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I. INTRODUCTION

T ASK-SPACE sensory control [1] has reached a consider- able level of maturity and implementations in kinematics and inverse dynamics [START_REF] Mansard | A unified approach to integrate unilateral constraints in the stack of tasks[END_REF], [START_REF] Sentis | Compliant control of mult-icontact and center-of-mass behaviors in humanoid robots[END_REF]. It was ported in a large variety of robots, especially redundant ones [START_REF] Nakamura | Task-priority based redundancy control of robot manipulators[END_REF], [START_REF] Siciliano | A general framework for managing multiple tasks in highly redundant robotic systems[END_REF], achieving multiobjective complex tasks under various constraints.

Recent implementations formulate the task-space control as a quadratic program (QP) where multiple objective tasks are ordered by means of a weighted, a strict, or a hybrid strictweighted priority. The controller reduces to a QP solver for a problem that is built on-line, at each control loop, e.g. [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF]- [START_REF] Kuindersma | An efficiently solvable quadratic program for stabilizing dynamic locomotion[END_REF], and where the tasks are expressed as a part of the QP cost function or part of its constraints, e.g. [START_REF] Feng | Optimizationbased full body control for the DARPA robotics challenge[END_REF], [START_REF] Vaillant | Multi-contact vertical ladder climbing by an HRP-2 humanoid[END_REF].

In our previous work [START_REF] Bouyarmane | Multi-contact stances planning for multiple agents[END_REF], [START_REF]Humanoid Robot Locomotion and Manipulation Step Planning[END_REF] we have devised a multicontact planner that considers robots and objects as multirobot systems. It also gathered non-gaited locomotion and manipulation in a single multi-contact planning framework. However, we had not proposed a controller that can deal with the generated plans, nor had we experimented such a common ground planning on a real robot. We propose to extend the QP control methods to encompass the idea that other objects and entities can be integrated as parts of a single controller when they come to interact with the robot. We have already proven its applicability in graphic animation of avatars [START_REF] Vaillant | Multi-character physical and behavioural interactions controller[END_REF]. We believe that this idea will be largely adopted in robotics as (i) it is easy to implement -we also provide the software implementation of the proposed framework in open-source-and (ii) it allows to ease task specification to its simplest expression, i.e. at the level of interactions. For example, when a robot has to open the fridge, our method does not ask to build specific geometric constraints [START_REF] Borghesan | Introducing geometric constraint expressions into robot constrained motion specification and control[END_REF] or virtual mechanisms [START_REF] Kosuge | Tele-manipulation system based on task-oriented virtual tool[END_REF]- [START_REF] Bowyer | Active constraints/virtual fixtures: a survey[END_REF], nor to implement a specific planning or control strategy [START_REF] Ott | Employing cartesian impedance control for the opening of a door: a case study in mobile manipulation[END_REF]- [START_REF] Karayiannidis | An adaptive control approach for opening doors and drawers under uncertainties[END_REF]. Instead, we consider and model the fridge as a 'robot' with as many degrees of freedom as available. The user must design the fridge model (e.g. as a ROS urdf file) and our controller will integrate it with that of the robot and considers interaction tasks as defined through areas of interaction (contacts). The idea here is that the model already embeds the constraints (the kinematics and the dynamics ones) instead of explicitly defining them as in [START_REF] Bruyninckx | Specification of force-controlled actions in the "task frame formalism"-a synthesis[END_REF], [START_REF] Villani | Handbook of Robotics[END_REF].

Integrating the kinematic model of the manipulated mechanism has been proposed in previous works [START_REF] Berenson | Task space regions: A framework for pose-constrained manipulation planning[END_REF], [START_REF] Burget | Whole-body motion planning for manipulation of articulated objects[END_REF]. However, they remained at the geometric level, and only the kinematics of the planned mechanisms are accounted for. The planned configurations and motions in these works do not account for the dynamics and inertia of the manipulated mechanism(s), although these will influence the robot balance through the motion. In [START_REF] Karayiannidis | An adaptive control approach for opening doors and drawers under uncertainties[END_REF] the dynamics of the articulated mechanism is accounted for, however they restrict the study to one-DoF mechanisms, and the robot balance is not an issue (manipulator), we also refer the reader to the references therein for a review of previous door and drawer opening works 0000-0000/00$00.00 c 201X IEEE and their limitations. A Cartesian impedance method for the opening of a door is proposed in [START_REF] Ott | Employing cartesian impedance control for the opening of a door: a case study in mobile manipulation[END_REF] for a mobile manipulator without balancing issues and with the door opening motion being designed for the specific task at hand.

Our controller computes desired states that have coherent contact interaction forces. Many of the intended manipulation and co-manipulation applications rely on friction (manipulation of a free-floating box for example) and necessitates to generate the right amount of normal and tangential forces. Therefore, it is important to master force control under a QP controller framework, even on position-controlled robots, which had not been previously proposed to our knowledge. Hence we propose it as another contribution of the work.

The rest of the paper is organized as follows. Section II presents the multi-robot QP formalism, with a background on QP control and an analytic case study on a minimal example system. Section III introduces QP force control to track the manipulation forces resulting from the multi-robot QP when applied on position-controlled robots. Section IV proposes a method for estimating online the inertial parameters of the manipulated objects when manipulated with the multi-robot QP. Finally, Section V presents experimentation results where our new controller is applied in very challenging scenarios involving the Kawada's HRP-4 humanoid robot, the Softbank's ROMEO arm and the Shadow's dextrous hand.

