Recoverable Encryption through
Noised Secret over Large Cloud

Sushil Jajodial, W. Litwin? & Th. Schwarz3

1George Mason University, Fairfax, VA {jajodia@gmu.edu}
2Université Paris Dauphine, Lamsade {witold.litwin@dauphine.fr}
3Thomas Schwarz, UCU, Montevideo {tschwarz@ucu.edu.uy}

mailto:jajodia@gmu.edu
mailto:witold.litwin@dauphine.fr
mailto:tschwarz@ucu.edu.uy

What ?

* New schemes for backup of encryption
keys entrusted to an Escrow

— Collectively called RE\ Schemes

—They backup high quality encryption
keys
* AES (256b), DH 500+b...

* Backup itself is specifically encrypted
* Unlike a traditional simple key copy

What ?

* Fast brute-force recovery remains
possible

— In the absence of key owner

— Within the timing wished by the
recovery requestor

* But only over a large cloud
1K — 100K nodes

What ?

* Unwelcome recovery is unlikely

—E.g. could easily take, say, 70 or even
700 days at escrow’s processor alone

— |llegal use of a large cloud is
implausible

* Cloud providers do best to prevent it
* Easily noticeable if ever starts

—Follow the money

* Leaves compromising traces in numerous
logs

Why
* High quality key loss danger is
Achilles” heel of modern crypto

—Makes many folks refraining of
any encryption

—Other loose many tears if
unthinkable happens

Why

* |f you create key copies...

— Every copy increases danger of
disclosure

—For an Escrow, her/his copy is an
obvious temptation

— Some Escrows may not resist to
* |n short users face the dilemma:

Key loss or disclosure ? That is The
Question

Why

* RE\ schemes alleviate this
dilemma

* Easily available large clouds
make them realistic

* Our schemes should benefit
numerous applications

How (Overview) : Key Owner Side

* Key owner or client chooses
inhibitive timing of 1-node (brute-
force) recovery

— Presumably unwelcome at
escrow'’s site alone

—E.g. 70 days
— Or 700 days for less trusted escrows
— Or anything between

How : Key Owner Side
* Consequently, the owner fixes a
large integer

—Called backup encryption complexity
or hardness

e Actually, this step may be
programmed

— The backup encryption agent on
client node may be in charge of

How : Key Owner Side

* Key owner or the agent creates
the shared noised secret

— Some share(s) of the actual
secret become noised shares

—« Burried » among very many
look-alike but fake noise shares

How : Key Owner Side

* The only way to recognize
whether a noise share is a noised
one is to try out its « footprint »

* The owner/agent creates the
footprint for each noised share

* Each footprint is unique
* Remember Cinderella ?

How : Key Owner Side

» Key owner/agent sends the noised
secret to Escrow

* Noised secret is the backup

— Guess your key by its print in this
mess (inspired by CSIS actual ex.)

P

14

How (Overview) : Escrow Side

* Key requestor asks Escrow to recover
data in acceptable max recovery time

—E.g. 10 min
e Escrow’s server sends the time and all

but one shares of the noised secret
to the cloud

* Intruder to the cloud cannot find the
key

How : Escrow’s Side

* RE\s scheme executed at the cloud
chooses the cloud size

—To fit the calculus time limit for sure

— Say 10K nodes

e Search for the noised share gets
partitioned over the nodes

* Nodes work in parallel
— Matching the “footprints”

How : Escrow’s Side

* Every lucky node reports back to
Escrow the noised share found

* Escrow’ server recovers the key from
all the shares

— Using the clasical XORing

* Sends the recovered key to
Requestor

—Not forgetting the bill

What Else ?
* Well, everything is in details
—Client Side Encryption
—Server Side Recovery

e Static Scheme
e Scalable Scheme

—Related Work
—Conclusion

What Else ?

* More :
— Res. Rep.

http://www.lamsade.dauphine.fr/~litwin/Recoverabl
e%20Encryption 10.pdf

—S. Jajodia, W. Litwin & Th. Schwarz.
Recoverable Encryption through a Noised
Secret over a Large Cloud.

