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[1] This article aims at quantifying the improvement in
climate prediction skill as a function of temporal (from
monthly to decadal) and spatial scales (from grid point to
global) when initializing a perturbed parameter ensemble of
the Hadley Centre Climate Model. The focus is on
near-surface temperature and precipitation in the Tropical
band, the Northern and Southern hemispheres. For
temperature, the forecast system reproduces the dominant
impact of the external forcing at global spatial scale and at
decadal time scales. There are significant improvements
with initialization for the first 40 forecast months in the
global and tropical domains. In the Northern (Southern)
hemisphere, the initialization increases the skill in the
first 12 (20) months on regional but not hemispheric
scales. The initialization has a stronger impact in the
model variants with a weaker global-mean temperature
trend. For precipitation, the initialization corrects the
negative correlation found at global and tropical scales.
Citation: Volpi, D., F. J. Doblas-Reyes, J. García-Serrano, and
V. Guemas (2013), Dependence of the climate prediction skill on
spatiotemporal scales: Internal versus radiatively-forced contribution,
Geophys. Res. Lett., 40, 3213–3219, doi:10.1002/grl.50557.

1. Introduction

[2] Providing climate change information at interannual
time scales that could be useful to the agriculture, energy,
or health sectors is one of the main societal priorities.
Decadal predictions aim at satisfying such urgent demand,
focusing on time scales of several years to a few decades.
While climate change projection focuses on reproducing
the long-term trend in climate variables, decadal prediction
also aims at modeling the low-frequency variability
superimposed on any radiatively forced climate change
[Meehl et al., 2009]. The potential predictability can be quan-
tified by the ratio of the temporal variability filtered over de-
cadal timescales, over the total variability. Regions

exhibiting potential predictability indicate where there is a
chance to find predictive skill at such timescales. Because
of the large heat-storage capacity of the ocean and its slow re-
lease, most of such low-frequency variabilities come from
the ocean and are driven by different mechanisms. Decadal
potential predictability is found over the oceans at mid to
high latitudes [Boer and Lambert, 2008]. Previous works
have shown that the Atlantic meridional overturning circula-
tion is potentially predictable a decade in advance, and it has
also been shown (through a perfect model study of potential
predictability) that in the North Atlantic, many variables such
as sea surface temperature (SST), salinity, heat content, or
meridional transport could be potentially predictable for
many years [Griffies and Bryan, 1997a, 1997b]. In the
Pacific, the model-based study from Branstator et al.
[2012] shows that the decadal variability observed in the
North Pacific sea surface temperature (SST) is pronounced
but not necessarily predictable. Guemas et al. [2012] rather
incriminate model deficiencies in the inability to predict the
North Pacific SST.
[3] The study of potential predictability has led to the at-

tempt of producing real predictions. Smith et al. [2007],
Keenlyside et al. [2008], Pohlmann et al. [2009], and
Mochizuki et al. [2010] obtained good results in the North
Atlantic and North Pacific. In climate predictions, the follow-
ing sources of uncertainty compromise the forecast quality
[Robson, 2010]:
[4] 1. Internal variability: the natural (and not externally

radiatively forced) variability of the climate system.
[5] 2. Model inadequacy: the parametrization of the physical

processes is a source of uncertainty as the estimation of the pa-
rameters introduces errors into the model. Moreover, some pro-
cesses are not even simulated because they are not known yet.
[3] 3. Scenario uncertainty: uncertainties due to the

unforeseeable evolution of socioeconomic conditions, which
influence the change in greenhouse gas emissions.
[7] The predictability of the internal variability is associ-