II. MULTI-ROBOT QP

A. QP control: a brief background QP control has been proposed in the robotics and computer graphics communities to solve the control problem of multi-body systems with floating bases subject to friction limitations. The approach appeared in particular suited for humanoid robots and humanoid virtual characters that typically feature such properties. A QP is instantiated at every control/simulation time-step minimizing the error of multiple desired task accelerations under all physical and structural constraints of the robot, which have the characteristic of being linear in the optimization vector variable composed of the control torques, contact force coefficients along the linearized friction cones, and joint accelerations. The multitask problem is cast as a multi-objective optimization program that can be solved with a weighted-sum scalarization or a lexicographic ordering scheme, among other possible multiobjective optimization or multi-criteria decision making resolution techniques. Of the works that opted for the weigthedsum scalarization, [START_REF] Abe | Multiobjective control with frictional contacts[END_REF] is worth citing in the field of computer animation as one of the firsts that proposed the method for tracking in physics simulation a motion capture data clip with a standing humanoid character in a multi-contact posture. [START_REF] Collette | Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts[END_REF] enhanced the approach by accounting for bilateral grasp contact and more complex balancing strategies. [START_REF] De Lasa | Feature-based locomotion controllers[END_REF] combined the QP controller with higher-level finite state machine and used it for locomotion with cyclic feet contact switching. [START_REF] Bouyarmane | Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations[END_REF] applied the approach for humanoid robot in acyclic multi-contact locomotion, applied later in DARPA Robotics Challenge-like scenarios in simulation in [START_REF] Bouyarmane | Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios[END_REF] and to the real robot HRP-2 climbing a vertical ladder in [START_REF] Vaillant | Multi-contact vertical ladder climbing by an HRP-2 humanoid[END_REF]. [START_REF] Salini | LQP-based controller design for humanoid Whole-body motion[END_REF], [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions[END_REF] explored the continuous task activation/deactivation within this scheme by continuous variation of the weights. There are many other works that used the QP in other schemes such as force control distribution, e.g. [START_REF] Herzog | Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics[END_REF]- [START_REF] Righetti | Quadratic programming for inverse dynamics with optimal distribution of contact forces[END_REF]. In the following, we extend this framework to multi-contact manipulation of articulated mechanisms and floating objects by humanoids, and to multirobot collaboration (e.g. robot-robot co-manipulation).

B. Multi-robot QP formalism

Let us consider a system of n 'robots' which can be actual robots, free-floating rigid objects, or passive articulated mechanisms such as a door, a drawer, or a valve for example. A typical minimal manipulation system would consist of n = 2 'robots': the actual manipulating robot and the manipulated object or mechanism; a typical minimal collaboration system would consist of n = 3 'robots': the two collaborating robots and the collaboratively manipulated object; a dexterous hand with m fingers manipulating a rigid object would consist of n = m + 1 'robots', each finger and the object. We use the unified term 'robot' here to refer to all these systems since they are all instances of the general multibody model. Indeed, each of these systems i ∈ {1, . . . , n} can be modeled as a fixed base or free-floating base kinematic tree structure for which the degrees of freedom (DoFs) q i obey the following equation of motion (EoM):

M i (q i )q i + N i (q i , qi ) = J T i f i + S i τ i . (1) 
Equation ( 1) encompasses all types of robots and accounts for all underactuation possibilities (free-floating base for humanoids and for free-floating rigid objects, non-actuated joints of passive mechanisms) through the actuation-to-DoFs mapping matrix S i . Note that we use Newton-Euler-based algorithms for the derivation of (1) in our implementation [START_REF] Featherstone | Rigid Body Dynamics Algorithms[END_REF].

In that framework the parts of qi and qi corresponding to a free-floating link (i.e. the whole object in case of a freefloating rigid object or the base link of a humanoid) are abusive notations for V i and Vi respectively, where V i is the SE(3) velocity of the free-floating link. The vector f i stacks all point contact forces applied on the surfaces of robot i. These contact forces are either applied by the fixed inertial environment (e.g. at the feet of humanoids) or by another robot j (e.g. the forces applied on the hands of a humanoid by a manipulated object). The latter forces come in pairs of action/reaction forces among the system of robots according to Newton's third law, and opposite forces applied by the robot i on the robot j appear inside the vector f j . We thus decompose the forces f i as

f i = (f 0 i , f - i , -f + i ) such that f 0
i stacks the forces applied by the fixed environment on the robot i, f - i stacks the forces applied by the robots j < i on the robot i, and f + i stacks the forces applied by the robot i on the robots j > i. We then denote F 0 , F -, F + , respectively, the vectors stacking all the vectors f 0 i , f - i , f + i . Let K be the total number of forces in F -, i.e. such that F -∈ R 3K . By virtue of Newton's third law, there exists a permutation matrix Π ∈ R K×K such that

F + = (Π ⊗ I 3 )F -, (2) 
where ⊗ denotes the Kronecker product. We denote Ψ = Π ⊗ I 3 (itself a permutation matrix). Let K i be the number of forces in f + i , i.e. such that f + i ∈ R 3Ki . The permutation matrix Ψ is decomposed into selection matrix blocks Ψ i ∈ R 3Ki×3K in the form:

Ψ =    Ψ 1 . . . Ψ n    , (3) 
such that for each i we can write f + i = Ψ i F -. Finally the equations of motions (1) take the form:

M i (q i )q i + N i (q i , qi ) = J T i,0 f 0 i + J T i,-f - i -J T i,+ Ψ i F -+ S i τ i , (4 
) where J i,0 and J i,-and J i,+ are the matrices obtained by extracting from J i the columns corresponding to the positions of f 0 , f -, f + in f , respectively 2 . We stack together all the equations (4) with the following matrices and vectors q = (q 1 , . . . , q n ) ,

(5) τ = (τ 1 , . . . , τ n ) , (6) M (q) = blockdiag(M 1 (q 1 ), . . . , M n (q n )) , (7) J 0 (q) = blockdiag(J 1,0 (q 1 ), . . . , J n,0 (q n )) , (8) J + (q) = blockdiag(J 1,+ (q 1 ), . . . , J n,+ (q n )) ,

