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ABSTRACT

Senegal is particularly vulnerable to precipitation variability. To investigate the influence of large-scale

circulation on local-scale precipitation, a full spatial–statistical description of precipitation occurrence and

amount for Senegal is developed. These regression-typemodels have been built on the basis of daily records at

137 locations and were developed in two stages: (i) a baseline model describing the expected daily occurrence

probability and precipitation amount as spatial fields from monsoon onset to offset, and (ii) the inclusion of

weather types defined from the NCEP–NCAR reanalysis 850-hPa winds and 925-hPa relative humidity es-

tablishing the link to the synoptic-scale atmospheric circulation. During peak phase, the resulting types

appear in two main cycles that can be linked to passing African easterly waves. The models allow the in-

vestigation of the spatial response of precipitation occurrence and amount to a discrete set of preferred states

of the atmospheric circulation. As such, they can be used for drought risk mapping and the downscaling of

climate change projections.

Necessary choices, such as filtering and scaling of the atmospheric data (as well as the number of weather

types to be used), have beenmade on the basis of the precipitation models’ performance instead of relying on

external criteria. It could be demonstrated that the inclusion of the synoptic-scale weather types lead to skill

on the local and daily scale. On the interannual scale, the models for precipitation occurrence and amount

capture 26% and 38% of the interannual spatially averaged variability, corresponding to Pearson correlation

coefficients of rO 5 0.52 and ri 5 0.65, respectively.

1. Introduction

Climate variability and extreme events such as

droughts, excessive rains, and floods affect agricultural

productivity and hence rural household food security

(Haile 2005). Since the 1970s, the largest food crises in

Africa that required large-scale external food aid (1974,

1984/85, 1992, and 2002) have been attributed fully or

partially to extreme events (Dilley et al. 2005). Fur-

thermore, Africa is considered particularly vulnerable

to climate change due to a combination of naturally high

levels of climate variability, high reliance on climate

sensitive activities such as rainfed agriculture, and lim-

ited economic and institutional capacity to cope with

and adapt to climate variability and change (Roudier

et al. 2011).

Senegal, as part of the semiarid Sahel, witnessed a

period of drought during the second half of the twentieth

century, with precipitation anomalies slowly recovering
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toward the end of the century (e.g., Nicholson 2001;

Biasutti et al. 2008, and references therein). This inter-

annual variability is generally attributed to changes in

sea surface temperature (e.g., Folland et al. 1986; Paeth

and Hense 2006; Biasutti et al. 2008, and references

therein). The resulting changes in precipitation patterns

with potentially less precipitation and an increasing risk

for droughts pose a threat to water resources and agri-

cultural yields in Senegal. In addition, excessive rains

are responsible for severe flooding, with serious prop-

erty damage and deaths in the region as illustrated by

the recent floods of August 2012 in Dakar. Precipitation

in this region is dominated by the West African mon-

soon (WAM) being active from May to October with

intraseasonal variations (Sultan and Janicot 2003). The

WAM is the dominating mechanism in this region and is

in the focus of atmospheric research (Lafore et al. 2011).

Strategies to adapt to changing precipitation patterns

require localized information about the expected changes.

To inform stakeholders from hydrology or agriculture,

researchers build watershed or crop models based on

meteorological variables on a daily and subregional scale

(e.g., Sultan et al. 2005). Providing valuable information

to develop adaptation strategies therefore requires the

following question to be addressed: how does local pre-

cipitation respond to large-scale atmospheric variability

in Senegal?

As these values are typically not, or not reliably,

projected by general circulation models (GCMs), down-

scaling approaches are required to translate GCM pro-

jections to the local scale. Downscaling for this region

has been undertaken using two generic approaches: dy-

namical downscaling using regional climate models with

a horizontal resolution of about 50 km (e.g., Paeth et al.

2005) as well as statistical approaches (e.g., Moron et al.

2008b); the latter typically yield gauge-based data and

not spatial fields. Statistical approaches for downscaling

are manifold; recent comprehensive reviews on precipi-

tation downscaling have been given by Fowler et al.

(2007) and Maraun et al. (2010).

Here, we built a set of generalized linear models

(McCullagh and Nelder 1989; Chandler 2005) similar to

a study for South Africa by Ambrosino et al. (2011).

These models aim at a spatial description of rainfall in

Senegal, not restricted to station locations. We use sea-

son, location, and temporal dependence as predictors for

baseline descriptions of rainfall occurrence and amount.

In a second step, we add a discrete set of weather types

as predictors to these baseline models to establish the

link between local precipitation and atmospheric con-

ditions. This allows the assessment of local precipitation

response to large-scale atmospheric variability, thus ad-

dressing the question mentioned above. It furthermore

allows for downscaling in a perfect prognosis sense (cf.

Maraun et al. 2010) and thus can be used to obtain

gauge-based scenarios of daily precipitation from GCM

climate change projections.

The crucial step for any statistical downscaling ap-

proach is the selection of predictors. They are required

to be informative for precipitation and should capture

the variation on the relevant time scales (e.g., the cli-

mate change signal). To compress the information of

high-dimensional gridpoint-based predictors from GCMs,

suitable transformations are needed. These can be, for

example, statistically motivated approaches for dimen-

sionality reduction such as principal component analysis

(PCA; e.g., Preisendorfer 1988; Hannachi et al. 2007),

assigning a large fraction of the variability to a small

number of principal components that can be readily

used as predictors for downscaling (e.g., Benestad 2001).

