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Abstract

A large out-of-plane piezoelectricity can be induced in graphene by carbon substitution. Sev-

eral simple substitutions are considered where C atoms are replaced by heavier group-IV ele-

ments (Si, Ge and Sn). A more complex functionalization (namely, pyrrolic N-doped graphene)

is also investigated where different functional groups, such as F, Cl, H3C and H2N, are stud-

ied. Piezoelectric and elastic response properties of all systems are determined quantum-

mechanically at the ab initio level of theory. A rationalization of the physical and chemical

parameters which most affect the out-of-plane piezoelectricity of functionalized graphene is re-

ported, which reveals the dominant character of the nuclear over electronic contribution. The

combination of an out-of-plane symmetry-breaking defect and a soft infrared-active phonon

mode, with a large cell-deformation coupling, is shown to constitute the necessary prerequisite

to induce a large out-of-plane piezoelectric response into functionalized graphene.

Introduction

Piezoelectricity consists in the mutual conversion of mechanical and electrical forces in the mate-

rial and, since its discovery in 1880, it is central to a wide variety of technological applications:

next-generation energy harvesters,1,2 artificial muscles,3 sensors and actuators, etc.4 One obvious

limitation of such an important property is that of being restricted to non-centrosymmetric crystals.

In this respect, it has recently been shown that a reduction of the dimensionality of bulk materials

represents an effective way of enhancing (or even creating) a piezoelectric response:5 for instance,

single-layered 2D materials such as h-BN, h-MoS2 and h-WS2 do show a piezoelectric effect while

their 3D bulk analogs do not.6–8

When it comes to low-dimensional systems, graphene would clearly be the most promising

material to work with in the fabrication of electronic, optoelectronic and spintronic nano-devices

due to all of its well-known remarkable properties, including extraordinarily high electron mobil-

ity, mechanical stiffness and flexibility.9–15 The exploitation of piezoelectricity of graphene would

indeed lead to a new branch of possible applications in nano-electro-mechanical systems (NEMS)
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devices requiring high electromechanical coupling. Unfortunately, graphene possesses an inver-

sion symmetry center in its undistorted D6h equilibrium configuration, which prevents a piezoelec-

tric response to take place in its pristine form. However, its inversion center can be broken and

piezoelectricity engineered by several means including adsorption, hole creation, application of

biaxial strain, chemical doping, etc.16–21 A large out-of-plane piezoelectric response has recently

been measured for a graphene single layer as deposited on a SiO2 substrate.20

Among other strategies to induce a piezoelectric response in graphene, chemical doping seems

the most promising as it already represents an effective experimental mean for tuning its structural

and electronic properties.22,23 Free-standing BN-, N-, B-, and Si-doped graphene monolayers have

recently been synthesized and found to be chemically stable at ambient conditions.24–27 Further-

more, both dopant concentration and spatial configuration have recently been shown to be tunable,

to some extent.28,29 For instance, N-doped graphene exhibits three common bonding configura-

tions: pyridinic, pyrrolic and graphitic, whose relative occurrence is systematically affected by

several factors of the chemical-vapor-deposition process: precursor, catalyst, flow rate, and growth

temperature.29 Hydrothermal reduction of colloidal dispersions of graphite oxide in the presence

of hydrazine is an alternative approach to selectively obtain pyrrolic N-doped graphene,30 while

a solvo-thermal synthesis via the reaction of tetrachloromethane with lithium nitride under mild

conditions leads to production in gram scale.31

In a recent study, we have systematically investigated the in-plane piezoelectric response of

graphene as induced by several inversion symmetry-breaking defects and found a peculiar “uni-

versal” behavior: a common finite in-plane piezoelectric response (characterized by a direct piezo-

electric coefficient e11 of about 5×10−10 C/m) in the limit of vanishing defect concentration, thus

highlighting an intrinsic nature of the piezoelectric activity of graphene.21

The present investigation aims at providing a complete quantum-mechanical rationalization of

the overall (in-plane and out-of-plane) piezoelectric effect as induced in graphene by any inver-

sion symmetry-breaking defect. While confirming the “universal” in-plane behavior, the atomistic

mechanisms behind a possible giant out-of-plane piezoelectricity are here addressed and under-
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stood. Different kinds of chemical doping are considered (Si, Ge, Sn, pyrrolic N), which can lead

to an out-of-plane piezoelectric response up to 300 times larger than the largest one reported so far

in the literature for free-standing graphene (which was obtained by adsorption of Li atoms on the

graphene surface).16

In an ideally planar structure, out-of-plane response properties would clearly be ill-defined.

