reconcili-
ation.

Proof Let R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation with distlca(R)
minimum. We prove that this reconciliation is a completion of the LCA. Since
all completions of the LCA have the same weight by definition, this proves
that all completions of the LCA are optimal reconciliations.

From Lemma 13 we get distlca(R) = 0 and therefore ρ(x) = ρlca(x), ∀x ∈
V (G). From Theorem 1 and Lemma 12, we have ∆(R) = ∆(Rlca) ⊆ V (G).

Let t be a root of some lost subtree of G′. Let us prove that t ∈ V (G′lca),
and vice versa, if t ∈ V (G′lca)\V (G), then t is a root of some lost subtree of
G′. This correspondence has to be bijective.

Let us prove that we can establish a bijection
f : V (G) ∪ {t | t is a root of some lost subtree of V (G′)} → V (G′lca)\Λ(Rlca)
such that f(x) = x, ∀x ∈ V (G), x < y =⇒ f(x) < f(y), ρ(x) = ρ(f(x)).

First, put f(x) = x, ∀x ∈ V (G).
Let t ∈ V (G′)\V (G) be a root of some lost subtree of G′, ρ(t) = s, x < t <

pG(x). From Lemmas 12 and 3, we have t ∈ Σ(R) and t is a minimal element
of ρ−1(s). Hence, there is no other element t′ ∈ V (G′) such that ρ(t′) = s,
x < t′ < pG(x). Since t ∈ Σ(R), we have ρ(x) < ρ(t) ≤ ρ(pG(x)). In Rlca we
also have x′ ∈ V (G′lca), such that ρ(x′) = s, and x < x′ < pG(x). Next, put
f(t) = x′.

Above correspondence is obviously an injection. Let us prove that it is
a surjection. In a similar way, let x′ ∈ V (G′lca)\Λ(Rlca), ρlca(x′) = s′. If
x′ ∈ V (G), then x′ = f(x′). Now, assume x′ /∈ V (G). Again from Lemmas 12
and 3 we have that x′ ∈ Σ(Rlca) and x′ is a minimal element of ρ−1lca(s′). Let
x < x′ < pG(x), x ∈ V (G). Similarly, we have ρlca(x) < ρlca(pG(x)) and x′ is

16 Damir Hasić, Eric Tannier

the only element from V (G′)\V (G) assigned to s′ comparable to x. In order
for R to be ρ-consistent, there is a root of the lost subtree of G′ (say t) such
that: ρ(t) = s′, and x < t < pG(x) and it is unique. So, f(t) = x′.

We proved the existence of the described correspondence, therefore every
lost subtree of R is obtained as a loss extension in Rlca. ut

The LCA reconciliation is easy to find, it is a well known result that there
is a linear time algorithm to compute it Chauve and El-Mabrouk (2009). What
remains in order to derive an algorithm to find an optimal reconciliation is to
find a completion. Next section presents a method to find a completion of an
arbitrary reconciliation.

3.4 Finding a completion and the flow of losses

Finding a completion is a kind of flow problem. We have demands, which are
losses, that we supply by duplications, i.e. we associate them to duplications
to form conversions. The amount and distribution of duplications in the phy-
logenetic tree tells how many losses can be supplied. The number of losses
that can be supplied tells the value of a completion. We compute this num-
ber recursively along the tree. In consequence we have to define restriction of
reconciliations to subtrees, which are multiple reconciliations.

Definition 16 (Multiple reconciliation) Let Ri = (Gi, G
′
i, S, φi, ρi) be

DL reconciliations of gene trees Gi with species tree S, (i = 1, . . . , k). Let
T1, . . . , Tt be trees, ρ′j : V (Tj) → V (S) verifying that ρ′j(root(Tj)) = root(S)
and Tj is ρ′j-consistent, (j = 1, . . . , t). Let R′j = (Tj , S, ρ

′
j), (j = 1, . . . , t).

Next, let δ :
⋃
∆(Ri) ∪

⋃
∆(R′j)→

⋃
Λ(Ri) ∪

⋃
Λ(R′j) be a partial injective

function such that δ(d) = l implies that d and l are assigned to the same node
in V (S). Then the structure Rm = (G,S,R1, ...,Rk,R

′
1, ...,R

′
t, δ) is called

multiple reconciliation.

The crucial property of a multiple reconciliation is that a loss from one
tree (G′ or Ti) can be assigned by δ to a duplication from another gene tree.
The cost of a multiple reconciliation is computed the same way as the cost of a
reconciliation. The multiple reconciliation induced by a reconciliation R and an
edge e is composed of all parts of R mapped to S(e) by ρ. If it is evident from
the context, instead of multiple reconciliation, we will write reconciliation,
allowing additional lost subtrees. Let Rm be a multiple reconciliation with
e ∈ E(S). Let Rm1 be the reconciliation obtained from Rm by adding k new
lost subtrees with only one root edge assigned to e. Obviously ω(Rm) + k =
ω(Rm1), but it is possible that ω(c(Rm)) = ω(c(Rm1)) (see Figure 2).

Definition 17 (Flow) Let R be a reconciliation, e ∈ E(S), and R(e) the
multiple reconciliation induced with R and e. Let R′(e) be the reconciliation
obtained from R(e) by removing all T1, . . . , Tl the lost trees containing only
one loss assigned to e. With Rk(e) denote multiple reconciliation obtained

Gene tree species tree reconciliation with gene conversion 17

from R′(e) by adding k lost trees containing only one loss assigned to e (k
may be lower or higher than l, if k = l then Rk = R). Let k′ be the maximum
number such that ω(c(Rk′(e))) = ω(c(R′(e))). With F (e,R) = F (e) = k′ − l
is denoted the flow of the edge e.

Note that if F (e) ≥ 0, then F (e) is the maximum number of extra losses
assigned to e that does not change the weight of the completion of R(e).
Opposite is also true, if m ≥ 0 is the maximum number of extra losses assigned
to e that does not change the weight of a completion of R(e), then m = F (e).

(a) e (b) e (c) e

×× ××

××

× ×

Fig. 2 Flow. (a) Multiple reconciliation R1. (b) Multiple reconciliation R2 obtained from R1

by adding k extra (k = 2) losses to the edge e. We have ω(R2) = ω(R1) +k. (c) Completion
of R2. Completion of R1 can be obtained by removing added lost subtrees. We see that
ω(c(R2)) = ω(c(R1)). Maximum number k for which the last relation holds is called flow of
the edge e

We show how to efficiently compute the flow recursively with Lemma 16.
Recall D(e) = D(e,Rm), L(e) = L(e,Rm) denote number of duplications and
losses assigned to e in reconciliation Rm.

Lemma 16 Let Rm be a multiple reconciliation, e ∈ E(S). Then

F (e) = max
(
min

(
F (el), F (er)

)
, 0
)

+ D(e)− L(e).

Proof We will use mathematical induction on e. Let e be a leaf edge. Then
el = NULL, er = NULL, and F (el) = F (er) = 0. The only way new losses,
assigned to e, can be free is by pairing them with duplications in e. Therefore
k′ = d and F (e) = k′ − l = d− l.

Now, let e be a non-leaf edge,m = max(min(F (el,Rm(el)), F (er,Rm(er))), 0),
d = D(e,Rm(e)), and l = L(e,Rm(e)). By inductive hypothesis, we can ex-
tend m losses over er and el, so the weight of the completions of Rm(el) and
Rm(er) is not changed. We can make d losses, assigned to e, free by pairing
them with duplications in e. Hence k′ = m+ d and F (e) = k′ − l = m+ d− l.

ut

Lemma 17 Let R1 be a multiple reconciliation with a root edge e = (s, p(s)),
and F (e,R1) ≤ 0. By assigning an extra loss to e we obtain R2. Then ω(c(R2)) =
ω(c(R1)) + 1.

18 Damir Hasić, Eric Tannier

We postpone the proof of this Lemma to section 5 because it will use some
notions introduced later.

The next lemma is a consequence of Lemma 17.