Weather types or circulation patterns are a meteoro-

logically motivated predictor transformation. The daily

synoptic situation is mapped on a small set of discrete

categories by means of an objective or subjective crite-

rion of similarity (e.g., Michelangeli et al. 1995; Philipp

et al. 2007; Huth 2000). The use of weather types

straightforwardly allows the capture of some nonlinear

aspects of the link between predictor and precipitation.

It is thus a popular approach in statistical downscaling

(e.g., Conway and Jones 1998; Wilby et al. 1998; Bo�e

et al. 2006; Vrac et al. 2007b; Moron et al. 2008b).

The choice of relevant variables from atmospheric

dynamics to be included for downscaling precipitation is

critical and certainly more important than the choice of

a classification method to detect weather types (Beck

and Philipp 2010). They must capture the main features

of the weather over the studied region, which in the

monsoon areas will be those which have significant im-

pacts on the rainfall regime (Gueye et al. 2011). Over the

Senegal region, Deme et al. (2003) have selected 64 at-

mospheric variables to predict daily rainfall amounts

around Dakar in August and found that the most suit-

able variables are lifting condensation level, vorticity at

700 hPa, humidity at 925 hPa, the total water vapor flux

in the monsoon layer, and the meridional flux of water

vapor in the layer between 600 and 300 hPa. More re-

cently, Gueye et al. (2011) used both mean sea level

pressure (SLP) and the 850-hPa wind to define synoptic

regimes that are relevant for understanding the daily

variability of rainfall during the monsoon over Senegal.

The 850-hPa wind field is an intermediate level between

the low-levelmonsoonwinds that bringsmoisture inland

and the level of the African easterly waves (AEW) that

modulate convection within the intertropical conver-

gence zone (Diedhiou et al. 1999). According to these

previous studies, we chose the 850-hPa wind field and
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the relative humidity at 925 hPa to define weather types

in Senegal. Additionally, SLP was used in the beginning

of this study but was left out as it did not notably im-

prove the results.

The subsequent section 2 describes the precipitation

and atmospheric data and section 3 depicts the approach

to define weather types and summarizes the basics of

generalized linear modeling for rainfall. The baseline

precipitation models are developed in section 4 and the

influence of the weather types is presented in section 5.

The article closes with a summary (section 7a), as well as

discussion and outlook in section 7b.

2. Data

a. Precipitation data

Precipitation in Senegal occurs almost exclusively

from May to October (wet season). It is dominated by

the WAM, leading to a peak in precipitation in August.

The northern part of the country belongs to the semiarid

region south of the Sahara, the Sahel, and is typically

dryer than the south (Nicholson 2001).

Daily total precipitation is available for a set of

137 stations with a nominal precision of 0.1 mm. The

data come from the measurement network of the

National Meteorological Service from Senegal, com-

piled by the Agrometeorology–Hydrology–Meteorology

(AGRHYMET) Regional Centre. Stations are predom-

inantly located in the western part of the country and

along the border withMauritania wheremost of the cities

are, see Fig. 1 (right). The quality of the data greatly

varies in terms of missing values and the time period

covered. No distinct regions dominated by low-quality

stations can be identified. A good overlap of precipi-

tation observations at all stations with the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

(see the following section 2b) is given for the time period

from 1 January 1961 to 31December 2000. Summing the

number of observations for all stations in the wet season

of the given time period yields more than 600 000 data

points.

In the following, we separately consider the occur-

rence and amount of precipitation. For a day to be

considered as a rainy or wet day, and thus as a day with

rainfall occurrence, we set a 1-mm threshold of pre-

cipitation per day. A value of less than 1mm is generally

considered as not being useful for agricultural applica-

tions. For instance, Sivakumar (1988) considered dry

periods that are critical for the crops by counting the

number of consecutive days with rainfall values weaker

than 1mm. The rainfall occurrence time series is there-

fore a daily series of 1 and 0 depending on rainfall being

greater than 1mm or not, respectively. A rainy day con-

ditional on rainfall amount is thus a series when the daily

rainfall amount for the day has been classified as wet

(.1mm). The number of observations of rainfall amount

is thus smaller than for the occurrence time series, since

only wet days are considered. The sum of rainy days

for all stations yields more than 116 000 observations

(’20%) in the observation period.

b. Atmospheric data

For the description of the atmospheric circulation, we

use data from the NCEP–NCAR reanalysis project on

a 2.58 3 2.58 grid (Kalnay et al. 1996). The domain has

been chosen between 08–308N and 308W–08 (red box in

Fig. 1, left) in order to be centered over Senegal and

to cover a space consistent with the AEW wavelength

(about 3000 km) in coherence with previous studies

(Moron et al. 2008a; Gueye et al. 2011). It contains 133
13 5 169 grid points. We use longitudinal (U) and me-

ridional (V) wind at 850 hPa and relative humidity

(RHUM) at 925 hPa. The latter is the ratio of partial

pressure obtained from the specific humidity and the

FIG. 1. (left) Senegal and the box (red) where atmospheric data is used in this study. (right) Location of rain gauge

stations in Senegal. The color depicts the data availability in the percent of days in the wet season (May–Oct) from

1961 to 2000 (7360 points). The red circles mark the location of example stations used in the later sections.
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saturation vapor pressure of water (psat) calculated using

925-hPa temperature (T) and the Goff–Gratch equation

(Goff and Gratch 1946; the appendix section a).

Variables are weighted with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos(2platitude/360)

p
at

their grid box to account for slightly different areas. The

resulting set of variables will be referred to in the fol-

lowing as the ‘‘raw’’ data. Additionally, we use a set of

‘‘anomalies’’ defined as the difference with the clima-

tological mean seasonal cycle obtained from 1961 to

2000.

