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Abstract 
This work focuses on the development of FLAME (Forecasting Landslides induced by 
Acceleration Meteorological Events) that analyze of the relationship between 
displacements and precipitations using a statistical approach in order to predict the 
surface displacement at active landslide. FLAME is an Impulse Response model (IR) that 
simulates the changes in landslide velocity by computing a transfer function between the 
input signal (e.g. rainfall or recharge) and the output signal (e.g. displacement). This model 
has been applied to forecast the displacement rates at Séchilienne (French Alps). The 
FLAME model is enhanced by achieving the calibration using joint inversion of multiple 
time series data. We consider that the displacements at two different sensors are 
explained by the same long-term response of the system to ground water level variations. 
The parameters describing the long-term response of the system are therefore identical 
for all sensors. The joint inversion process allows decreasing the ratio between the number 
of parameters to be inverted and the volume of data and is thus more statically steady. 
The results indicate that the models are able to reproduce the displacement pattern in 
general to moderate kinetic regime but not extreme kinetic regime. Our results do not give 
clear evidence of an improvement of the models performance with joint inversion of 
multiple time series of data. The reasons which could explain these inconclusive results are 
discussed in the paper. 
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Introduction 

Recently, statistical models using impulse responses 
functions had been used to successfully predict 
landslides velocities (Belle et al. 2014; Abellan et al. 
2013). Not only these models facilitate displacement 
prediction based on a limited data set (Belle et al. 2014), 
but they also proved appropriate to take into account 
possible temporal variations of the landslide properties 
(Bernardie et al. 2014; Abellan et al. 2015). Such models 
predict a behavior of the landslide similar to the period 
used to calibrate the model. Consequently, when the 
landslide deformation rate increases and thereby causes 
a rapid change of the landslide rheological and 
hydrological properties, the discrepancy between 
predicted and actual measurements increases.  
Bernardie et al. (2014) showed that this indication of a 
change in the landslide behavior could be used to 
predict fluidization events at the Super-Sauze landslide, 
several days in advance. At Super-sauze, a threshold 
criterion of the error of prediction was estimated by 
performing back analysis on several fluidization events.  

The definition of thresholds values for real-time early 
warning systems becomes tricky for study-sites such as 
Séchilienne that never experienced a major crisis. One 
way to identify periods when the observed velocities 
significantly differ from the predicted velocities would 
be to assess the quality of the velocity predictions and 
to estimate an error envelope of these predictions. 
Thus, prior to apply such methods, we must ensure the 
quality of model predictions. Unfortunately, the studies 
aforementioned also showed that this latter type of 
statistical models usually presents some defaults. In 
particular, the inversion process can be rather instable 
when choosing to calibrate a model accounting for a 
complex hydrogeological response (i.e., with numerous 
parameters to be determined by inversion) using short 
time series of data.  

Therefore, the improvement of the model 
predictions is an important step to help defining critical 
values of velocities. This study discusses the 
enhancement of the method by achieving the 
calibration of the model using joint inversion of 
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multiple time series of data. The method is applied at 
the Séchilienne landslide where the geometry of the 
instrumentation meets the requirement of the method. 
In detail, it means that the displacement rate sensors 
are located on top of the same hydrogeological unit, 
thus allowing considering partially identical Impulse 
Response models for all the inverted time series. By 
doing so, the ratio between the number of parameters 
to be inverted and the volume of data decreases, thus a 
priori improving the robustness of the method. The 
first part of this paper details the current 
understanding of the hydrogeological behavior of the 
Séchilienne landslide. The second part of this paper 
presents the statistical model used in this study to 
predict surface velocities at the Séchilienne landslide. 
Finally we discuss the benefits of using joint inversion 
of multiple time series of data for the prediction of the 
displacement rates at active landslides using Impulse 
Response models. 
 
Description of the Séchilienne landslide 

Location, geometry 

The Séchilienne landslide is located in the South-east of 
Grenoble in the French Alps (Fig1).  
 

 
Fig. 1 a) Localization of the Séchilienne landslide on the 
French Alps map. b) Photograph of the Séchilienne 
slope in July 2014, with the limits of “Les Ruines” high 
motion zone in yellow, and the upper limit of the whole 
unstable mass in white. The positions of extensometers 
A13 and A16 are indicated in red. 
 

The whole unstable mass is estimated between 
48 and 63 million m3 (Le Roux et al. 2011). Most of the 
unstable mass moves slowly with velocities ranging 
from 2 to 15 cm/year on average, except for a very active 
moving zone with velocities ranging from 150 to 300 
cm/year on average (Vallet et al. 2015b). Rock falls 

occurs on a regular basis within this active zone which 
volume is estimated at 3 million m3 (Le Roux et al. 2011). 

