
Recoverable Encryption through
Noised Secret over Large Cloud

 Sushil Jajodia1, W. Litwin2 & Th. Schwarz3

1George Mason University, Fairfax, VA {jajodia@gmu.edu}
2Université Paris Dauphine, Lamsade {witold.litwin@dauphine.fr}
3Thomas Schwarz, UCU, Montevideo {tschwarz@ucu.edu.uy}

1

mailto:jajodia@gmu.edu
mailto:witold.litwin@dauphine.fr
mailto:tschwarz@ucu.edu.uy

What ?

• New schemes for backup of encryption
keys entrusted to an Escrow

– Collectively called RENS Schemes

–They backup high quality encryption
keys

•AES (256b), DH 500+b…

• Backup itself is specifically encrypted

• Unlike a traditional simple key copy
2

What ?

• Fast brute-force recovery remains
possible

– In the absence of key owner

– Within the timing wished by the
recovery requestor

• But only over a large cloud

1K – 100K nodes
3

What ?

• Unwelcome recovery is unlikely
–E.g. could easily take, say, 70 or even

700 days at escrow’s processor alone
– Illegal use of a large cloud is

implausible
•Cloud providers do best to prevent it

• Easily noticeable if ever starts

–Follow the money

• Leaves compromising traces in numerous
logs

6

Why

• High quality key loss danger is
Achilles’ heel of modern crypto

–Makes many folks refraining of
any encryption

–Other loose many tears if
unthinkable happens

7

Why

• If you create key copies…

– Every copy increases danger of
disclosure

–For an Escrow, her/his copy is an
obvious temptation

– Some Escrows may not resist to

• In short users face the dilemma:

 Key loss or disclosure ? That is The
Question

• 8

Why

• RENS schemes alleviate this
dilemma

• Easily available large clouds
make them realistic

• Our schemes should benefit
numerous applications

9

How (Overview) : Key Owner Side

• Key owner or client chooses
inhibitive timing of 1-node (brute-
force) recovery

– Presumably unwelcome at
escrow’s site alone

–E.g. 70 days

– Or 700 days for less trusted escrows

– Or anything between
10

How : Key Owner Side

• Consequently , the owner fixes a
large integer

–Called backup encryption complexity

or hardness

• Actually, this step may be
programmed

– The backup encryption agent on
client node may be in charge of

11

How : Key Owner Side

• Key owner or the agent creates
the shared noised secret

– Some share(s) of the actual
secret become noised shares

–« Burried » among very many
look-alike but fake noise shares

12

How : Key Owner Side

• The only way to recognize
whether a noise share is a noised
one is to try out its « footprint »

• The owner/agent creates the
footprint for each noised share

• Each footprint is unique

• Remember Cinderella ?

 13

How : Key Owner Side

• Key owner/agent sends the noised
secret to Escrow

• Noised secret is the backup
– Guess your key by its print in this

mess (inspired by CSIS actual ex.)

14

How (Overview) : Escrow Side

• Key requestor asks Escrow to recover
data in acceptable max recovery time

–E.g. 10 min

• Escrow’s server sends the time and all
but one shares of the noised secret
to the cloud

• Intruder to the cloud cannot find the
key

15

How : Escrow’s Side

• RENS scheme executed at the cloud
chooses the cloud size

–To fit the calculus time limit for sure

– Say 10K nodes

• Search for the noised share gets
partitioned over the nodes

• Nodes work in parallel

– Matching the “footprints” 16

How : Escrow’s Side

• Every lucky node reports back to
Escrow the noised share found

• Escrow’ server recovers the key from
all the shares

– Using the clasical XORing

• Sends the recovered key to
Requestor

–Not forgetting the bill
17

What Else ?

• Well, everything is in details

–Client Side Encryption

–Server Side Recovery

•Static Scheme

•Scalable Scheme

–Related Work

–Conclusion
18

What Else ?
• More :

–Res. Rep.

http://www.lamsade.dauphine.fr/~litwin/Recoverabl
e%20Encryption_10.pdf

– S. Jajodia, W. Litwin & Th. Schwarz.
Recoverable Encryption through a Noised
Secret over a Large Cloud.

• 5th Inl. Conf. on Data Management in Cloud,
Grid and P2P Systems (Globe 2012)

• Publ. Springer Verlag, Lecture Notes in Comp.

19

http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf

Client Side (Backup) Encryption

• Client X backs up encryption key S

• X estimates 1-node inhibitive time
D

–Say 70 days

• D measures trust to Escrow

–Lesser trust ?