Lemma 18 Let R1 be a (multiple) reconciliation, e is the root edge of S, and
F (e,R1) < 0. Let R2 be a reconciliation obtained from R1 by removing a loss
assigned to e. Then ω(c(R2)) = ω(c(R1))− 1

Lemmas 17 and 18 are stated in a way of adding and removing a loss from
the root edge e. Similar lemmas are in effect if we remove/add a duplication
from/to the root edge e. Because of the obviousness we will not state them
nor prove them.

Thanks to this flow computation we can find a completion of any rec-
onciliation by a polynomial time algorithm, which pseudo-code is written in
Algorithm 1 and 2.

Algorithm 1 Find a completion of a reconciliation.
1: procedure OneCompletion(R)
2: while there is a loss l ∈ Σ\Σ′ assigned to edge e such that either there is a dupli-

cation that is not a conversion assigned to e or children of e have positive flow do
3: ExtendLossIntoFreeTree(R, l)
4: end while
5: end procedure

Algorithm 2 Extends one loss into a free tree.
1: procedure ExtendLossIntoFreeTree(R, l)
2: l is assigned to e = (s, p(s)) and e1, e2 are children of e
3: ∆′′(e) is the set of all duplications that are not conversion assigned to e
4: if ∆′′(e) 6= ∅ and F (e1) > 0 and F (e2) > 0 then
5: Randomly choose between ”assign” and ”extend”
6: end if
7: if F (e1) ≤ 0 or F (e2) ≤ 0 or ”assign” has been chosen then
8: Assign l to a random d ∈ ∆′′(e)
9: else

10: extend l over e1, e2
11: l1, l2 are new losses assigned to e1, e2
12: ExtendLossIntoFreeTree(R, l1)
13: ExtendLossIntoFreeTree(R, l2)
14: end if
15: end procedure

Let us introduce a convention. If we say that, e.g. R′ is an output of
ExtendLosses(R), then the procedure ExtendLosses(.) is observed as a
standalone procedure with the input R. But if we say that R′ is an output of
ExtendLosses (no input parameters), then we observe ExtendLosses as
a part (sub procedure) of the main procedure, and ExtendLosses receives
parameters as described.

Gene tree species tree reconciliation with gene conversion 19

Lemma 19 Let R be a reconciliation, l is a non-free loss assigned to e ∈
E(S), e1, e2 are children of e. Next, ∆′′(e) 6= ∅ or (F (e1) > 0 and F (e2) > 0).
Then the procedure ExtendLossIntoFreeTree(R, l) extends l into a free
tree.

Proof Note that if ∆′′(e) = ∅ and F (e1) = F (e2) = 0, then F (e) ≤ 0.
We will use mathematical induction on e. Let e be a leaf edge. Then e1 =

NULL, e2 = NULL and F (e1) = F (e2) = 0. Hence ∆′′(e) 6= ∅, and l is
assigned to a random duplication from ∆′′(e).

Assume that e is not a leaf edge. If ∆′′(e) 6= ∅ and assign is chosen, then l
is assigned to a random element from ∆′′(e), i.e. l is extended into a free tree
with one edge. If ∆′′(e) = ∅ or extend is chosen, then F (e1) > 0, F (e2) > 0
and l is extended into l1 and l2. Since F (ei) > 0, (i = 1, 2) then ei satisfies
if condition in OneCompletion. Hence, by inductive hypothesis, Extend-
LossIntoFreeTree(R, li) extends li into a free tree, i.e. l is extended into
free tree. ut

Let us introduce a convention. Let e = (x, pG′(x)) ∈ E(G′). If ρ(pG′(x)) =
p(ρ(x)), then we can write ρ(e) = (ρ(x), ρ(pG′(x))) ∈ E(S). This property does
not hold for any edge of G′, but it holds for any edge of a lost subtree, since
we do not observe lost subtrees with duplications (an optimal reconciliation
cannot have a lost subtree with a duplication). Let T be a subtree of G′, then
ρ(t) = {ρ(e) | e ∈ E(T)}. Sometimes we will identify lost trees with their root,
i.e. v can denote both a root of a tree or a tree with root v. The reason for
this is that lost subtrees are dynamical, they extend or switch (an operation
introduced later), but their roots are not.

Lemma 20 Let R be a reconciliation with non-extended losses, ti (i = 1, . . . , k)
and t′j (j = 1, . . . ,m) are free and non-free lost subtrees of c(R) such that
t′j ≥ ti whenever ti and t′j overlap. All non-free lost subtrees t′j (j = 1, . . . ,m)
are non-extended, i.e. they have one edge each. Then c(R) is a possible output
of OneCompletion(R).

Proof Let R0 = R, Ri is obtained from Ri−1 by extending corresponding loss
to the tree ti (i = 1, . . . , k). Hence Rk = c(R).

Assume that trees t1, . . . , ti−1 (i ≥ 1) are constructed by iterations of
ExtendLossIntoFreeTree. Take ti that has the minimal root among free
lost subtrees that are not added. Let us prove that F (e,Ri−1) > 0, ∀e ∈
E(ρ(ti))\{rootE(ρ(ti))}. Assume the opposite, let F (e1,Ri−1) ≤ 0, and since
free subtree ti extends over e1, we have that some loss in S(e1) becomes
non-free. More precisely, ω(c(Ri−1(e1))) < ω(c(Ri(e1))). This means that
|Λ\Λ′(c(Ri−1(e1)))| < |Λ\Λ′(c(Ri(e1)))|. Since trees t1, . . . , ti−1 (and ti) are
free and already present in Ri−1 (i.e. Ri), then we can assume that they are not
changed in c(Ri−1) (i.e. c(Ri)), because we gain nothing by further extending
free losses (although it is possible).

Observe c(Ri(e1)). Let TS be the maximal subtree of S(e1) (see Figure 7)
such that if v0 ∈ V (TS)\L(TS) is a lost subtree in c(Ri(e1)), then there are

20 Damir Hasić, Eric Tannier

lost subtrees (in c(Ri(e1))) v1, . . . , vs, ρ(v0) < ρ(v1) < . . . < ρ(vs), vi overlaps
with vi+1 (i = 0, . . . , s− 1) and vs = ti.

Let v ∈ V (TS)\L(TS) be a lost subtree. Let us prove that v is a free
tree (in c(Ri−1(e1)), c(Ri(e1)), and c(R)). From v ∈ V (TS)\L(TS) we have
v = v0 < v1 < . . . , vs−1 < vs = ti and vi−1 overlaps vi. Since vs−1 overlaps ti
(in c(Ri(e1))) and ti is the same in both c(Ri(e1)) and c(R), we have that vs−1
overlaps ti in c(R), hence vs−1 is a free tree in c(R), i.e. vs−1 ∈ {t1, . . . , ti−1}.
Applying the same argument on vs−1, we get vs−2 ∈ {t1, . . . , ti−1}. Proceeding
in this manner, we have v ∈ {t1, . . . , ti−1}, hence v is a free tree.

Let f1, . . . , fr be the children of leaf edges of TS . From the maximality
of TS , we have there is no lost subtree in c(Ri−1(e1)) nor in c(Ri(e1)) that
expands over fj , (j = 1, . . . , r). All non-free losses from S(e1) are contained
in S(fj), (j = 1, . . . , r). This holds for both c(Ri−1) and c(Ri). Therefore the
structure of the lost subtrees in Ri−1(fj) can be identical to the structure of
the lost subtrees in Ri(fj), (j = 1, . . . , r), and thus obtaining that a completion
of Ri−1(e1) has the same weight as an extension of Ri(e1), a contradiction.

Hence the procedure ExtendLossIntoFreeTree can give us ti, (i =
1, . . . , k). ut

It is proved in Section 5, in a more general framework, that these procedures
indeed compute a completion, and hence, if the input reconciliation is the LCA
reconciliation, it computes an optimal reconciliation.

4 Zero-flow reconciliations and the space of all optimal
reconciliations

Here we introduce zero-flow reconciliations and use them as a hinge to find all
optimal reconciliations. Zero-flow (ZF) reconciliations are a subspace of opti-
mal reconciliations and they contain LCA reconciliations, but these inclusions
are strict: all sets are distinct. We first show how to find any ZF reconcil-
iation, up to completion, from an LCA reconciliation. Then by a different
procedure we show how to access the whole space of optimal reconciliations,
up to completion, from a ZF reconciliation. Finally, as these reductions work
up to completion, we show how to navigate in all completions for a given
reconciliation.