ated with information contained in the initial conditions. It
is measured by determining for how long the predicted distri-
bution of an ensemble of similar initial states is distinguish-
able from the climatological distribution [Teng and
Branstator, 2010]. While weather and interannual climate
predictions attempt to address this source of uncertainty, cli-
mate change projections do not. The relative importance of
the initial conditions in climate prediction is supposed to vary
with the time scale and has been assumed to be a continuous
function that decreases with forecast time, becoming negligi-
ble after several decades [Hawkins and Sutton, 2009]. It has
been shown that there is skill beyond the first forecast year
and that the quality of the information about the initial state
can improve the climate forecasts in different regions
[Doblas-Reyes et al., 2013].
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[8] This work aims at comparing the predictive skill for the
near-surface temperature and precipitation of an experiment
initialized with observed data and one with no initialization,
both experiment accounting for the variable radiative forc-
ing. The reader has to distinguish that this is not a predictabil-
ity study in the sense of Hawkins and Sutton [2009], but
instead is an analysis of the actual predictive skill. The fol-
lowing objectives have been addressed:
[9] 1. the spatial and time scales at which maximum skill is

found, and
[10] 2. a quantification of the skill improvement provided

by the initialization
[11] Section 2 presents the details of the data and the

method implemented. Section 3 shows the results for near-
surface temperature and precipitation, and section 4 aims at
drawing the conclusions and suggests open issues that could
lead to further work.

2. Data and Method

[12] The decadal hindcasts employed are from the
perturbed-parameter ensemble of the MetOffice Decadal
Prediction System (DePreSys_PP). DePreSys [Smith et al.,
2007; Robson, 2010] is based on the global coupled ocean-
atmosphere model HadCM3 [Gordon et al., 2000]. The
perturbed-parameter ensemble of DePreSys_PP is composed
of eight model variants with simultaneous perturbations to 29
atmosphere and sea-ice parameters [Murphy et al., 2004],
plus the standard model version. The selection of the variants
guarantees an approximately uniform sample of climate sen-
sitivity and a wide range of different parameter settings to
sample the model uncertainty.
[13] The atmospheric resolution is 2.5∘� 3.75∘ with 19

vertical levels, while the ocean component has a resolution
of 1.25∘� 1.25∘ with 20 vertical levels.
[14] The decadal hindcasts consist in a set of 10 yearlong

retrospective forecasts, starting every November from 1960
until 2005. Here two different experiments of the same fore-
cast system have been compared: NoAssim decadal
hindcasts are initialized from nine transient simulations with
information about greenhouse gases, tropospheric and strato-
spheric ozone concentration, and sulfur emissions taken from
observations. The volcanic aerosol load is damped with a 1
year e-folding time. The variability in solar radiation is
represented by repeating the previous 11 year solar cycle.
This gives confidence on the reliability of the operational
decadal forecast system, unlike the Fifth Coupled Model
Intercomparison Project (CMIP5, [Taylor et al., 2012])
hindcasts that prescribe observed volcanic aerosols and solar
irradiance along the predictions. From the same transient
runs with identical external forcings, the Assim experiment
is initialized by assimilating atmosphere observations of hor-
izontal winds, temperature and surface pressure, and ocean
observations of temperature and salinity.
[15] The study has been carried out considering the follow-

ing domains: the global (poles excluded, i.e., 60�N–60�S),
the Northern hemisphere (NH, poles excluded, i.e., 20�N–
60�N), the Southern hemisphere (SH, poles excluded, i.e.,
20�S–60�S), and the Tropical band (TRO, 20�S–20�N).
The skill measure used here is the correlation computed
along the space and time dimensions. For the temperature,
the reference data are GHCN [Fan and van den Dool,
2008] for land and ERSST for ocean [Smith et al., 2008],

both available until early 2010 at the time of the study. For
precipitation, the reference is the CRU data [Brohan et al.,
2006], which is available over land until the end of 2006.
[16] The anomalies at each grid point and for each one of

the 120 time steps of the hindcasts have been computed using
the per-pair method [García-Serrano and Doblas-Reyes,
2012] in which the computation of the lead-time-dependent
climatology accounts only for the years in which both obser-
vational and model data are available. Depending on the ref-
erence data available and in order to guarantee the same
validation sample at all forecast times (i.e., same amount of
reference data available at all forecast time), the analysis em-
ploys the start dates included in the range 1960–1999
(hindcast starting in November 1999 and finishing in
October 2009, when the observation were still available)
for temperature and 1960–1996 (hindcast starting in
November 1996 and finishing in October 2006, when the ob-
servation was still available) for precipitation.
[17] The forecast-time accumulation is performed by accu-