However, when carbon atoms are chemically substituted with Si, Ge or Sn ones, local protrusions

are formed due to their different size, which reduce the symmetry of the resulting system to non-

centrosymmetric, non-planar Cs. Also pyrrolic N-doped graphene (H-NG in the following) exhibits

an out-of-plane response given that the NH functional group points out of graphene plane. Sub-

stitution of H with different functional groups, such as halogen (F, Cl), methyl (H3C) and amino

(H2N) ones, is additionally investigated, which results in the softening of phonon modes and en-

hancing of the piezoelectric response. The effect of defect concentration is investigated in at least

one case while the separate electronic and nuclear contributions to the total piezoelectric response

are discussed for all defects. Elastic features of most structures are also investigated.

Theoretical and Computational Aspects

The elements eiv of the third-rank direct piezoelectric tensor can be defined as second energy H

derivatives with respect to Cartesian components Ei of an applied electric field and components

ηv of the strain tensor. According to quantum-mechanical perturbation theory, piezoelectricity can

then be represented as a sum of fractional terms that have slightly different forms for the electronic

and vibrational contributions. The electronic contribution can be written as:

eele
iv ∝ 2 ∑

n6=0

(µi)0→n(−
∂H
∂ηv

)0→n

(∆ε)0→n

, (1)

where the numerator is the product of allowed transition moments (µ)0→n and (−∂H
∂η )0→n due

to the electric and mechanical fields, respectively, and where µ = −∂H/∂E is the dipole mo-

ment. The denominator (∆ε)0→n is an energy difference between the ground Ψ0 and excited Ψn
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spectroscopic state (eigenvector of the unperturbed Schrödinger equation). Thus, the electronic

contribution to piezoelectricity is dominated by the denominator of the above expression, and so

by the electronic band gap, if the corresponding transition is symmetry-allowed. The vibrational

contribution can be expressed as:

evib
iv ∝ ∑

p

∂ µi

∂Qp
(− ∂ 2H

∂ηv∂Qp
)

ω2
p

, (2)

where the sum runs over phonon modes, Qp is the harmonic normal mode coordinate and ωp

the corresponding phonon frequency. The numerator of the above equation essentially contains

the allowed transition moments induced by a vibrational motion, with respect to the electric and

mechanical fields as for the electronic contribution. From the sole formal analysis of equation (2),

the large contribution of a soft (i.e. with small ωp) infrared-active (i.e. with ∂ µi

∂Qp
6= 0) phonon

mode to piezoelectricity is clear.

The adopted computational strategy consists in computing the intensity of polarization induced

by an applied strain, according to the Berry phase approach,32–34 as implemented35,36 in the CRYS-

TAL14 program37,38 that is here used for all calculations. The global hybrid B3LYP functional39 of

the density-functional-theory (DFT) is chosen in combination with an atom-centered all-electron

basis set of triple-ξ quality, augmented with polarization functions for all atoms,40 apart from Sn

for which a Durand effective pseudo-potential is used.41 Our previous investigation of in-plane

piezoelectricity of graphene documented the little dependence of the computed response on the

particular adopted functional.21

In the linear regime, direct e and converse d piezoelectric tensors describe the polarization

induced by strain and the strain induced by an external electric field, respectively; a simple connec-

tion exists between the two (e = d C or d = e S) via the elastic tensor C and its inverse S = C
−1.

Elastic constants and related properties are computed as strain numerical derivatives of analytical

energy gradients with the fully-automated procedure implemented in the CRYSTAL14 program for

the evaluation of fourth-rank elastic, photo-elastic and piezo-optic tensors.42–45
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The level of accuracy in evaluating the Coulomb and exact exchange infinite lattice series is

controlled by five thresholds set to T1=T2=T3=T4=1/2T5=8.38 Reciprocal space is sampled accord-

ing to a regular Pack-Monkhorst sub-lattice with a shrinking factor of 42, corresponding to 463

independent k-points in the first irreducible Brillouin zone. We recently utilized the same com-

putational approach for investigating the piezoelectric response of 3D systems such as SrTiO3,36