3. Methods

a. Defining weather types

Cluster analysis yields a discrete set of weather types

defined on U and V winds and relative humidity for the

given time period. We have thus three variables at 169

grid points yielding 507 dimensions. To reduce dimen-

sionality and avoid the overrepresentation of highly

correlated values at neighboring grid points, we use

PCA (Huth 1996; Jolliffe 2002; Hannachi et al. 2007)

and continue with the first principal components ac-

counting for 90% of the total variability.

It is common to define the weather types on variable

anomalies (e.g., Rust et al. 2010; Gueye et al. 2011); the

alternative, working with so called raw values is partic-

ularly interesting for resolving the seasonal cycle (e.g.,

Moron et al. 2008b; Vrac et al. 2013). Another popular

choice is to normalize the input dimension prior to the

PCA such that the three variables at each grid point have

unit variance. We refer to this procedure as ‘‘gridpoint

scaling.’’ As an alternative, we suggest normalizing only

with respect to the variable type (i.e., horizontal or me-

ridional wind or relative humidity) such that one variable

over all grid points has unit variance. This approach is

referred to as ‘‘variable scaling.’’ It allows the per grid-

point variance of, for example, relative humidity to be

different at different grid points. Grid points with a larger

variance are thus weighted stronger than those with

smaller variance.

As it is not evident a priori which scaling approach to

favor for downscaling or whether to use raw values or

anomalies, we compare all four combinations and mea-

sure their performance using a goodness-of-fit criterion.

The dimensions of these sets (i.e., the number of principal

components retained) are given in Table 1.

For clustering, we use the Gaussian mixture model

(GMM) approach (Fraley and Raftery 2002). This di-

rectly implements the idea that the probability density

of atmospheric states is a multimodal probability dis-

tribution function (PDF), which can be approximated

with superpositions of Gaussian PDFs (Branstator and

Selten 2009). GMMs have been used for atmospheric

circulation clustering in previous works (Haines and

Hannachi 1995; Hannachi 1997, 2007; Smyth et al. 1999;

Rust et al. 2010). They showed more consistent circu-

lation patterns across various levels and are more sen-

sitive to day-to-day variations in pattern frequencies

over the eastern United States in comparison to hier-

archical ascending clustering (HAC; Vrac et al. 2007a);

they also provided useful weather types for precipitation

downscaling (Vrac et al. 2007b).

GMMs are a likelihood-based approach and a rea-

sonable strategy to define the cluster number is the

Bayesian Information Criterion (BIC; Fraley and Raftery

2007). In the present setting, however, we suggest to

choose the number of clusters so that it best suits the

application in mind: a statistical description of rainfall.

We thus systematically evaluate the precipitation model

for several cluster numbers and use model performance

on daily scales and at station level to guide the choice of

the appropriate cluster number.

b. Generalized linear modeling of rainfall

We use generalized linear models (GLMs; McCullagh

and Nelder 1989) to describe the seasonal and spatial

variations of precipitation, as well as to analyze the in-

fluence of weather types. GLMs allow a flexible and

easily interpretable description, while being computa-

tionally inexpensive. They are widely used in statistics

and have been proven to be useful in climate related

questions (Chandler 2005), in particular in modeling

daily rainfall (Coe and Stern 1982; Stern and Coe 1984)

or exploring climate factors driving monthly rainfall

(Ambrosino et al. 2011). The underlying idea is to con-

sider the response y (here daily precipitation) as a ran-

dom variable from an adequately chosen probability

distribution. It is linked to a linear predictor h via a link

function g: g(y) 5 h. The linear predictor is a sum of

p covariates xi and related coefficients bi: h5�p
i51xibi.

In the case the response can be assumed to be normally

distributed and the link function is the identity [g(y) 5
y], the GLM is equivalent to multiple linear regression.

However, in the following, we assume a gamma-

distributed response and a logarithmic link function

for rainfall amounts and a binomial response with a logit

link function for occurrence probabilities. With itera-

tively reweighted least squares, maximum likelihood

estimates for the coefficients bi are obtained (McCullagh

TABLE 1. Number of principal components capturing 90% of the

total variability.

Gridpoint scaling Variable scaling

Raw 40 30

Anomalies 48 40
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and Nelder 1989).1 As observations enter the likelihood

for parameter estimation with their associated temporal

and spatial information, irregularly spaced observations

do not pose a problem; in particular, missing values in

the data records can be ignored for parameter estima-

tion. Covariates xi are defined for every observation and

are either continuous variables, such as the position in

the annual cycle or location in space, or incident vectors

for qualitative factors, such as the prevailing weather

type or previous day rainfall occurrence. Besides these

direct effects, interactions between covariates can be

included (e.g., two-way interactions b12x1x2). They mod-

ulate the influence of covariate x1 by the value of co-

variate x2 or vice versa.

The probability of rainfall occurrences pi at day i can be

described using logistic regression; that is, a binomial dis-

tribution and a logit link function gp(pi)5 ln[pi/(12 pi)]

(Coe and Stern 1982; Stern and Coe 1984; Ambrosino

et al. 2011). On the right hand side of the regression

model, we include five types of predictors including a

seasonal component describing the course of the mon-

soon, a spatial component, a dependence on the pre-

vious day precipitation, interactions between those, and

finally a weather type–dependent component:

ln

�
pi

12pi

�
5hi,season1hi,space1hi,previous

1hi,Interactions1hi,WT 5hi,baseline1hi,WT .

(1)

The first four terms are pooled in a baseline predictor

hbaseline developed in section 4. It contains no information

on the large-scale atmospheric situation. The weather

type–dependent predictor hWT is added in section 5.