J -(q) = blockdiag(J 1,-(q 1 ), . . . , J n,-(q n )) , (9) 
S = blockdiag(S 1 , . . . , S n ) , (10) 
N (q, q) = N 1 (q 1 , q1 ) T • • • N n (q n , qn ) T T , (11) 
to get our synthetic Newton's third law-consistent EoM for the whole system of robots:

M (q)q + N (q, q) = J T 0 F 0 + J --Ψ T J + T F -+ Sτ . ( 13 
)
The kinematic constraint that expresses the coincidence of the contacts points corresponding to an action/reaction pair can be synthetically written using the matrix Ψ and the principle of virtual work as

J + q = ΨJ -q , (14) 
which is equivalent to, given that a permutation matrix is orthogonal

Ψ T Ψ = I 3K , J --Ψ T J + q = 0 . ( 15 
)
This latter form of the constraint is consistent with the fact that F -can be interpreted as the constraint's Lagrange multiplier in [START_REF] Bouyarmane | Multi-contact stances planning for multiple agents[END_REF]. This constraint has to be complemented with the fixed environment contact kinematic constraint that writes

J 0 q = 0 , (16) 
for which F 0 also appears as the corresponding Lagrange multiplier in [START_REF] Bouyarmane | Multi-contact stances planning for multiple agents[END_REF].

Note that the proposed mathematical Lagrange multiplier interpretations of F -and F 0 do not oppose the fact that both F -and F 0 consist of physical contact forces (as they had been initially constructed earlier in the section by concatenation 2 we use the index notations 0, +,in the superscript of vectors and subscript of matrices, to avoid conflict with the transpose notation of matrices of point contact forces). As a consequence of their physical nature, F -and F 0 are indeed the correct subjects of the Coulomb friction cone constraints F -∈ C -and F 0 ∈ C 0 (which would not have been necessarily a justified hypothesis if we had derived (13) directly using a Lagrangian approach on the whole system made of all the robots). These friction cones are then approximated as polyhedral cones with generators stacked as columns of matrices denoted C -and C 0 respectively. The coefficients of F -and F 0 along the generators are denoted λ -and λ 0 respectively, such that F -= C -λ - and F 0 = C 0 λ 0 . These coefficients are constrained to be nonnegative component-wise:

λ = (λ -, λ 0 ) ≥ 0 . ( 17 
)
The constraints of the problem are completed with the appending of the joint limits, velocity limits, torque limits, and velocity-damper-based collision avoidance constraints between any links l a and l b , all of the initial forms

q min ≤ q ≤ q max , ( 18 
) qmin ≤ q ≤ qmax , (19) 
τ min ≤ τ ≤ τ max , (20) 
ḋist(l a , l b ) ≥ ξ dist(l a , l b ) -δ s δ i -δ s , (21) 
where the parameters ξ, δ i , and δ s are explained in more details in, e.g., [START_REF] Vaillant | Multi-contact vertical ladder climbing by an HRP-2 humanoid[END_REF]. The constraints ( 18), ( 19) and ( 21) are rewritten in terms of constraints on q as follows:

qmin - q ∆t q qmax - q ∆t , (22) 
q min -q -q∆t 1 2 ∆t 2 q q max -q -q∆t 1 2 ∆t 2 , ( 23 
)
d ist ≥ 1 ∆t -ξ dist -δ s δ i -δ s -ḋist . (24) 
These formulations allow us to write the control problem for the system of robots as a single QP:

min q,τ,λ M k=1 w k ||g k -gd k || 2 subject to (13) (15) (16) (17) (20) (22) (23) (24) , (25) 
where g k denote the tasks (possibly multi-dimensional) and gk d the desired task accelerations that can for example take the following form:

gd k = gref k -P k e k -D k ėk , e k = g k -g ref k , (26) 
with P k and D k denoting the task gain matrices designed such that 0 I -P k -D k is a stable (Hurwitz) matrix, and where g ref k is a reference trajectory or a fixed set-point of the task. Once a contact state for the system of robots has been specified, the effectiveness of the formulation (25) lies in the fact that a task can be specified for any feature of any single robot or group of robots of the system. For illustration, it is sufficient to specify a task in terms of position and orientation of a free-floating manipulated object; the control commands for the the manipulating robot (or the co-manipulating robots) will automatically be induced from the contact constraints through [START_REF] Karayiannidis | An adaptive control approach for opening doors and drawers under uncertainties[END_REF], without the need of explicitly specifying any task for the manipulating end-effectors. Similarly, if it is a mechanism that is being manipulated, it is sufficient to specify a task in terms of the configuration of the mechanism (opening angle of a door, rotation angle of a valve) rather than tasks for the manipulating end-effectors. As an further illustration of the expressiveness of ( 25), the balance of a biped robot manipulating an object with a non-negligible mass can be written in terms of a single task on the center of mass (CoM) of the whole system.

C. Interaction forces consistency with multi-robot QP: an analytic case study

By the remark at the end of the previous section, any couplings of the motions resulting from the interactions of the robots in the system are automatically accounted for in the centralized multi-robot QP [START_REF] Karayiannidis | An adaptive control approach for opening doors and drawers under uncertainties[END_REF]. Such couplings cannot be handled in a straightforward and general manner by considering independent QP controllers for the robots of the system. Consider the minimal robot-robot co-manipulation system depicted in Fig 1, as an analytic study case. The system is made of two robots and one manipulated object. We suppose that the object is perfectly sliding on the floor with zero friction (or equivalently perfectly rolling on wheels without slipping). Fig. 1. Analytical example and its variables. We suppose that the manipulated object is perfectly sliding on the floor, or equivalently perfectly rolling on wheels without slipping. The object has a unit mass, so its resultant force is equal to its acceleration. We suppose that the robots links have no mass, so that the forces applied on the object are exactly equal to the actuation forces.