BaTiO3,46 Ge-doped quartz,47 and low-dimensional systems such as h-BN,48 h-ZnO,49 and BeO

nanotubes.50 An alternative analytical approach, based on the Coupled-Perturbed-Hartree-Fock/Kohn-

Sham (CPHF/KS) scheme, has recently been implemented in a development version of the CRYS-

TAL14 program for the calculation of direct piezoelectricity of 3D crystals.51

Results and Discussion

As mentioned in the Introduction, a small out-of-plane piezoelectric response can be induced in

graphene by the one-sided adsorption of light atoms on its surface.16 In this section, we investigate

the much larger piezoelectricity obtained by substituting carbon with other group-IV elements (Si,

Ge, Sn) or by N-doping in the pyrrolic configuration. A graphical representation of the equilibrium

nuclear configurations of such functionalized graphenes is given in Figure 1. Due to their larger

size, bond lengths between substituted atoms and their first-neighbors are increased by 18, 23 and

50% with respect to pristine graphene for Si, Ge and Sn, respectively. Furthermore, substituted

atoms arrange into an out-of-plane equilibrium configuration, where an angle δ can be defined to

describe the amount of their protrusion from the plane (δ = 4.5◦, 11.4◦ and 42.1◦ along the series).

In the case of pyrrolic N-doped graphene, the carbon atoms of highly stressed five-membered

rings lie on the plane while nitrogen atoms lie out of the plane by an angle δ = 15.3◦. Note that

in pyrrolic N-doped graphene, asymmetric holes are formed, which further reduce the symmetry

of the system to C1. In all cases, one-sided configurations only are considered as was done in

previous investigations on atom adsorptions, because equally distributed two-sided configurations

would obviously imply a null average out-of-plane piezoelectric response.16 Due to the low Cs or
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Figure 1: (color online) The equilibrium structure of Si-, Ge-, Sn- and pyrrolic N-doped graphene
is shown in panels a, b, c and d, respectively. For each configuration, top and lateral views are
reported, where the deformation angle δ (in degrees) and bond lengths (in Å) are also given. The
unit cell used in the calculation is displayed for each configuration.

C1 point-symmetry of these structures, the number of symmetry-independent components of the

third-rank direct piezoelectric tensor e would be 5 and 9, respectively. However, it turns out that

for all structures e11 ≃ −e12 ≃ −e26, e31 ≃ e32 within approximately 1% and all other constants

are almost null. For this reason and for clarity-sake, in what follows we will restrict our discussion

to just two piezoelectric coefficients: e11 for in-plane and e31 for out-of-plane responses.

In-plane Piezoelectricity

We have recently investigated the in-plane piezoelectric response of functionalized-graphene as in-

duced by different patterns of BN domains and by creation of asymmetric holes of different shapes.

A “universal” behavior was discovered, characterized by a common direct piezoelectric constant

e11 of about 5×10−10 C/m in the limit of vanishing defect concentration.21 Before addressing the

out-of-plane response of the present functionalized graphenes, let us briefly discuss their in-plane

features and prove once more the general validity of the above-mentioned “universal” behavior. To
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Figure 2: (color online) The four super-cells used to investigate the effect of the substitutional
fraction x of carbon with Si, Ge and Sn atoms. The value of p for each model is given.

do so, the piezoelectricity of Si-, Ge- and Sn-doped graphene has been investigated as a function of

the substitutional fraction x. Four super-cells have been considered corresponding to four doping

concentrations (a graphical representation of the four models is given in Figure 2). From inspec-

tion of the figure, x can be expressed as a function of the integer p, which measures the length of

the lattice parameters in units of the total number of atomic C-C chains contained in the unit cell

(x = 1/2p2).

Table 1 reports the computed values of e11 (total and purely vibrational contributions) as a

function of defect concentration x for the three different chemical functionalizations. By looking

at the total values of the direct piezoelectric constant, it is seen that for small dopant concentra-

tions the common asymptotic value of approximately 5×10−10 C/m is reached for all systems,

Table 1: In-plane direct piezoelectric constant e11 of Si-, Ge- and Sn-doped graphene as a

function of the substitutional fraction x. Total values etot
11 and purely vibrational contributions

evib
11 are reported (in units of 10−10C/m).