The amounts ri on a wet day i are described with

a gamma distribution with a scale parameter u and a

constant shape parameter k. The distribution has mean

ku and variance ku2, and thus a constant coefficient of

variation ku/
ffiffiffiffiffiffiffi
ku2

p
, leading to a variance increasing with

the mean. This hypothesis, as well as the associated log-

arithmic link function gr(ri) 5 ln(ri), is a common choice

for rainfall amounts (Coe and Stern 1982; McCullagh

and Nelder 1989; Ambrosino et al. 2011). Analogously

to the occurrence model, the amount model reads

ln(ri)5hi,season1hi,space1hi,previous 1hi,Interactions

1hi,WT5hi,baseline1hi,WT . (2)

Predictors involve the same categories (seasonal,

spatial, previous day precipitation, interactions, and

weather types) but they do not contain the same

terms as in Eq. (1). The baseline part is developed in

section 4, and the weather-type influence is added in

section 5.

As it is not evident a priori which covariates are im-

portant, different covariates are tested and model im-

provement is assessed using two criteria: (i) a modified

Akaike Information Criterion (AIC) and (ii) the Brier

score for occurrence probabilities and mean-square pre-

diction error for amounts obtained from cross validation

(see the appendix, section b).

4. Modeling seasonal and regional variation

At first, a model is constructed to describe the

seasonal and regional variations of daily occurrence

probabilities and amounts for Senegal. This model does

not yet include information from atmospheric variables

and will be called the baseline model in the following.

The predictor hbaseline used to model these quantities

involves covariates xi constructed from seasonal hseason

and spatial components hspatial, as well as from pre-

vious day precipitation characteristics hprevious, as

detailed below. The associated coefficients bi are esti-

mated on the basis of all available daily occurrence and

amount records. The resulting baseline model gives a

spatially continuous estimate of the expected rainfall

occurrence probability and expected amount for any

given day in the wet season as it assumes that these ex-

pected values are varying smoothly in space and time.

As such, it provides an average monsoon cycle as

a spatial field for the whole country (also at unobserved

sites). In section 5, we address the much weaker in-

terannual signal, which is modulating the strong sea-

sonal cycle.

a. Construction of covariates

A series of harmonic functions is used to describe the

seasonal variation in hseason (Rust et al. 2009; the ap-

pendix, section c), and Legendre polynomials of longi-

tude, latitude, and altitude (Ambrosino et al. 2011; the

appendix, section d) are used for spatial variation. Pe-

riods of persistent rainfall are accounted for by including

the previous day rainfall explicitly as a covariate. This

is straightforward for the occurrence model using the

previous day rainfall occurrence (0 or 1); the previous

day precipitation amount r21 instead enters as log(1 1
r21), ensuring a zero value for a previous day being dry

and a slow (logarithmic) increase of the predictor with

the increasing precipitation amount (Ambrosino et al.

2011).

1Estimates are obtained using the environment for statistical com-

puting R (R Development Core Team 2004) and the function glm.
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We start the search for a parsimonious model with

h0
baseline including first- and second-order harmonic func-

tions [the appendix Eq. (A5), 4 terms] to describe sea-

sonality, first- and second-order Legendre polynomials

of longitude and latitude [the appendix Eq. (A6),

4 terms], first-order Legendre polynomial of altitude

[the appendix Eq. (A6), 1 term], and previous day

precipitation occurrence (1 term). We stepwise add

higher orders of these terms until third-order harmonic

functions and fifth-order Legendre polynomials. Fac-

tors are added according to their potential to improve

the model. After each step, factors are checked for

being obsolete; if so, they are deleted. Model improve-

ment is measured using the modified AIC, Eq. (A1) of

the appendix.

Besides direct effects, interactions (products between

covariates) are taken into account. For example, an in-

teraction between seasonal and spatial terms allows sea-

sonal variation to change with location. Analogously,

with an interaction between seasonality/location and

previous day rainfall, the models take seasonal/regional

variations of dependence into account. The abbrevia-

tions of predictors used in the occurrence and amount

models developed in the following sections are given in

Table 2.

b. Occurrence model results

Figure 2 shows the AIC (open symbols) and the

Brier score from cross validation (closed symbols)

for the stepwise search for factors in the occurrence

model.

The stepwise search stops at 55 factors, when the AIC

cannot be further reduced. However, the minimum Brier

score from cross validation is attained for amodel with 35

factors (more lead to overfitting). The minimum Brier

score model includes a constant offset, 13 main effects

and 21 interaction terms.Major model improvements are

obtained by adding interactions between seasonal and

regional factors (e.g., sin1:lon1, cos2:lon1, and sin1:lat1),2

implying that the variation of the seasonal cycle in space

is a major source of variability. Similarly, the dependence

on the previous day occurrence strongly varies with

longitude (lon1:pr1). The occurrence of precipitation

two or more days prior does not contribute significantly

to the model.

A comparison of the seasonal cycle of model pre-

dictions and observations is depicted in Fig. 3. We

show exemplarily the result for Podor (northernmost

station), Bambey Meteo (central western station),

and Kedougou (southeastern station). As the model in-

cludes the previous day rainfall, model predictions

have been obtained using three hypotheses for the

previous day precipitation: a dry previous day (red

line), a wet previous day (blue line), and a previous

day precipitation occurrence probability estimated

by the spline smoothing the observations (green line).

