
HAL Id: hal-01495707
https://hal.science/hal-01495707v1

Preprint submitted on 26 Mar 2017 (v1), last revised 22 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene tree species tree reconciliation with gene
conversion

Damir Hasic, Eric Tannier

To cite this version:
Damir Hasic, Eric Tannier. Gene tree species tree reconciliation with gene conversion. 2017. �hal-
01495707v1�

https://hal.science/hal-01495707v1
https://hal.archives-ouvertes.fr

Gene tree species tree reconciliation with gene

conversion

Damir Hasića,∗, Eric Tannierb,c

aDepartment of Mathematics, Faculty of Science, University of Sarajevo, 71000
Sarajevo, Bosnia and Herzegovina

bInria Grenoble Rhône-Alpes, F-38334 Montbonnot, France
cUniv Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive

UMR5558, F-69622 Villeurbanne, France

Abstract

Gene tree/species tree reconciliation is a recent decisive progress in phylo-
genetic methods, accounting for the possible differences between gene histo-
ries and species histories. Reconciliation consists in explaining these differ-
ences by gene-scale events such as duplication, loss, transfer, which trans-
lates mathematically into a mapping between gene tree nodes and species
tree nodes or branches. Gene conversion is a very frequent biological event,
which results in the replacement of a gene by a copy of another from the
same species and in the same gene tree. Including this event in reconcilia-
tions has never been attempted because this changes as well the solutions
as the methods to construct reconciliations. Standard algorithms based on
dynamic programming become ineffective. We propose here a novel math-
ematical framework including gene conversion as an evolutionary event in
gene tree/species tree reconciliation. We describe a randomized algorithm
giving in polynomial running time a reconciliation minimizing the number
of duplications, losses and conversions. We show that the space of reconcil-
iations includes an analog of the Last Common Ancestor reconciliation, but
is not limited to it. Our algorithm outputs any optimal reconciliation with
non null probability. We argue that this study opens a wide research avenue
on including gene conversion in reconciliation, which can be important for

∗Corresponding author.
Email addresses: damir.hasic@gmail.com, d.hasic@pmf.unsa.ba (Damir Hasić),

Eric.Tannier@inria.fr (Eric Tannier)

Preprint submitted to Elsevier March 26, 2017

biology.

Keywords: gene tree, species tree, reconciliation, duplication, loss,
conversion

1. Introduction

Gene conversion is a highly important genomic event for evolution and
health [1]. It results in the replacement of a gene in a genome by another
homologous gene from the same genome, where homologous means that they
have a common ancestor. It has largely contributed to shaping extant eu-
karyotic genomes and is involved in several known human genetic diseases
[2]. However gene conversion is nearly absent from the mathematical frame-
work for phylogeny. Phylogenetic methods can handle base substitutions,
indels [3], genome rearrangements [4], duplications, transfers and losses of
genes [5] or population scale events as incomplete lineage sorting [6]. But
the detection of gene conversion is still done with empirical examinations of
gene trees [7, 8].

Gene conversion can be modeled in the gene tree/species tree reconcilia-
tion framework. This consists in explaining the differences between a species
phylogeny and a gene phylogeny by evolutionary events such as duplications,
transfers, losses. Gene conversion, in this framework, consists in coupling
a duplication (the donor sequence) and a loss (the receiver sequence). It is
usually not included in reconciliation models because the usual algorithmic
toolbox of gene tree/species tree reconciliation, based on dynamic program-
ming assuming a statistical independence between lineages, does not allow
to couple events from different lineages.

This absence of gene conversion can strongly bias evolutionary studies.
Indeed, it introduces a discordance between the history of a gene and the
history of a locus [9] which stays unresolved. It makes the confusion between
duplications and conversions [10], whereas conversions are probably more
frequent [11].

Our contribution is to introduce gene conversion into the reconciliation
framework, and to explore the algorithmic possibilities of such an introduc-
tion. We formally define a reconciliation with duplications, losses and con-
versions. We define the algorithmic problem of computing, given a gene tree
and a species tree, a reconciliation minimizing a linear combination of the
number of events of each type. We fully solve the problem in the particular

2

case when all events are equally weighted. More precisely, we construct an
algorithm which gives, in polynomial running time, an optimal solution, and
we prove that any optimal solution can be output by the algorithm with
a non null probability. The algorithm can be used as a polynomial delay
enumeration of the whole space of solutions.

The space of solutions is non trivial. In contrast with the duplication
and loss only reconciliations, solutions are not unique, they are not all given
by the standard Last Common Ancestor (LCA) technique. Moreover, easy
examples show that the LCA technique does not give the optimal solution
if events are weighted differently. This opens a wide range of new open
algorithmic problems related to gene tree/species tree reconciliations.

The paper is organized as follows. Section 2 introduces a gene tree/species
tree reconciliation including gene conversion events, and states the relations
with the classical duplication loss reconciliation. Section 3 is devoted to the
presentation of an algorithm to find one optimal solution, which is called
an LCA completion. In Section 4, we give an algorithm to find all optimal
solutions, by the definition of a class of optimal solutions called zero-flow,
containing but not limited to LCA completions. We prove that an algorithm
finding all zero-flow reconciliations is sufficient to access the whole solution
space, and we write such an algorithm. In Section 5 we complete the proof
that the presented algorithm always gives an optimal solution, and that every
optimal solution can be output with a non null probability.

2. Reconciliations with Duplication, Loss, Conversion

In this section we define the mathematical problem modeling the presence
of gene conversion in gene tree species tree reconciliations. We start with
the definition of the standard duplication and loss model, and then add the
possibility of conversions.

2.1. Duplication-Loss reconciliations

Let us begin with some generalities about phylogenetic trees. All phylo-
genetic trees are binary rooted trees where the root node has degree 1, and
its incident edge is called the root edge. The root edge of T is denoted by
rootE(T), and the root node by root(T). If x is a node in a tree, then L(x) de-
notes the set of leaves of the maximal subtree rooted at x. If x ∈ V (T)\L(T)
then xr, xl denote the two children of x. Similarly, we can define the children
er, el of an edge e. If x is a leaf or an edge incident to a leaf, then their

3

children are NULL and f(NULL) = 0 for any function/procedure which re-
turns some value. If x is a node/edge in a rooted tree T , then pT (x) = p(x)
denotes its parent. Let e = (x, p(x)) be an edge, then T (e) denotes the max-
imal rooted subtree with root edge e. If x is on the path from y to root(T)
then we say that x is an ancestor of y, or that y is a descendant of x, and we
write y ≤T x or y ≤ x, defining a partial order on the nodes. If x is neither
ancestor nor descendant of y, we say that x and y are incomparable. Let x
and y be comparable nodes in a rooted tree T , then with dT (x, y) or d(x, y)
we denote the distance, i.e. the number of edges in the path between x and
y. For a partially ordered set A, we use minimal to denote an element m
such that x ≤ m =⇒ x = m, ∀x ∈ A. We use this terminology for the
partial order defined by rooted trees. For example, if V ′ is a subset of nodes
of a tree, their Last Common Ancestor (LCA) is the minimal node which is
an ancestor of all nodes in V ′. We also use it for partial orders defined by
inclusion on sets or by subtrees in trees. In particular we can use it for the
partial order defined by the extension relation.

Definition 1 (Extension). A tree G′ is said to be an extension of a gene
treeG ifG can be obtained fromG′ by pruning some subtrees and suppressing
nodes of degree 2.

We define the gene tree species tree duplication loss (DL) reconciliation.
We suppose we have two trees G and S, respectively called the gene tree
and the species tree. Nodes of G (S) are called genes (species). A mapping
φ : L(G)→ L(S) indicates the species in which genes are found in the data.
Without loss of generality we suppose that φ verifies that the last common
ancestor of all the leaves of S that are in the image of φ is the node adjacent
to the root node (recall the root node has degree 1). The reconciliation is
based on a function ρ, which is an extension of φ to all genes and species,
including internal nodes.

Definition 2 (Consistency). A function ρ : V (G′) → V (S) on the nodes
of a tree G′ is said to be consistent with a species tree S if ρ(root(G′)) =
root(S) and for every x ∈ V (G′)\L(G′) one of the conditions holds (D)
ρ(x) = ρ(xl) = ρ(xr) or (S) ρ(x)l = ρ(xl) and ρ(x)r = ρ(xr). We also say
that G′ is ρ-consistent with S.

Obviously, both conditions (D) and (S) cannot hold for a single node.

4

Definition 3 (DL reconciliation). Let G and S be a gene and a species
trees and φ : L(G) → L(S). A DL reconciliation between G and S is a
5-tuple (G,G′, S, φ, ρ) such that G′ is an extension of G, G′ is ρ-consistent
with S, and ρ/L(G) = φ.

Note that we allow some extant species not to have genes. The definition
is equivalent to the standard ones [12, 13, 14], although they can present
some variations between them. For example we do no impose that losses are
represented by subtrees extended to the leaves of S (which is the case for
example in [14]), because of the particular use we make of loss subtrees in
the sequel. An example of DL reconciliation is given in Figure 1 (i).

Figure 1: Examples of reconciliations. The gene tree is depicted inside the species
tree to signify the mapping ρ. Duplication nodes are black circles, speciation nodes
are white circles, losses are leaves with crosses and conversions are duplication
nodes which are also a leaf of the lost subtrees, which are dotted. (i) An LCA
reconciliation. Total cost: 3l + 4d = 7. (ii) An LCA completion, obtained from
LCA by extending losses and assigning them to duplications. Total cost: l+d+3c =
5. (iii) A non-optimal reconciliation. Total cost: 3l + 2d+ 2c = 7.

Definition 4 (Duplication). Let R = (G,G′, S, φ, ρ) be a DL reconcilia-
tion and x ∈ V (G′)\L(G′) satisfies condition (D). Then x is called a dupli-
cation. The set of all duplications is denoted by ∆ = ∆(R).

Definition 5 (Speciation). Let R = (G,G′, S, φ, ρ) be a DL reconciliation
and x ∈ V (G′)\L(G′) satisfies condition (S). Then x is called a speciation.
The set of all speciations is denoted by Σ = Σ(R).

Definition 6 (Loss). Let R = (G,G′, S, φ, ρ) be a DL reconciliation and
x ∈ L(G′)\L(G). Then x is called a loss. The set of all losses is denoted by
Λ = Λ(R).

5

We say that a duplication, loss or speciation x is assigned to s if ρ(x) = s.
Let L(s,R) = L(s) = |ρ−1(s)∩Λ(R)| and D(s,R) = D(s) = |ρ−1(s)∩∆(R)|
be the number of losses and the number of duplications assigned to s ∈ V (S)
in the reconciliation R. If e = (s, p(s)) ∈ E(S), then L(e,R) = L(e) =
L(s,R) and D(e,R) = D(e) = D(s,R).

The next definition extends the notion of loss.

Definition 7 (Lost subtree). Let R = (G,G′, S, φ, ρ) be a DL reconcilia-
tion. A maximal subtree T of G′ such that V (T) ∩ V (G) = ∅ is called a lost
subtree.

The next lemma introduces the standard Last Common Ancestor recon-
ciliation, and its proof can be found in [14] or [15].

Lemma 1. Let G and S be a gene and a species tree, and φ : L(G)→ L(S).
There exists a DL reconciliation R = (G,G′, S, φ, ρ) such that ρ(x) is the
root of the minimal subtree of S containing L(φ(x)), ∀x ∈ V (G).

Definition 8 (LCA reconciliation). The DL reconciliation from Lemma
1 that minimizes |Λ(R)| is called the Last Common Ancestor (LCA) recon-
ciliation and is noted Rlca = (G,G′lca, S, φ, ρlca).