Let e = (s, p(s)) be an edge of S and R a reconciliation. We note X(e,R) =
{d ∈ V (G) | ρlca(d) ≤ s, ρ(d) ≥ p(s)} the set of nodes (duplications or conver-
sions) which are assigned under s in the LCA reconciliation and above p(s) in
R.

Definition 18 An optimal reconciliation R is said to be a zero-flow (ZF)
reconciliation if for all s internal node of S with children edges e1 and e2,
F (e1,R) < 0 =⇒ X(e1,R) = X(e2,R) = ∅.

In other words, an optimal reconciliation is ZF if all duplications assigned
to or above a node s, when strictly below in the LCA, verify that the flow

Gene tree species tree reconciliation with gene conversion 21

the children edges of s is non negative. By definition LCA reconciliations
are ZF (X(e,Rlca) = ∅ for all e). But we will see that the converse is not
true. Similarly ZF reconciliations are optimal by definition but some optimal
reconciliations are not ZF.

4.1 Computing ZF reconciliations by duplication raising

Duplication raising consists in changing the position of a duplication from its
position in a minimal reconciliation to an upper position in the species tree.
It is a concept that was previously used to explore DL reconciliations Chauve
et al. (2008).

Definition 19 (Node raising) Let R = (G,G′, S, φ, ρ, δ) be a minimal rec-
onciliation and x ∈ V (G). We say that reconciliation R′ = (G,G′′, S, φ, ρ′, δ′)
is obtained from R by raising node x if R′ is a minimal reconciliation such
that ρ(x′) = ρ′(x′), ∀x′ ∈ V (G)\{x} and ρ′(x) = p(ρ(x)).

(a)

x

x

x

(b)

y

yx

Fig. 3 Duplication raising. Given duplication x (a) No speciation. After raising x, a new
loss is created. An optimal solution can be generated by this operation. (b) We have y =
pG(x) and ρ(y) = p(ρ(x)). After raising x, y becomes duplication and three new losses are
generated. This cannot be optimal

Depending on the assignment and event status of the parent node of x,
raising x has different effects. If pG(x) is a speciation (see Figure 3) and
ρ(pG(x)) = p(ρ(x)), after raising x, pG(x) becomes a duplication and three
new losses are generated. This cannot lead to an optimal solution because of
the additional duplication (Theorem 1). If ρ(pG(x)) > p(ρ(x)) or pG(x) is a du-
plication, after raising x, only one additional loss is generated. This condition,
which is necessary to yield an optimal solution, is formalized as follows.

x ∈ ∆(R) ∧
(
p(ρ(x)) < ρ(pG(x)) ∨

(
p(ρ(x)) = ρ(pG(x)) ∧ pG(x) ∈ ∆(R)

))
(1)

The next lemma states that raising a duplication cannot decrease the
weight of a completion. The proof of the lemma also describes how to lower a
duplication. This procedure will be important later in some proofs.

Lemma 21 Let R be a minimal reconciliation, R1 is a minimal reconciliation
obtained from R by raising a duplication. Then ω(c(R)) ≤ ω(c(R1)).

22 Damir Hasić, Eric Tannier

Proof Let x be the raised duplication, e1, e2 ∈ E(S) are siblings, e is their
parent, x is assigned to e1 in R and to e in R1.

Let T be the lost subtree such that root(T) is a child of x in c(R1) and T
is expanded over e2. Observe two cases (see Figure 4).

x

T1 T

x

T1 T

x

T1
T2

(a)

x

T1
T2

(b)

x

T1
T2

T2 T2

Fig. 4 Lowering duplication. (a) Lowering duplication (that is not a conversion). If there
is non-free subtree T , not associated with x, we can make it associated by rearranging the
roots. By lowering x we can delete one lost subtree (T), and if it is non-free, then we get
a cheaper reconciliation. (b) Lowering a conversion. Loss assigned to x can be extended to
one of the lost subtrees on the right side. We get a reconciliation of the same weight

Case 1, x /∈ ∆′(c(R1)). Start with c(R1), place x back to e1, and remove T .
We get an extension of R with a cost at most the one of c(R1), i.e. ω(c(R)) ≤
ω(c(R1)).

Case 2, x ∈ ∆′(c(R1)). Let l be a loss assigned to x in c(R1). Start with
c(R1), place x back to e1, extend l, so that in e1 is paired with x (staying free
loss), and in e2 is connected to T . In this way, we get an extension of R of the
same weight as c(R1), i.e. ω(c(R)) ≤ ω(c(R1)). ut

As a consequence of Lemma 21, no optimal reconciliation can be obtained
by raising a duplication from a reconciliation that has no optimal completion.
We will now see in which conditions a duplication raising of a reconciliation
with an optimal completion can lead to another reconciliation with optimal
completion.

The next lemma states when raising a duplication does not increase the
weight of a reconciliation.

Lemma 22 Let R be a minimal reconciliation, and e1, e2 ∈ E(S) the children
of edge e. If x ∈ ∆(R) assigned to e1 satisfies condition (1), R1 is a minimal
reconciliation obtained by raising x, F (e1,R) > 0 and F (e2,R) > 0, then
ω(c(R1)) = ω(c(R)).

Proof First, construct an extension of R1, by using c(R). By raising x, we
generate one new loss in e2. Since F (e2,R) > 0, we have ω(c(R(e2))) =
ω(c(R1(e2))), i.e. the loss generated by the duplication raising can become
a free loss.

Let x ∈ ∆′(c(R)) and assigned to l ∈ Λ′(c(R)). If l is non-extended (in
c(R)) and since F (e1,R) > 0, we have that l can be assigned to some other

Gene tree species tree reconciliation with gene conversion 23

duplication in e1 or extend over children of e1 and become free. If l is part of
a lost subtree Tl in c(R), then by raising x, we ca also raise l, remove subtree
of Tl expanding over e2, leave l assigned to x.

Thus we obtain an extension of R1, not heavier than c(R), i.e. ω(c(R1)) ≤
ω(c(R)). From Lemma 21, we have ω(c(R)) ≤ ω(c(R1)), hence ω(c(R1)) =
ω(c(R)). ut

The next lemma follows directly from Lemma 22.

Lemma 23 Under the hypotheses of Lemma 22, if completions of R are op-
timal, then completions of R1 are optimal.

Algorithms 3, 4, and 5 describe how to generate a reconciliation which does
not change the score of completions by raising duplications.

Algorithm 3 Raises duplications
1: procedure RaiseSeveralDuplications(d,R)
2: for d ∈ ∆(Rlca) from top to bottom of V (G) do
3: R← RaiseDuplication(d,Rlca)
4: end for
5: end procedure

Algorithm 4 Raises duplication (respecting F > 0)

1: procedure RaiseDuplication(d,R)
2: L ← PossiblePositions(d,R)
3: k = random(0,|L| − 1)
4: ρ(d) = L[k]
5: GenerateNewLosses()
6: end procedure

Procedure GenerateNewLosses adds lost subtrees to that the new ρ
after raising a duplication is consistent with S.

The two next statements demonstrate that, up to completion, all the ZF
reconciliations are reached by applying Algorithm RaiseDuplication on a
LCA reconciliation.

Lemma 24 Completions of R, an output of RaiseDuplication when the
input is the LCA reconciliation, are optimal.

Proof Completion of LCA reconciliation is an optimal (Theorem 2), raised
duplications satisfy conditions of Lemma 23, and by this Lemma every time a
duplication is raised we get that c(R) is an optimal reconciliation. ut

Lemma 25 Let R′ be a minimal reconciliation such that c(R′) is a ZF rec-
onciliation. Then R′ is a possible output of RaiseDuplication.