The shape of the seasonal cycle is reasonably well re-

covered, in particular the asymmetric onset and offset

of the monsoon. Figure 3 visually corroborates that

seasonality is different at different locations, as in-

dicated already by the high importance of the corre-

sponding interaction terms (sin1:lon1, cos2:lon1, sin1:

lat1, etc.) in Fig. 2. Predictions assuming a previous wet

(dry) day have a tendency to lie above (below) the

spline-smoothed observations (black line). Predictions

based on a smoothed average for the previous day

precipitation occurrence (green line) closely follow the

smoothed observations (black). For Podor and Bambey

Meteo, occurrence probability is larger (smaller) if the

previous day was wet (dry). This difference is particu-

larly small for stations in the southeast during the peak

phase of the monsoon where occurrence probability is

generally high. Toward the east, previous day precipi-

tation occurrence becomes less important. This regional

dependence is in line with the longitude–previous-day-

dependence interaction term (lon1:pr1), leading to

a large improvement of the model (Fig. 2). A potential

explanation for subsequent rainy days in the west is

based on the mechanisms of convective system genera-

tion: they typically develop east of Senegal during the

afternoon and move westward (Laing and Fritsch 1993).

The systems arriving at night or early morning in the

TABLE 2. Abbreviations of predictors with their associated

transformation.

Abbreviation Predictor Transformation

b0 Constant offset —

h0 Basis predictor for

stepwise search

—

sink Day of the year [doy(t)] sin[2pk doy(t)/365.25]

cosk Day of the year [doy(t)] cos[2pk doy(t)/365.25]

lonn Rescaled longitude x P(x, n)

latn Rescaled latitude y P(y, n)

altn Rescaled altitude z P(z, n)

pr1 Previous day

occurrence p21

p21

lobs1 Previous day amount r21 log(1 1 r21)

WTn Weather type n Categorical variable

2 The interaction term sin1:lon1 denotes an interaction be-

tween the first-order sine wave describing seasonality and first-

order Legendre polynomial describing zonal variation; other

interactions are denoted correspondingly using the abbrevia-

tions in Table 2.
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west of Senegal distribute rainfall over two consecutive

days of measurement.

We want to assess to what extent the baseline model

is able to reconstruct daily occurrence probabilities at

unobserved sites given daily records at observed sites.

Therefore, we perform a 10-fold cross-validation ex-

periment. As before, stations are randomly taken out,

the model parameters are estimated for the remaining

stations, and the Brier score is obtained at the daily

level for unobserved stations. If the quality of prediction

at unobserved sites is comparable to a climatological

forecast, the baseline model has proven beneficial.

With the stations’ climatology (spline-smoothed oc-

currence frequency) as reference (obtained from the

full record), an average Brier skill score (BSS) 5 1.6%

is obtained. A BSS . 0 implies that the baseline model

has positive skill reconstructing daily precipitation oc-

currence at unobserved sites. As it uses the previous

day precipitation occurrence at the observed sites, it

has information on the daily weather conditions and

thus can perform even better than the climatology at

that site.

FIG. 2.ModifiedAIC (k5 6.63; open symbols; left axis) and Brier score from cross validation

(closed symbols; right axis; triangle depicts minimum) for the occurrence baseline model as

effects are added (1) or subtracted (2). The abbreviations of predictors on the abscissa are

listed in Table 2.

FIG. 3. Mean seasonal cycle (May–Oct) of rainfall occurrence probability as estimated from the station data (black dots), spline-

smoothed observations (black lines), and predictions from the baseline model using three different hypotheses for the previous day

occurrence probabilities: p21 5 0 (red line), p21 5 1 (blue line), and the occurrence probability from the spline-smoothed observations

(green line). Red shades give the mass of the binomial distribution for the inner 90%, 60%, and 20%. The location of the three example

stations is depicted as red circles in Fig. 1.
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Together with the DIVA-GIS altitude profile (http://

www.diva-gis.org/Data), the baseline model can be used

to reconstruct a full spatial field of daily precipitation

occurrence probability from station information. Fur-

thermore, given station climatologies, a full spatial cli-

matology can be constructed. Precipitation is a process

with high spatial variability on scales smaller than the

typical distance between stations; it is furthermore in-

fluenced by other factors than longitude, latitude and

altitude. The interpretation of the regional predictions

in Fig. 4 on small scales, in particular on the scale of the

DIVA-GIS altitude profile (about 1-km spatial resolu-

tion), is thus not meaningful. The figures do, however,

clearly illustrate the zonal and meridional variations of

precipitation occurrence on a subcountry scale.With the

onset of the monsoon in May, precipitation occurrence

probability increases first in the southeast and shows

a northwest–southeast gradient (Fig. 4, left). During the

course of the monsoon, this gradient turns north–south

(Fig. 4, middle). An animated sequence of plots showing

the development of precipitation occurrence probability

with the onset of the monsoon is available in the sup-

plemental material.

c. Amount model results

Similar to the occurrencemodel, we build the baseline

model for rainfall amounts on wet days. With 116 700

data points, the number of observations is much smaller.

Consequently, model building starts with only the first-

order harmonics and Legendre polynomial for longi-

tude, latitude, and altitude.

Figure 5 shows the AIC and the mean-square pre-

diction error from cross validation for the amount model.

The stepwise search guided by the AIC stops for a model

FIG. 4. Spatial predictions for the baseline rainfall occurrence model for (left) late May, (center) mid-August, and (right) late

September; colors denote daily precipitation occurrence probability with black lines separating different color shadings. Red dots rep-

resent station locations.