Note that the LCA reconciliation is the unique reconciliation minimizing
the number of duplications, or the number of losses, or any linear combination
of these two numbers [14]. In Section 3 we will construct equivalents of the
LCA reconciliation including conversions, called LCA completions, which will
have the property of minimizing the sum of the number of duplications, losses
and conversions. However in contrast it is not unique, it does not contain
all optimal solutions (as we show it in Section 4) and does not optimize over
any linear combinations of these numbers (see the conclusion for such an
example).

2.2. Duplication-Loss-Conversion reconciliations

In the next definition we introduce an additional event, called gene con-
version, which is a function δ pairing some losses and duplications. This
models the replacement of a gene by a copy of another one from the same
family.

6

Definition 9 (Conversion). Let (G,G′, S, φ, ρ) be a DL reconciliation. Let
δ : ∆ → Λ be an injective partial function such that ρ(x) = ρ(δ(x)) for
all x ∈ δ−1(Λ). If x ∈ δ−1(Λ), then x is called a conversion, and δ(x)
is its associate loss. The set of all conversions is denoted by ∆′ and the
set of associate losses by Λ′. The 6-tuple (G,G′, S, φ, ρ, δ) is called a DLC
reconciliation.

We see that every DL reconciliation is also a DLC reconciliation with ∆′ = ∅.
From now on, reconciliation stands for DLC reconciliation. Examples of DLC
reconciliations are drawn on Figure 1.

The following properties are equivalents of standard properties of DL
reconciliations [15], which have to be checked in the DLC case.

Lemma 2. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, x, y ∈ V (G′) and
x < y. Then ρ(x) ≤ ρ(y).

Proof. If x < y, then we have x1, ..., xk ∈ V (G′) so that x = x0 < x1 < x2 <
... < xk < xk+1 = y, and xi is a child of xi+1. From Definition 2, we have
that (D) or (S) holds, i.e. ρ(x) ≤ ρ(p(x)), therefore ρ(x) ≤ ρ(x1) ≤ ρ(x2) ≤
... ≤ ρ(xk) ≤ ρ(y).

Lemma 3. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, s ∈ V (S)\L(S),
x ∈ V (G′)\L(G′) such that ρ(x) = s. Then x ∈ Σ(R) if and only if x is a
minimal element of ρ−1(s).

Proof. Let x be a minimal element of ρ−1(s). Assume the opposite, then
x ∈ ∆(R). Let xl, xr be the children of x in G′, hence xl < x, xr < x and
ρ(x) = ρ(xl) = ρ(xl) = s, which contradicts the minimality of x.

Let x ∈ Σ(R). Assume the opposite, that x is not a minimal element
of ρ−1(s). Let x′ < x, ρ(x′) = s. Then x′ ≤ xl or x′ ≤ xr. Let x′ ≤ xl,
hence ρ(x′) ≤ ρ(xl) ≤ ρ(x). Therefore ρ(x) = ρ(xl), which contradicts
x ∈ Σ(R).

Next lemma states that we cannot have two comparable speciations as-
signed to the same node from V (S).

Lemma 4. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation and x, y ∈ V (G′),
x < y, ρ(x) = ρ(y). Then y ∈ ∆(R).

Proof. Follows directly from Lemma 3.

7

Lemma 5. Let R1 = (G,G′1, S, φ, ρ1, δ1) and R2 = (G,G′2, S, φ, ρ2, δ2) be
reconciliations, and x ∈ V (G). Then ρ1(x) and ρ2(x) are comparable.

Proof. Assume the opposite, i.e. ρ1(x) and ρ2(x) are incomparable. Then
T (ρ1(x)) and T (ρ2(x)) are disjoint, and in particular L(ρ1(x))∩L(ρ2(x)) = ∅.
Let l ∈ L(x). Then l ≤ x, therefore φ(l) = ρ1(l) ≤ ρ1(x) and φ(l) = ρ2(l) ≤
ρ2(x), hence φ(l) ∈ L(ρ1(x)) and φ(l) ∈ L(ρ2(x)), a contradiction.

Definition 10 (The cost/weight of a reconciliation). Let R = (G,G′, S, φ, ρ, δ)
be a reconciliation, d, l, c ∈ N weights associated with duplication, loss and
conversion. The cost (or weight) of R is given by

ω(R) = l · |Λ\Λ′|+ d · |∆\∆′|+ c · |∆′|.

Examples of computations of this cost are given on Figure 1. As we can
see, losses from Λ′ are not counted as losses in the formula, so we call them
free losses. If a lost subtree has only free losses then it is called a free subtree.

Definition 11 (Minimum/optimal reconciliation). Let R = (G,G′, S, φ, ρ, δ)
be a reconciliation that minimizes ω(R), for given G, S, and φ. Then it is
called minimum (or optimal) reconciliation.

In the sequel we give an algorithm that is able to output all optimal
reconciliations for d = l = c, so unless specified, we assume from now, and
without loss of generality, that they are all equal to 1. We come back to the
general case in the conclusion, stating open problems.

2.3. Completions and minimizations of reconciliations

Recall that any DL reconciliation is a DLC reconciliation by definition.
However an optimal DL reconciliation is not an optimal DLC reconciliation.
Completions and minimizations are operations on reconciliations that help
constructing nonetheless a relation between optimal DL and DLC reconcili-
ations.

Definition 12 (Loss extension). Let R = (G,G′, S, φ, ρ, δ) be a reconcili-
ation. The reconciliation R′ = (G,G′′, S, φ, ρ′, δ′) is said to be obtained from
R by loss extension if G′′ is an extension of G′, ρ = ρ′/V (G′), R and R′ have
the same number of lost subtrees.

8

Definition 13 (Completion). Let R be a reconciliation, and R′ is a rec-
onciliation with minimum weight among all reconciliations obtained from R
by extending some losses. Then R′ is called a completion of R.

It is obvious, by definition, that an optimal reconciliation is a completion,
i.e a completion of a reconciliation R has always a lower or equal cost than
R itself. The set of all completions of R is denoted by c(R). When useful,
c(R) can also be used to denote one arbitrary completion if it is clear that
any completion works. For example the cost of a completion can be written
ω(c(R)) since by definition they all have the same cost.

The converse of a completion is a minimization. It is based on the fol-
lowing definition and lemma.

Definition 14 (Minimal reconciliation). A reconciliation R = (G,G′, S, φ, ρ, δ)
is called minimal if there does not exist G′′ such that G′ is a proper extension
of G′′, G′′ is an extension of G, and G′′ is ρ′′-consistent, where ρ′′ = ρ/V (G′′).

An example of minimal reconciliation is the LCA reconciliation. The next
lemma shows how to construct a minimal reconciliation from any reconcilia-
tion.

Lemma 6. Let G and S be a gene and a species tree, and ρ′ : V (G)→ V (S)
such that

• ρ′(x) = φ(x), ∀x ∈ L(G),

• x < y =⇒ ρ′(y) ≤ ρ′(y),

• ρ′(x) belongs to the path from ρlca(x) to root(S).

Then there exists a unique (up to δ) minimal reconciliation R = (G,G′, S, φ, ρ, δ)
such that ρ/V (G) = ρ′.

Proof. Assume that there exists a reconciliation R1 = (G,G′1, S, φ, ρ1, δ1)
such that ρ1/V (G) = ρ′. Let x ∈ V (G) with children xl, xr (in G). In the
next three cases we show how to construct G′.

Case 1, ρ1(xl) = ρ1(x) and ρ1(xr) < ρ1(x). In that case x /∈ Σ(R1),
hence x ∈ ∆(R1). Therefore ∃x′ ∈ V (G′1) such that x′ is the right child of
x and ρ1(x

′) = ρ1(x). Since xr < x′ < x, x′ is not a leaf and it has the
left subtree. Therefore ∃x′′ ∈ V (G′1) such that x′′ is a descendant of x′ and

9

ρ1(x
′′) = ρ1(x

′)l. We have a similar situation for the case ρ1(xr) = ρ1(x) and
ρ1(xl) < ρ1(x).

Case 2, e = (s, p(s)) ∈ E(S), s ∈ V (S) and ρ1(pG(x)) > s and ρ1(x) < s.
We will prove that there exists a node x1 ∈ V (G′1) such that ρ(x1) = s and
x < x1 < pG(x). Let x′ be a minimal node of V (G′1) such that x′ ≤ pG(x)
and ρ(x′) > s. From Lemma 3, we have x′ ∈ Σ(R1). Therefore it has
children x′l,x

′
r (in G′1) such that ρ1(x

′
l) < ρ1(x

′) and ρ1(x
′
r) < ρ1(x

′). From
the properties of x′, we get that one of the children maps to s. Let ρ(x′r) = s,
and we need to insert an additional child for x′r, since x′r cannot be a leaf.

Case 3, ρ1(xl) ≤ ρ1(x)l and ρ1(xr) ≤ ρ1(x)l. Let x′ be a child of x in G′1.
Therefore x′ is comparable to xl or xr, and ρ1(x

′) is comparable to ρ1(xl) or
ρ1(xr), hence ρ1(x

′) is comparable to ρ1(x)l. Next, ρ1(x
′) is incomparable to

ρ1(x)r, hence x /∈ Σ(R1) and x ∈ ∆(R1). If x′l, x
′
r are the children of x in

G′1, then ρ1(x
′
l) = ρ1(x

′
r) = ρ1(x). This means that we need to insert x′l, x

′
r

and additional children for x′l, x
′
r.

Insertions, described in the previous three cases, are for any reconciliation
R1. Let us prove that they are enough to form a reconciliation. From this
will follow minimization and uniqueness.

Let us form G′ and ρ in a way described in the previous three cases. We
need to prove that G′ is ρ-consistent. Let x ∈ V (G′)\L(G′) and xl, xr are the
children of x in G′. We will prove that x satisfies condition (D) or (S) from
Definition 2. If ρ(x) = ρ(xl) = ρ(xr), then condition (D) is satisfied. Now
assume that condition (D) is not satisfied, i.e. ρ(x) 6= ρ(xl) or ρ(x) 6= ρ(xr).
Take ρ(xr) < ρ(x). From the Case 2, we get ρ(xr) = ρ(x)r. We are left to
prove ρ(xl) = ρ(x)l. Assume the opposite, let ρ(xl) = ρ(x)r or ρ(xl) = ρ(x).
From Case 3 and the definition of duplication, we get that x is a duplication,
this contradicts our assumption that ρ(xl) 6= ρ(x)l

The unique minimal reconciliation obtained from a reconciliation is called
its minimization. In the next section we prove that minimization and com-
pletion are complementary operations, that is, an optimal reconciliation is
always the completion of its minimization. This will lead to the important
result that completions of the LCA reconciliations are optimal.

3. A family of optimal reconciliations: LCA reconciliations

In this section we provide a polynomial running time algorithm which
finds an LCA completion, and prove that it is an optimal reconciliation. We

10

present a more general algorithm, which finds a completion of any recon-
ciliation. To this aim we present the important notion of flow, constantly
used all along the paper. This settles the complexity of the defined problem
when the weights d, l, c are all equal. However the algorithm described here
does not find all LCA completions, and moreover the space of optimal rec-
onciliations is not limited to LCA completions. Finding all solutions will be
the subject of next section. Here we begin by stating general properties of
reconciliations and optimal reconciliations, showing that they all share some
important properties with LCA reconciliations.

3.1. Similarities of any reconciliation with the LCA reconciliation

Some properties of the LCA reconciliation are shared by all reconcilia-
tions.