24 Damir Hasić, Eric Tannier

Algorithm 5 Possible new positions for a duplication.
1: procedure PossiblePositions(d,R)
2: s = ρ(d)
3: e = (s, p(s))
4: e′ - sibling of e
5: L← {s}
6: while F (e) > 0 and F (e′) > 0 and (ρ(pG(d)) > p(s) or (ρ(pG(d)) == p(s) and
pG(d) ∈ ∆)) do

7: s = p(s)
8: e = (s, p(s))
9: e′ - sibling of e

10: L← L+ {s}
11: end while
12: end procedure

Proof Since c(R′) is an optimal reconciliation, R′ is obtained from LCA by
raising duplications that satisfy condition (1). By raising a duplication, value
of F (e) cannot increase. Let e1, e2 ∈ E(S) be siblings, e their parent, x a
duplication assigned to e1. Let us raise x to e. If before raising F (e1) ≤ 0
or F (e2) ≤ 0, then after raising F (e1) < 0 or F (e2) < 0, X(e1) 6= ∅, and
X(e2) 6= ∅, a contradiction. Hence F (e1) > 0 and F (e2) > 0.

Thus all conditions, for raising a duplication, of the procedure RaiseDu-
plication are satisfied, hence R′ is a possible output. ut

4.2 Reduction of optimal reconciliations to ZF reconciliations

Lemma 25 states that up to completion, we can generate all ZF reconciliation
from LCA reconciliations. We now show how to generate all reconciliations
from ZF reconciliations. This is done by conversion raising. Next lemma proves
that only conversions are concerned by optimal non ZF reconciliations.

Lemma 26 Let R be an optimal reconciliation, e1 = (s1, s), e2 = (s2, s) ∈
E(S). If F (e1,R) < 0, then X(e1,R) and X(e2,R) are only conversions.

Proof Assume the opposite, let x ∈ X(e1,R) and x is not a conversion. Put
back (lower) all elements of X(e1,R) to e1. The process is performed as in
the proof of Lemma 21 (Figure 4). If we lower a conversion, the weight of
a reconciliation is not changed, as well as F (e1). If we lower a duplication,
then F (e1) is increased by 1 and the cost of a completion is decreased by one
(Lemmas 17, 18 and the comment after), which is a contradiction with the
optimality of R. Therefore, X(e1,R) does not contain a duplication that is
not a conversion.

Similar arguments apply to X(e2,R). ut

Lemma 27 Procedure RaiseConversions does not change the weight of a
reconciliation.

Gene tree species tree reconciliation with gene conversion 25

Proof Let d be a raised conversion, and Ti is a lost subtree whose leaf is
assigned to d. By raising d, we do not create an extra losses, but use existing
subtree of Ti and reattach it under d (see Figure 4 (ii) in the opposite direction
and Lemma 21, Case 2). The loss that was assigned to d is removed, and newly
created loss is assigned to d at a new position. In this way we do not change
the number of non-free losses, and the number of duplications/conversions, i.e.
the weight of the reconciliation is not changed. ut

Lemma 28 Let R be an optimal reconciliation. We can obtain a ZF reconcil-
iation by lowering some conversions.

Proof For all e ∈ E(S), if F (e) < 0, take all elements from X(e) and X(e′),
where e′ is the sibling of e, and lower them to e and e′. In this way we get
X(e) = X(e′) = ∅. Since these elements are conversions (Lemma 26) lower
them as described in Lemma 21, Case 2.

In this way we obtain a ZF reconciliation of the same weight as R. ut

In consequence it is possible to reach any optimal reconciliation by an
algorithm which explores first ZF reconciliations and raises some conversions
as in Algorithm 6.

Algorithm 6 raises some conversions
1: procedure RaiseConversions(R)
2: By convention let e1(d) denote the edge to which d is assigned, and e2(d) its sibling

in S.
3: Let C = {d | d ∈ ∆′, F (e1(d)) < 0 or F (e2(d)) < 0}
4: Let Td be used to denote the lost subtree with a leaf paired with d by δ.
5: while C 6= ∅ do
6: d ∈ C - random
7: RaiseOneConversion(d,R, Td)
8: C = C\{d}
9: end while

10: end procedure

Algorithm 7 raises one conversion
1: procedure RaiseOneConversion(d,R, Td)
2: Let s be a random element of V (S) satisfying
3: (i) s ≥ p(ρ(d))
4: (ii) s ≤ min(ρ(root(Td)), ρ(pG(d)))
5: (iii) if pG(d) ∈ Σ then s 6= ρ(pG(d))
6: Note ρ(d) = s0 < s1 < . . . < sk = s

7: T j
d - subtree of Td, ρ(root(T j

d)) = sj , j = 1, k
8: assign d to random si
9: node (leaf) of Td, assigned to si, pair with d (and d stays conversion)

10: root of every tree T j
d position in G′, under d, at an appropriate position

11: end procedure

26 Damir Hasić, Eric Tannier

4.3 Finding all completions

All previous results are valid up to completions. It means that we have an
algorithm which is able to detect all duplications that can be conversions in one
optimal solution for example. However we don’t know all the possibilities by
which it is converted. For that we need to enumerate all possible completions.
The algorithm can be described by three procedures, as written in Algorithm
8.

Algorithm 8 finds a random completion
1: procedure AllCompletions(R)
2: OneCompletion(R)
3: ExtendLossesIntoNonFreeTrees(R)
4: Switch(Rc)
5: end procedure

One procedure is to generate a completion by extending losses into free
trees, which is described in Section 3.4. In order to generate the full diversity
of possible reconciliations, there are two others described here, which consist
in extending losses into non free lost subtrees, and switch between subtrees.
The first one is described in Algorithms 9 and 10. In Algorithm 10 a loss is
extended over two edges, one with positive F -value (say edge e1), and the
other with non-positive F -value (say edge e2). The part (of the lost subtree)
extended over e1 is further extended as a free loss, while the part extended
over e2 is further (recursively) extended as a non-free loss.

Algorithm 9 randomly extends losses into non-free trees
1: procedure ExtendLossesIntoNonFreeTrees(R)
2: Σ1 is the set of all non-free, non-extended losses in R
3: for all l ∈ Σ1 do
4: ExtendOneLossIntoNonFreeTree(R, l)
5: end for
6: end procedure

Lemma 29 Let l be a non-free loss in a reconciliation R. Then procedure
ExtendOneLossIntoNonFreeTree(R, l) extends loss l into a non-free tree.

Proof If l is not extended, since it is not assigned to a duplication (conversion)
we will assume that it is extended into a non-free tree (with one edge).

Let l be assigned to the edge e, and e1, e2 are its children. We will use
mathematical induction on e.

Let e be a leaf edge. Then e1 = NULL, e2 = NULL and F (e1) = F (e2) =
0. In this case, the if condition is not satisfied, and therefore l is not extended.

Assume that e is not a leaf edge. If the if condition is not satisfied, then
l is not extended, i.e. it is extended into a non-free tree with one edge. If the

Gene tree species tree reconciliation with gene conversion 27

Algorithm 10 randomly extends losses into non-free trees
1: procedure ExtendOneLossIntoNonFreeTree(R, l)
2: l is assigned to e = (s, p(s))
3: e1, e2 are children of e and F (e1) ≥ F (e2)
4: Randomly choose between ”extend” or not.
5: if F (e1) > 0 and F (e2) ≤ 0 and ”extend” has been chosen then
6: extend l over e1, e2
7: l1, l2 are new losses assigned to e1, e2 and l is their parent
8: ExtendOneLossIntoFreeTree(R, l1)
9: ExtendOneLossIntoNonFreeTree(R, l2)

10: end if
11: end procedure

if condition is satisfied, then F (e1) > 0 and F (e2) ≤ 0, and l is extended into
l1, l2. Then ExtendOneLossIntoFreeTree(R, l1) extends l1 into a free
tree (Lemma 19), and ExtendOneLossIntoNonFreeTree(R, l2) extends
l2 into a non-free tree (inductive hypothesis). Hence l is extended into a non-
free tree. ut

The next lemma is a consequence of Lemma 29

Lemma 30 Procedure ExtendLossesIntoNonFreeTrees does not change
the weight of a reconciliation.

Lemma 31 Let R be a reconciliation with non-extended losses, ti (i = 1 . . . k)
and t′j (j = 1 . . .m) are free and non-free lost subtrees of c(R) such that
t′j ≥ ti whenever ti and t′j overlap. Then c(R) is a possible output of series of
procedures OneCompletion(R), ExtendLossesIntoNonFreeTrees(R).