FIG. 5. Modified AIC (k 5 6.63; open symbols; left axis) and the mean-square prediction

error obtained from cross validation (closed symbols; right axis; triangle depicts minimum) for

the amount baseline model as effects are added (1) or subtracted (2). The abbreviations of

predictors on the abscissa are listed in Table 2.
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including 18 components. Within this set, cross valida-

tion does not indicate a smaller model to fit better. Be-

sides a constant offset, there are eight main effects and

nine interactions. The largest model improvements re-

sult from an interaction between longitude and previous

day precipitation (lon1:lobs1), implying that the depen-

dence on the previous day shows a strong zonal varia-

tion. The strong dependence of the seasonal cycle on

location is reflected in the interaction terms of the har-

monic cycle with location (sin1:lon1 and sin1:lat1). The

constant shape parameter k of the gamma distribution

is estimated a posteriori by maximum likelihood to

k̂5 1:129(0:004).

Figure 6 compares the observed mean seasonal cycle

for precipitation amounts to the model. The red line

depicts predictions assuming a previous dry day; the blue

line assumes average previous day precipitation (black

line), obtained by the spline smoothing the observations

(black dots). To compare daily averages to their model

counterpart, Fig. 6 shows quantiles of a normal distribution

around the predicted values as blue shades. Its variance

equals the variance of the fitted gamma distribution at the

given day scaled by 1/nday, the number of observations

available for the day of the year. If no observations are

present, nday is set to one. This representation assumes

convergence to the normal distribution when averaging

nday gamma-distributed observations; it becomes more

accurate with increasing nday. The easternmost station

(right panel) shows a smaller amplitude than the other

stations but remains on a higher level of amounts; thus,

rainfall amounts conditional on a wet day do not change as

muchwith the season as in thewestern parts of the country.

Again, we want to assess the baseline model’s poten-

tial to reconstruct expected amounts for unobserved

sites. We perform a 10-fold cross validation similar to

the occurrence model but with the mean-square pre-

diction error as cost function. The stations’ climatology

(spline-smoothed amounts) is the reference (obtained

from the full record). The average mean-square pre-

diction error skill score (MSPESS) for a daily values is

5.9% and thus positive.

Analogously, we use the DIVA-GIS altitude profile

to obtain a full spatial picture of the rainfall amounts

(Fig. 7). Also, the amounts show a north–south gradient,

tilted toward the east at the beginning of the monsoon

phase and toward the west at the peak. The strongest

rainfall amounts can be observed in the southwest in

July. Figures 6 and 7 corroborate the impression that the

seasonal variation in the east is smaller than in the west.

The animated sequence of plots showing the develop-

ment of daily precipitation amounts for the whole coun-

try during the wet season is available as supporting online

material.

These two baselinemodels reconstruct spatial fields of

expected daily occurrence probabilities and daily rain-

fall amounts from gauge-based data assuming that the

expected values vary smoothly in space and time. Given

the stations’ climatology, the baseline models give spa-

tiotemporal climatologies for daily precipitation occur-

rence probabilities and daily rainfall amounts for the

whole country.

5. Modeling the effect of weather types

Weather types are now added as a categorical vari-

able to the predictor h5 hbaseline 1 hWT, with hWT 5

�bWT, jQ(WT5WTj) having essentially one coefficient

bWT,j per weather type j; Qi(WT 5 WTj) 5 1 if the

FIG. 6. Mean seasonal cycle (May–Oct) of rainfall amount (mmday21) as estimated from the station data (black dots), spline-smoothed

observations (black lines), and predictions from the baseline model setting the previous day precipitation amount to the value of the spline-

smoothed observations (blue line) and to 0 (red line). Blue shades give the mass of a normal distribution for the inner 90%, 60%, and 20%.
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weather type j is present at day i and zero otherwise.

We use all four definitions of weather types (raw/grid

point, raw/variable, anomalies/grid point, and anomalies/

variable) resulting from the different treatment prior to

clustering. The aim of this section is to determine the

optimal number of types to be used and to show that skill

at the local and daily scale is obtained by the inclusion of

large-scale weather types. We try various numbers of

types and choose the optimal number a posteriori ac-

cording to model performance. Performance is measured

using the AIC and Brier score or mean-square error

(MSE), as in the previous section. The associated skill

scores with the mean seasonal cycle as reference show

that positive skill is obtained at the local daily scale.

a. Occurrence model

The improvement of the occurrencemodel dependent

on the number of weather types used is shown in Fig. 8,

using again the modified AIC and the Brier score ob-

tained from cross validation. Anomaly weather types

are shown in the top row, raw values are shown in the

bottom row, gridpoint normalization is in the left col-

umn, and variable-based normalization is in the right

column. The straight lines at the top represent the base-

line model. For gridpoint-scaled anomalies (top left)

model improvement is large, using four instead of three

types, and is only minor thereafter until another larger

improvement occurs from 16 to 17 types. The variable-

scaled anomalies (top right) show a similar behavior

when adding 4 instead of 3 types and another strong

improvement from 7 to 10 types. Improvement is minor

for more than 10 types. Adding weather types based on

raw values (bottom row) has a somewhat different ef-

fect: adding gridpoint-scaled types (left) leads to an

improvement until about 14 types, stagnating thereafter.