Lemma 7. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G).
Then ρ(x) is not lower than ρlca(x).

Proof. Follows directly from the definition of Last Common Ancestor.

Lemma 8. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G)\L(G).
Then ρ(x) is in the path in S from ρlca(x) to root(S).

Proof. Follows directly from Lemmas 5 and 7.

The next lemma states that if a node is a speciation in an arbitrary
reconciliation then it is also a speciation in the LCA.

Lemma 9. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation, and x ∈ V (G). If
x ∈ Σ(R), then x ∈ Σ(Rlca), and ρ(x) = ρlca(x).

Proof. Let x ∈ V (G) ∩ Σ(R). Let x′′l , x
′′
r be the children of x in R, x′l, x

′
r

the children of x in Rlca, and xl, xr be the children of x in G. We have
ρ(x)l = ρ(x′′l) and ρ(x)r = ρ(x′′r). From Lemma 8 we have ρlca(x) ≤ ρ(x).

Assume that ρlca(x) < ρ(x). Hence ρ(x)l or ρ(x)r is incomparable to
ρlca(x). Assume that ρ(x)r = ρ(x′′r) is incomparable to ρlca(x). Next, xr ≤
x′r < x, xr ≤ x′′r < x, hence ρlca(xr) ≤ ρlca(x

′
r) ≤ ρlca(x) and ρ(xr) ≤ ρ(x′′r) ≤

ρ(x). Therefore, ρ(xr) is incomparable to ρlca(x), hence incomparable to
ρlca(xr), which contradicts Lemma 5. Therefore ρlca(x) = ρ(x).

Let us prove that x ∈ Σ(Rlca). Assume the opposite, x ∈ ∆(Rlca). Thus
ρlca(x) = ρlca(x

′
l) = ρlca(x

′
r), and from LCA reconciliation, we have ρlca(x) =

ρlca(xr) or ρlca(x) = ρlca(xl). Next, ρlca(xr) = ρlca(x) = ρ(x) > ρ(xr) or
ρlca(xl) = ρlca(x) = ρ(x) > ρ(xl), which contradicts Lemma 7.

11

Thanks to these properties we can define a distance from an arbitrary
reconciliation to the LCA reconciliation. This distance will be used in the
proofs of several properties, stating that there is always a way to lower the
distance to the LCA without increasing the cost of a reconciliation.

Definition 15. Let R = (G,G′, S, φ, ρ, δ) be any reconciliation. Let distlca(R) =∑
d∈V (G) dS(ρ(d), ρlca(d)) be the distance from R to the LCA reconciliation

Rlca = (G,G′lca, S, φ, ρlca).

Lemma 10. If for a reconciliation R distlca(R) > 0, there exists a reconcil-
iation R′ such that distlca(R

′) < distlca(R) and ω(R′) ≤ ω(R).

Proof. Take any d′ ∈ V (G) so that ρ(d′) > ρlca(d
′) and let d be a minimal

element of V (G) such that ρ(d) = ρ(d′) and d ≤ d′. Since d ≤ d′, we have
ρlca(d) ≤ ρlca(d

′) < ρ(d′) = ρ(d), therefore ρlca(d) < ρ(d). By Lemma 9
d /∈ Σ(R), so d ∈ ∆(R).

Let d1l , d
1
r be the children of d in R. Since d ∈ ∆(R), we have ρ(d) =

ρ(d1l) = ρ(d1r), and because of the minimality of d, we get d1l , d
1
r /∈ V (G).

Similarly, all descendants of d in G′, with the same ρ-value, are not in V (G).
Let d1, ...dk be these descendants and let T1, ..., Tk be lost subtrees such

that root(Ti) = di, (i = 1, . . . , k). Prune all these subtrees, contract nodes
of degree two (i.e. d1, . . . , dk), and let G′′ denotes the obtained extension of
gene tree G. Let d2l , d

2
r be the children of d in G′′.

If ρ(d2l) 6= ρ(d2r), then G′′ generates a new reconciliation R′, where d is a
speciation, and ρ′(d) = ρ(d). By Lemma 9, ρ′(d) = ρlca(d), which contradicts
ρ(d) > ρlca(d).

Let ρ(d2l) = ρ(d2r). Since ρ(d2l) < ρ(d), we don’t have consistency. Put
ρ′(d) = ρ(d2l) and insert x1 into G′′ so that d < x1 < pG′(d), ρ′(x1) = ρ(d),
and x1 is the root of some of the pruned subtrees Ti (reinsert Ti). In this
way we get a new reconciliation R′′, and d is a duplication in R′′. Also
ω(R′′) ≤ ω(R) and distlca(R

′′) < distlca(R).
If d ∈ ∆′(R) and corresponding loss is l, then extend l so that one loss

extensions follows d and the other can be some of the pruned subtrees Ti
(reinsert Ti).

The next lemma states that with LCA we get the smallest set of dupli-
cations.

Lemma 11. Let Rlca be the LCA reconciliation and R be any reconciliation.
Then ∆(Rlca) ⊆ ∆(R) ∩ V (G).

12

Proof. Let x ∈ ∆(Rlca), then x /∈ Σ(Rlca) and x ∈ V (G). Assume the
opposite, that x /∈ ∆(R) ∩ V (G), then x ∈ Σ(R). From Lemma 9 we get
x ∈ Σ(Rlca), a contradiction. Therefore x ∈ ∆(R) ∩ V (G).

3.2. Properties of optimal reconciliations

We examine some properties of optimal reconciliations. Note that optimal
reconciliations are not necessarily minimal, but we will state the relation
between the two classes (see Lemma 16). The next lemma states that optimal
reconciliations never contain duplication nodes in lost subtrees.

Lemma 12. Let R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation. Then
∆(R) ⊆ V (G), i.e. all duplications nodes are in G.

Proof. Assume the opposite. Let R = (G,G′, S, φ, ρ, δ) be a reconciliation,
and x is a minimal node of ∆(R)\V (G). Let us prove that R cannot be
optimal. Let xl, xr ∈ V (G′) be the children of x. Since x is a duplication, we
have ρ(x) = ρ(xl) = ρ(xr). Observe two cases.

Case 1, xl, xr /∈ V (G)
Case 1.1, x is a conversion, and l is the corresponding loss. Remove l and

x, connect xl with pG′(l), and xr with pG′(x). In this way we get G′′. Let
ρ′ = ρ/G′′, and δ′ = δ/G′′. We get a reconciliation R′ = (G,G′′, S, φ, ρ′, δ′)
which has one duplication less, i.e. ω(R′) = ω(R) − 1. Hence R cannot be
an optimal reconciliation.

Case 1.2, x is not a conversion. Remove T (xl) and x, then connect xr with
pG′(x). By a similar argument, we get a reconciliation with one duplication
and all non-free losses from T (xl) less, i.e. we get a reconciliation with a
strictly lower cost. Indeed, since x is a minimal duplication, subtree T (xl)
cannot have any duplications, i.e. by removing T (xl) we cannot get to the
situation where some free loss becomes non-free.

Case 2, xl ∈ V (G), xr /∈ V (G). Similarly, if x is not a conversion, remove
T (xr) suppress x, and we get a reconciliation with strictly less cost. If x is a
conversion and l is associate loss, then remove l, suppress x and connect xr
and pG′(l). We again obtain a cheaper reconciliation.

The next lemma is a version of Lemma 10 for an optimal reconciliation.

Lemma 13. Let Rlca be the LCA reconciliation, and let R be an optimal
reconciliation. If distlca(R) > 0, there exists an optimal reconciliation R′

such that ∆(R′) = ∆(R) and distlca(R
′) < distlca(R).

13

Proof. Follows directly from the proof of Lemma 10. We constructed R′ by
pruning some of the lost subtrees and lowering duplication, which remained a
duplication in R′. By Lemma 12 lost subtrees in optimal reconciliation can-
not contain duplications, hence the set of duplications remained unchanged,
i.e. ∆(R′) = ∆(R).

Next theorem states that all optimal reconciliations have the same sets
of duplications.

Theorem 14. Let Rlca = (G,G′lca, S, φ, ρlca) be the LCA reconciliation and
R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation. Then ∆(Rlca) = ∆(R).

Proof. Assume the opposite, there exist G, S and R such that R is an op-
timal reconciliation and ∆(Rlca) 6= ∆(R). By Lemma 11 and Lemma 12
we get ∆(Rlca) ⊂ ∆(R) ∩ V (G) = ∆(R). Assume that R is an optimal
reconciliation with ∆(Rlca) ⊂ ∆(R) and minimum distlca(R). We have
distlca(R) = 0, otherwise we could get an optimal reconciliation R′ with
distlca(R

′) < distlca(R) and ∆(R′) = ∆(R) (Lemma 13). From distlca(R) =
0, we obtain ρ(x) = ρlca(x), ∀x ∈ V (G).

Let x′ ∈ ∆(R)\∆(Rlca). By Lemma 12, we have x′ ∈ V (G). From
x′ /∈ ∆(Rlca) we get that x′ ∈ Σ(Rlca). We will continue in a similar way as
in the proof of Lemma 10. Let x1, ..., xk be descendants of x′ in V (G′) with
the same ρ-value as x′.

Assume x1 ∈ V (G). Since ρ(x) = ρlca(x), ∀x ∈ V (G) and ρ(x1) = ρ(x′)
we get ρlca(x1) = ρlca(x

′), hence (Lemma 4) x′ ∈ ∆(Rlca), a contradiction.
Therefore x1 /∈ V (G).

By a similar argument, x1, . . . , xk /∈ V (G). Let Ti be the lost subtrees
rooted at xi (i = 1, . . . , k). By pruning Ti and suppressing xi (i = 1, . . . , k)
we get G′′, and a new reconciliation where node x′ is a speciation. Hence we
get a reconciliation with strictly lower cost, which contradicts the optimality
of R.

Next lemma states that, in an optimal reconciliation, we cannot have two
comparable nodes x, y ∈ V (G′)\V (G) such that ρ(x) = ρ(y).

Lemma 15. Let R be an optimal reconciliation and x, y ∈ V (G′) such that
ρ(x) = ρ(y) and x < y. Then y ∈ V (G) ∩∆(Rlca) = ∆(Rlca) = ∆(R).

Proof. From Lemma 4 we have y ∈ ∆(R). From Theorem 14, we obtain
∆(R) = ∆(Rlca). From Lemma 12, we have y ∈ V (G) ⊇ ∆(R) = ∆(Rlca).
Therefore y ∈ V (G) ∩∆(Rlca).

14

Next lemma states the relation between minimal and optimal reconcilia-
tions.

Lemma 16. Let R be an optimal reconciliation. Then there exists R′, a
minimal reconciliation such that R is a completion of R′.

Proof. Let R′ be the reconciliation obtained from R by deleting all lost
subtrees except their root edges. So R is a completion of R′. We prove
that R′ is minimal. Suppose the opposite. There is e′ = (x′, pG′(x′)) ∈
E(G′)\E(G) such that by removing e′ and suppressing pG′(x′) we obtain
again a reconciliation, denoted by R′′. From the proof of Lemma 6, Case 2,
we have that ∀s ∈ V (S) and x, y ∈ V (G′), such that x < y, ρ(x) < s < ρ(y),
∃z ∈ V (G′) such that ρ(z) = s and x < z < y. Let x1 be another child of
pG′(x′). Since there is no lost subtrees with more than one edge, we have
x1 ∈ V (G).