« 5th Inl. Conf. on Data Management in Cloud,
Grid and P2P Systems (Globe 2012)

e Publ. Springer Verlag, Lecture Notes in Comp.

http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf
http://www.lamsade.dauphine.fr/~litwin/Recoverable Encryption_10.pdf

Client Side (Backup) Encryption

* Client X backs up encryption key S

e X estimates 1-node inhibitive time
D

—Say 70 days
* D measures trust to Escrow

—Lesser trust ?
* Choose 700 days

Client Side Encryption

* D determines minimal cloud size N for
future recovery in any acceptable time R

—Chosen by recovery requestor
*E.g. 10 min
—X expects N>D /R butalsoN=D/R
* E.g. N =10K for D =70 days
— N =100K for D =700 days

Client Side Encryption

* X creates a classical shared secret for S
—S is seen as a large integer,
*E.g., 256b long for AES
—Basically, X creates a 2-share secret
—Share s, is a random integer
— Share s, is calculated as s, =5s,XOR S

* Common knowledge:
— $5=5,X0OR s,

Client Side Encryption

e X transforms the shared secret into a noised one
— X makes s, a noised share :

e Chooses a l1-way hash H
— E.g. SHA 256

* Computes the hint h=H (s,)

— Chooses the noise space
[=01...m,..M-1

— For some large M determined as we explain
soon

Client-Side Encryption

— Each noise m and s, define a noise share s
* |[naway we show soon as well

— There are M different pseudo random
noise shares

* All but one are different from s,
* Butitis not known which one is s,

— The only way to find for any s whether
s =S, is to attempt the match

H(s) ?=h

Shared Secret / Noised (Shared) Secret

S

Sy

H is one-way hash
SHA 256 by default

XOR

XOR

So

Noise

shares \

So

Noise
shares

Client Side Encryption

* X estimates the 1-node throughput T

— # of match attempts H (s) ?= h per
time unit

* 1 Sec by default
e X sets Mto M = Int (DT).
— M should be 240 + 25%in practice

Client Side Encryption

X randomly chooses m € [=[0,1..M]
* Calculates base noise share f =s;—m
* Defines noised share s," = (f, M, h).

* Sends the noised secret S” = (s,", s,) to

Escrow as the backup

Escrow-Side Recovery (Backup Decryption)

* Escrow E receives legitimate request of S
recovery in time R at most

e F chooses between static or scalable
recovery schemes

* £ sends data S” = (s,", R) to some cloud
node with request for processing
accordingly

—Keeps s, out of the cloud

Recovery Processing Parameters

Node load L, : # of noises among M
assigned to node n for match attempts

Throughput T_: # of match attempts node
n can process / sec

Bucket (node) capacity B, : # of match
attempts node n can process /time R

—B, =RT,
Load factor ¢, = L, [B,

Node Load

I

Co
o
o)

-

1 B

Overload Normal load Optimal load

30

Recovery Processing Parameters

* Notice the data storage oriented
vocabulary

* Node nrespects R iff o, <1
— Assuming T constant during the processing

* The cloud respects R if for every n we
have ¢, <1

* This is our goal

—For both static and scalable schemes we
now present

Static Scheme

S
1

)

* Intended for a homogenous Cloud
— All nodes provide the same throughput

~ oy g s T @R ofRA o oS e g e TR T = @ aFRy. &N @D @I G S Ay A ST P
S S 50) R 2} L O50 E0) R LSS ER) 8 SR 80 KT Cl =2 vy PR = sy Y i) LR TN
N i > i N ; T N > - - =2\ o >
~.) - - = ‘w.‘\‘ = .- -, AT T RN) o~ < XL X o %
i & . . == 2 ~ P = e N
- — = _v', X < - = - o 1 0k

P
/\1’0 ' >
£

== et

32

Static Scheme : Init Phase

Node C that got S” from E becomes
coordinator

Calculates a (M) =M/ B (C)
—Usually a (M) >> 1
Defines N as| a (M)_\

—Implicitly considers the cloud as
homogenous

E.g., N=10Kor N =100K in our ex.

Static Scheme : Map Phase

e C asks for allocation of N-1 nodes

e Associates logical addressn=1, 2...N-1
with each new node & 0 with itself

* Sends out to every node n data (n, a,, P)
—a, is its own physical address, e.g., IP
—P specifies Reduce phase

Static Scheme : Reduce Phase

* Prequests node n to attempt matches for
every noise share s = (f + m) such that

n=m modN
* |n practice, e.g., while m < M:
—Node 0 loops over noise m=0, N, 2N...
* SO over the noise shares f, f+ N, f+ 2N...
—Node 1 loops over noise m=1, N+1, 2N+1...