Proof Let R0 = R, Ri is obtained from Ri−1 by extending corresponding loss
to the tree ti (i = 1, . . . , k), R′0 = Rk, R′j is obtained from R′j−1 by extending
corresponding loss to the tree t′j (j = 1, . . . ,m). Hence R′m = c(R).

The procedure OneCompletion can give us ti, (i = 1, . . . , k) (Lemma
20). Now we will prove that ExtendLossesIntoNonFreeTrees can give
us t′j , (j = 1, . . . ,m).

Assume that ti, (i = 1, . . . , k), t′1, . . . , t
′
j−1 (j ≥ 1) are added. Let us prove

that ExtendLossesIntoNonFreeTrees can add t′j . Let e1, e2 ∈ E(S), e =
(s, p(s)) is their parent, and ρ(l′j) = s, where l′j extends into t′j . If F (e,R′j−1) >
0, then l′j can be free, thus obtaining a cheaper reconciliation than c(R), a
contradiction, so F (e,R′j−1) ≤ 0.

Let e′1, e
′
2 ∈ E(ρ(t′j)) be siblings, e′ their parent, and F (e′1,R

′
i−1) ≥ F (e′2,R

′
i−1).

Subtree t′j expands over e′1, e
′
2 and not necessarily originating at e′. Observe

two cases.
Case 1, F (e′,R′j−1) ≤ 0. If F (e′1,R

′
j−1) ≤ 0 (and F (e′2,R

′
j−1) ≤ 0), then

by pruning t′j both e′1 and e′2 don’t gain a loss, so the cost of reconciliations
c(R′j−1(e′1)) and c(R′j−1)(e′2) will not rise in R′j , but R′j gain one non-free loss
(pruned t′j). Hence we gain a cheaper reconciliation, a contradiction.

Assume F (e′1,R
′
j−1) > 0 and F (e′2,R

′
j−1) > 0. Since F (e′,R′j−1) ≤ 0,

there is a loss l assigned to e′ that is non-free (in R′j−1). Then we can extend l

28 Damir Hasić, Eric Tannier

(a)
T0 T1

t0 t1

switch
T0

t1

T1

t0

Fig. 5a Switch operation between binary trees. (a) Switch between T0 and T1 around t0
and t1

. . .(b)

T1 T0

switch

×

. . .

T1 T0

×
s0 t0

. . .

T1 T0

(c)

×

switch
. . .

T1 T0

×

t1
t1

t1 t1t0
t0 t0

Fig. 5b Switch operation between reconciliations. (b-c) Switch on a reconciliation. Exactly
one lost subtree receives a (nontrivial) subtree from the other lost subtree. A subtree with
a non-free loss has to be involved in a switch operation. An empty triangle denotes a free
subtree, while a triangle with x denotes a non-free subtree

over e′1, e
′
2 so it becomes free, and prune t′j to a single edge (t′j stays non-free).

Hence obtaining a cheaper reconciliation than c(R), a contradiction.
Case 2, F (e′,R′j−1) > 0. If F (e′2,R

′
j−1) ≤ 0, then e′ has a duplication

that is not a conversion. At least one of the subtrees of t′j expanding over
e′1, e

′
2 is a free tree. Assume that it is the one expanding over e′1. Next, we can

prune subtree of t′j so that t′j has a leaf assigned to e′ and to the duplication,
thus becoming a free loss. Since F (e′2,R

′
j−1) ≤ 0 there is one non-free loss in

R′j−1(e′2) that can become free, thanks to the fact that t′j does not expand over
e′1 anymore. Making this loss free enable us to obtain a cheaper reconciliation
than c(R), a contradiction.

From the Cases 1 and 2, we have that if F (e′,R′j−1) ≤ 0, then F (e′1,R
′
j−1) >

0, F (e′2,R
′
j−1) ≤ 0, and if F (e′,R′j−1) > 0, then F (e′1,R

′
j−1) > 0, F (e′2,R

′
j−1) >

0. Hence conditions along ρ(t′j) of ExtendLossesIntoNonFreeTrees are
satisfied, and therefore t′j can be obtained by this procedure. ut

To obtain all possible lost subtrees in an optimal reconciliation, we need to
introduce an operation that exchanges parts of the lost subtrees. Notice that
a lost subtree with more than one non-free leaf cannot appear in an optimal
reconciliation.

Definition 20 (Switch operation on a binary rooted trees) Let T0 and
T1 be binary rooted trees and ti ∈ V (Ti)\{root(Ti)} (i = 0, 1). A switch
operation on T0 and T1 around t0 and t1 creates new trees by separating
subtrees Ti(ti) from Ti and joining them with p(t1−i) ∈ T1−i (i = 0, 1).

Gene tree species tree reconciliation with gene conversion 29

(a)

×
×

×

(b)

×
×

(c)

×
×

Fig. 6 Example for necessity of switch operation. (a) Minimal reconciliation. (b) The com-
pletion. We have one free and two non-free trees. (c) A completion obtained by switch
operation. Note that this completion is not obtainable by standard extension into free and
non-free trees

Definition 21 (Switch operation on a reconciliation) Let R be a rec-
onciliation, T0 and T1 free and non-free lost subtrees, l ∈ L(T1) is a non-free
loss, p is a path in S from ρ(l) to ρ(root(T1)). Assume there exists a mini-
mal element s0 ∈ {s | s ∈ V (p) ∩ V (ρ(T0))}\{ρ(root(T0)), ρ(root(T1))}, and
ti ∈ V (Ti) such that ρ(ti) = s0 (i = 0, 1). By switch operation on T0 and T1
we mean a switch operation on the binary trees T0 and T1 around t0 and t1.

Switch operation on a reconciliation is defined only for one free and one
non-free lost subtree, and is possible only if trees T0 and T1 overlap, i.e. if
ρ(v0) ∈ ρ(T1) or ρ(v1) ∈ ρ(T0), where vi = root(Ti), (i = 0, 1). In the case
ρ(v0) ∈ ρ(T1), it must be ρ(l) < ρ(v0), where l is a non-free leaf of T1. In these
cases we say that T0 and T1 are switchable. We have that either T0 gives a
(non-trivial) subtree to T1, or T1 gives a (non-trivial) subtree to T0, but both
cannot happen.

When we apply a switch operation two times on the same trees, around the
same nodes, we obtain starting trees, i.e. switching is self-inverse operation.
After switch operation, involved trees still overlap.

For simplicity of notation, we introduce some conventions. We write tree
instead of lost subtree. We will identify a tree with its root, i.e. instead of
writing a tree with the root v, we will use a tree v. We do this because, when
switching, trees are changed, but the roots are not. When we write v0 < v1,
we mean ρ(v0) < ρ(v1). Number of non-free leaves in a tree v is denoted by
ω(v), thus ω(v) = 0 means that v is a free lost subtree, and ω(v) = 1 means
that v is a non-free lost subtree.

If we will apply a switch operation on switchable trees v0, v1 such that
ω(v1) = 1 and ω(v0) = 0, we say that v1 carries over a (non-free) loss to v0.

The next lemma is obvious.

Lemma 32 Switch operation does not change the weight of a reconciliation.

The next lemma tells us how to, from an arbitrary reconciliation, obtain a
reconciliation with more convenient structure of lost subtrees.

Lemma 33 Let R be a reconciliation. Then there exists a reconciliation R1

such that if v0 and v1 are free and non-free overlapping trees in R1, then
v0 ≤ v1 and ω(R) = ω(R1).

30 Damir Hasić, Eric Tannier

Proof Let Vlost = {v | v is a lost subtree}. Take v0 ∈ Vlost such that ω(v0) = 1,
and v1 ∈ Vlost such that ω(v1) = 0, v0 < v1, and v0 is overlapping with v1.
By switching v0 and v1 we get ω(v0) = 0, ω(v1) = 1 and v0 < v1. Repeat the
process as long as there are trees v0, v1 as described. We need to prove that
this algorithm ends.

Let d(Vlost) be the total distance of all non-free v ∈ Vlost from root(S).
Hence d(Vlost) is a non-negative integer. Every time, when switching is applied,
d(Vlost) decreases, hence the algorithm must stop, because d(Vlost) cannot
decrease indefinitely.