A particularity of the Séchilienne landslide is 
the absence of a well-define basal sliding surface. 
 
Kinetics and hydrogeology 
The influence of recharge on the kinematics of the 
Séchilienne landslide has been evidenced by numerous 
studies: Rochet et al. 1994; Alfonsi 1997; Durville et al. 
2009; Chanut et al. 2013. Recently, Vallet et al. (2015b) 
showed that the massif at Séchilienne hosts a relatively 
shallow perched aquifer in the unstable zone and a 
deep aquifer in the intact massif. The existence of the 
shallow perched aquifer is related to the permeability 
contrast between the unstable mass at shallow depth 
and at deeper depth. Authors described the perched 
aquifer, with an extent and connectivity dependent on 
the seasonal recharge. For both aquifers, conductive 
fractures play a major role in the drainage (Vallet et al. 
2015b).  

Cappa et al. (2014), and more recently Vallet et 
al. (2015b) investigated the link between the 
Séchilienne landslide kinematics and the local 
hydrogeology. Both showed that low frequency 
displacement of the landslide might be linked with 
variations of the deep aquifer level, and whereas the 
high frequency displacements of the landslide might by 
linked with variations of the perched aquifer level in 
the landslide. 

The existence of this deep aquifer has never 
been evidence by drilling experiments (since its depth 
is lower than -150 m). Its depth and geometry are not 
well known and this deep aquifer might correspond to 
water circulation inside a fracture network. 

 
Monitoring network 
The Séchilienne landslide is monitored since 1985 by 
the French public national body Cerema Centre Est 
(Duranthon et al. 2003; Dubois et al. 2014).  
Precipitations are recorded at the Mont-Sec weather 
station, located a few hundred meters above the 
disturbed zone. This station is equipped with both a 
rain and a snow gauge, thereby allowing the estimation 
of snow cover and snow melt in water equivalent. 

The landslide displacements are monitored 
using a variety of techniques (extensometers, radar, 
infra-red, inclinometers and GPS). In this study, we 
analyze displacements at extensometers A13 an A16, 
both located within the active moving zone (see Figure 
1b). The measurements show the same general trends 
(see Fig. 5a). The extensometers are characterized by 
measurement errors of ± 0.5 mm.  
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Description of the forecasting model FLAME 

We use the statistical model FLAME (Bernardie et al. 
2014) to predict surface velocities at the Séchilienne 
landslide. 

FLAME is an Impulse Response model, which 
principle is to reproduce an output signal S (e.g. 
displacement) using the convolution product of an 
input signal E (e.g. rainfall or recharge) by a transfer 
function Γ as described in Eq.1 and Fig.2: 
 ( . ) = ∗ ( ) = ∑ ( . ). ( − + 1).  [1] 
 
where n is the discretized interval time, and k is the 
order (length) of the impulse response. 
 

 
Fig. 2 Schematic framework of the statistical model 
FLAME 
 

During the calibration phase, an optimization 
of the parameters describing the transfer function Γ is 
performed in order to minimize the Root Mean Square 
Error (RMSE) of the difference between the estimated 
displacement rates and the observed displacement 
rates. The calibration model is then used to forecast the 
displacement rates coming just after the calibration 
period (Fig.3). 

 

 
Fig. 3 Calibration of the model using observed 
displacement rate befor the date di ; and prediction of 
the displacement rate with the calibrated model for 
dates di+1 and di+2. 

 

 The calibration of the models is repeated 
daily, using a moving calibration period of 200-days. 
This “sliding calibration window” enables to account for 
temporal changes in the rheological and hydrological 
response of the slope. The length of the calibration 
period was set at 200-days so that: (1) it is long enough 
to invert a transfer function Γ that matches seasonal 
variations of the landslide behavior and, (2) this 
calibration period is short enough to consider that the 
medium is a time-invariant system and can be 
characterized by a unique transfer function Γ. The 
transfer functions Γi  determined thank to the inversion 
process at date di are used to predict the displacement 
rate at dates di+1 to di+20. 
 The transfer functions Γi of the FLAME model 
(Eq.2) are the convolution of a Gaussian function (e.g. 
representing the recharge of the water reservoir) by an 
exponential function (e.g. representing the discharge of 
the water reservoir): 
 												 ( ) = − ln(2) ∗ − 	( )       [2] 

 
For each Γi , the three degrees of freedom to optimize 
are:  
-  T≥0: the position of Gaussian (e.g. time delay 
between the recharge and the rainfall; in day); 
- D>0: the width at middle height of the 
Gaussian (e.g. time duration of the phenomenon; in 
day); 
- L: the half time duration of the drainage of the 
water reservoir (in day) 
 