• Choose 700 days
20

Client Side Encryption

• D determines minimal cloud size N for
future recovery in any acceptable time R

–Chosen by recovery requestor

• E.g. 10 min

–X expects N > D / R but also N D / R

• E.g. N 10K for D = 70 days

– N 100K for D = 700 days

21

Client Side Encryption

• X creates a classical shared secret for S

–S is seen as a large integer,

• E.g., 256b long for AES

–Basically, X creates a 2-share secret

–Share s0 is a random integer

– Share s1 is calculated as s1 = s0
 XOR S

• Common knowledge:

– S = s0
 XOR s1

22

Client Side Encryption

• X transforms the shared secret into a noised one

– X makes s0 a noised share :

• Chooses a 1-way hash H

– E.g. SHA 256

• Computes the hint h = H (s0)

– Chooses the noise space
I = 0,1…,m,…M-1

– For some large M determined as we explain
soon

23

Client-Side Encryption

– Each noise m and s0 define a noise share s

• In a way we show soon as well

– There are M different pseudo random
noise shares

• All but one are different from s0

• But it is not known which one is s0

– The only way to find for any s whether
s = s0

 is to attempt the match

 H (s) ?= h

24

Shared Secret / Noised (Shared) Secret

25

=
 S

S0

XOR

S = S0
XOR

Noise

shares

Noise

shares

Noised

share S0
n

Noise

space

I

Hint H (s0)

S1

 S1

H is one-way hash
SHA 256 by default

Client Side Encryption

• X estimates the 1-node throughput T

– # of match attempts H (s) ?= h per
time unit

•1 Sec by default

• X sets M to M = Int (DT).

– M should be 240 ÷ 250 in practice

26

Client Side Encryption

• X randomly chooses m I = [0,1…M[

• Calculates base noise share f = s0 – m

• Defines noised share s0
n = (f, M, h).

• Sends the noised secret S’ = (s0
n, s1) to

Escrow as the backup

 27

Escrow-Side Recovery (Backup Decryption)

• Escrow E receives legitimate request of S
recovery in time R at most

• E chooses between static or scalable
recovery schemes

• E sends data S” = (s0
n, R) to some cloud

node with request for processing
accordingly

–Keeps s1 out of the cloud
28

Recovery Processing Parameters

• Node load Ln : # of noises among M
assigned to node n for match attempts

• Throughput Tn : # of match attempts node
n can process / sec

• Bucket (node) capacity Bn : # of match
attempts node n can process / time R

–Bn = R Tn

• Load factor n = Ln / Bn
29

Node Load

30

L

B

T

1

α

L
B

T

L B

T

Overload Normal load Optimal load

1

R

t

Recovery Processing Parameters

• Notice the data storage oriented
vocabulary

• Node n respects R iff n ≤ 1
–Assuming T constant during the processing

• The cloud respects R if for every n we
have n ≤ 1

• This is our goal

–For both static and scalable schemes we
now present

31

Static Scheme

32

• Intended for a homogenous Cloud

– All nodes provide the same throughput

Static Scheme : Init Phase

• Node C that got S” from E becomes
coordinator

• Calculates a (M) = M / B (C)

–Usually (M) >> 1

• Defines N as a (M)

–Implicitly considers the cloud as
homogenous

• E.g., N = 10K or N = 100K in our ex.

 33

Static Scheme : Map Phase

• C asks for allocation of N-1 nodes

• Associates logical address n = 1, 2…N-1
with each new node & 0 with itself

• Sends out to every node n data (n, a0, P)

–a0 is its own physical address, e.g., IP

–P specifies Reduce phase

34

Static Scheme : Reduce Phase

• P requests node n to attempt matches for
every noise share s = (f + m) such that
n = m mod N

• In practice, e.g., while m < M:
–Node 0 loops over noise m = 0, N, 2N…

• So over the noise shares f, f + N, f + 2N…

–Node 1 loops over noise m = 1, N+1, 2N+1…

–…..