Let s = ρ(pG′(x′)). Since R′′ is a reconciliation, ∃x′′ ∈ V (G′′) such that
s = ρ(x′′) and x′′ comparable to x1. Take minimal x′′ with these properties,
then (Lemma 3) x′′ ∈ Σ(R′′). After bringing back e, we get that pG′(x′) or x′′

becomes a duplication (Lemma 4). Hence ∆(R′′) ⊂ ∆(R′) = ∆(R), which
contradicts the optimality of R (Lemma 11 and Theorem 14).

3.3. LCA completions are optimal

Theorem 17. A completion of the LCA reconciliation is an optimal recon-
ciliation.

Proof. Let R = (G,G′, S, φ, ρ, δ) be an optimal reconciliation with distlca(R)
minimum. We prove that this reconciliation is a completion of the LCA. Since
all completions of the LCA have the same weight by definition, this proves
that all completions of the LCA are optimal reconciliations.

From Lemma 13 we get distlca(R) = 0 and therefore ρ(x) = ρlca(x), ∀x ∈
V (G). From Theorem 14 and Lemma 12, we have ∆(R) = ∆(Rlca) ⊆ V (G).

Let t be a root of some lost subtree of G′. Let us prove that t ∈ V (G′lca),
and vice versa, if t ∈ V (G′lca)\V (G), then t is a root of some lost subtree of
G′. This correspondence has to be bijective.

Let us prove that we can establish a bijection
f : V (G)∪{t | t is a root of some lost subtree of V (G′)} → V (G′lca)\Λ(Rlca)
such that f(x) = x, ∀x ∈ V (G), x < y =⇒ f(x) < f(y), ρ(x) = ρ(f(x)).

First, put f(x) = x, ∀x ∈ V (G).

15

Let t ∈ V (G′)\V (G) be a root of some lost subtree of G′, ρ(t) = s,
x < t < pG(x). From Lemmas 12 and 3, we have t ∈ Σ(R) and t is a minimal
element of ρ−1(s). Hence, there is no other element t′ ∈ V (G′) such that
ρ(t′) = s, x < t′ < pG(x). Since t ∈ Σ(R), we have ρ(x) < ρ(t) ≤ ρ(pG(x)).
In Rlca we also have x′ ∈ V (G′lca), such that ρ(x′) = s, and x < x′ < pG(x).
Next, put f(t) = x′.

Above correspondence is obviously an injection. Let us prove that it is
a surjection. In a similar way, let x′ ∈ V (G′lca)\Λ(Rlca), ρlca(x

′) = s′. If
x′ ∈ V (G), then x′ = f(x′). Now, assume x′ /∈ V (G). Again from Lemmas
12 and 3 we have that x′ ∈ Σ(Rlca) and x′ is a minimal element of ρ−1lca(s

′).
Let x < x′ < pG(x), x ∈ V (G). Similarly, we have ρlca(x) < ρlca(pG(x)) and
x′ is the only element from V (G′)\V (G) assigned to s′ comparable to x. In
order for R to be ρ-consistent, there is a root of the lost subtree of G′ (say
t) such that: ρ(t) = s′, and x < t < pG(x) and it is unique. So, f(t) = x′.

We proved the existence of the described correspondence, therefore every
lost subtree of R is obtained as a loss extension in Rlca.

The LCA reconciliation is easy to find, it is a well known result that there
is a linear time algorithm to compute it [14]. What remains in order to derive
an algorithm to find an optimal reconciliation is to find a completion. Next
section presents a method to find a completion of an arbitrary reconciliation.

3.4. Finding a completion and the flow of losses

Finding a completion is a kind of flow problem. We have demands, which
are losses, that we supply by duplications, i.e. we associate them to dupli-
cations to form conversions. The amount and distribution of duplications in
the phylogenetic tree tells how many losses can be supplied. The number
of losses that can be supplied tells the value of a completion. We compute
this number recursively along the tree. In consequence we have to define
restriction of reconciliations to subtrees, which are multiple reconciliations.

Definition 16 (Multiple reconciliation). Let Ri = (Gi, G
′
i, S, φi, ρi) be

DL reconciliations of gene trees Gi with species tree S, (i = 1, . . . , k). Let
T1, . . . , Tt be trees, ρ′j : V (Tj)→ V (S) verifying that ρ′j(root(Tj)) = root(S)
and Tj is ρ′j-consistent, (j = 1, . . . , t). Let R′j = (Tj, S, ρ

′
j), (j = 1, . . . , t).

Next, let δ :
⋃

∆(Ri)∪
⋃

∆(R′j)→
⋃

Λ(Ri)∪
⋃

Λ(R′j) be a partial injective
function such that δ(d) = l implies that d and l are assigned to the same
node in V (S). Then the structure Rm = (G,S,R1, ...,Rk,R

′
1, ...,R

′
t, δ) is

called multiple reconciliation.

16

The crucial property of a multiple reconciliation is that a loss from one
tree (G′ or Ti) can be assigned by δ to a duplication from another gene tree.
The cost of a multiple reconciliation is computed the same way as the cost
of a reconciliation. The multiple reconciliation induced by a reconciliation
R and an edge e is composed of all parts of R mapped to S(e) by ρ. If it
is evident from the context, instead of multiple reconciliation, we will write
reconciliation, allowing additional lost subtrees. Let Rm be a multiple recon-
ciliation with e ∈ E(S). Let Rm1 be the reconciliation obtained from Rm by
adding k new lost subtrees with only one root edge assigned to e. Obviously
ω(Rm) + k = ω(Rm1), but it is possible that ω(c(Rm)) = ω(c(Rm1)) (see
Figure 2).

Definition 17 (Flow). Let R be a reconciliation, e ∈ E(S), and R(e) the
multiple reconciliation induced with R and e. Let R′(e) be the reconciliation
obtained from R(e) by removing all T1, . . . , Tl the lost trees containing only
one loss assigned to e. With Rk(e) denote multiple reconciliation obtained
from R′(e) by adding k lost trees containing only one loss assigned to e (k
may be lower or higher than l, if k = l then Rk = R). Let k′ be the maximum
number such that ω(c(Rk′(e))) = ω(c(R′(e))). With F (e,R) = F (e) = k′− l
is denoted the flow of the edge e.

Note that if F (e) ≥ 0, then F (e) is the maximum number of extra losses
assigned to e that does not change the weight of the completion of R(e).
Opposite is also true, if m ≥ 0 is the maximum number of extra losses
assigned to e that does not change the weight of a completion of R(e), then
m = F (e).

We show how to efficiently compute the flow recursively with Lemma 18.
Recall D(e) = D(e,Rm), L(e) = L(e,Rm) denote number of duplications
and losses assigned to e in reconciliation Rm.

Lemma 18. Let Rm be a multiple reconciliation, e ∈ E(S). Then

F (e) = max
(
min

(
F (el), F (er)

)
, 0
)

+ D(e)− L(e).

Proof. We will use mathematical induction on e. Let e be a leaf edge. Then
el = NULL, er = NULL, and F (el) = F (er) = 0. The only way new losses,
assigned to e, can be free is by pairing them with duplications in e. Therefore
k′ = d and F (e) = k′ − l = d− l.

17

Figure 2: Flow. (i) Multiple reconciliation R1 (ii) Multiple reconciliation R2

obtained from R1 by adding k extra (k = 2) losses to the edge e. We have
ω(R2) = ω(R1) + k. (iii) Completion of R2. Completion of R1 can be obtained
by removing added lost subtrees. We see that ω(c(R2)) = ω(c(R1)). Maximum
number k for which the last relation holds is called flow of the edge e.

Now, let e be a non-leaf edge, m = max(min(F (el,Rm(el)), F (er,Rm(er))), 0),
d = D(e,Rm(e)), and l = L(e,Rm(e)). By inductive hypothesis, we can ex-
tend m losses over er and el, so the weight of the completions of Rm(el)
and Rm(er) is not changed. We can make d losses, assigned to e, free by
pairing them with duplications in e. Hence k′ = m + d and F (e) = k′ − l =
m+ d− l

Lemma 19. Let R1 be a multiple reconciliation with a root edge e = (s, p(s)),
and F (e,R1) ≤ 0. By assigning an extra loss to e we obtain R2. Then
ω(c(R2)) = ω(c(R1)) + 1.

We postpone the proof of this Lemma to section 5 because it will use
some notions introduced later.

The next lemma is a consequence of Lemma 19.

Lemma 20. Let R1 be a (multiple) reconciliation, e is the root edge of S,
and F (e,R1) < 0. Let R2 be a reconciliation obtained from R1 by removing
a loss assigned to e. Then ω(c(R2)) = ω(c(R1))− 1

Lemmas 19 and 20 are stated in a way of adding and removing a loss from
the root edge e. Similar lemmas are in effect if we remove/add a duplication
from/to the root edge e. Because of the obviousness we will not state them
nor prove them.

18

Thanks to this flow computation we can find a completion of any rec-
onciliation by a polynomial time algorithm, which pseudo-code is written in
Algorithm 1 and 2.

Algorithm 1 Find a completion of a reconciliation.

1: procedure OneCompletion(R)
2: while there is a loss l ∈ Σ\Σ′ assigned to edge e such that either

there is a duplication that is not a conversion assigned to e or children
of e have positive flow do

3: ExtendLossIntoFreeTree(R, l)
4: end while
5: end procedure

Algorithm 2 Extends one loss into a free tree.

1: procedure ExtendLossIntoFreeTree(R, l)
2: l is assigned to e = (s, p(s)) and e1, e2 are children of e
3: ∆′′(e) is the set of all duplications that are not conversion assigned

to e
4: if ∆′′(e) 6= ∅ and F (e1) > 0 and F (e2) > 0 then
5: Randomly choose between ”assign” and ”extend”
6: end if
7: if F (e1) ≤ 0 or F (e2) ≤ 0 or ”assign” has been chosen then
8: Assign l to a random d ∈ ∆′′(e)
9: else

10: extend l over e1, e2
11: l1, l2 are new losses assigned to e1, e2
12: ExtendLossIntoFreeTree(R, l1)
13: ExtendLossIntoFreeTree(R, l2)
14: end if
15: end procedure

Let us introduce a convention. If we say that, e.g. R′ is an output of
ExtendLosses(R), then the procedure ExtendLosses(.) is observed as a
standalone procedure with the input R. But if we say that R′ is an output of
ExtendLosses (no input parameters), then we observe ExtendLosses as
a part (sub procedure) of the main procedure, and ExtendLosses receives
parameters as described.

19

Lemma 21. Let R be a reconciliation, l is a non-free loss assigned to e ∈
E(S), e1, e2 are children of e. Next, ∆′′(e) 6= ∅ or (F (e1) > 0 and F (e2) > 0).
Then the procedure ExtendLossIntoFreeTree(R, l) extends l into a free
tree.

Proof. Note that if ∆′′(e) = ∅ and F (e1) = F (e2) = 0, then F (e) ≤ 0.
We will use mathematical induction on e. Let e be a leaf edge. Then

e1 = NULL, e2 = NULL and F (e1) = F (e2) = 0. Hence ∆′′(e) 6= ∅, and l
is assigned to a random duplication from ∆′′(e).

Assume that e is not a leaf edge. If ∆′′(e) 6= ∅ and assign is chosen,
then l is assigned to a random element from ∆′′(e), i.e. l is extended into a
free tree with one edge. If ∆′′(e) = ∅ or extend is chosen, then F (e1) > 0,
F (e2) > 0 and l is extended into l1 and l2. Since F (ei) > 0, (i = 1, 2) then
ei satisfies if condition in OneCompletion. Hence, by inductive hypothe-
sis, ExtendLossIntoFreeTree(R, li) extends li into a free tree, i.e. l is
extended into free tree.