Switch operation does not change the weight of a reconciliation (Lemma
32). ut

Algorithm 11 applies switch operation on lost subtrees
1: procedure Switch(R)
2: T′ - the set of all non-free lost subtrees in R
3: Tv′ - the set of all free lost subtrees, less than v′, switchable with v′

4: while T′ 6= ∅ do
5: v′ ∈ T′ - random
6: v ∈ Tv′ ∪ {NULL}
7: if v==NULL then
8: T′ = T′\{v′}
9: continue while loop

10: end if
11: SwitchSubtrees(v, v′)
12: T′ = (T′\{v′}) ∪ {v}
13: end while
14: end procedure

Procedure SwitchSubtrees is described in Definition 21.

5 The algorithm

In this section, we prove that the algorithm returns an optimal reconciliation,
and any optimal reconciliation can be an output of the algorithm. We also
prove the remaining lemmas.

All elements are ready to write the main algorithm that generates a random
optimal solution.

Algorithm 12 gives the main procedure.
Now we prove a lemma stated earlier.

Proof (Proof of Lemma 17) Let l be the number of assigned losses to e in R1,
R is the (multiple) reconciliation obtained from R1 by removing all (l) losses
from e, k′ is from the definition of flow. Then F (e,R1) = k′ − l. Therefore,
the maximum number of extra losses that we can assign to e in R, without
completion cost change, is k′ and k′ ≤ l.

It is obvious that ∆(R) = ∆(R1) = ∆(R2). Also ω(c(R)) < ω(c(R2)).

Gene tree species tree reconciliation with gene conversion 31

Algorithm 12 Random reconciliation
1: procedure RandR(S,G, φ)
2: Let Rlca be the LCA reconciliation
3: R← RaiseSeveralDuplications(d,Rlca)
4: Rc ← AllCompletions(R)
5: Return RaiseConversions(Rc)
6: end procedure

We have that ω(c(R2)) = ω(c(R1)) + 1 or ω(c(R2)) = ω(c(R1)). Assume
that ω(c(R2)) = ω(c(R1)).

Observe c(R2). Let t1, . . . , tl, tl+1 be the lost subtrees with the roots as-
signed to p(s) (and expanding over e). If any of these subtrees are non-free
in c(R2) then by removing it we get an extension of R1 that has strictly
less weight than ω(c(R2)) = ω(c(R1)), a contradiction. Therefore all subtrees
t1, . . . , tl, tl+1 are free in c(R2).

Let us prove that there is at least one non-free subtree in c(R2). Assume
the opposite, i.e. all lost subtrees of c(R2) are free. Then we can have an
extension of R1 and R with all free lost subtrees, by just removing one or all
subtrees extending over e. Hence ω(c(R)) = ω(c(R1)) = ω(c(R2)) = |∆(R)|.
This means that we can assign at least l+1 losses to e in R without completion
cost change. This contradicts the fact that k′ < l + 1. Therefore c(R2) has at
least one non-free lost subtree.

Let us prove that there exists a chain of lost subtrees v1, . . . , vm−1, vm (in
R2) such that v1 < . . . < vm, vi overlaps vi+1, (i = 1, . . . ,m− 1), v1 is a non-
free tree, v2, . . . , vm are free trees and vm is a tree assigned to p(s) extending
over e.

Assume the opposite. Let TS be the maximum subtree with root edge e
that contains only free lost subtrees (see Figure 7), and f1, . . . , fr edges of S
that are children of leaf-edges of TS . Because of the maximality of TS and
the assumption that there is no chain leading from non-free tree to one of the
trees t1, . . . , tl+1, we have that there is no tree expanding from inner node of
TS over one of the edges f1, . . . , fr. Since R2 has at least one non-free lost
subtree, we have r ≥ 1, i.e. edges f1, . . . , fr do exist.

Since ω(c(R)) < ω(c(R2)) and c(R2) has only free trees in TS , then there
is i such that ω(c(R)(fi)) < ω(c(R2)(fi)). Since no lost subtrees expands from
inner node of TS over fi, we can take the lost subtrees with roots in c(R)(fi)
and use them in c(R2), instead of the lost subtrees in c(R2)(fi). Thus we
obtain an extension of R2 with strictly less cost than c(R2), a contradiction.
This means that there is a chain v1, . . . , vm with described properties (v1 is
non-free, etc.).

Now, apply switch operation on vi, vi+1, for every i = 1, . . . ,m− 1. In this
way vm, which is one of the trees t1, . . . , tl+1, becomes non-free. The weight of
c(R2) is not changed with these switch operations. Now, by removing vm, we
obtain an extension of R1 with strictly less cost than c(R2), which contradicts
the assumption ω(c(R2)) = ω(c(R1)). Therefore ω(c(R2)) = ω(c(R1))+1. ut

32 Damir Hasić, Eric Tannier

ti

TS
e1

f1 f2 fi0 fr−1 fr... ...

vi1 vi2

Fig. 7 Tree TS is the maximum subtree of S(e1) rooted at e1 that contains only free lost
subtrees. There are no lost subtrees expanding from TS over fj . Black dots denote roots of
lost subtrees (ti, vi1 , vi2). All non-free lost subtrees of S(e1) are in S(fj), j = 1, r

Let e = (s, p(s)) ∈ E(S), and by L′(e) = L′(e,R) = L′(s) = L′(s,R)
denote the number of non-free lost subtrees, in the reconciliation R, with a
root assigned to p(s) ∈ V (S), expanding over e.

Lemma 34 Let R be a reconciliation, R1 output of OneCompletion(R),
e ∈ E(S), and el, er children of e. Then

(a) F (e,R) > 0 =⇒ L′(e,R1) = 0;
(b) F (e,R) ≤ 0 =⇒ L′(e,R1) = L(e,R)−D(e,R)−max(min(F (el,R), F (er,R)), 0);
(c) if R2 is another output of OneCompletion(R), then ω(R1) = ω(R2).

Proof Let l = L(e,R), d = D(e,R),m = max(min(F (el,R), F (er,R)), 0).
(a) Since OneCompletion extends losses only into edges e, if F (e) > 0, we

have that the number of extra losses, expanded over e, is not greater than F (e).
Assume that R1 generates extra f losses in e. Hence f ≤ F (e,R) = m+ d− l.
Let fm and lm be the number of losses made free by extending over el, er, and
fd and ld are number of losses made free by assigning them to the duplications
in e. Hence fm + lm ≤ m, fd + ld ≤ d, fm + fd ≤ f , lm + ld ≤ l.

Assume the opposite, let L′(e,R1) > 0. Then fm + fd + lm + ld < f + l ≤
d+m =⇒ fd + ld < d or fm + lm < m. Therefore one extra loss can be made
free by assigning it to duplication in e, or extending it over er and el. This
contradicts the procedure ExtendLossIntoFreeTree, which make loss free
if ∆(e) 6= ∅ or F (e1) > 0 and F (e2) > 0.

(b) Since F (e,R) ≤ 0, R1 does not extend any new losses over e, and
m + d ≤ l. At most m losses can be extended over er and el, and at most
d losses can be assigned to the duplications in e. Therefore, number of losses
that remained non-free is l − d−m.

(c) From (a) and (b), we have L′(e,R1) = L′(e,R2), ∀e ∈ E(S), hence
|Λ\Λ′(R1)| = |Λ\Λ′(R2)|. Since ExtendLossIntoFreeTree does not create
new duplications, we have ∆(R1) = ∆(R2) = ∆(R). Therefore ω(R1) =
ω(R2). ut

Lemma 35 Let R be a minimal reconciliation. Then AllCompletions(R)
returns a completion of R.

Proof Let R1 be a reconciliation from Lemma 33, obtained by applying switch
operations on c(R). Then ω(R1) = ω(c(R)) and R1 satisfies the conditions

Gene tree species tree reconciliation with gene conversion 33

from Lemma 31. Hence R1 is a possible output of the series of procedures
OneCompletion(R), ExtendLossesIntoNonFreeTrees(R).