The objective is to bring the manipulated box from its initial state (q 31 , q31 ) = (0, 0) to a goal state (q 31 , q31 ) = (1, 0) . We thus have a single 1-dimensional task g 1 (q) = q 31 , for which the reference value is set at

g ref 1 = 1 (with ġref 1 = gref 1 = 0)
. We want a critically damped behavior for the error

e 1 = g 1 -g ref 1 ,
so we define our desired task acceleration according to [START_REF] Bruyninckx | Specification of force-controlled actions in the "task frame formalism"-a synthesis[END_REF] as

gd 1 = -2 √ 1 • ( ġ1 -0) -1 • (g 1 -1) (27) = -2 ġ1 -g 1 + 1 . ( 28 
)
We suppose that the manipulated box has a unit mass, so that

q31 = f t 1/3 + f t 2/3 = τ 11 + τ 21 , (29) 
where f t 1/3 and f t 2/3 are the tangential components of the forces (we denote f i/j the force applied by i on j). We also suppose that the robots links have no masses, so that their respective EoMs simplify to

τ 1 + f 3/1 = 0, τ 2 + f 3/2 = 0 , (30) 
and we set the actuation limits for both τ 11 and τ 21 at τ max = 1/2 . Finally we suppose that we have a large friction coefficient (infinite).

In the following we compare a decoupled strategy consisting in solving parallel or sequential QPs for the three robots (QP1, QP2, QP3, respectively) versus one integrated multi-robot QP (QPall). Before starting with the performance comparisons, the first limitation that is immediately faced for the decoupled approach is that the unique task specification g 1 is no longer sufficient and tasks for the end-effectors of the robots 1 and 2 need to be independently specified, making sure that they are consistent with the desired object motion g 1 . It is thus necessary to explicitly specify the two 2-dimensional tasks g 1 = (g 1x , g 1y ) = (q 11 , q 12 ) and g 1 = (g 1x , g 1y ) = (q 21 , q 22 ) for the end-effectors of the robots 1 and 2 respectively such that g d 1 = (g d 1 , 0) and g d 1 = (g d 1 , 0). Solving the QPs in parallel QP1 QP2 QP3 independently will result in the following formulation. QP1 will write as

q11 = argmin ||g 1 -g d 1 || 2 , subject to f 3/1 + τ 1 = 0, |τ 11 | ≤ 1/2 , ( 31 
)
QP2 as

q21 = argmin ||g 1 -g d 1 || 2 , subject to f 3/2 + τ 2 = 0, |τ 21 | ≤ 1/2 , ( 32 
)
and QP3 as

q31 = argmin ||g 1 -gd 1 || 2 , subject to q31 = f t 1/3 + f t 2/3 . ( 33 
)
Since q11 does not appear in the EoM of (31) (because of the negligible inertia and mass hypothesis), then QP1 will mathematically output, along with the solution q11 = 1, any pair (f 3/1 , τ 1 ) that satisfies its EoM, and for instance the solution (q 11 , f 3/1 , τ 1 ) = (1, 0, 0). By the symmetry of the problem the same remark goes for QP2 that will output (q 11 , f 3/2 , τ 2 ) = (1, 0, 0). QP3 will also output, along with q31 = 1, any pair (f 1/3 , f 2/3 ) that satisfies its EoM, for instance (q 31 , f 1/3 , f 2/3 ) = (1, 1/2, 1/2). These solutions violate Newton's third law

f 1/3 = -f 3/1 and f 2/3 = -f 3/2 .
To overcome the latter force consistency problem we can make the solution and the decision of one of the QPs available to the other QPs in a sequential scheme. Sequentially solving the QPs requires to choose an ordering for them, and in that strategy we make QPj follow the decision of QPi for j after i in the ordering scheme, denoted QPi → QPj. In the considered example, there are 6 ordering possibilities of which only 3 need to be considered by the symmetry of the problem.

We start our analysis with the ordering QP3 → QP1 → QP2, that consists in first solving for the motion of the object then that of robot 1 then that of robot 2. QP3 will output an acceleration of the robot that is equal at t = 0 to

q31 = argmin ||g 1 -gd 1 || 2 = 1 . ( 34 
)
Feeding the output of QP3 to QP1 will produce the following set of constraints at t = 0

q11 = q31 = 1 , (35) 
f t 1/3 = q31 , (36) 
f t 1/3 = τ 11 , (37) 
|τ 11 | ≤ τ max = 1/2 , (38) 
which are not consistent (they imply 1 ≤ 1/2) since they suppose to produce a force that matches the acceleration of the object which is above the maximum actuation force. The second ordering possibility we analyze is QP1 → QP3 → QP2. This scheme encodes the strategy consisting for the robot 1 to impose a motion on the object and let robot 2 follow. QP1 will thus solve

q11 = argmin ||g 1 -g d 1 || 2 , subject to q11 = q31 = τ 11 , |τ 11 | ≤ 1/2 . ( 39 
)
The analytic expression of the solution of the differentialalgebraic equation ( 39) is a piecewise function:

q11 : t → 1 2 ; if 0 ≤ t ≤ √ 6 -2, 1 2 e -t-2+ √ 6 9 -3 √ 6 + t 1 - √ 6 ; if t > √ 6 -2, ( 40 
)
which results in the following motion of the object from QP3

q 31 : t → 1 4 t 2 ; if 0 ≤ t ≤ √ 6 -2, 1 + 1 2 e -t-2+ √ 6 11 -5 √ 6 + t 1 - √ 6 ; if t > √ 6 -2. ( 41 
)
Finally QP2 will produce a motion of the robot 2 that simply follows the object by applying a zero tangential force, i.e. f t 2/3 = 0 and q21 = q31 (that is, if QP2 is in some way made aware of the force already applied on the object by the robot 1, which necessitates further communication between the QPs, otherwise QP2 will output a tangential force f t 2/3 = f t 1/3 which violates the EoM of the object f t 1/3 +f t 2/3 = 2 q31 = q31 ). The third and last possible ordering scheme is QP1 → QP2 → QP3 which results in the same solution and the same remarks as the previous one.