For variable-scaled types, the performance gets worse

for more than 14 types. For the raw variable-scaled

types, an even number seems to be preferable, leading to

an alternation between decline and increase of the curve

in the range of 5–15 types. According to the Brier score,

the overall model improvement is largest for variable-

scaled raw values (bottom right) and 14 types. A Brier

skill score calculated on the basis of a new independent

10-fold cross-validation experiment in space and time

(i.e., taking out arbitrary observations at arbitrary sta-

tions) with a mean annual cycle as reference yields a

14-type skill score (SS14) ’ 3.4%. Including large-scale

weather types in themodel leads thus to skill at the small

scale (daily values at station level). The small absolute

value indicates that the seasonal cycle is the dominant

signal on the intraannual (i.e., daily) scale. In section 6,

we investigate this improvement on the interannual time

scale where the seasonal cycle does not mask the inter-

annual variability anymore. The model performance on

the interannual time scale is more readily visible there.

b. Amount model

Analogously, weather types are added to the predictor

h of the rainfall amount model. The AIC and the mean

prediction error based on cross validation are shown

in Fig. 9. Both show very similar tendencies. Anomaly

based types (top row) lead to an improvement for small

numbers (,7), basically stagnating thereafter. For

weather types based on raw values, model improvement

can be observed until about 16 types, although not in

a monotonous way. Again, an even number of weather

types seem to be preferable for the variable-scaled raw

values in the range of 5–10 types. The minimum mean-

square prediction error is obtained for variable-scaled

raw values and 16 types and yields a skill score based

on an independent 10-fold cross validation in space

and time, with reference to the mean seasonal cycle of

SS16 ’ 6.3%. Again, including the large-scale weather

types leads to skill on the local scale for daily observa-

tions. The small absolute values are a consequence of the

dominating seasonal cycle on the intraannual time scale.

To obtain an optimal combined model for rainfall oc-

currence and amount, the mean-square prediction errors

FIG. 7. Spatial predictions for the baseline rainfall amount model for (left) late May, (center) mid-August, and (right) late September;

colors depict rainfall amount (mmday21) with black lines separating different color shadings.
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(MPEs) from the occurrence and amount models have

been combined into an overall skill score

SScomb5 12

�
MPEOcc(model)

MPEOcc(baseline)

MPEInt(model)

MPEInt(baseline)

�
.

(3)

Figure 10 shows the skill scores for the four variants of

defining weather types. Types based on variable-scaled

anomalies (filled squares) show the lowest combined

skill score for all numbers of types. Raw value–based

types (circles) are superior in the range from 10 to 18

types. The choice of normalization has little effect as

both curves increase in a quite similar manner. For anom-

alies, gridpoint normalization yields larger skill scores

for all numbers of types, thus gridpoint-based normali-

zation is advantageous here. The absolute maximum

combined skill score in the given range is attained for

14 types defined on variable-scaled raw values (closed

circles; SScomb,14 ’ 4.0%), and it is chosen as model for

the subsequent analysis.

c. Weather-type effect

For a set of weather types to be useful as predictors for

precipitation, the types must be able to separate local

conditions with different precipitation characteristics.

Figure 11 shows the types ranked according to their

spatially averaged anomaly (taken with respect to the

baselinemodel) occurrence probability (left) and amount

(right). For each weather type, this effect is evaluated at

the day in the wet season where the respective type is

most likely to occur, see also section 5d. The association

of colors to the types and the order of types on the ab-

scissa, as defined in Fig. 11 (left), is kept as follows.

Types associated with an increase in precipitation oc-

currence do not generally lead to an increase in amount.

Two of the three types with the largest increase in oc-

currence probability exhibit a negative anomaly for

FIG. 8. Rainfall occurrence model improvement compared to the baseline model (straight lines at the top) for an

increasing number of weather types (abscissa). Weather types are defined by (top) anomalies or (bottom) raw values

and (left) gridpoint-based and (right) variable-based normalization. Open symbols refer to the AIC scale (left axis)

and closed symbols to the Brier score (right axis).
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amount (types 6 and 2); one shows a strong positive

anomaly (type 4). Types 11 and 9 show very similar oc-

currence anomalies, while their amount anomalies have

the opposite sign.

Figure 12 depicts the spatially resolved differences to

the baseline model for occurrences (left) and amounts

(right) at the day the particular weather type is most

likely to occur. For occurrence probability, the wettest

types (types 4, 2, 1, 6, 11, 9, and 14) show a north–south

gradient, which is steeper for the former wetter types

and getting flatter toward the dryer ones. For types 10,

7, and 12, the gradient is tilted toward a northwest–

southeast gradient, and it is inverted for type 8. Types 3,

13, and 5 have very little or no spatial structure. Similar

to rainfall amounts, the north–south gradient (types 4, 2,

11, 9, 14, and 3), as well as the tilted gradient (types 1, 6,

10, 3, 7, and 8), are found. Very fine structures can be

observed for the amounts of types 5 and 12; they stem

from the high-resolution altitude profile and depict small-

scale changes in altitude, such as river beds.Although this

precipitation model is linked to altitude, it is not de-

signed to resolve precipitation on these small scales.

These structures must not be overinterpreted.

The (tilted) north–south gradient is a result of the

mesoscale systems passing more frequently in the south

(east) than in the north(west) (Mathon and Laurent

2001). Certain types (toward the top of Fig. 12) are re-

lated to an increased generation of these systems, other

types (toward the bottom of Fig. 12) are linked to the

inhibition of their formation.

d. Weather-type occurrence frequencies and
transitions

The types associated with the presented response pat-

tern have different occurrence frequencies and dominate

at their specific period of the year. Figure 13 depicts the

average number of days per wet season when a type is

present. Two dry (types 8 and 13) and one intermediate

type (type 7) dominate in frequency with more than 20

days per wet season. Other types are present on average

FIG. 9. Precipitation amount model improvement compared to the baseline model (straight lines) for an increasing

number of weather types (abscissa). Weather types are defined by (top) anomalies or (bottom) raw values and (left)

gridpoint-based and (right) variable-based normalization. Open symbols refer to the AIC scale (left axis) and closed

symbols to the mean-square prediction error (right axis).
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10–14 days while types 14 and 10 occur only about 5 days

per season.