Let us introduce a convention. Let e = (x, pG′(x)) ∈ E(G′). If ρ(pG′(x)) =
p(ρ(x)), then we can write ρ(e) = (ρ(x), ρ(pG′(x))) ∈ E(S). This property
does not hold for any edge of G′, but it holds for any edge of a lost subtree,
since we do not observe lost subtrees with duplications (an optimal reconcil-
iation cannot have a lost subtree with a duplication). Let T be a subtree of
G′, then ρ(t) = {ρ(e) | e ∈ E(T)}. Sometimes we will identify lost trees with
their root, i.e. v can denote both a root of a tree or a tree with root v. The
reason for this is that lost subtrees are dynamical, they extend or switch (an
operation introduced later), but their roots are not.

Lemma 22. Let R be a reconciliation with non-extended losses, ti (i =
1, . . . , k) and t′j (j = 1, . . . ,m) are free and non-free lost subtrees of c(R)
such that t′j ≥ ti whenever ti and t′j overlap. All non-free lost subtrees t′j
(j = 1, . . . ,m) are non-extended, i.e. they have one edge each. Then c(R) is
a possible output of OneCompletion(R).

Proof. Let R0 = R, Ri is obtained from Ri−1 by extending corresponding
loss to the tree ti (i = 1, . . . , k). Hence Rk = c(R).

Assume that trees t1, . . . , ti−1 (i ≥ 1) are constructed by iterations of
ExtendLossIntoFreeTree. Take ti that has the minimal root among
free lost subtrees that are not added. Let us prove that F (e,Ri−1) > 0,
∀e ∈ E(ρ(ti))\{rootE(ρ(ti))}. Assume the opposite, let F (e1,Ri−1) ≤ 0, and

20

since free subtree ti extends over e1, we have that some loss in S(e1) becomes
non-free. More precisely, ω(c(Ri−1(e1))) < ω(c(Ri(e1))). This means that
|Λ\Λ′(c(Ri−1(e1)))| < |Λ\Λ′(c(Ri(e1)))|. Since trees t1, . . . , ti−1 (and ti) are
free and already present in Ri−1 (i.e. Ri), then we can assume that they
are not changed in c(Ri−1) (i.e. c(Ri)), because we gain nothing by further
extending free losses (although it is possible).

Observe c(Ri(e1)). Let TS be the maximal subtree of S(e1) (see Figure
7) such that if v0 ∈ V (TS)\L(TS) is a lost subtree in c(Ri(e1)), then there
are lost subtrees (in c(Ri(e1))) v1, . . . , vs, ρ(v0) < ρ(v1) < . . . < ρ(vs), vi
overlaps with vi+1 (i = 0, . . . , s− 1) and vs = ti.

Let v ∈ V (TS)\L(TS) be a lost subtree. Let us prove that v is a free
tree (in c(Ri−1(e1)), c(Ri(e1)), and c(R)). From v ∈ V (TS)\L(TS) we have
v = v0 < v1 < . . . , vs−1 < vs = ti and vi−1 overlaps vi. Since vs−1 overlaps ti
(in c(Ri(e1))) and ti is the same in both c(Ri(e1)) and c(R), we have that vs−1
overlaps ti in c(R), hence vs−1 is a free tree in c(R), i.e. vs−1 ∈ {t1, . . . , ti−1}.
Applying the same argument on vs−1, we get vs−2 ∈ {t1, . . . , ti−1}. Proceed-
ing in this manner, we have v ∈ {t1, . . . , ti−1}, hence v is a free tree.

Let f1, . . . , fr be the children of leaf edges of TS. From the maximality
of TS, we have there is no lost subtree in c(Ri−1(e1)) nor in c(Ri(e1)) that
expands over fj, (j = 1, . . . , r). All non-free losses from S(e1) are contained
in S(fj), (j = 1, . . . , r). This holds for both c(Ri−1) and c(Ri). Therefore the
structure of the lost subtrees in Ri−1(fj) can be identical to the structure
of the lost subtrees in Ri(fj), (j = 1, . . . , r), and thus obtaining that a
completion of Ri−1(e1) has the same weight as an extension of Ri(e1), a
contradiction.

Hence the procedure ExtendLossIntoFreeTree can give us ti, (i =
1, . . . , k).

It is proved in Section 5, in a more general framework, that these proce-
dures indeed compute a completion, and hence, if the input reconciliation is
the LCA reconciliation, it computes an optimal reconciliation.

4. Zero-flow reconciliations and the space of all optimal reconcili-
ations

Here we introduce zero-flow reconciliations and use them as a hinge to
find all optimal reconciliations. Zero-flow (ZF) reconciliations are a subspace
of optimal reconciliations and they contain LCA reconciliations, but these

21

inclusions are strict: all sets are distinct. We first show how to find any
ZF reconciliation, up to completion, from an LCA reconciliation. Then by
a different procedure we show how to access the whole space of optimal
reconciliations, up to completion, from a ZF reconciliation. Finally, as these
reductions work up to completion, we show how to navigate in all completions
for a given reconciliation.

Let e = (s, p(s)) be an edge of S and R a reconciliation. We note
X(e,R) = {d ∈ V (G) | ρlca(d) ≤ s, ρ(d) ≥ p(s)} the set of nodes (dupli-
cations or conversions) which are assigned under s in the LCA reconciliation
and above p(s) in R.

Definition 18. An optimal reconciliation R is said to be a zero-flow (ZF)
reconciliation if for all s internal node of S with children edges e1 and e2,
F (e1,R) < 0 =⇒ X(e1,R) = X(e2,R) = ∅.

In other words, an optimal reconciliation is ZF if all duplications assigned
to or above a node s, when strictly below in the LCA, verify that the flow
the children edges of s is non negative. By definition LCA reconciliations
are ZF (X(e,Rlca) = ∅ for all e). But we will see that the converse is not
true. Similarly ZF reconciliations are optimal by definition but some optimal
reconciliations are not ZF.

4.1. Computing ZF reconciliations by duplication raising

Duplication raising consists in changing the position of a duplication from
its position in a minimal reconciliation to an upper position in the species
tree. It is a concept that was previously used to explore DL reconciliations
[15].

Definition 19 (Node raising). Let R = (G,G′, S, φ, ρ, δ) be a minimal
reconciliation and x ∈ V (G). We say that reconciliation R′ = (G,G′′, S, φ, ρ′, δ′)
is obtained from R by raising node x if R′ is a minimal reconciliation such
that ρ(x′) = ρ′(x′), ∀x′ ∈ V (G)\{x} and ρ′(x) = p(ρ(x)).

Depending on the assignment and event status of the parent node of x,
raising x has different effects. If pG(x) is a speciation (see Figure 3) and
ρ(pG(x)) = p(ρ(x)), after raising x, pG(x) becomes a duplication and three
new losses are generated. This cannot lead to an optimal solution because
of the additional duplication (Theorem 14). If ρ(pG(x)) > p(ρ(x)) or pG(x)

22

Figure 3: Duplication raising. Given duplication x (i) No
speciation. After raising x, a new loss is created. An
optimal solution can be generated by this operation. (ii)
We have y = pG(x) and ρ(y) = p(ρ(x)). After raising x,
y becomes duplication and three new losses are generated.
This cannot be optimal.

is a duplication, after raising x, only one additional loss is generated. This
condition, which is necessary to yield an optimal solution, is formalized as
follows.

x ∈ ∆(R) ∧
(
p(ρ(x)) < ρ(pG(x)) ∨

(
p(ρ(x)) = ρ(pG(x)) ∧ pG(x) ∈ ∆(R)

))
(1)

The next lemma states that raising a duplication cannot decrease the
weight of a completion. The proof of the lemma also describes how to lower
a duplication. This procedure will be important later in some proofs.

Lemma 23. Let R be a minimal reconciliation, R1 is a minimal reconcilia-
tion obtained from R by raising a duplication. Then ω(c(R)) ≤ ω(c(R1)).

23

Proof. Let x be the raised duplication, e1, e2 ∈ E(S) are siblings, e is their
parent, x is assigned to e1 in R and to e in R1.

Let T be the lost subtree such that root(T) is a child of x in c(R1) and
T is expanded over e2. Observe two cases (see Figure 4).

Figure 4: Lowering duplication.(i) Lowering duplication (that is not a con-
version). If there is non-free subtree T , not associated with x, we can make
it associated by rearranging the roots. By lowering x we can delete one lost
subtree (T), and if it is non-free, then we get a cheaper reconciliation. (ii)
Lowering a conversion. Loss assigned to x can be extended to one of the
lost subtrees on the right side. We get a reconciliation of the same weight.

Case 1, x /∈ ∆′(c(R1)). Start with c(R1), place x back to e1, and remove
T . We get an extension of R with a cost at most the one of c(R1), i.e.
ω(c(R)) ≤ ω(c(R1)).

Case 2, x ∈ ∆′(c(R1)). Let l be a loss assigned to x in c(R1). Start with
c(R1), place x back to e1, extend l, so that in e1 is paired with x (staying
free loss), and in e2 is connected to T . In this way, we get an extension of R
of the same weight as c(R1), i.e. ω(c(R)) ≤ ω(c(R1)).

As a consequence of Lemma 23, no optimal reconciliation can be obtained
by raising a duplication from a reconciliation that has no optimal completion.

24

We will now see in which conditions a duplication raising of a reconciliation
with an optimal completion can lead to another reconciliation with optimal
completion.

The next lemma states when raising a duplication does not increase the
weight of a reconciliation.

Lemma 24. Let R be a minimal reconciliation, and e1, e2 ∈ E(S) the chil-
dren of edge e. If x ∈ ∆(R) assigned to e1 satisfies condition (1), R1 is a
minimal reconciliation obtained by raising x, F (e1,R) > 0 and F (e2,R) > 0,
then ω(c(R1)) = ω(c(R)).

Proof. First, construct an extension of R1, by using c(R). By raising x, we
generate one new loss in e2. Since F (e2,R) > 0, we have ω(c(R(e2))) =
ω(c(R1(e2))), i.e. the loss generated by the duplication raising can become
a free loss.

Let x ∈ ∆′(c(R)) and assigned to l ∈ Λ′(c(R)). If l is non-extended (in
c(R)) and since F (e1,R) > 0, we have that l can be assigned to some other
duplication in e1 or extend over children of e1 and become free. If l is part of
a lost subtree Tl in c(R), then by raising x, we ca also raise l, remove subtree
of Tl expanding over e2, leave l assigned to x.

Thus we obtain an extension of R1, not heavier than c(R), i.e. ω(c(R1)) ≤
ω(c(R)). From Lemma 23, we have ω(c(R)) ≤ ω(c(R1)), hence ω(c(R1)) =
ω(c(R)).

The next lemma follows directly from Lemma 24.

Lemma 25. Under the hypotheses of Lemma 24, if completions of R are
optimal, then completions of R1 are optimal.

Algorithms 3, 4, and 5 describe how to generate a reconciliation which
does not change the score of completions by raising duplications.

Algorithm 3 Raises duplications

1: procedure RaiseSeveralDuplications(d,R)
2: for d ∈ ∆(Rlca) from top to bottom of V (G) do
3: R← RaiseDuplication(d,Rlca)
4: end for
5: end procedure

25

Algorithm 4 Raises duplication (respecting F > 0)

1: procedure RaiseDuplication(d,R)
2: L ← PossiblePositions(d,R)
3: k = random(0,|L| − 1)
4: ρ(d) = L[k]
5: GenerateNewLosses()
6: end procedure

Algorithm 5 Possible new positions for a duplication.