Si Ge Sn
x etot

11 evib
11 etot

11 evib
11 etot

11 evib
11

0.125 4.01 -1.23 4.22 -0.81 29.15 -8.81
0.056 5.45 -1.00 7.63 -0.71 11.78 -0.54
0.031 4.37 -1.90 4.86 -1.35 4.32 -1.36
0.020 4.97 -1.19 4.60 -1.71 4.56 -2.00
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despite rather different starting values at high concentrations (particularly so for the Sn doping). It

might also be noticed that the computed piezoelectric constant is not monotonously varying as a

function of defect concentration. The origin of this behavior is discussed in-depth in our previous

investigation about the in-plane response.21 Let us just briefly recall that this is due to the fact that

the band gap of the system varies with defect concentration according to two distinct behaviors

depending on whether the considered superlattice is or not a multiple of 3 of the primitive cell

of pristine graphene, as predicted by the energy band-folding model.52–54 As a further considera-

tion, we might notice that the vibrational contribution is always smaller in absolute value than the

electronic one, which is found to dominate the in-plane piezoelectric response of functionalized

graphene.

Out-of-plane Piezoelectricity

At variance with the in-plane piezoelectric response, we shall here illustrate how the out-of-plane

response is entirely dominated by the vibrational contribution, the electronic one being almost

null for the following reason: while the transition energy at the denominator of equation (1) is

never null, even in the limit of an infinite defect dilution, the vertical transition moments, which

constitute the numerator of equation (1), would be null in the ideal planar structure and are always

tiny even in the distorted structures. As introduced in Section , the vibrational contribution to the

piezoelectricity is dominated by soft IR-active phonon modes. For instance, such a soft vibration

mode was shown to entirely account for the giant piezoelectric response of the SrTiO3 perovskite

in its ferroelectric phase,36 which is stable at very low temperatures (below approximately 24 K).55

In this respect, an obvious advantage of functionalized graphene is that of being stable at ambient

conditions.

In Table 2, we report the out-of-plane direct and converse piezoelectric constants of Si-doped

graphene as a function of defect concentration x. Total and purely vibrational contributions are

given. We observe that: i) the vibrational contribution accounts for 99.98% of the total effect in all

cases; ii) out-of-plane piezoelectricity is much larger than the in-plane one (absolute values of the
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Table 2: Out-of-plane direct e31 and converse d31 piezoelectric constants of Si-doped

graphene as a function of the substitutional fraction x. Total values and purely vibrational

contributions are reported (in units of 10−10C/m and pm/V for direct and converse constants,

respectively).

Direct Converse
x etot

31 evib
31 dtot

31 dvib
31

0.125 37.50 37.48 12.70 12.68
0.056 20.51 20.47 8.16 8.15
0.031 13.92 13.89 4.87 4.86
0.020 11.08 11.06 3.74 3.70

e31 versus the e11 constant); iii) contrarily to what discussed for the in-plane response, the out-of-

plane one systematically decreases as the defect concentration decreases and, eventually, vanishes

as far as the limit of infinite defect dilution is reached. We shall now investigate the atomistic ori-

gins of such a behavior. To do so, the out-of-plane vibrational motion of substituted atoms has to

be characterized: its main features are introduced in the case of Si-doped graphene in Figure 3 as a

function of x. Both the vibration mode wavenumber ν̄ and its IR intensity through the z direction

Ip(z) ∝ (∂ µz/∂Qp)2 are reported, which give an indication about the softness and polarization

induced by the mode, respectively. For the largest defect concentration we have considered (x =

0.125), the phonon mode is found to be very soft, with ν̄ = 36 cm−1 and to induce a significant

polarization, with Ip(z) = 4 km/mol. As a consequence, it brings a large vibrational contribution

to the out-of-plane piezoelectricity, as already documented in Table 2: e31 = 37.5 × 10−10 C/m

and d31 = 12.70 pm/V, values that are 70 times and two orders of magnitude larger than previously

reported for Li atoms adsorption on graphene, at the same concentration.16 As the defect concentra-

tion x decreases, the deformation angle δ increases (see panel (b) of Figure 3) and thus the energy

required to vertically displace Si atoms increases too (because of the higher penetration barrier

it encounters when approaching the graphene plane due to the local rearrangement of the carbon

atoms, which “fill” the space left free by the Si atom itself), leading to an increased rigidity of the

vibration mode (ν̄ = 36, 207, 271, 257 cm−1 along the series). Moreover, the IR intensities per
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Figure 3: (color online) Graphical representation of the atomic displacements (see red arrows in
panel a) involved in the soft phonon mode corresponding to the out-of-plane motion of atoms in
Si-doped graphene. Wavenumbers ν̄ and IR intensities Ip(z) are given for each concentration x.
Panel (b) reports the deformation angle δ as a function of x, while panel (c) introduces a graphical
definition of δ .