The transfer functions are normalized, considering a 
coefficient defined by the conservation law between 
inputs and outputs (Eq.3): 
 
                                   = ∑ ( )∑ ( )		                                     [3]    

 
Joint inversion 
The displacement rates at the Séchilienne landslide are 
influenced by the deep aquifer as well as by the perched 
aquifer. Thus, the transfer function of the model should 
account for both aquifers and Eq.1 would become, for 
each sensor: 
 = . ( ∗ ( ) + ) +	 . ∗ ( ) +    [4]                                     
     
where β is a normalization constant, and γ and Γ, 
respectively, are the contribution coefficient and the 
transfer function of the input E (e.g., the water input), 
and cst, a constant corresponding to constant 
contribution. Indices da and pa stand for deep aquifer 
and perched aquifer, respectively.  



C. Lévy, S. Gendrey, S. Bernardie, M.-A. Chanut,  A. Vallet, L. Dubois and J.-P. Duranthon – Landslide monitoring 

 4

This transfer function has 6 degrees of 
freedom, which have to be optimized during the 
calibration phase. On a first attempt (case 1), the 
transfer function Γ is simplified so as to account only 
for one aquifer:  

 
               = . ( ∗ ( ) + )                          [5]  
 
where only 3 degrees of freedom are to be optimized 
during the calibration phase. 

On a second attempt (case 2), the complete 
transfer function Γ is considered: 
 = . ( ∗ ( ) + ) +	 . ∗ ( ) +    [6]                                                               
 
where 6 degrees of freedom are to be optimized during 
the calibration phase. 

The calibration of these transfer functions can 
be performed independently for the time series of A13 
and A16.  

In this study, we also propose to perform the 
joint inversion of the A13 and A16 time series. The 
principle of the joint inversion is to assume a similar 
influence of the deep aquifer on the displacement rates 
at A13 and A16 (both sensors are located on top of the 
same hydrogeological unit), whereas such conclusion 
cannot be derived for the influence of the perched 
aquifer, described as temporary, with an extent and 
connectivity dependent on the seasonal recharge. Thus, 
during the joint inversion, the parameters 
corresponding to the influence of the deep aquifer will 
be considered identical for all sensors, whereas the 
parameters corresponding to the influence of the 
perched aquifer will be considered different. By doing 
so, the ratio between the number of parameters to be 
inverted and the volume of data decreases. The 
constraint on the inversion process is enhanced. 

The joint inversion is performed for the period 
during which all sensors are operative, from the 
24/02/1994, until the 30/06/2013.  
 
Water inputs 
The input signal E (see Eq. 4) representing water inputs 
will be considered as the recharge for the deep aquifer 
(i.e., the amount of water that is available for 
infiltration after evapotranspiration), and as the 
precipitations for the perched aquifer (e.g. the sum of 
rain and snow melt). The recharge is estimated using 
the model of Vallet et al. (2015a) (see Fig. 4). 
 

 
Fig. 4 Daily precipitations at the Mont-sec weather 
station, and the estimated recharge using the model of 
Vallet et al. (2015a) at the Séchilienne landslide. 
 
Parameter space 
During the inversion process, a large parameter space is 
investigated in order to optimize the value of the 
transfer function parameters.  This parameter space is 
chosen so as to cover a large range of realistic values for 
the Séchilienne landslide (see Tab. 1).  
 
 

Parameter Lowest possible 
value (days) 

Highest possible 
value (days) 

Tda 
Tpa 

0 
0 

80 
90 

Lda 
Lpa 

1 
1 

80 
300 

Dda 
Dpa 

1 
1 

80 
90 

 
Assessment of the quality of the results 
The quality of the models will be assessed by analyzing 
the modelling errors. This error can be characterized by 
the RMSE of the difference between the observed 
displacement rate between date di+1 and date di+j, and 
the predicted displacement rate at the same dates; the 
lower the RMSE, the more accurate the model will be. 
Furthermore, we assessed the quality of the models 
computing the coefficient of determination (R²) 
between the observed and the predicted velocities. The 
closer to one the R² is, the more accurate the model will 
be. Finally, a visual inspection of the time-series shape 
was also carried out in order to investigate whether or 
not the predictions reproduced the characteristic 
behavior of the landslide, such as long term trends and 
seasonal variations. 

   
Simulation of displacement rates at the Séchilienne 
Landslide 

Models using one transfer function Γda 
Fig. 5 presents the results of models using one transfer 
function (see Eq. 5). Fig. 5a to 5c presents the results of 
independent inversions for sensors A13 and A16, when 
Fig. 5d to 5f presents the results of joint inversion for 
sensors A13 and A16. For both inversions, the predicted 
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identical whatever the method of inversion. The 
expected improvement of the model performance with 
joint inversion is not observed. 