mulating data for consecutive forecast months, up to accu-
mulating the whole forecast period:

x1;i; j; . . . ;
x1;i; j þ x2;i; j þ . . .þ xt;i; j

t
;
x1;i; j þ x2;i; j þ . . .þ x120;i; j

120

where xt,i,j is the ensemble mean anomaly at forecast time t
[1;120], latitude i2 [ min latitude of domain; max latitude
of domain ] and longitude j2 [ min longitude of domain;
max longitude of domain ]. The ensemble mean is the aver-
age of the anomalies obtained for each model version.
[18] In order to illustrate the skill dependence with the spa-

tial scale, between grid point level and global average, the
immediate neighbors at each grid point have been averaged
along all the possible directions. The case of zero neighbors
is the original grid, and the maximum amount of neighbors
represents the area average of the domain defined by its lati-
tudinal extension. Successively, the temporal variances and
covariances between model and observed anomalies have
been computed for each spatial averaging. Finally, the corre-
lation has been computed from the spatial average of vari-
ance and covariance values:

rg ¼
Covxy
� �

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varx
� �

g� Vary
� �

g

q

where rg is the correlation for the degree of spatial averaging
g, Covxy
� �

g
is the temporal covariance between the model (x)

and the reference data (y), averaged over the spatially aver-
aged data g; analogously Varx

� �
g
is the temporal variance

of the model averaged with the spatial averaging g, and
Vary
� �

g
is the temporal variance of the reference data aver-

aged over the spatial averaging g.
[19] A Student’s t-test has been applied, and the p-values

0.01, 0.05, and 0.1 have been calculated and plotted. As the
number of degrees of freedom depends on the number of
independent data in time and space, a time and space depen-
dency has been arbitrarily chosen for our study. A time
dependence between 10 consecutive start dates has been
considered, which corresponds to 10 years (the Atlantic
multidecadal oscillation, for example, can stay in the
same phase for more than 10 years). An area dependency of
npt = 5� 5 grid points that approximately corresponds to an
area of 2000 km� 2700 km has been considered. A smaller
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area dependence has been considered for the precipitation,
and an npt = 3� 3 grid points corresponding to approxi-
mately 1250 km� 1650 km has been arbitrarily chosen. The
degrees of freedom for each spatial averaging g are then cal-
culated as follows:

DOFg ¼ indepsd �minðnlat�nlon
npt

; nlatg�nlongÞ

where indepsd is the number of independent start dates, nlat
and nlon are the number of grid points in the original grid,

and nlatg and nlong are the number of grid points for the de-
gree of spatial averaging g. For precipitation, this quantity is
multiplied by the proportion of land data, as there is precipi-
tation observational data available only over land.

3. Results

[20] Figure 1 shows the 2m temperature correlation be-
tween the decadal hindcasts and the reference data as a func-
tion of forecast time and spatial averaging. Each row

Figure 1. Correlation of Assim and NoAssim near-surface temperature with GHCN and ERSST data depending on the fore-
cast time and the spatial averages. (a, b, and c) The global domain of, respectively, Assim and NoAssim experiments and their
difference. Analogously, (d, e, and f) the Northern Hemisphere domain, (g, h, and i) the Southern Hemisphere, and (l, m, and
n) the Tropical band. Note that the color bar for the third column is different from the others. The x axis indicates the number
of consecutive months included in the average (from 1 up to the whole forecast period of 120 months). The y axis represents
the meridional extent of the spatial average at which the variances and the covariances between model and observations are
computed. From those values, the area average has been computed. The correlation has been calculated from the area average
of the variances and covariances. The one-tailed Student’s t-test has been computed, and the black dotted, dashed, and solid
contours are, respectively, the p-values 0.01, 0.05, and 0.1. See details on the computation of the number of degrees of free-
dom in the text.
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represents a different domain, the global, the Northern hemi-
sphere (NH), the Southern hemisphere (SH), and the Tropical
band, respectively. The first column shows the skill of the
NoAssim hindcasts, the second column the Assim skill, and
the third one is the skill improvement of Assim over
NoAssim. The first column of Figure 1 (NoAssim experi-
ment near-surface temperature skill) shows that when the
model is not initialized with observations, the skill grows
nearly monotonically with spatial and time averaging. This
leads to a maximum of skill regardless of the domain consid-
ered at the top right corner of the figure, where the spatial av-
eraging and temporal accumulation are the largest (i.e., the
whole domain is averaged, and the time accumulation in-
cludes all 120 forecast months), which suggests an increasing
role of the varying forcing as the time series are smoothed.
The smaller domains show that the NoAssim skill is larger
in the extratropics, pointing toward a larger relative contribu-
tion to the climate signals of the external radiative forcings
over the internal variability in the extratropics compared to
the tropics, particularly for the 1 to 5 year time scale.
[21] Assim shows an additional maximum of skill in the