unit cell also decrease with decreasing x, so that eventually the out-of-plane piezoelectric response

vanishes for very small x. To summarize, as regards the out-of-plane piezoelectric response, the

higher the defect concentration, the more enhanced the piezoelectric activity.

Similar trends are observed also for the other functionalizations: the vibrational contribution

dominates the out-of-plane response, which is progressively reduced as x decreases. In Figure 4,

we report the values of direct e31 and converse d31 piezoelectric constants of Si-, Ge-, Sn- and

pyrrolic N-doped graphene, at the x = 0.125 defect concentration. For each system, values of the

deformation angle δ , wavenumber ν̄ and IR intensity Ip(z) are also given. From inspection of the

figure, Ge-doped graphene is seen to exhibit the largest piezoelectric response among the consid-

ered systems, with e31 = 157×10−10 C/m and d31 = 114 pm/V. The relatively small deformation

angle δ = 11.4◦ indeed implies a certain softness of the phonon mode (ν̄ = 115 cm−1) and allows

for Ge atoms to approach the graphene plane so as to induce a significant polarization, reflected in

an IR intensity of approximately 2 km/mol.

Based on the analysis we have made so far, it might be striking that Ge-doped graphene exhibits

a higher piezoelectricity than Si-doped graphene, being characterized by a less soft phonon mode

(i.e. larger ν̄) with a lower induced polarization (i.e. lower Ip(z)). This is due to the fact that
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Figure 4: (color online) Direct e31 (in units of 10−10 C/m) and converse d31 (in units of pm/V)
piezoelectric constants of functionalized graphenes at the x = 0.125 defect concentration. Values
of deformation angle δ (as corrected for zero-point motion, ±∆), wavenumber ν̄ , and IR intensity
are given. The vertical inset on the right of the figure gives a graphical representation of how the
deformation angle δ is affected by the zero-point motion effect ∆.

the third term of equation (2) has not yet been taken into proper account: ∂ 2H/(∂ηv∂Qp), which

represents the coupling between the phonon vibration mode and the in-plane deformation. Without

this further term, indeed, equation (2) would almost reduce to the expression of the vibrational

contribution to the diagonal elements of the polarizability tensor of the system:

αvib
ii ∝ ∑

p

(∂ µi/∂Qp)
2

ω2
p

. (3)

By restricting the analysis to this quantity, a much larger vibrational contribution to the polariz-

ability of Si- over Ge-doped graphene is observed: αvib
zz = 85.22 and 3.84 a.u., respectively. On

the contrary, the above-mentioned coupling is found to be almost null (thus suppressing the out-of-

plane piezoelectric response) in Si-doped graphene and much larger in Ge-doped graphene. This

coupling between the in-plane lattice deformation and the out-of-plane phonon mode can be inter-

preted in terms of the atomic displacements involved in the vibration mode (see inset on the right

of Figure 4). In the equilibrium configuration of Si-doped graphene, Si atoms are only slightly

protruded out of the plane, by a small angle δ = 4◦, while the amplitude ∆ of their vibrational

motion is much larger (7◦) even at 0 K (∆ corresponds to the “classical amplitude” of the harmonic

oscillator associated with the soft phonon mode). As a result, Si atoms are oscillating across the
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graphene plane with a highly symmetric motion, which implies a small coupling with the in-plane

deformation (indeed such a coupling would be null by symmetry for an atom lying exactly on the

graphene plane). The case of Ge-doped graphene is different as, in its equilibrium configuration,