—Node N — 1 loops over m = (your guess here)

Static Scheme : Node Load

Static Scheme
Node n that gets the successful match
sendssto C
Otherwise node n enters Termination
C asks every node to terminate
— Details depend on actual cloud

C forwards sas s, to E

Static Scheme
* E discloses the secret S and sends S to
Requestor
— Bill included (we guess)

 E.g., up to 400S on CloudLayer for
—D =70 days
—R =10 min

— Both implied N = 10K with private
option

Static Scheme

Observethat N>D/Rand N =D /R

— |If the initial estimate of T by S owner holds
Observe also that for every node n, we have
a(n)<1

Under our assumptions maximal recovery
time is thus indeed R

Average recovery timeisR /2

—Since every noise share is equally likely to
be the lucky one

Static Scheme

e See papers for
—Detalils,
—Numerical examples
— Proof of correctness
*The scheme really partitions /

*Whatever is N and s,, one and
only one node finds s,

Static Scheme

e Safety

—No disclosure method can in practice
be faster than the scheme

—Dictionary attack, inverted file of
hints...

* Other properties

Scalable Scheme

* Heterogeneous cloud

— Node throughputs may differ

42

Scalable Scheme

* Intended for heterogenous clouds
— Different node throughputs
— Basically only locally known

* E.g.
—Private or hybrid cloud

—Public cloud without so-called private
node option

Scalable Scheme

* |nit phase similar up to a (M) calculus
— Basically a (M) >> 1
— Also we note it now ¢,

* If >1 we say that node overflows

* Node O sets then its level jto j =0 and
splits

— Requests node 22 =1
—Setsjtoj=1
— Sends to node 1, (S7, j, a,)

Scalable Scheme

e As result
—There are N = 2 nodes
— Both have j=1

—Node 0 and node 1 should each process M / 2
match attempts

* We show precisely how on next slides
—Iff both o, and ¢; are no more than 1

e Usually it should not be the case
* The splitting should continue as follows

Scalable Scheme

* Recursive rule
— Each node n splits until «, <1
— Each split increases node level j, toj, +1
— Each split creates new node n’ = n + 2
— Each node n’ gets j .= initially

* Node O splits thus perhaps into nodes 1,2,4...
* Until ¢, <1

* Node 1 starts with j= 1 and splits into nodes
3,5,9...

* Until ;<1

Scalable Scheme

* Node 2 starts with j = 2 and splits into
6,10,18...

* Until o, <1
* Your general rule here

* Node with smaller T splits more times
and vice versa

Scalable Scheme : Splitting

Node O
split 5
times.
Other o=07 —
nodes did — —
not split. B

Q
[
O
00
|

0.5 — |

a

Scalable Scheme

* |If cloud is homogenous, the address
space is contiguous

 Otherwise, it is not
— No problem

— Unlike for a extensible or linear hash
data structure

Scalable Scheme : Reduce phase

* Every node n attempts matches for every
noise k € [0, M-1] such that n = k mod 2.

* |If node O splits three times, in Reduce

phase it attempts to match noised shares
(f + k) with k=0, 8, 16...

* If node 1 splits four times, it attempts to
match noised shares (f + k) with k=1, 17,
33...

* Etc.

Scalable Scheme : Reduce Phase

f+16
f+8

£+ 33
f+17
f+1

51

Scalable Scheme
*N>D/R
— |If S owner initial estimate holds

* For homogeneous cloud it is 30%
greater on the average and twice as
big at worst / static scheme

* Cloud cost may still be cheaper
— No need for private option

* Versatility may still make it
preferable besides

Scalable Scheme

* Max recovery timeisup toR

— Depends on homogeneity of the cloud
* Average recovery timeis up to R /2
* See again the papers for

— Examples

— Correctness

— Safety

—Detailed perf. analysis remains future work

Related Work

e RE scheme for outsourced LH* files

e CSCP scheme for outsourced LH* records
sharing

* Crypto puzzles

* One way hash with trapdoor

* 30-year old excitement around Clipper
chip

* Botnets

Conclusion

e Key safety is Achilles’ heel of
cryptography

* Key loss or key disclosure ? That is The
Question

* RE\s schemes alleviate the dilemma

* Future work Deeper formal analysis
—Proof of concept implementation
—Variants

Thanks
for
Your Attention

Witold LITWIN & al

56