The multi-robot QP QPall however allows for a more effective collaboration since both robots will be able to apply the necessary amount of tangential force to produce an acceleration of the object that zeroes ||g 1 -gd 1 || 2 in a consistent manner, solving the following

q11 = argmin ||g 1 -gd 1 || 2 , subject to q11 = q21 = q31 = f t 1/3 + f t 2/3 = τ 11 + τ 21 , |τ 11 | ≤ 1/2, |τ 21 | ≤ 1/2 , ( 42 
) that results in the following motion of the object

q31 : t → (1 -t) exp(-t) , (43) 
i.e.

q 31 : t → 1 -(1 + t) exp(-t) . (44) 
Fig. 2. In blue the resulting acceleration of the object when using the multirobot QP QPall, in green the resulting acceleration of the object when using the decoupled strategy QP1 → QP3 → QP2, in red gd 1 corresponding to the actuation force saturation τ 11 = 1/2 used to compute the dashed vertical line at t = √ 6 -2 by intersection with the horizontal line q31 = 1/2. In green (decoupled QPs) the acceleration of the object is saturated at the beginning of the motion due to the robots not collaborating optimally. The blue motion (multi-robot QP) is the optimal motion that zeroes ||g 1 -gd 1 || throughout the motion.

Fig. 2 compares the solution of QPall with the best case using decoupled QPs (QP1 → QP3 → QP2). The conclusion we can draw from this brief analytical study is twofold:

(i) decoupled QPs will in general produce non-consistent sets of constraints and forces, (ii) even when devising adhoc strategies for a particular problem (that are not possible to generalize), a consistent decoupled strategy is less effective than an integrated one.

III. QP FORCE CONTROL

The QP controller (Section II) outputs accelerations q, forces coefficients λ, and joint torques τ for the robots. We use it in our applications with position-controlled robots (Section V), by double integrating the output q and feeding the resulting q to the low-level motor position controller. However, in view of the effective use of the multi-robot QP in interaction tasks (e.g. robots co-manipulations), it is necessary to ensure that the planned manipulation contact forces are adequately matched during the execution, even when the framework is applied on position-controlled robots. As demonstrated in Section II-C, the formulation (25) does produce accelerations, and hence position commands, that are consistent with the QP-predicted contact forces λ at a given control time-step. However there are two issues with this prediction:

1) it is based on the available QP-used models of the robots and the objects, implying that any discrepancy in these models would result in non-exact predicted forces; 2) it supposes that the robot is in a given contact state that was planned beforehand, without actually knowing whether the robot has effectively reached that contact state and whether the contact has been established. If not, the QP would still base its calculations on the assumption that the robot is in its planned contact state and will output contact forces that are in reality null, see Fig. 3. In this situation the QP controller assumes that the robot is in the planned contact state and therefore predicts forces that do not correspond to the actual force repartition, since the hand contact (Contact 3) is not yet established.

Therefore, we need a method to include the information from the force sensors to close the loop and realize the tracking of the predicted forces by the sensed ones. Such a closed-loop tracking method should also be able to ensure that the actual contact states match the planned ones by making sure that any planned contact has effectively been established in the current contacts state.

Force control has been extensively studied in robotics, see a thorough review in the monograhs [START_REF] Gorinevsky | Force control of robotics systems[END_REF], [START_REF] Siciliano | Robot Force Control[END_REF] and in the handbook of robotics [START_REF] Villani | Handbook of Robotics[END_REF]. Force control in the task space for fixed-base robots was also developed and experimented in [START_REF] Bruyninckx | Specification of force-controlled actions in the "task frame formalism"-a synthesis[END_REF], [START_REF] Schutter | Estimating first-order geometric parameters and monitoring contact transitions during force-controlled compliant motion[END_REF], [START_REF] Schutter | Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty[END_REF]. Contrarily to [START_REF] Borghesan | Introducing geometric constraint expressions into robot constrained motion specification and control[END_REF], [START_REF] Bruyninckx | Specification of force-controlled actions in the "task frame formalism"-a synthesis[END_REF], task specification including force control is simplified and made straightforward with the QP built-in multi-robot constraints specification, since interaction forces are part of the QP decision variables. Active force control can be achieved either directly, through explicit closure on the force, or indirectly through impedance or admittance control [START_REF] Villani | Handbook of Robotics[END_REF]. The multi-robot QP control frame-work allows having both, and allows considering floating-base under-actuated or fixed-base robots.

To achieve force control in the multi-robot QP controller, we propose the scheme represented in Fig. 4. For a given endeffector (or more generally any link) of the robot equipped with a force/torque sensor, we proceed with an admittance controller that takes as an input the error between a target (command) force f target and the corresponding sensed force f sensor , and transforms it into a QP end-effector task through the following stages. First we convert the force error along the normal of the contact surface n into a velocity command with a gain (inverse of a damping) K I (empirically set at K I = 5 × 10 -4 ms -1 N -1 in our applications below):

v = K I f target -f sensor |n n , (45) 
then we clamp that value (between (v min , v max ) = (-0.05, 0.05) ms -1 in our implementation) to prevent the endeffector from moving too fast nearby the contact surface if not reached yet (i.e. if f sensor = 0, which happens when the end-effector is "searching" the surface it is supposed to be in contact with), this is a guarded motion with

v clamp = min max v min , v|n , v max , (46) 
to which we apply a low-pass filter (order 3 and cutoff frequency 20Hz Butterworth in our implementation). The filtered signal ṽ is converted into a QP end-effector task by taking it as the reference velocity trajectory ( ġref = ṽ) and by deriving from it the reference position g ref and acceleration gref trajectories. The latter are then sent to the QP as an end-effector trajectory tracking task (here, apparent to an impedance).