1: procedure PossiblePositions(d,R)
2: s = ρ(d)
3: e = (s, p(s))
4: e′ - sibling of e
5: L← {s}
6: while F (e) > 0 and F (e′) > 0 and (ρ(pG(d)) > p(s) or (ρ(pG(d)) ==
p(s) and pG(d) ∈ ∆)) do

7: s = p(s)
8: e = (s, p(s))
9: e′ - sibling of e

10: L← L+ {s}
11: end while
12: end procedure

26

Procedure GenerateNewLosses adds lost subtrees to that the new ρ
after raising a duplication is consistent with S.

The two next statements demonstrate that, up to completion, all the ZF
reconciliations are reached by applying Algorithm RaiseDuplication on a
LCA reconciliation.

Lemma 26. Completions of R, an output of RaiseDuplication when the
input is the LCA reconciliation, are optimal.

Proof. Completion of LCA reconciliation is an optimal (Theorem 17), raised
duplications satisfy conditions of Lemma 25, and by this Lemma every time
a duplication is raised we get that c(R) is an optimal reconciliation.

Lemma 27. Let R′ be a minimal reconciliation such that c(R′) is a ZF
reconciliation. Then R′ is a possible output of RaiseDuplication.

Proof. Since c(R′) is an optimal reconciliation, R′ is obtained from LCA by
raising duplications that satisfy condition (1). By raising a duplication, value
of F (e) cannot increase. Let e1, e2 ∈ E(S) be siblings, e their parent, x a
duplication assigned to e1. Let us raise x to e. If before raising F (e1) ≤ 0
or F (e2) ≤ 0, then after raising F (e1) < 0 or F (e2) < 0, X(e1) 6= ∅, and
X(e2) 6= ∅, a contradiction. Hence F (e1) > 0 and F (e2) > 0.

Thus all conditions, for raising a duplication, of the procedure RaiseDu-
plication are satisfied, hence R′ is a possible output.

4.2. Reduction of optimal reconciliations to ZF reconciliations

Lemma 27 states that up to completion, we can generate all ZF rec-
onciliation from LCA reconciliations. We now show how to generate all
reconciliations from ZF reconciliations. This is done by conversion raising.
Next lemma proves that only conversions are concerned by optimal non ZF
reconciliations.

Lemma 28. Let R be an optimal reconciliation, e1 = (s1, s), e2 = (s2, s) ∈
E(S). If F (e1,R) < 0, then X(e1,R) and X(e2,R) are only conversions.

Proof. Assume the opposite, let x ∈ X(e1,R) and x is not a conversion. Put
back (lower) all elements of X(e1,R) to e1. The process is performed as in
the proof of Lemma 23 (Figure 4). If we lower a conversion, the weight of
a reconciliation is not changed, as well as F (e1). If we lower a duplication,
then F (e1) is increased by 1 and the cost of a completion is decreased by one

27

(Lemmas 19, 20 and the comment after), which is a contradiction with the
optimality of R. Therefore, X(e1,R) does not contain a duplication that is
not a conversion.

Similar arguments apply to X(e2,R)

Lemma 29. Procedure RaiseConversions does not change the weight of
a reconciliation.

Proof. Let d be a raised conversion, and Ti is a lost subtree whose leaf is
assigned to d. By raising d, we do not create an extra losses, but use existing
subtree of Ti and reattach it under d (see Figure 4 (ii) in the opposite direc-
tion and Lemma 23, Case 2). The loss that was assigned to d is removed,
and newly created loss is assigned to d at a new position. In this way we
do not change the number of non-free losses, and the number of duplica-
tions/conversions, i.e. the weight of the reconciliation is not changed.

Lemma 30. Let R be an optimal reconciliation. We can obtain a ZF recon-
ciliation by lowering some conversions.

Proof. For all e ∈ E(S), if F (e) < 0, take all elements from X(e) and X(e′),
where e′ is the sibling of e, and lower them to e and e′. In this way we get
X(e) = X(e′) = ∅. Since these elements are conversions (Lemma 28) lower
them as described in Lemma 23, Case 2.

In this way we obtain a ZF reconciliation of the same weight as R.

In consequence it is possible to reach any optimal reconciliation by an
algorithm which explores first ZF reconciliations and raises some conversions
as in Algorithm 6.

4.3. Finding all completions

All previous results are valid up to completions. It means that we have
an algorithm which is able to detect all duplications that can be conversions
in one optimal solution for example. However we don’t know all the possi-
bilities by which it is converted. For that we need to enumerate all possible
completions. The algorithm can be described by three procedures, as written
in Algorithm 8.

One procedure is to generate a completion by extending losses into free
trees, which is described in Section 3.4. In order to generate the full diversity
of possible reconciliations, there are two others described here, which consist
in extending losses into non free lost subtrees, and switch between subtrees.

28

Algorithm 6 raises some conversions

1: procedure RaiseConversions(R)
2: By convention let e1(d) denote the edge to which d is assigned, and
e2(d) its sibling in S.

3: Let C = {d | d ∈ ∆′, F (e1(d)) < 0 or F (e2(d)) < 0}
4: Let Td be used to denote the lost subtree with a leaf paired with d by
δ.

5: while C 6= ∅ do
6: d ∈ C - random
7: RaiseOneConversion(d,R, Td)
8: C = C\{d}
9: end while

10: end procedure

Algorithm 7 raises one conversion

1: procedure RaiseOneConversion(d,R, Td)
2: Let s be a random element of V (S) satisfying
3: (i) s ≥ p(ρ(d))
4: (ii) s ≤ min(ρ(root(Td)), ρ(pG(d)))
5: (iii) if pG(d) ∈ Σ then s 6= ρ(pG(d))
6: Note ρ(d) = s0 < s1 < . . . < sk = s
7: T j

d - subtree of Td, ρ(root(T j
d)) = sj, j = 1, k

8: assign d to random si
9: node (leaf) of Td, assigned to si, pair with d (and d stays conversion)

10: root of every tree T j
d position in G′, under d, at an appropriate posi-

tion
11: end procedure

Algorithm 8 finds a random completion

1: procedure AllCompletions(R)
2: OneCompletion(R)
3: ExtendLossesIntoNonFreeTrees(R)
4: Switch(Rc)
5: end procedure

29

The first one is described in Algorithms 9 and 10. In Algorithm 10 a loss is
extended over two edges, one with positive F -value (say edge e1), and the
other with non-positive F -value (say edge e2). The part (of the lost subtree)
extended over e1 is further extended as a free loss, while the part extended
over e2 is further (recursively) extended as a non-free loss.

Algorithm 9 randomly extends losses into non-free trees

1: procedure ExtendLossesIntoNonFreeTrees(R)
2: Σ1 is the set of all non-free, non-extended losses in R
3: for all l ∈ Σ1 do
4: ExtendOneLossIntoNonFreeTree(R, l)
5: end for
6: end procedure

Algorithm 10 randomly extends losses into non-free trees

1: procedure ExtendOneLossIntoNonFreeTree(R, l)
2: l is assigned to e = (s, p(s))
3: e1, e2 are children of e and F (e1) ≥ F (e2)
4: Randomly choose between ”extend” or not.
5: if F (e1) > 0 and F (e2) ≤ 0 and ”extend” has been chosen then
6: extend l over e1, e2
7: l1, l2 are new losses assigned to e1, e2 and l is their parent
8: ExtendOneLossIntoFreeTree(R, l1)
9: ExtendOneLossIntoNonFreeTree(R, l2)

10: end if
11: end procedure

Lemma 31. Let l be a non-free loss in a reconciliation R. Then procedure
ExtendOneLossIntoNonFreeTree(R, l) extends loss l into a non-free
tree.

Proof. If l is not extended, since it is not assigned to a duplication (con-
version) we will assume that it is extended into a non-free tree (with one
edge).

Let l be assigned to the edge e, and e1, e2 are its children. We will use
mathematical induction on e.

30

Let e be a leaf edge. Then e1 = NULL, e2 = NULL and F (e1) =
F (e2) = 0. In this case, the if condition is not satisfied, and therefore l is
not extended.

Assume that e is not a leaf edge. If the if condition is not satisfied, then
l is not extended, i.e. it is extended into a non-free tree with one edge. If
the if condition is satisfied, then F (e1) > 0 and F (e2) ≤ 0, and l is extended
into l1, l2. Then ExtendOneLossIntoFreeTree(R, l1) extends l1 into
a free tree (Lemma 21), and ExtendOneLossIntoNonFreeTree(R, l2)
extends l2 into a non-free tree (inductive hypothesis). Hence l is extended
into a non-free tree.

The next lemma is a consequence of Lemma 31

Lemma 32. Procedure ExtendLossesIntoNonFreeTrees does not change
the weight of a reconciliation.

Lemma 33. Let R be a reconciliation with non-extended losses, ti (i =
1 . . . k) and t′j (j = 1 . . .m) are free and non-free lost subtrees of c(R) such
that t′j ≥ ti whenever ti and t′j overlap. Then c(R) is a possible output of se-
ries of procedures OneCompletion(R), ExtendLossesIntoNonFreeTrees(R).

Proof. Let R0 = R, Ri is obtained from Ri−1 by extending corresponding loss
to the tree ti (i = 1, . . . , k), R′0 = Rk, R′j is obtained from R′j−1 by extending
corresponding loss to the tree t′j (j = 1, . . . ,m). Hence R′m = c(R).

The procedure OneCompletion can give us ti, (i = 1, . . . , k) (Lemma
22). Now we will prove that ExtendLossesIntoNonFreeTrees can give
us t′j, (j = 1, . . . ,m).

Assume that ti, (i = 1, . . . , k), t′1, . . . , t
′
j−1 (j ≥ 1) are added. Let us prove

that ExtendLossesIntoNonFreeTrees can add t′j. Let e1, e2 ∈ E(S),
e = (s, p(s)) is their parent, and ρ(l′j) = s, where l′j extends into t′j. If
F (e,R′j−1) > 0, then l′j can be free, thus obtaining a cheaper reconciliation
than c(R), a contradiction, so F (e,R′j−1) ≤ 0.

Let e′1, e
′
2 ∈ E(ρ(t′j)) be siblings, e′ their parent, and F (e′1,R

′
i−1) ≥

F (e′2,R
′
i−1). Subtree t′j expands over e′1, e

′
2 and not necessarily originating at

e′. Observe two cases.
Case 1, F (e′,R′j−1) ≤ 0. If F (e′1,R

′
j−1) ≤ 0 (and F (e′2,R

′
j−1) ≤ 0), then

by pruning t′j both e′1 and e′2 don’t gain a loss, so the cost of reconciliations
c(R′j−1(e

′
1)) and c(R′j−1)(e

′
2) will not rise in R′j, but R′j gain one non-free loss

(pruned t′j). Hence we gain a cheaper reconciliation, a contradiction.

31

Assume F (e′1,R
′
j−1) > 0 and F (e′2,R

′
j−1) > 0. Since F (e′,R′j−1) ≤ 0,

there is a loss l assigned to e′ that is non-free (in R′j−1). Then we can extend
l over e′1, e

′
2 so it becomes free, and prune t′j to a single edge (t′j stays non-

free). Hence obtaining a cheaper reconciliation than c(R), a contradiction.
Case 2, F (e′,R′j−1) > 0. If F (e′2,R

′
j−1) ≤ 0, then e′ has a duplication

that is not a conversion. At least one of the subtrees of t′j expanding over
e′1, e

′
2 is a free tree. Assume that it is the one expanding over e′1. Next,

we can prune subtree of t′j so that t′j has a leaf assigned to e′ and to the
duplication, thus becoming a free loss. Since F (e′2,R

′
j−1) ≤ 0 there is one

non-free loss in R′j−1(e
′
2) that can become free, thanks to the fact that t′j

does not expand over e′1 anymore. Making this loss free enable us to obtain
a cheaper reconciliation than c(R), a contradiction.