global domain at the beginning of the forecast centered at
the accumulated month 10 (Figure 1b). In the NH and SH
of the initialized experiment (Figures 1e and 1h), there is also
an increase in skill with space and time accumulation without
the peak that appeared in the global domain at the beginning

of the forecast accumulation. The skill of Assim in the
Tropical band (Figure 1m) shows in addition to the maxi-
mum at large spatial averaging, a peak for short accumulation
forecast times. This peak seems to originate from the added
value of the initialization associated with the El Niño
Southern Oscillator (ENSO) as illustrated in Figure 2, which
is explained in detail below. Figure 1c shows that the im-
provement given by the initialization in the global domain
is significant for the accumulation of the first 40 forecast
months. Moreover, the maximum improvement due to the
initialization appears at intermediate spatial scales, which is
an additional motivation to analyze the skill in smaller do-
mains such as the NH, the SH, and the Tropical band.
[22] Comparing the skill of the NH and SH (Figures 1d and

1g) for the NoAssim experiment, SH shows less skill. Also,
for the Assim experiment (Figures 1e and 1h), there are less
steep contours in SH. When looking at the initialization im-
provement (Figures 1f and 1i), significant results are shown
for the first 12 accumulated months in the NH and 18 accu-
mulated months in SH. At the larger scale spatial averaging,
which corresponds to the whole NH/SH domain (top of
Figures 1f and 1i, respectively), the improvement is not sig-
nificant at the 90% confidence level. Figures S1 and S2 in
the supporting information show the results of the study
using land-only and ocean-only data, respectively. The max-
imum skill in the GLO, NH, and SH is lower than that in

a) b)

c) d)

Figure 2. Anomaly time series of Assim and NoAssim near-surface temperature with GHCN and ERSST in the (a,b) global
domain and (c,d) tropical band. Figure 2a shows the time series of the first forecast month with a spatial average over the
whole global domain; Figure 2b is the anomalies time series of the 120 forecast months average over the whole global domain.
In solid black are the reference data. Assim ensemble mean anomalies are in solid red, while the Assim ensemble members in
dotted red. Analogously, the NoAssim ensemble mean anomalies are in solid blue, and the NoAssim ensemble members in
dotted blue. Figures 2c and 2d are the same as Figures 2a and 2b, but in tropical band. The year in the abscissa corresponds
to the start date of each individual hindcast. Note that the legend indicates the correlation of Assim with the reference data and
the correlation of NoAssim with the reference data. In Figures 2a and 2c, the correlation between the observed Niño 3.4 SST
index with the tropically averaged reference data is also shown.
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Figure 1, especially over land, due to the fact that the effec-
tive averaged areas are smaller than the one when both ocean
and land are considered together. The monotonic increase in
skill with spatial and temporal averaging observed in
Figure 1 is lost in Figures S1 and S2.When looking at the dif-
ference between Assim and NoAssim, the ocean-only figure
(Figure S2) shows a statistically significant (confidence level
of 90%) impact of the initialization for longer time scales
when compared to the mixed ocean and land data. To better
identify the different origins of the skill for the Assim and
NoAssim, Figure 2 illustrates the temperature anomalies in
different domains (respectively, the global domain in the first
row and the tropical domain in the second row) and at differ-
ent forecast time accumulations (first forecast month in the
first column, and for the accumulation of all forecast months
in the second column). All the grid points of each domain are
averaged in all panels. In particular, Figure 2a corresponds to
the temperature anomalies at the first forecast month for the
46 start dates used in this study. The anomaly correlation
coefficients generated by those anomalies correspond to the
top left points in Figures 1a (NoAssim) and 1b (Assim).