We retained three possible strategies to incorporate that admittance scheme in our framework, depending on the states of the switches 1 and 2 that appear in Fig. 4. Fig. 5 illustrates a simplified representation of the different switch combinations in the block diagram of Fig. 4.

The configuration as it appears in the displayed case of Fig. 4, i.e. with switch 1 open and switch 2 up, implements an autonomous behavior where the controller tracks the force output by the QP as the QP figures it out from the other tasks of the problem. However, the user might want to have some control on interaction forces that might not turn out to be satisfactory for them (typically, in the applications and experiments of Section V, we considered that the forces output by the QP on the hands of the HRP-4 robot can be too important given the relative fragility of the hands, regardless of the nominal manufacturer's torque limits, so we wanted to produce less forces on the hand). Hence we offer the user the possibility to specify a desired force f d that can be used in two ways. The simplest one is with switch 1 open and switch 2 down, which forces the sensor force to track f d independently of the other physical constraints of the robot. This is not a safe strategy as the user might specify unrealistic forces f d given the current configuration and contact state of the robot, and it can be used as a last resort only if the user is sure that the specified f d is safe/consistent. The other way to use f d is through the QP, with switch 1 closed and switch 2 up by adding the term ||f -f d || 2 to the cost function of the QP, that we call a QP force task. This ensures that the user-specified force f d is filtered through the physical constraints that are taken into account in the QP and produces an f target that is as close as possible to f d while remaining physically consistent. Fig. 6 shows the experimental setup that was used to assess the QP force control with comparative plots in Figs. 7 and8. The robot HRP-4 is equipped with a 6-DoF force/torque sensor at each wrist (Nano 40 from ATI). It is put near a table in a half-sitting initial posture (i.e. the knees are lightly bending). A posture is computed so that both hands are put on the table in a similar way. The force control goal is specified for each hand independently via the QP controller to press against the table.

IV. MANIPULATED OBJECT INERTIAL PARAMETER ESTIMATION

The application of the multi-robot QP approach to the particular problem of object or mechanism manipulation is based on the EoM of the manipulated object/mechanism, that appears among the EoMs concatenated in [START_REF] Bouyarmane | Multi-contact stances planning for multiple agents[END_REF] and used as a constraint of ( 25). This is also the case in the usage of virtual mechanisms [START_REF] Kosuge | Tele-manipulation system based on task-oriented virtual tool[END_REF], [START_REF] Joly | Imposing motion constraints to a force reflecting telerobot through real-time simulation of a virtual mechanism[END_REF], [START_REF] Bowyer | Active constraints/virtual fixtures: a survey[END_REF]. If the dynamics model of Force along z axis (N) - Comparison between the two methods that account for a desired force command f d , in two additional instances of the experiment in Fig. 6. In the first method, the robot follows the user command but reaches torque limits (over-torque errors appeared on the robot during both executions). The the second method (right hand), the QP autonomously "saturates" the exaggerated force command to keep the robot within the torque limit constraint. The second method is thus the safest for the robot.

the manipulated object and its inertial parameters are known, then they can be directly provided to the controller. Otherwise, the robot should "discover" them while executing the manipulation motion, adapting the motion from a very rough initial knowledge-based estimate to the real dynamic parameters as they are being estimated online [START_REF] Karayiannidis | An adaptive control approach for opening doors and drawers under uncertainties[END_REF], [START_REF] Schutter | Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty[END_REF]. Although inertial parameter identification through object manipulation is not the main stream of our contribution and a large body of work already exists in robotics, we propose in this section to provide guidelines of its integration in the multi-robot QP framework, for the paper to be self-contained. The manipulated mechanism of index i in the multi-robot system is composed of n i links (n i = 1 for a floating object without any mechanism), the inertial parameters of which are

φ ij link = (m ij , h ij x , h ij y , h ij z , I ij xx , I ij xy , I ij xz , I ij yy , I ij yz , I ij zz ) , (47 
) where j is the index of the link within the mechanism, m ij its mass, (h ij x , h ij y , h ij z ) the position of its center of mass, and (I ij xy , I ij xz , I ij yy , I ij yz , I ij zz ) the entries of its inertia matrix. Additionally, we consider the cases of possibly spring-loaded joints in the manipulated mechanisms. Such a joint j of the mechanism i is subject in the EoM (1) to the torque vector component

τ ij = K ij q ij + C ij qij + O ij , (48) 
where

φ ij joint = (K ij , C ij , O ij ) , (49) 
denote respectively the stiffness, damping, and a constant offset. The inertial parameters of the mechanism i can thus be concatenated in the vector

φ i = (φ i links , φ i joints ) , (50) 
where φ i links = (φ ij link ) 1≤j≤ni , and φ i joints = (φ ij joint ) j∈Ji , J i denoting the indexes of the joints of the mechanism i that have a spring-damper mechanism in them. All in all, φ i is the vector of parameters the robot needs to estimate. It is a known property that the EoM (1) is linear in the inertial parameters, i.e. that the EoM can be rewritten in the form