Let R2 be another output of this series of procedures with the input R.
From Lemmas 19 and 29 we have that R2 is an extension of R. From Lemmas
34 (c) and 30 we have ω(R1) = ω(R2). Since R1 is a completion of R, we have
R2 is a completion of R.

Since Switch does not change the weight of a reconciliation (Lemma 32)
and R2 is a completion of R, we have that AllCompletions(R) is also a
completion of R. ut

Theorem 3 Algorithm 12 returns an optimal solution.

Proof The algorithm starts with LCA reconciliation R1. LCA’s completion
is an optimal reconciliation (Theorem 2), therefore completion of R1 is an
optimal reconciliation.

Let R2 be an output of RaiseSeveralDuplications(R1). Then c(R2)
is an optimal reconciliation (Lemma 24).

Let R3 be an output of AllCompletions(R2). Then (Lemma 35) it is s
completion of R2, hence R3 is an optimal reconciliation.

Assume that R4 is an output of RaiseConversions(R3). From Lemma
27 we have ω(R4) = ω(R3). Hence R4 is an optimal reconciliation. Note that
R4 is an output of RandR(S,G, φ). ut

Next lemma states that all duplications raised on a path going though a
vertex with non positive flow on its children are conversions.

Lemma 36 Let R be a ZF reconciliation such that if v′, v are non-free and
free lost subtrees that overlap, then v ≤ v′. Then R is a possible output of
ExtendLossesIntoNonFreeTrees.

Proof From Lemma 25 we have that R′ is a possible output of RaiseDu-
plication, where R′ is the minimization of R. From Lemma 31 and and
this Lemma condition, R is a possible output of the series of procedures
OneCompletion(R′), ExtendLossesIntoNonFreeTrees(R′). Hence R
is a possible output of ExtendLossesIntoNonFreeTrees. ut

Lemma 37 Let R be a ZF reconciliation. Then R is a possible output of
Switch.

Proof Let v′ and v be non-free and free lost subtrees in R. If they overlap and
v′ < v, apply switch operation. Previous procedure repeat as long as there are
such trees. Let us prove that the procedure will stop.

Let d be the sum of the distances of the roots of the non-free subtrees
to root(S). With every switch operation d decreases. Since d ≥ 0, it cannot
decrease indefinitely. Hence the procedure will stop.

The reconciliation, obtained in this way, denote by R1. Now, R1 satisfies
the conditions in Lemma 36, hence it is a possible output of ExtendLoss-
esIntoNonFreeTrees.

So, by ExtendLossesIntoNonFreeTrees we obtain R1, and by Switch(R1),
where switch operations are applied in the reversed order, we obtain R. ut

34 Damir Hasić, Eric Tannier

Theorem 4 Any optimal solution can be generated by Algorithm 12.

Proof Let R be an arbitrary optimal reconciliation. By lowering some con-
versions, we can obtain a ZF reconciliation R1 such that ω(R1) = ω(R) (see
Lemma 28).

By Lemma 37, R1 is obtainable by Switch.
So, R1 is a possible output of Switch, and R is a possible output of

RaiseConversions(R1), if conversion raising is applied in the reversed order.
ut

Theorem 5 Algorithm 12 has time complexity O(m2 +m · n).

Proof Let n = |V (G)|, m = |V (S)|, then E(G) ∈ O(n), E(S) ∈ O(m). LCA
reconciliation can be determined in linear time (see Chauve and El-Mabrouk
(2009)), say O(m+ n).

Algorithm 2 forms a set ∆′′(e) and it takes O(m) time. It extends a loss into
free tree. The maximum size of a (non-)free tree is O(m). Algorithm 1 applies
Algorithm 2 |Σ\Σ′| ≤ |Σ| times, hence it has time complexity O(|Σ| ·m).

Algorithm 5 determines possible new positions for a duplication d. Since
the height of the tree S is O(m), we have that the number of possible posi-
tions is also O(m) and this is the complexity of Algorithm 5. Algorithm 4 calls
Algorithm 5 and generates k ∈ O(m) new losses. Hence the complexity of Al-
gorithm 4 is O(m). Algorithm 3 calls Algorithm 4 |∆| times and its complexity
is O(|∆| ·m).

Algorithm 7 raises one conversion. Maximal raise height is O(m) and this
is the complexity of the algorithm. Algorithm 6 calls Algorithm 7 |C| times
(C - the set of all conversions). Therefore the complexity of Algorithm 6 is
O(|C| ·m).

Algorithm 10 extends a loss into a non-free tree. The size of non-free tree is
O(m) an this is the complexity of the algorithm. Algorithm 9 uses Algorithm
10 |Σ1| times, and its complexity is O(|Σ1| ·m).

Algorithm 11 applies a switch operation on lost subtrees. With every
switch, a root of a subtree with non-free loss is further away from root(S).
Longest distance from root(S) is O(m). Switch operation always include one
non-free loss. Therefore the complexity of this algorithm if O(|Σ\Σ′| ·m).

When we add corresponding complexities we get O(m+ n) +O(|Σ| ·m) +
O(|∆| ·m)+O(|C| ·m)+O(|Σ1| ·m)+O(|Σ\Σ′| ·m). Since |Σ|, |Σ1|, |Σ\Σ′| ∈
O(m+ n), |∆| ∈ O(n), we have that the complexity of the main algorithm is
O(m2 +m · n). ut

6 Conclusion

In this paper we give a polynomial algorithm that returns an optimal rec-
onciliation in duplication, loss, conversion model. The algorithm can return
any optimal reconciliation with a non-zero probability, and can enumerate the
whole space of solutions.

Gene tree species tree reconciliation with gene conversion 35

A natural extension would be a uniform sampling of all solutions in order
to statistically assess properties of the solution space. Because of the switch
operation, this could be achieved by an Markov chain Monte Carlo method.
Future work is to define adequate transition probabilities to ascertain fast
convergence.

An interesting problem that we leave open for further research is the
weighted case. Unfortunately the approach, used in this paper, is not useful for
this case. A completion of LCA reconciliation does not have to be an optimal
reconciliation (see Figure 8). It might be necessary to raise some speciations
from V (G) in order to obtain an optimal solution.

Adding transfers and recombinations significantly increases the complexity
of the problem.

(a) (b)

Fig. 8 Weighted case and (d, l, c) = (2, 1, 1). (a) LCA reconciliation is equal to its completion
(because there are no losses), and the weight is 4d = 8. (b) The speciation and duplication
are raised. Speciation is now duplication and three new losses are added. The weight is
2d+ 3c = 7

References

Arvestad L, Berglund AC, Lagergren J, Sennblad B (2004) Gene tree recon-
struction and orthology analysis based on an integrated model for dupli-
cations and sequence evolution. In: Proc. eighth Annu. Int. Conf. Comput.
Mol. Biol. - RECOMB ’04. ACM Press, New York, New York, USA. pp
326–335. doi: 10.1145/974614.974657

Bourgon R, Delorenzi M, Sargeant T, Hodder AN, Crabb BS, Speed TP (2004)
The serine repeat antigen (SERA) gene family phylogeny in Plasmodium:
the impact of GC content and reconciliation of gene and species trees. Mol
Biol Evol 21(11):2161–2171. doi: 10.1093/molbev/msh228

Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V (2013)
Genome-scale coestimation of species and gene trees. Genome Res 23:323–
330. doi: 10.1101/gr.141978.112

Brooks DR, Ferrao AL (2005) The historical biogeography of co-evolution:
emerging infectious diseases are evolutionary accidents waiting to happen.
J Biogeogr 32(8):1291–1299. doi: 10.1111/j.1365-2699.2005.01315.x

Chan Yb, Ranwez V, Scornavacca C (2015) Exploring the space of gene/species
reconciliations with transfers. J Math Biol 71(5):1179–1209. doi: 10.1007/
s00285-014-0851-2

36 Damir Hasić, Eric Tannier

Chan Yb, Ranwez V, Scornavacca C (2017) Inferring incomplete lineage sort-
ing, duplications, transfers and losses with reconciliations. J Theor Biol 432:1
– 13. doi: 10.1016/j.jtbi.2017.08.008