From the Cases 1 and 2, we have that if F (e′,R′j−1) ≤ 0, then F (e′1,R
′
j−1) >

0, F (e′2,R
′
j−1) ≤ 0, and if F (e′,R′j−1) > 0, then F (e′1,R

′
j−1) > 0, F (e′2,R

′
j−1) >

0. Hence conditions along ρ(t′j) of ExtendLossesIntoNonFreeTrees
are satisfied, and therefore t′j can be obtained by this procedure.

To obtain all possible lost subtrees in an optimal reconciliation, we need
to introduce an operation that exchanges parts of the lost subtrees. Notice
that a lost subtree with more than one non-free leaf cannot appear in an
optimal reconciliation.

Definition 20 (Switch operation on a binary rooted trees). Let T0 and
T1 be binary rooted trees and ti ∈ V (Ti)\{root(Ti)} (i = 0, 1). A switch oper-
ation on T0 and T1 around t0 and t1 creates new trees by separating subtrees
Ti(ti) from Ti and joining them with p(t1−i) ∈ T1−i (i = 0, 1).

Definition 21 (Switch operation on a reconciliation). Let R be a rec-
onciliation, T0 and T1 free and non-free lost subtrees, l ∈ L(T1) is a non-free
loss, p is a path in S from ρ(l) to ρ(root(T1)). Assume there exists a mini-
mal element s0 ∈ {s | s ∈ V (p) ∩ V (ρ(T0))}\{ρ(root(T0)), ρ(root(T1))}, and
ti ∈ V (Ti) such that ρ(ti) = s0 (i = 0, 1). By switch operation on T0 and T1
we mean a switch operation on the binary trees T0 and T1 around t0 and t1.

Switch operation on a reconciliation is defined only for one free and one
non-free lost subtree, and is possible only if trees T0 and T1 overlap, i.e. if
ρ(v0) ∈ ρ(T1) or ρ(v1) ∈ ρ(T0), where vi = root(Ti), (i = 0, 1). In the case
ρ(v0) ∈ ρ(T1), it must be ρ(l) < ρ(v0), where l is a non-free leaf of T1. In

32

Figure 5: Switch operation. (i) Switch between T0 and T1 around t0 and t1 (ii-iii)
Switch on a reconciliation. Exactly one lost subtree receives a (nontrivial) subtree
from the other lost subtree. A subtree with a non-free loss has to be involved in a
switch operation. An empty triangle denotes a free subtree, while a triangle with x
denotes a non-free subtree.

Figure 6: Example for necessity of switch operation. (i) Minimal reconciliation.
(ii) The completion. We have one free and two non-free trees. (iii) A comple-
tion obtained by switch operation. Note that this completion is not obtainable by
standard extension into free and non-free trees.

33

these cases we say that T0 and T1 are switchable. We have that either T0
gives a (non-trivial) subtree to T1, or T1 gives a (non-trivial) subtree to T0,
but both cannot happen.

When we apply a switch operation two times on the same trees, around
the same nodes, we obtain starting trees, i.e. switching is self-inverse opera-
tion. After switch operation, involved trees still overlap.

For simplicity of notation, we introduce some conventions. We write tree
instead of lost subtree. We will identify a tree with its root, i.e. instead of
writing a tree with the root v, we will use a tree v. We do this because, when
switching, trees are changed, but the roots are not. When we write v0 < v1,
we mean ρ(v0) < ρ(v1). Number of non-free leaves in a tree v is denoted by
ω(v), thus ω(v) = 0 means that v is a free lost subtree, and ω(v) = 1 means
that v is a non-free lost subtree.

If we will apply a switch operation on switchable trees v0, v1 such that
ω(v1) = 1 and ω(v0) = 0, we say that v1 carries over a (non-free) loss to v0.

The next lemma is obvious.

Lemma 34. Switch operation does not change the weight of a reconciliation.

The next lemma tells us how to, from an arbitrary reconciliation, obtain
a reconciliation with more convenient structure of lost subtrees.

Lemma 35. Let R be a reconciliation. Then there exists a reconciliation
R1 such that if v0 and v1 are free and non-free overlapping trees in R1, then
v0 ≤ v1 and ω(R) = ω(R1).

Proof. Let Vlost = {v | v is a lost subtree}. Take v0 ∈ Vlost such that ω(v0) =
1, and v1 ∈ Vlost such that ω(v1) = 0, v0 < v1, and v0 is overlapping with v1.
By switching v0 and v1 we get ω(v0) = 0, ω(v1) = 1 and v0 < v1. Repeat the
process as long as there are trees v0, v1 as described. We need to prove that
this algorithm ends.

Let d(Vlost) be the total distance of all non-free v ∈ Vlost from root(S).
Hence d(Vlost) is a non-negative integer. Every time, when switching is ap-
plied, d(Vlost) decreases, hence the algorithm must stop, because d(Vlost) can-
not decrease indefinitely.

Switch operation does not change the weight of a reconciliation (Lemma
34).

Procedure SwitchSubtrees is described in Definition 21.

34

Algorithm 11 applies switch operation on lost subtrees

1: procedure Switch(R)
2: T′ - the set of all non-free lost subtrees in R
3: Tv′ - the set of all free lost subtrees, less than v′, switchable with v′

4: while T′ 6= ∅ do
5: v′ ∈ T′ - random
6: v ∈ Tv′ ∪ {NULL}
7: if v==NULL then
8: T′ = T′\{v′}
9: continue while loop

10: end if
11: SwitchSubtrees(v, v′)
12: T′ = (T′\{v′}) ∪ {v}
13: end while
14: end procedure

5. The algorithm

In this section, we prove that the algorithm returns an optimal reconcili-
ation, and any optimal reconciliation can be an output of the algorithm. We
also prove the remaining lemmas.

All elements are ready to write the main algorithm that generates a ran-
dom optimal solution.

Algorithm 12 gives the main procedure.

Algorithm 12 Random reconciliation

1: procedure RandR(S,G, φ)
2: Let Rlca be the LCA reconciliation
3: R← RaiseSeveralDuplications(d,Rlca)
4: Rc ← AllCompletions(R)
5: Return RaiseConversions(Rc)
6: end procedure

Now we prove a lemma stated earlier.

Proof of Lemma 19. Let l be the number of assigned losses to e in R1, R
is the (multiple) reconciliation obtained from R1 by removing all (l) losses

35

from e, k′ is from the definition of flow. Then F (e,R1) = k′ − l. Therefore,
the maximum number of extra losses that we can assign to e in R, without
completion cost change, is k′ and k′ ≤ l.

It is obvious that ∆(R) = ∆(R1) = ∆(R2). Also ω(c(R)) < ω(c(R2)).
We have that ω(c(R2)) = ω(c(R1)) + 1 or ω(c(R2)) = ω(c(R1)). Assume

that ω(c(R2)) = ω(c(R1)).
Observe c(R2). Let t1, . . . , tl, tl+1 be the lost subtrees with the roots

assigned to p(s) (and expanding over e). If any of these subtrees are non-free
in c(R2) then by removing it we get an extension of R1 that has strictly less
weight than ω(c(R2)) = ω(c(R1)), a contradiction. Therefore all subtrees
t1, . . . , tl, tl+1 are free in c(R2).

Let us prove that there is at least one non-free subtree in c(R2). Assume
the opposite, i.e. all lost subtrees of c(R2) are free. Then we can have an
extension of R1 and R with all free lost subtrees, by just removing one or
all subtrees extending over e. Hence ω(c(R)) = ω(c(R1)) = ω(c(R2)) =
|∆(R)|. This means that we can assign at least l+ 1 losses to e in R without
completion cost change. This contradicts the fact that k′ < l + 1. Therefore
c(R2) has at least one non-free lost subtree.

Let us prove that there exists a chain of lost subtrees v1, . . . , vm−1, vm
(in R2) such that v1 < . . . < vm, vi overlaps vi+1, (i = 1, . . . ,m − 1), v1
is a non-free tree, v2, . . . , vm are free trees and vm is a tree assigned to p(s)
extending over e.

Assume the opposite. Let TS be the maximum subtree with root edge e
that contains only free lost subtrees (see Figure 7), and f1, . . . , fr edges of S
that are children of leaf-edges of TS. Because of the maximality of TS and
the assumption that there is no chain leading from non-free tree to one of the
trees t1, . . . , tl+1, we have that there is no tree expanding from inner node of
TS over one of the edges f1, . . . , fr. Since R2 has at least one non-free lost
subtree, we have r ≥ 1, i.e. edges f1, . . . , fr do exist.

Since ω(c(R)) < ω(c(R2)) and c(R2) has only free trees in TS, then there
is i such that ω(c(R)(fi)) < ω(c(R2)(fi)). Since no lost subtrees expands
from inner node of TS over fi, we can take the lost subtrees with roots in
c(R)(fi) and use them in c(R2), instead of the lost subtrees in c(R2)(fi).
Thus we obtain an extension of R2 with strictly less cost than c(R2), a
contradiction. This means that there is a chain v1, . . . , vm with described
properties (v1 is non-free, etc.).

Now, apply switch operation on vi, vi+1, for every i = 1, . . . ,m−1. In this
way vm, which is one of the trees t1, . . . , tl+1, becomes non-free. The weight

36

of c(R2) is not changed with these switch operations. Now, by removing
vm, we obtain an extension of R1 with strictly less cost than c(R2), which
contradicts the assumption ω(c(R2)) = ω(c(R1)). Therefore ω(c(R2)) =
ω(c(R1)) + 1.

Figure 7: Tree TS is the maximum subtree of S(e1) rooted at e1 that contains only
free lost subtrees. There are no lost subtrees expanding from TS over fj. All non-
free lost subtrees of S(e1) are in S(fj), j = 1, r.

Let e = (s, p(s)) ∈ E(S), and by L′(e) = L′(e,R) = L′(s) = L′(s,R)
denote the number of non-free lost subtrees, in the reconciliation R, with a
root assigned to p(s) ∈ V (S), expanding over e.

Lemma 36. Let R be a reconciliation, R1 output of OneCompletion(R),
e ∈ E(S), and el, er children of e. Then

(a) F (e,R) > 0 =⇒ L′(e,R1) = 0;

(b) F (e,R) ≤ 0 =⇒ L′(e,R1) = L(e,R)−D(e,R)−max(min(F (el,R), F (er,R)), 0);

(c) if R2 is another output of OneCompletion(R), then ω(R1) = ω(R2).

37

Proof. Let l = L(e,R), d = D(e,R),m = max(min(F (el,R), F (er,R)), 0).
(a) Since OneCompletion extends losses only into edges e, if F (e) > 0,

we have that the number of extra losses, expanded over e, is not greater than
F (e). Assume that R1 generates extra f losses in e. Hence f ≤ F (e,R) =
m+d− l. Let fm and lm be the number of losses made free by extending over
el, er, and fd and ld are number of losses made free by assigning them to the
duplications in e. Hence fm + lm ≤ m, fd + ld ≤ d, fm + fd ≤ f , lm + ld ≤ l.

Assume the opposite, let L′(e,R1) > 0. Then fm + fd + lm + ld < f + l ≤
d + m =⇒ fd + ld < d or fm + lm < m. Therefore one extra loss can be
made free by assigning it to duplication in e, or extending it over er and el.
This contradicts the procedure ExtendLossIntoFreeTree, which make
loss free if ∆(e) 6= ∅ or F (e1) > 0 and F (e2) > 0.