Y i (q i , qi , qi )φ i = J T i f i , (51) 
where

Y i = Y i links Y i
joints is a block matrix concatenating the matrices linearly mapping the inertial parameters of the links of the mechanism and those of its spring-loaded joints, respectively, to the generalized forces in the EoM. The parameters φ i can be estimated using a least-square-based regression on a given number of samples of (q i , qi , qi ) (more precisely, we implemented an iteratively reweigthed least square (IRLS) regression). This method is however not the most suitable one for our purpose of online estimation since the identification is made after all the sample measurements have been performed. We thus prefer a method based on a discrete Kalman filter with state φ i and observation µ i = J T i f i according to the model:

φ i k = φ i k-1 + w k , ( 52 
)
µ i k = Y i φ i k + v k , (53) 
where w k and v k are zero-mean multivariate Gaussian distributions with covariance matrices Q and R respectively

w k ∼ N (0, Q) , v k ∼ N (0, R) . (54) 
R is obtained from force sensor calibration on the manipulating end-effector of the robot, while Q expresses our confidence in the dynamics model and we practically set it as diagonal matrix with diagonal elements orders-of-magnitude less than the diagonal elements of R k , expressing the fact that the confidence in the model is significantly higher than the confidence in the force sensor data. Dropping in the notations the superscript i since there is no ambiguity, let φk and φk denote respectively the a priori and a posteriori estimates of the state φ k , and let the corresponding a priori and a posteriori estimation errors be e (55)

P - k = P - k-1 + Q , (56) 
and its update phase in which the optimal gain matrix L k is computed

L k = P - k Y T Y P - k Y T + R T , (57) 
φk = φ- k + L k µ k -Y φ- k , (58) 
P k = (I -L k Y )P - k . (59) 
Section V shows results for this estimation approach in an example multi-robot QP experiment.

V. EXPERIMENTATIONS

We experimented the multi-robot QP controller on various challenging scenarios that were recorded in the accompanying video. The scenarios use three different robots: the Kawada HRP-4 humanoid robot, the Aldebaran ROMEO arm (with a hand), and the Shadow dextrous multi-finger hand.

A. Inertial parameter estimation experiment

We tested the inertial parameter estimation method proposed in Section IV in a multi-robot QP setting on a box manipulation experiment in Fig. 9. The box is modeled as a one-link free-floating robot with unknown mass and centerof-mass, only the geometric model of the box is known to the controller. The force-control scheme with autonomous QP (switch 1 open switch 2 up combination) is used to ensure that the robot applies sufficient force to avoid box slippage. The box is a cardboard filled with various arbitrary objects tightly occupying all the space inside the box (to have a constant CoM). The measured mass of the box with its content was 0.941kg. However the robot was provided with an initial estimate of 0.1kg. Fig. 10 shows the results obtained by using the presented Kalman filter method with the multi-robot QP controller. It can be seen in this example that the method quickly converges to an estimated mass of 0.947kg hence with a 0.6% relative error. 

B. Manipulation of articulated mechanisms

In these experiments, we illustrate the capabilities of the controller to manipulate every-day-life objects with articulated mechanisms. Two manipulation scenarios were experimented in this regard: door opening and printer tray opening. The robot is the HRP-4 humanoid that is provided with the urdf models of the objects. The door is a regular (not self-closing) door of the laboratory room intended for everyday use. It is modeled in the multi-robot QP as a 'robot' with a two-DoF fixed-base mechanism. One DoF is the passive revolute joint at the hinges of the door; the second one is a springloaded revolute joint at the knob of the door. The printer is a commercial printer (model Canon i-sensys LPB7680Cx). It is also modeled in the multi-robot QP as 'robot' with a fixedbase mechanism (although it could have been more accurately modeled as floating-base mechanism in unilateral contact with the support table) with one passive prismatic joint for the tray (the model can also include the other non-used trays and also all the buttons as prismatic joints). In the printer experiment, the user provides a desired force f d = 10 N along the local z-axis on the left hand in order to prevent its slippage (to compensate for the modeling approximation that we make consisting in defining a planar surface on the hand of HRP-4 which is not perfectly planar) and a desired force f d = 5 N along the local z-axis on the right hand to firmly insert it inside the tray handle prior to the tray pulling motion. See Fig. 11. Both force commands are sent in the "switch 1 closed, switch 2 up" combination of the controller in Fig. 4. Putting the left hand on the printer is suggested by the planner [START_REF]Humanoid Robot Locomotion and Manipulation Step Planning[END_REF] to create a closed kinematic chain so as to pull the tray without problem of equilibrium or force application. Fig. 12. Door opening with HRP-4 using the force control scheme of the multi-robot QP. Fig. 12 illustrates snapshots from the door opening experiment with the same controller. The accompanying video shows an additional door opening experiment using a position control scheme of the knob, with another robot posture where the door is opened with the left arm, pushed with the right one and finally crossed using a walking controller [START_REF] Agravante | Walking pattern generators designed for physical collaboration[END_REF]. This is an example of sequencing the multi-robot QP controller with other controllers such as a walking controller in this case.

C. Robot-robot co-manipulation

We experimented the multi-robot QP paradigm for actual multi-robot collaborative task between a humanoid robot ROMEO's left arm from SoftBank Robotics and the humanoid robot HRP-4. The two robots use different and unrelated low-level control and communication architectures, as well as different control frequencies (respectively 100Hz and 200Hz), constituting a challenging setting for the multi-robot QP controller. The multi-robot QP controller computations were carried on an external computer and sent to both robots using dedicated communication architectures. We plan in the future to embark the multi-robot QP control computations on one of the robots and use the other robot's computational resources for auxiliary tasks such as vision for example.