Chang WC, Eulenstein O (2006) Computing and Combinatorics. Lecture
Notes in Computer Science, vol 4112. Springer Berlin Heidelberg, Berlin,
Heidelberg. doi: 10.1007/11809678

Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution:
Losses in reconciliation and a link with supertrees. In: Batzoglou S (ed)
Res. Comput. Mol. Biol.. Springer Berlin Heidelberg, Berlin, Heidelberg. pp
46–58. doi: 10/dxfx65

Chauve C, Doyon JP, El-Mabrouk N (2008) Gene family evolution by dupli-
cation, speciation, and loss. J Comput Biol 15(8):1043–1062. doi: 10.1089/
cmb.2008.0054

Chen JM, Cooper DN, Chuzhanova N, Frec C, Patrinos GP (2007) Gene con-
version: mechanisms, evolution and human disease. Nat Rev Genet 8:762–
775. doi: 10.1038/nrg2193

Doyon JP, Scornavacca C, Gorbunov KY, Szöllősi GJ, Ranwez V, Berry V
(2010) An efficient algorithm for gene/species trees parsimonious reconcilia-
tion with losses, duplications and transfers. In: Tannier E (ed) Comparative
Genomics: International Workshop, RECOMB-CG 2010, Ottawa, Canada,
October 9-11, 2010. Proceedings. Springer Berlin Heidelberg, Berlin, Hei-
delberg. pp 93–108. doi: 10.1007/978-3-642-16181-0 9

Doyon JP, Ranwez V, Daubin V, Berry V (2011) Models, algorithms and
programs for phylogeny reconciliation. Brief Bioinformatics 12(5):392–400.
doi: 10.1093/bib/bbr045

Dufayard JF, Duret L, Penel S, Gouy M, Rechenmann F, Perriere G (2005)
Tree pattern matching in phylogenetic trees: automatic search for or-
thologs or paralogs in homologous gene sequence databases. Bioinformatics
21(11):2596–2603. doi: 10.1093/bioinformatics/bti325

Felsenstein J (2004) Inferring phylogenies. Sinauer Associates
Górecki P, Tiuryn J (2006) DLS-trees: A model of evolutionary scenarios.

Theor Comput Sci 359(1-3):378–399. doi: 10.1016/j.tcs.2006.05.019
Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm

EJ (2017) Unraveling the processes shaping mammalian gut microbiomes
over evolutionary time. Nat Commun 8:14,319. doi: 10.1038/ncomms14319

Hasić D, Tannier E (2017) Gene tree reconciliation including transfers with
replacement is hard and FPT. submitted

van der Heijden RT, Snel B, van Noort V, Huynen MA (2007) Orthology
prediction at scalable resolution by phylogenetic tree analysis. BMC Bioin-
formatics 8:83. doi: 10.1186/1471-2105-8-83

Hsu CH, Zhang Y, Hardison RC, Program NCS, Green ED, Miller W (2010)
An effective method for detecting gene conversion events in whole genomes.
J Comput Biol 17:1281–1297. doi: 10.1089/cmb.2010.0103

Hu F, Lin Y, Tang J (2014) MLGO: phylogeny reconstruction and ancestral
inference from gene-order data. BMC Bioinformatics 15:354. doi: 10.1186/
s12859-014-0354-6

Gene tree species tree reconciliation with gene conversion 37

Kejnovsky E, Hobza R, Kubat Z, Widmer A, Marais GAB, Vyskot B (2007)
High intrachromosomal similarity of retrotransposon long terminal repeats:
evidence for homogenization by gene conversion on plant sex chromosomes?
Gene 390:92–97. doi: 10.1016/j.gene.2006.10.007

Ko WY, Kaercher KA, Giombini E, Marcatili P, Froment A, Ibrahim M, Lema
G, Nyambo TB, Omar SA, Wambebe C, Ranciaro A, Hirbo JB, Tishkoff
SA (2011) Effects of natural selection and gene conversion on the evolution
of human glycophorins coding for mns blood polymorphisms in malaria-
endemic african populations. Am J Hum Genet 88:741–754. doi: 10.1016/j.
ajhg.2011.05.005

Lafond M, Swenson KM, El-Mabrouk N (2012) An optimal reconciliation al-
gorithm for gene trees with polytomies. In: Algorithms in Bioinformatics:
12th International Workshop, WABI 2012, Ljubljana, Slovenia, September
10-12, 2012. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg. pp
106–122. doi: 10.1007/978-3-642-33122-0 9

Mansai SP, Innan H (2010) The power of the methods for detecting interlocus
gene conversion. Genetics 184:517–527. doi: 10.1534/genetics.109.111161

Matassi G (2017) Horizontal gene transfer drives the evolution of Rh50 perme-
ases in prokaryotes. BMC Evol Biol 17(1):2. doi: 10.1186/s12862-016-0850-6

Mirarab S, Bayzid MS, Boussau B, Warnow T (2014) Statistical binning en-
ables an accurate coalescent-based estimation of the avian tree. Science (New
York, NY) 346:1250,463. doi: 10.1126/science.1250463

Nakhleh L (2013) Computational approaches to species phylogeny inference
and gene tree reconciliation. Trends Ecol Evol (Amst) 28(12):719–728. doi:
10.1016/j.tree.2013.09.004

Page RD, Charleston MA (1998) Trees within trees: phylogeny and histor-
ical associations. Trends Ecol Evol (Amst) 13(9):356–359. doi: 10.1016/
S0169-5347(98)01438-4

Planet PJ, Kachlany SC, Fine DH, DeSalle R, Figurski DH (2003) The
widespread colonization island of actinobacillus actinomycetemcomitans.
Nat Genet 34(2):193–198. doi: 10.1038/ng1154

Ranwez V, Scornavacca C, Doyon JP, Berry V (2016) Inferring gene duplica-
tions, transfers and losses can be done in a discrete framework. J Math Biol
72(7):1811–1844. doi: 10.1007/s00285-015-0930-z

Rasmussen MD, Kellis M (2012) Unified modeling of gene duplication, loss,
and coalescence using a locus tree. Genome Res 22:755–765. doi: 10.1101/
gr.123901.111

Searls DB (2003) Pharmacophylogenomics: genes, evolution and drug targets.
Nat Rev Drug Discov 2(8):613–623. doi: 10.1038/nrd1152

Storm CE, Sonnhammer EL (2002) Automated ortholog inference from
phylogenetic trees and calculation of orthology reliability. Bioinformatics
18(1):92–99. doi: 10.1093/bioinformatics/18.1.92

Szöllősi GJ, Boussau B, Abby SS, Tannier E, Daubin V (2012) Phylogenetic
modeling of lateral gene transfer reconstructs the pattern and relative timing
of speciations. Proc Natl Acad Sci USA 109(43):17,513–17,518. doi: 10.1073/
pnas.1202997109

38 Damir Hasić, Eric Tannier

Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V (2013a) Efficient
exploration of the space of reconciled gene trees. Syst Biol 62(6):901–912.
doi: 10.1093/sysbio/syt054

Szöllősi GJ, Tannier E, Lartillot N, Daubin V (2013b) Lateral gene transfer
from the dead. Syst Biol 62(3):386–397. doi: 10.1093/sysbio/syt003

Szöllősi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene
trees with species trees. Syst Biol 64(1):42–62. doi: 10.1093/sysbio/syu048

Tofigh A, Hallett M, Lagergren J (2011) Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform
8(2):517–535. doi: 10.1109/TCBB.2010.14

Vanhove MPM, Pariselle A, Van Steenberge M, Raeymaekers JAM, Hablützel
PI, Gillardin C, Hellemans B, Breman FC, Koblmüller S, Sturmbauer C,
Snoeks J, Volckaert FAM, Huyse T (2015) Hidden biodiversity in an ancient
lake: phylogenetic congruence between lake tanganyika tropheine cichlids
and their monogenean flatworm parasites. Sci Rep 5:13,669. doi: 10.1038/
srep13669

Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-
binary species trees. J Comput Biol 15(8):981–1006. doi: 10.1089/cmb.2008.
0092

Zheng Y, Zhang L (2017) Reconciliation With Nonbinary Gene Trees Revis-
ited. J ACM 64(4):1–28. doi: 10.1145/3088512