Ge atoms lie well above the graphene plane (δ = 11◦) in such a way that, even by accounting for

their vibration motion (∆ = 3◦), they are likely to remain on just one side of the plane (see again

inset of Figure 4), which yields to a large coupling with the in-plane deformation (in other words,

the application of an in-plane strain would significantly affect the vertical motion of the Ge atom,

which, when approaching the graphene plane, would interact with a rather different local config-

uration with respect to the unstrained lattice). A further confirmation to this picture (i.e. to the

larger value of the coupling between the soft out-of-plane phonon mode and the in-plane deforma-

tion in Ge-doped than in Si-doped graphene) comes from the analysis of the vibrational term of

the elastic constants of the two systems. Indeed, such a term can be expressed as a sum of phonon

mode-specific contributions as (for diagonal Cvv constants):56

Cvib
vv ∝ ∑

p

−

(

∂ 2H
∂ηv∂Qp

)2

ω2
p

, (4)

where the numerator is precisely the square of the coupling of equation (2). It follows that the

analysis of the vibrational contribution of the C11 and C22 elastic constants could give a clear

indication of the relative magnitude of the coupling in the two systems. In Table 3, we report

the elastic constants of the different functionalized graphenes, as decomposed into their purely

electronic and vibrational contributions. By comparing the Si-doped with the Ge-doped case, the

electronic contribution to C11 and C22 is seen to be very similar (311 versus 300 N/m); on the

contrary, the vibrational contribution is found to be rather different in the two cases, with much

larger values for Ge-doped than Si-doped graphene. This is a clear confirmation of the larger

∂ 2H/(∂ηv∂Qp) coupling in the former case.

As per Sn-doped graphene, from Figure 4 we see that its out-of-plane piezoelectricity is rela-

tively small (2.8 ×10−10 C/m and 1.5 pm/V for e31 and d31, respectively). This is basically due
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Table 3: Elastic constants (in N/m) of Si-, Ge-, Sn- and pyrrolic N-doped graphene, at x=0.125.

Electronic and vibrational contributions are separately reported. Dashes refer to null value

of Cs-symmetry structures.

Electronic Vibrational
Si Ge Sn H-NG Si Ge Sn H-NG

C11 311 301 238 247 −60 −139 −81 −186
C22 311 300 238 274 −59 −137 −57 −178
C12 60 58 64 52 −16 −82 −32 −27
C16 - - - −20 - - - 13
C66 125 121 63 95 −21 −27 −39 −69

Figure 5: Graphical representation of the equilibrium configuration of pyrrolic N-doped graphene
where H atoms are substituted with other functional groups (F-,Cl-, H3C- and H2N-). The inset
provides a graphical definition of the θ angle.

to the large deformation angle δ of 42.1◦, which makes the vibrationally-assisted penetration of

Sn atoms into the graphene plane more difficult and the corresponding induced polarization small

(Ip(z) = 0.52 km/mol). Furthermore, the vibration wavenumber of the soft phonon mode is large

(ν̄ = 255 cm−1) if compared to the other functionalizations. The case of the pyrrolic N-doping of

graphene will be discussed below into detail in Section .
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Pyrrolic N-doped Graphene

From inspection of Figure 4, the pyrrolic form of N-doped graphene (H-NG) is seen to exhibit a

smaller out-of-plane piezoelectric response than Si- and Ge-doped graphenes and a larger one than

Sn-doped graphene. In order to increase the piezoelectric response of pyrrolic N-doped graphene,

different substitutions of the H atoms with F and Cl atoms or with methyl H3C and amino H2N

groups are considered as model compounds, having the purpose in mind of softening the out-of-

plane vibration mode and of increasing the corresponding induced polarization. A graphical repre-

sentation of the equilibrium configurations of such functionalizations is given in Figure 5, where

an angle θ is graphically defined to measure the position of the substituted group with respect to

the graphene plane. As θ approaches the value of 180◦, the substituted group lies horizontally

to the plane and can largely penetrate into it by vibration, thus inducing a large polarization. On

the contrary, when θ tends to 90◦, the substituted group points perpendicularly out of the plane

with corresponding low penetration and induced polarization. The θ angle is found to affect the

piezoelectric response of pyrrolic N-doped graphene much more than the δ angle measuring the

protrusion of the nitrogen atoms off the plane. Then, from Figure 6, panal (a), that reports the

value of θ for different substitutions in pyrrolic N-doped graphene, one would expect Cl-NG to

show the lowest piezoelectricity given that θ=92◦. Indeed, due to their large atomic size, Cl atoms

are the only ones to be stable in top site positions, while all other groups are found in hollow site

positions. This is confirmed by present calculations, as reported in Table 4, where Cl-NG is seen to

provide the smallest absolute values of piezoelectricity among all the functionalizations. This find-

ing agrees with the previously reported piezoelectric values for light atom adsorptions on graphene,

where hollow site adsorptions (Li, K, and LiF) showed higher piezoelectric constants than top site

ones (H, F, and HF).16

A graphical representation of the atomic displacements involved in the soft phonon mode for

each equilibrium configuration, as well as values of ν̄ for the different substitutions in pyrrolic N-

doped graphene are reported in Figure 6, panals (b) and (c), respectively. The softest phonon modes

are found in F-, H3C- and H2N-substituted systems. However, for the F-substitution, the induced
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Table 4: Out-of-plane direct and converse piezoelectric constants (total values in units of