–Node N – 1 loops over m = (your guess here)

35

Static Scheme : Node Load

36

T

1

α

0 1 2 N - 1

1

R, B

t, L

……..
f + 2N
f + N
f

……..
f + 2N + 1
f + N + 1
f + 1

……..
f + 2N + 2
f + N + 2
f + 2

……..
f + 3N - 1
f + 2N - 1
f + N - 1

Static Scheme

• Node n that gets the successful match
sends s to C

• Otherwise node n enters Termination

• C asks every node to terminate

– Details depend on actual cloud

• C forwards s as s0 to E

37

Static Scheme

• E discloses the secret S and sends S to
Requestor

– Bill included (we guess)

• E.g., up to 400$ on CloudLayer for
–D = 70 days

–R = 10 min

– Both implied N = 10K with private
option

 38

Static Scheme

• Observe that N ≥ D / R and N D / R

– If the initial estimate of T by S owner holds

• Observe also that for every node n, we have

(n) ≤ 1

• Under our assumptions maximal recovery
time is thus indeed R

• Average recovery time is R / 2

–Since every noise share is equally likely to
be the lucky one 39

Static Scheme

• See papers for
–Details,

–Numerical examples

– Proof of correctness

•The scheme really partitions I

•Whatever is N and s0, one and
only one node finds s0

 40

Static Scheme

• Safety

–No disclosure method can in practice
be faster than the scheme

–Dictionary attack, inverted file of
hints…

• Other properties

41

Scalable Scheme

• Heterogeneous cloud
– Node throughputs may differ

42

Scalable Scheme

• Intended for heterogenous clouds

– Different node throughputs

– Basically only locally known

• E.g.

–Private or hybrid cloud

–Public cloud without so-called private
node option

43

Scalable Scheme

• Init phase similar up to (M) calculus

– Basically (M) >> 1

– Also we note it now 0

• If > 1 we say that node overflows
• Node 0 sets then its level j to j = 0 and

splits
– Requests node 2j = 1

– Sets j to j = 1

– Sends to node 1, (S”, j, a0)
44

Scalable Scheme

• As result
–There are N = 2 nodes

– Both have j = 1

–Node 0 and node 1 should each process M / 2
match attempts

• We show precisely how on next slides

– Iff both 0 and 1 are no more than 1

• Usually it should not be the case

• The splitting should continue as follows
45

Scalable Scheme
• Recursive rule

– Each node n splits until n ≤ 1
– Each split increases node level jn to jn + 1
– Each split creates new node n’ = n + 2jn
– Each node n’ gets jn’ = jn initially

• Node 0 splits thus perhaps into nodes 1,2,4…
• Until 0 ≤ 1

• Node 1 starts with j= 1 and splits into nodes
3,5,9…
• Until 1 ≤ 1

 46

Scalable Scheme

• Node 2 starts with j = 2 and splits into
6,10,18…

• Until 2 ≤ 1

• Your general rule here

• Node with smaller T splits more times
and vice versa

47

Scalable Scheme : Splitting

48

5

B

α = 0.5

3

0 1 2 4 8 16

1

2

4

α = 0.8

α = 0.7

5

Node 0
split 5
times.
Other
nodes did
not split.

j

T

T
T

Scalable Scheme

• If cloud is homogenous, the address
space is contiguous

• Otherwise, it is not

– No problem

– Unlike for a extensible or linear hash
data structure

49

Scalable Scheme : Reduce phase

• Every node n attempts matches for every
noise k [0, M-1] such that n = k mod 2jn.

• If node 0 splits three times, in Reduce
phase it attempts to match noised shares
(f + k) with k = 0, 8, 16…

• If node 1 splits four times, it attempts to
match noised shares (f + k) with k = 1, 17,
33…

• Etc.
50

Scalable Scheme : Reduce Phase

51

3

B

α = 0.5

0 1

4 j

T

….
f + 16
f + 8
f

….
f + 33
f + 17
f + 1

L

Scalable Scheme
• N ≥ D / R

– If S owner initial estimate holds

• For homogeneous cloud it is 30%
greater on the average and twice as
big at worst / static scheme

• Cloud cost may still be cheaper
– No need for private option

• Versatility may still make it
preferable besides
 52

Scalable Scheme

• Max recovery time is up to R
– Depends on homogeneity of the cloud

• Average recovery time is up to R /2
• See again the papers for

– Examples
– Correctness
– Safety
– …
–Detailed perf. analysis remains future work

53

Related Work

• RE scheme for outsourced LH* files

• CSCP scheme for outsourced LH* records
sharing

• Crypto puzzles

• One way hash with trapdoor

• 30-year old excitement around Clipper
chip

• Botnets
54

Conclusion

• Key safety is Achilles’ heel of
cryptography

• Key loss or key disclosure ? That is The
Question

• RENS schemes alleviate the dilemma

• Future work Deeper formal analysis

–Proof of concept implementation

–Variants

55

Thanks
for

Your Attention

56

Witold LITWIN & al