Similarly, Figure 2b illustrates the temperature anomalies of
the averaged forecast period, and the corresponding anomaly
correlation coefficient is represented by the top right corner
points of Figures 1a and 1b. Analogously, the top left and
top right anomaly correlation coefficients in Figures 1l and
1m are generated, respectively, by the anomalies illustrated
in Figures 2c and 2d. Figure 2a shows that NoAssim ensem-
ble has more spread than Assim (this is also shown in
Figures 2c and 2d for the tropical domain discussed below).
When integrating over time, the role of the radiative forcings
gets dominant, and both Assim and NoAssim have a correla-
tion with the reference data higher than 0.9 (Figure 2b).
[23] Compared to other domains, the Tropical band of

NoAssim (Figure 1l) has the lowest skill. The skill figure of
Assim in the Tropical band (Figure 1m) shows, in addition to
the maximum at global average, a peak at the beginning of
the forecast accumulation. The maximum improvement of the
initialization is given during the accumulation of the first 4
forecast months (Figure 1n), while significant improvements
are shown until 40 forecast months accumulation, and
improvements last up to the first 50 forecast months

a) b) c)

d) e) f)

g) h) i)

Figure 3. Correlation of Assim and NoAssim precipitation with CRU data depending on the forecast time and the spatial
averages. (a, b, and c) The global domain of, respectively, Assim and NoAssim experiments, and their difference.
Analogously, (d, e, and f) the Northern Hemisphere domain, and (g, h, and i) the Tropical band. Note that the color bar for
the third column is different from the others. The x axis indicates the number of consecutive months included in the average
(from 1 up to the whole forecast period of 120 months). The y axis represents the meridional extent of the spatial average at
which the variances and the covariances between model and observations are computed. From those values, the area average
has been computed. The correlation has been calculated from the area average of the variances and covariances. The one-
tailed Student’s t-test has been computed, and the black dotted, dashed, and solid contours are, respectively, the p-values
0.01, 0.05, and 0.1. Details on the computation of the number of degrees of freedom in the text.
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accumulation. Such improvement at the beginning of the fore-
cast is also shown in Figure 2. Figure 2c shows the temperature
anomalies of the first forecast month when averaging over the
whole tropical band. Assim has a correlation of 0.94, while
NoAssim has a correlation of 0.38. These correlations are sig-
nificantly different with at least 99% confidence level.
NoAssim reflects the continuous warming without showing
any variability consistent in time with the reference data.
This is mainly due to the fact that NoAssim does not have
any information about the phase and amplitude of contempo-
raneous events, while Assim does. The correlation of the
observed Niño 3.4 SST index with the tropically averaged ref-
erence data is of 0.69, which also suggests that the variability
in the Tropical band is dominated by the variability of ENSO.
Figure S3a of the supporting information shows the Niño 3.4
SST index anomalies for the first forecast month. Assim has
a correlation with ERSST of 0.99, while NoAssim has a
negative correlation.
[24] Similar to Figure 2b for the global domain, in Figure 2d

for the Tropics, when the forecast time is accumulated over the
120 forecast months, both experiments have a correlation with
the observations higher than 0.9 due to the large role of the ex-
ternal forcings. The results suggest that most of the skill im-
provement with initialization found in the global domain is
associated with the tropical region. Figure S3b of the
supporting information shows that with the accumulation of
the whole forecast period, the Niño 3.4 SST index skill de-
creases with respect to that shown in Figure S3a. As a result,
Assim and NoAssim have similar skill of around 0.55.
Figure S3c shows how the Niño 3.4 correlation difference
evolves as the forecast-time accumulation increases, with the
situations in Figures S3a and S3b being the two extremes.
The difference in correlation decreases with forecast-time ac-
cumulation. During the first forecast year, the correlation dif-
ference is greater than 1, which means that the initialization
actually corrects the sign of the NoAssim correlation.
Moreover, the correlation is significantly different at 90%
level for accumulations of up to 40 forecast months, which ex-
plains the results found for the TRO in Figure 1.
[25] The results described above are consistent across the