10−10 C/m and pm/V, respectively) for the substituted pyrrolic N-doped graphene.

H F Cl H3C H2N
Direct
e31 11.81 6.87 2.83 -18.56 -27.29
e32 12.83 10.38 3.04 -15.48 -12.25
e36 -5.73 -2.9 -0.31 -2.47 -6.64

Converse
d31 13.53 -0.94 0.88 -23.79 -38.19
d32 9.09 11.20 2.14 -5.88 0.59
d36 -16.63 -20.80 -2.36 -30.83 -53.33

polarization is also decreased because of the higher electronegativity of F atoms. The methyl

and amino group substitutions are then expected to provide the largest out-of-plane piezoelectric

response, which is confirmed in Table 4.

To conclude, let us compare the absolute value of the piezoelectricity of the best systems we

have been discussing in the present study (GeG and H2N-NG), at the finite x= 0.125 concentration,

with that of other 2D and 3D piezoelectric systems. For instance, the out-of-plane piezoelectricity

of Ge-doped graphene and H2N-NG are 50 and 10 times larger than the in-plane experimentally

measured one of the h-MoS2 monolayer.8 These values are respectively 300 and 50 times larger

Figure 6: (a) Angle θ , (b) atomic displacements corresponding to the soft phonon mode and (c)
phonon wave-number ν̄ , for the different substitutions in pyrrolic N-doped graphene.
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than the out-of-plane one induced by Li adsorption on graphene. Furthermore, present converse

piezoelectric constants d31 are up to one and two orders of magnitude larger than those of bulk

materials like quartz (d11 = 2.3 pm/V),57 Si0.83Ge0.16O2 (d11 = 5.5 pm/V),47 GaN (d33 = 3.7

pm/V),58 AlN (d33 = 5.6 pm/V),58 and favorably compare to those of conventional lead zirconate

titanate piezoelectric materials.59

Concluding Remarks

A quantum-mechanical rationalization of the microscopic mechanisms behind the induction of a

piezoelectric response in graphene has been presented. Different kinds of chemical doping of

graphene are considered, such as carbon atom substitutions with Si, Ge and Sn atoms and the

pyrrolic form of N-doping as functionalized with different simple groups, which lead to non centro-

symmetric non-planar equilibrium structures. On the one hand, the in-plane piezoelectric effect is

seen to be i) dominated by the electronic response; ii) independent of the particular chemical or

physical nature of the symmetry-breaking defects in the limit of small defect concentration, where

it shows a finite value of about 5×10−10 C/m. On the other hand, the out-of-plane piezoelectricity

is documented to i) be dominated by the vibrational rather than electronic contribution; ii) strongly

depend upon the particular nature of the functionalization, with a response that vanishes as the

defect concentration decreases in all cases. In order to produce a large out-of-plane piezoelectric

effect in graphene, an optimal functionalization should involve the breaking of the inversion sym-

metry of pristine graphene and a soft IR active phonon mode with a large coupling with the cell

deformation.

It is worth stressing that in the present investigation, one-sided protruded configurations only

have been considered. Indeed, while two-sided configurations could still produce a non-null in-

plane piezoelectric response, this would not be the case for the out-of-plane one, which would

be progressively reduced and would eventually vanish for a balanced distribution of protrusions

on the two sides of the graphene sheet. A second assumption that has been made in this study
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was that of considering a regular distribution of defects. While an explicit study of the effect on

the piezoelectric response of irregularly distributed patterns of interacting defects (which could

be thermodynamically driven to group together) would certainly deserve further investigation, we

might notice that some of the configurations that have been explored in the present study, with a low

defect concentration, are characterized by non-interacting defects and yet by a large piezoelectric

response.
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