(b) Since F (e,R) ≤ 0, R1 does not extend any new losses over e, and
m+ d ≤ l. At most m losses can be extended over er and el, and at most d
losses can be assigned to the duplications in e. Therefore, number of losses
that remained non-free is l − d−m.

(c) From (a) and (b), we have L′(e,R1) = L′(e,R2), ∀e ∈ E(S), hence
|Λ\Λ′(R1)| = |Λ\Λ′(R2)|. Since ExtendLossIntoFreeTree does not
create new duplications, we have ∆(R1) = ∆(R2) = ∆(R). Therefore
ω(R1) = ω(R2).

Lemma 37. Let R be a minimal reconciliation. Then AllCompletions(R)
returns a completion of R.

Proof. Let R1 be a reconciliation from Lemma 35, obtained by applying
switch operations on c(R). Then ω(R1) = ω(c(R)) and R1 satisfies the con-
ditions from Lemma 33. Hence R1 is a possible output of the series of pro-
cedures OneCompletion(R), ExtendLossesIntoNonFreeTrees(R).

Let R2 be another output of this series of procedures with the input R.
From Lemmas 21 and 31 we have that R2 is an extension of R. From Lemmas
36 (c) and 32 we have ω(R1) = ω(R2). Since R1 is a completion of R, we
have R2 is a completion of R.

Since Switch does not change the weight of a reconciliation (Lemma 34)
and R2 is a completion of R, we have that AllCompletions(R) is also a
completion of R.

Theorem 38. Algorithm 12 returns an optimal solution.

Proof. The algorithm starts with LCA reconciliation R1. LCA’s completion

38

is an optimal reconciliation (Theorem 17), therefore completion of R1 is an
optimal reconciliation.

Let R2 be an output of RaiseSeveralDuplications(R1). Then c(R2)
is an optimal reconciliation (Lemma 26).

Let R3 be an output of AllCompletions(R2). Then (Lemma 37) it is
s completion of R2, hence R3 is an optimal reconciliation.

Assume that R4 is an output of RaiseConversions(R3). From Lemma
29 we have ω(R4) = ω(R3). Hence R4 is an optimal reconciliation. Note
that R4 is an output of RandR(S,G, φ).

Next lemma states that all duplications raised on a path going though a
vertex with non positive flow on its children are conversions.

Lemma 39. Let R be a ZF reconciliation such that if v′, v are non-free and
free lost subtrees that overlap, then v ≤ v′. Then R is a possible output of
ExtendLossesIntoNonFreeTrees.

Proof. From Lemma 27 we have that R′ is a possible output of RaiseDu-
plication, where R′ is the minimization of R. From Lemma 33 and and
this Lemma condition, R is a possible output of the series of procedures
OneCompletion(R′), ExtendLossesIntoNonFreeTrees(R′). Hence
R is a possible output of ExtendLossesIntoNonFreeTrees.

Lemma 40. Let R be a ZF reconciliation. Then R is a possible output of
Switch.

Proof. Let v′ and v be non-free and free lost subtrees in R. If they overlap
and v′ < v, apply switch operation. Previous procedure repeat as long as
there are such trees. Let us prove that the procedure will stop.

Let d be the sum of the distances of the roots of the non-free subtrees
to root(S). With every switch operation d decreases. Since d ≥ 0, it cannot
decrease indefinitely. Hence the procedure will stop.

The reconciliation, obtained in this way, denote by R1. Now, R1 satisfies
the conditions in Lemma 39, hence it is a possible output of ExtendLoss-
esIntoNonFreeTrees.

So, by ExtendLossesIntoNonFreeTrees we obtain R1, and by Switch(R1),
where switch operations are applied in the reversed order, we obtain R.

Theorem 41. Any optimal solution can be generated by Algorithm 12.

39

Proof. Let R be an arbitrary optimal reconciliation. By lowering some con-
versions, we can obtain a ZF reconciliation R1 such that ω(R1) = ω(R) (see
Lemma 30).

By Lemma 40, R1 is obtainable by Switch.
So, R1 is a possible output of Switch, and R is a possible output of

RaiseConversions(R1), if conversion raising is applied in the reversed or-
der.

Theorem 42. Algorithm 12 has time complexity O(m2 +m · n).

Proof. Let n = |V (G)|, m = |V (S)|, then E(G) ∈ O(n), E(S) ∈ O(m). LCA
reconciliation can be determined in linear time (see [14]), say O(m+ n).

Algorithm 2 forms a set ∆′′(e) and it takes O(m) time. It extends a loss
into free tree. The maximum size of a (non-)free tree is O(m). Algorithm
1 applies Algorithm 2 |Σ\Σ′| ≤ |Σ| times, hence it has time complexity
O(|Σ| ·m).

Algorithm 5 determines possible new positions for a duplication d. Since
the height of the tree S isO(m), we have that the number of possible positions
is also O(m) and this is the complexity of Algorithm 5. Algorithm 4 calls
Algorithm 5 and generates k ∈ O(m) new losses. Hence the complexity
of Algorithm 4 is O(m). Algorithm 3 calls Algorithm 4 |∆| times and its
complexity is O(|∆| ·m).

Algorithm 7 raises one conversion. Maximal raise height is O(m) and this
is the complexity of the algorithm. Algorithm 6 calls Algorithm 7 |C| times
(C - the set of all conversions). Therefore the complexity of Algorithm 6 is
O(|C| ·m).

Algorithm 10 extends a loss into a non-free tree. The size of non-free
tree is O(m) an this is the complexity of the algorithm. Algorithm 9 uses
Algorithm 10 |Σ1| times, and its complexity is O(|Σ1| ·m).

Algorithm 11 applies a switch operation on lost subtrees. With every
switch, a root of a subtree with non-free loss is further away from root(S).
Longest distance from root(S) is O(m). Switch operation always include one
non-free loss. Therefore the complexity of this algorithm if O(|Σ\Σ′| ·m).

When we add corresponding complexities we get O(m+n) +O(|Σ| ·m) +
O(|∆| ·m)+O(|C| ·m)+O(|Σ1| ·m)+O(|Σ\Σ′| ·m). Since |Σ|, |Σ1|, |Σ\Σ′| ∈
O(m + n), |∆| ∈ O(n), we have that the complexity of the main algorithm
is O(m2 +m · n).

40

6. Conclusion

In this paper we give a polynomial algorithm that returns an optimal rec-
onciliation in duplication, loss, conversion model. The algorithm can return
any optimal reconciliation with a non-zero probability, and can enumerate
the whole space of solutions.

A natural extension would be a uniform sampling of all solutions in order
to statistically assess properties of the solution space. Because of the switch
operation, this could be achieved by an Markov chain Monte Carlo method.
Future work is to define adequate transition probabilities to ascertain fast
convergence.

An interesting problem that we leave open for further research is the
weighted case. Unfortunately the approach, used in this paper, is not useful
for this case. A completion of LCA reconciliation does not have to be an
optimal reconciliation (see Figure 8). It might be necessary to raise some
speciations from V (G) in order to obtain an optimal solution.

Adding transfers and recombinations significantly increases the complex-
ity of the problem.

Figure 8: Weighted case and (d, l, c) = (2, 1, 1). (i) LCA
reconciliation is equal to its completion (because there are
no losses), and the weight is 4d = 8. (ii) The speciation
and duplication are raised. Speciation is now duplication
and three new losses are added. The weight is 2d+3c = 7.

41

Acknowledgments

This work is funded by the Agence Nationale pour la Recherche, Ances-
trome project ANR-10-BINF-01-01.

[1] J.-M. Chen, D. N. Cooper, N. Chuzhanova, C. Frec, G. P. Patrinos,
Gene conversion: mechanisms, evolution and human disease., Nature
reviews. Genetics 8 (2007) 762–775. doi:10.1038/nrg2193.

[2] W.-Y. Ko, K. A. Kaercher, E. Giombini, P. Marcatili, A. Froment,
M. Ibrahim, G. Lema, T. B. Nyambo, S. A. Omar, C. Wambebe,
A. Ranciaro, J. B. Hirbo, S. A. Tishkoff, Effects of natural selec-
tion and gene conversion on the evolution of human glycophorins cod-
ing for mns blood polymorphisms in malaria-endemic african pop-
ulations., American journal of human genetics 88 (2011) 741–754.
doi:10.1016/j.ajhg.2011.05.005.

[3] J. Felsenstein, Inferring phylogenies, 2004.

[4] F. Hu, Y. Lin, J. Tang, Mlgo: phylogeny reconstruction and ances-
tral inference from gene-order data., BMC bioinformatics 15 (2014) 354.
doi:10.1186/s12859-014-0354-6.

[5] G. J. Szöllősi, E. Tannier, V. Daubin, B. Boussau, The inference of
gene trees with species trees., Systematic biology 64 (2015) e42–e62.
doi:10.1093/sysbio/syu048.

[6] S. Mirarab, M. S. Bayzid, B. Boussau, T. Warnow, Statistical binning
enables an accurate coalescent-based estimation of the avian tree., Sci-
ence (New York, N.Y.) 346 (2014) 1250463. doi:10.1126/science.1250463.

[7] C.-H. Hsu, Y. Zhang, R. C. Hardison, N. C. S. Program, E. D.
Green, W. Miller, An effective method for detecting gene conver-
sion events in whole genomes., Journal of computational biology : a
journal of computational molecular cell biology 17 (2010) 1281–1297.
doi:10.1089/cmb.2010.0103.

[8] S. P. Mansai, H. Innan, The power of the methods for de-
tecting interlocus gene conversion., Genetics 184 (2010) 517–527.
doi:10.1534/genetics.109.111161.

42

[9] M. D. Rasmussen, M. Kellis, Unified modeling of gene duplication, loss,
and coalescence using a locus tree., Genome research 22 (2012) 755–765.
doi:10.1101/gr.123901.111.

[10] B. Boussau, G. J. Szllosi, L. Duret, M. Gouy, E. Tannier, V. Daubin,
Genome-scale coestimation of species and gene trees., Genome research
23 (2013) 323–330. doi:10.1101/gr.141978.112.

[11] E. Kejnovsky, R. Hobza, Z. Kubat, A. Widmer, G. A. B.
Marais, B. Vyskot, High intrachromosomal similarity of retrotrans-
poson long terminal repeats: evidence for homogenization by gene
conversion on plant sex chromosomes?, Gene 390 (2007) 92–97.
doi:10.1016/j.gene.2006.10.007.

[12] L. Arvestad, A.-C. Berglung, J. Lagergren, B. Sennblad, Gene tree re-
construction and orthology analysis based on an integrated model for
duplications and sequence evolution, in: Research in Computational
Molecular Biology: 13th Annual International Conference, RECOMB
2004, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, p. 326335.

[13] P. Górecki, J. Tiuryn, Dls-trees: a model of evolutionary scenarios, The-
oretical computer science 359 (1) (2006) 378–399.

[14] C. Chauve, N. El-Mabrouk, New perspectives on gene family evolution:
Losses in reconciliation and a link with supertrees, in: S. Batzoglou
(Ed.), Research in Computational Molecular Biology: 13th Annual In-
ternational Conference, RECOMB 2009, Tucson, AZ, USA, May 18-21,
2009. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 46–58. doi:10/dxfx65.
URL http://dx.doi.org/10/dxfx65

[15] C. Chauve, J.-P. Doyon, N. El-Mabrouk, Gene family evolution by du-
plication, speciation, and loss, Journal of Computational Biology 15 (8)
(2008) 1043–1062.

43