different model version used. Figure S4 shows the skill in
the global domain for each individual version of the forecast
system. When using the linear trend of the global-mean tem-
perature as a proxy for the climate sensitivity, it was found
that when the trend is stronger, the NoAssim experiment
(first column Figure S4) has a larger skill at all spatial and
temporal scales. Moreover, the Assim panels (second column
figure S4) show that the impact of initialization is stronger
when the trend is weaker. The model versions in Figure S4
are ranked following the climate sensitivity estimates shown
in Figure S5, from the model version with higher climate sen-
sitivity to the one with the lowest.
[26] The NoAssim precipitation (first column Figure 3) has

negative correlation with the CRU data in the global domain
(Figure 3a) and the Tropical band (Figure 3g). Some positive
skill is found in the NH (Figure 3d) at large-scale averaging
and full forecast-time accumulation. The correlation with
CRU of the initialized experiment displays significantly pos-
itive skill (confidence level of 90%) in every domain (second
column Figure 3) for an accumulation of up to 20 forecast
months. The maximum skill is found in the Tropics
(Figure 3h) for an accumulation of 12 forecast months.
Improvement with the initialization is found in the global

domain (Figure 3c) for all forecast-time accumulations and
spatial scales averaging, except for the averaging of the larg-
est spatial scales. These improvements are the strongest over
the TRO region (Figure 3i) and are mainly due to the correc-
tion of the NoAssim negative skill by the initialization.

4. Conclusions

[27] In this work, the improvements associated with the
initialization of a decadal forecast system have been quanti-
fied. Moreover, it has been documented how the added value
of the initial condition information varies with the temporal
and spatial scales.
[28] 1. For near-surface temperature, it has been found

that when increasing the spatial scales and temporal accu-
mulation, the external forcing influence becomes more im-
portant. DePreSys_PP correctly reproduces the surface
temperature response to the variation of external forcings.
This leads to a maximum of skill at time scales of 10 accu-
mulated years, which is the maximum time scale consid-
ered in this study, and for regional to large scales. This is
not the case for land precipitation, for which the sign of
the correlation with the observations is negative.
[29] 2. By introducing information of the state of the cli-

mate system through the initialization, a new peak of surface
temperature skill appears from the beginning of the forecast
to the first 40 forecast months in the global domain and the
tropical band. This seems to be due to the correct prediction
of ENSO, which is usually considered limited to 1 year.
Globally, the skill improvements due to the initialization
are mainly coming from the Tropics.
[30] 3. The NH is more skillful than the SH for near-surface

temperature. The improvements brought by the initialization
are statistically significant with a confidence level of 90%, re-
spectively, in the NH for the accumulation of the first 12 fore-
cast months and in the SH for the first 20 forecast months and
from the grid point scale to the regional spatial scale. The rea-
son for not getting statistically significant results when averag-
ing over the whole hemisphere might be due to the small
number of independent data available. A longer reforecast pe-
riod would be necessary to get more robust results.
[31] 4. The skill results for near-surface temperature are con-

sistent across the different model versions.When using the lin-
ear trend of the global-mean temperature as a proxy for the
climate sensitivity, it was found that in the NoAssim experi-
ment, the stronger the trend, the larger the skill, at all spatial
and temporal scales. The Assim experiment shows that the im-
pact of initialization is stronger when the trend is weaker.
[32] 5. NoAssim has no precipitation skill in the global

domain and the Tropics at almost any spatial and time
scale. The initialization corrects the negative sign of the
NoAssim correlation and has a beneficial impact for all
time scales and spatial averaging in both domains.
Much is still needed to improve multiannual precipitation
forecasts, especially considering that precipitation is a
key variable with large socioeconomic consequences.
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