The quality of the results is clearly improved 
when using models with two transfer functions rather 
than models with one transfer function. The average 
RMSE of predictions gets closer to the measurement 
error of the sensors (± 0.5 mm/day). This improvement 
does not allow asserting that the optimized parameters 
(T,L,D, see Eq. 2) are sufficiently constrained during the 

inversion and are representative of the averaged 
behavior of the landslide.  

The evolution of the optimized parameters 
Tda,Lda and Dda with time is studied for two distinct 
period P1 and P2 (see Fig. 6d, 6g and 6h) for the model 
using two transfer functions and joint inversion. Period 
P1 goes from the 06/05/2002 to the 14/08/2003; period 
P2 goes from the 22/12/2009 to the 19/11/2010. During 
period P1, the displacement rates have seasonal 
fluctuations with an increasing trend.  

 
 

 
Fig. 6 Models using two transfer functions (see Eq. 6): a) Observed displacement rates at extensometers 

A13 and A16 compared to the predicted displacement rates using independent inversions for sensors A13 and A16. b) 
The predicted displacement rates at A13 and A16 of Fig. 6a as a function of the observed displacement rates. Model 

performance assessment through linear regression and the value of R². c) distribution of the model errors 
(observations vs. model outcomes). d) to f) same as a) to c) for predicted displacement rates using joint inversions 
for sensors A13 and A16. g) and h) zooms of Fig. 6d for the periods P1 (from the 06/05/2002 to the 14/08/2003) and 

P2 (from the 22/12/2009 to the 19/11/2010). 
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During period P2, the displacement rates are 

more irregular and with more amplitude, together with 
a general increase of the average velocity. During both 
periods, the evolutions of the optimized parameters Tda, 
Lda and Dda are gradual and never reach the limits of the 
defined parameter space (see Tab. 1). Fig. 7a, 7b and 7c 
shows the distribution of the value of parameters Tda, 
Lda and Dda for these two periods, as well as their 
average value. The corresponding shapes of the average 
transfer function Γda for periods P1 and P2 are presented 
on Fig. 7d. Both transfer functions Γda have realistic 
shapes, and represent distinct average behaviors that 
are consistent with the general increase of the average 
landslide velocity between periods P1 and P2 (the time 
response decreases between periods P1 and P2).  

 

Fig. 7 a) Distribution and mean value of the T 
parameter of the tranfer function Γda during periods P1 
and P2 (see Fig. 6d, 6g and 6h). b) and c) same as a) for 

parameters L and D of the tranfer function Γda. d) Shape 
of the average transfer function Γda for periods P1 and 
P2. 

 
Discussion  

This study discusses the use of statistical models using 
impulse responses functions to predict landslides 
velocities. The inversion processes of these statistical 
models can be poorly constrained when choosing to 
calibrate a model accounting for a complex 
hydrogeological response (i.e., with numerous 
parameters to be determined by inversion). The aim of 
this study was to test if an enhancement of the method 
could be achieved by calibrating the models using joint 
inversion of multiple time series of data.  

The method was applied at the Séchilienne 
landslide where the geometry of the instrumentation 
meets the requirement of the method. E.g., the 
displacement rate sensors are located on top of the 
same hydrogeological unit, thus allowing considering 
partially identical Impulse Response models for all the 
inverted time series. By doing so, the ratio between the 
number of parameters to be inverted and the volume of 
data decreases, thus a priori increasing the constraint 
for the search of an optimized solution during inversion.  

Our results do not give clear evidence of an 
improvement of the models performance with joint 
inversion of multiple time series of data. The reasons 
which could explain these inconclusive results are 
numerous.  One unfavorable factor is certainly the fact 
that the data set could not allow a better 
characterization of the landslide short-term behavior.  
Data time step is only 24 hours, when the landslide 
short-term time response is of the order of a few hours 
(Vallet et al., 2015b). Thus, the convergence of the 
models to an adequate estimate of the short-term 
response of the landslide is difficult. Another 
unfavorable factor is that we assume that the medium 
is a time-invariant system for the duration of the 
calibration. If this approximation has a good chance of 
being correct for the seasonal variations of the 
landslide, it might not hold true for the short-term 
response of the landslide. There might be a conflict 
between the need of a sufficiently long calibration 
period to constrain the inversion of the long-term 
response of the landslide, and the necessary 
assumption to consider the response of the short-term 
of the landslide as invariant during this calibration 
period. 
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