The task consisted in a collaborative pick-and-place operation, collaboratively lifting a box (a random parcel package delivered by the post containing electronics parts that were not removed from the box) and putting it down on a different location. The task was only specified in terms of positions of the box using three way points: lifting up, translating to the right (of HRP-4), putting down. When putting down we specified a slightly lower height than the lifting-up height to ensure that the contact between the box and the table is well established and avoid dropping the box from a non-zero height. This one-task specification is illustrative of the multi-robot QP coordination capabilities, since no explicit task is needed for the hands of the two robots, the unilateral contact constraints between the hands and the box being sufficient. Force control was additionally implemented in this experiment to maintain the contact force between the HRP-4 hand and the box, and the ROMEO hand and the box. Not using the QP force control scheme resulted in the slippage of the box and the robots were not able to lift it. Fig. 14 tracks the motions of fixed points on the contact surface frames of the hands of the robots in comparison with the motion of a fixed point in the box frame representative of the task.

D. Dexterous manipulation

Both the HRP-4 and ROMEO robots are equipped with gripper mechanisms at the hand that do not implement anthropomorphic dexterous hand capabilities. We thus chose to demonstrate the multi-robot QP applicability to dexterous manipulation problems on a Shadow dexterous hand with 19 DoFs. We chose an illustrative manipulation problem where the manipulated object, a click pen, is again an articulated mechanism, but as opposed to the door and printer it is this time a free-floating base mechanism. The cardboard boxes in the previous experiments were also free floating but without articulations. Hence with this last example we cover all typologies of manipulated objects. The clicking articulation is modeled with a spring-loaded prismatic joint in the multi-robot QP. The contact surfaces on the fingertips and the cylindrical body of the pen were faceted (approximated with planar surface patches). The task in this example was specified on the configuration of the pen 'robot' such that the position of the clicking part 

VI. CONCLUSION

We show the benefit of integrating task-space QP controllers as a single problem to handle multi-robot interactions. By multi-robot we mean that the controller can deal with any objects or robots or mechanisms that are passive, partially or totally actuated, with which a given robot interacts. Not only does such an approach ease the specification of the tasks (as a complement to planning) to its simplest expression (i.e. the interaction level), but it also computes physically correct contact interaction forces. Subsequently, we devised force control algorithms for QP controllers and show that we can achieve reliable closed-loop force control where the QP can track at best the desired forces (and does its best when they are not feasible). The implementation code of the multi-robot controller is provided in open source; it has been interfaced with vRep and Gazebo simulators. The code is already distributed to several teams worldwide, it is sustained, and has been implemented on other humanoid and robotic platforms (e.g. ARMAR, Nao, HRP-2Kai, KuKa arms, etc.) QP controllers are currently emerging as a gold standard to handle multi-objective tasks in redundant robots such as humanoids. They prove capable of controlling position, torque and now multi-robots and force. Recently our controller has been enhanced with visual servoing [START_REF] Agravante | Visual servoing in an optimization framework for the whole-body control of humanoid robots[END_REF] which makes it a multi-modal controller as vision, force, impedance/admittance, and position tasks can be specified in conjunction. Thorough investigations in terms of stability have been conducted in [START_REF] Bouyarmane | On weight-prioritized multi-task control of humanoid robots[END_REF].

As future work, we will enhance the perception of the multirobot part. Namely, when interacting with objects, eventually articulated, that do not have embedded sensors to measure their configuration, and that we need to estimate using vision. We are also conducting promising research to use the QP also as an adaptive controller, where gains of the actuators [START_REF] Samy | QP-based adaptive-gains compliance control in humanoid falls[END_REF] and the tasks are also part of the decision variables.
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 3 Fig. 3. Predicted forces (green) in planned contact state {Contact 1, Contact 2, Contact 3} versus sensor forces (yellow) in real contact state {Contact 1, Contact 2} (the predicted forces are resultant at the sensor locations of the point forces in dashed lines computed at the vertices of the contact prints).In this situation the QP controller assumes that the robot is in the planned contact state and therefore predicts forces that do not correspond to the actual force repartition, since the hand contact (Contact 3) is not yet established.
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 45 Fig.4. Block diagram for force control with the QP. n denotes the normal vector to the contact surface, and •|• the scalar product. The error between the target force and the sensed force is converted into a velocity quantity with gain K I then filtered with a low-pass Butterworth filter (order 3, cutoff frequency 20Hz) into a reference velocity trajectory for and end-effector standard QP trajectory tracking task. The target force comes either from the force output of the QP (switch 2 up) or from a external user command (switch 2 down). That external user command can also alternatively be incorporated inside the QP (switch 1 closed) in order to influence the force output of the QP when using the latter as a target force (i.e. with switch 2 up). In the experiments we use K I = 5 × 10 -4 ms -1 N -1 and (v min , vmax) = (-0.05, 0.05) ms -1 .
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 6 Fig. 6. Base experiment for comparing the different proposed QP force control paradigms. Each hand is controlled with a different paradigm.
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 7 Fig. 7. Three different executions of the experiment in Fig. 6 to compare the different proposed QP force control methods. Each row represents the data for one run of the experiment.

  - k = φ k -φk and e k = φ k -φk respectively. Their respective covariance matrices are denoted P - k = E[e - k e -T k ] and P k = E[e k e T k ]. The predict phase of the Kalman filter writes φk = φk-1
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 910 Fig. 9. Example of on-line dynamic inertial parameter estimation experiment for a manipulated box. Each image shows a posture way-point.
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 11 Fig. 11. Printer tray opening with HRP-4.
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 13 Fig. 13. Multi-robot collaborative manipulation between HRP-4 and ROMEO's left arm.

Fig. 14 .

 14 Fig. 14. Robot-robot co-manipulation motion. Resulting coordinated motion (position of HRP-4 and that of ROMEO's hand link frames) from single task command (position of box frame).
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 15 Fig. 15. Dexterous hand clicking a pen.

Fig. 16 .

 16 Fig. 16. The green spots are the predefined contact areas.

  reaches its joint limit to trigger the exit of the writing tip. See Figs.15 and 16. 
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