Logistic regression can be straightforwardly used to

describe the temporal course of type occurrence as

shown in Fig. 14. The occurrence of types based on raw

values shows the expected pronounced intraseasonal

variability (cf. Moron et al. 2008a, their Fig. 4). Types

12, 3, 5, and 7 occur typically at the onset of the

monsoon, while types 10, 8, 1, 6, 4, 9, and 2 occur

during the peak phase and types 13, 11, and 14 occur

during the offset.

The estimated transition matrix between types allows

a flowchart of type transitions to be drawn. Figure 15

shows those transitions, which are more likely than the

unconditional occurrence frequency of the following

types. Types occurring frequently during the onset of the

monsoon are depicted at the top of Fig. 15, peak mon-

soon types are in the center, and offset types are at the

bottom. Except for the rarely occurring type 10, three

disjoint transition systems form: one between onset types,

another involving peak monsoon types, and a third for

offset types.

e. Weather-type composites

Composites of the weather types are given in Fig. 16 as

absolute values (columns one and three) and the relative

seasonal mean (columns two and four). Peak monsoon

types are arranged roughly in order of appearance in the

seasonal cycle in columns one and two. Types related to

the onset and offset are in columns three and four.

f. Discussion

At the beginning of the wet season, the dry Harmatan

winds manifest in type 12 with a strong negative hu-

midity anomaly over Senegal and generally dry pre-

cipitation conditions. In May, this type is frequently

interrupted by type 3, with northwesterly winds over the

Sahara, a weakening of the northeasterlies over Senegal,

FIG. 10. Combined forecast skill score for occurrence and

amount model for the four variants of defining weather types. The

triangle depicts the maximum combined skill score.

FIG. 11. Weather type–induced change in (left) precipitation occurrence (probability) and (right) amount

(mmday21). Given are the spatial averages of the anomalies for the occurrence and amount model to their baseline

models.Models are evaluated at the day the respective weather types show their highest probability of occurrence. In

the left panel, the color correlates with the bar heights and is hereby associated to the weather types. This color type

relation is maintained in the right panel; bar height now indicates change in rainfall amount.
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and a slight increase in precipitation probability. Later

in May the very dry type 5 appears, again strengthening

the dry northeasterlies over Senegal. Type 7 dominates

in June with wind patterns similar to those of type 5 but

with less dry air over Senegal; it brings along an increase

in occurrence probability particular in the southeast.

In late June, with a notable increase in precipitation

occurrence in the south, type 10 marks the transition to

peak monsoon patterns. The latter occurs in two typical

cycles, which are interconnected (cf. Fig. 15): in late

July–beginning of August, types 8, 1, 4, and 6 form

a dominant cycle and later in August types 4 and 1 are

FIG. 12. Spatially resolved differences to the baseline model for (left) precipitation occurrence (probability) and

(right) amount (mmday21). As a given weather type can occur at various stages of the monsoon cycle, its difference

to the baseline model is obtained for the day the given weather type is most likely to occur (cf. Fig. 14). Types are

sorted from top to bottom and left to right according to their spatially averaged occurrence anomalies. Station

locations are indicated by red dots.
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replaced by types 2 and 9 leading to a new cycle. Toward

the end of the monsoon phase, type 6 occurs less fre-

quently and thus is less frequently part of the cycle. Both

cycles start with relatively dry air and northeasterly

winds north of Senegal (type 8) resulting in one of the

dry patterns found. In July and August, a subsequent

sudden rise in humidity is related to the succession of

type 1 and 4 and associated with a strong increase in

occurrence probability and rainfall amounts (only type

4). The subsequent southeasterlies north of the country

(type 6) indicate the backside of a westward moving

trough and thus a passing easterly wave. This cycle quickly

repeats with a transition from type 6 to 1 or decays to-

ward the dry type 8 via type 9. Later in August and

September, types 4, 6, and 1 are replaced by types 9

and 2 with lower occurrence probabilities and amounts.

While both cycles show typical characteristics of west-

wardAEWs, the anomalies depicted in Fig. 16 show that

the characteristic features of types 1 and 4 (positive

anomaly of humidity and westerly winds over Senegal)

are less pronounced in the later types 2 and 9. The mon-

soon phase ends with a final cycle involving types 11, 14,

and 13.While types 11 and 14 are associatedwith increased

occurrence probability in the south and a pronounced

north–south gradient for amounts, type 13 is dominating

in October and brings back the dry Harmatan winds and

heralds the dry season.

6. Interannual variability

Figure 17 depicts the observed annual-mean rainfall

occurrence and amount over all available stations in the

country for all days in the monsoon season as well as the

corresponding model predictions. As observations are

missing more or less randomly at different locations in

space and time in the period of investigation, a fraction

of interannual variability is due to this incompleteness.

To reduce this effect, observations and model predic-

tions are given relative to the baseline models at the

respective spatial and temporal locations. From 1965 to

2000, observed mean precipitation occurrence varies

between 70% and 130% of the 40-yr mean. The inter-

annual variability of observed rainfall amount is smaller

(80%–115%) and is—apart from a few years—almost

flat in the time period 1975–95. Figure 17 further shows

a tendency for observed occurrence and amount to be

larger in the 1960s and lower toward the 1980s, thus

reproducing the well-known behavior of Sahelian

FIG. 13. Seasonal frequencies of weather types. Color coding from

Fig. 11.

FIG. 14. Estimated weather-type occurrence probability during the monsoon season. Type

numbers are noted just above or below the corresponding peaks in occurrence probability. The

color code follows Fig. 11.
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precipitation as reported by Nicholson (2001), a ten-

dency reproduced by the model. This tendency is,

however, more pronounced for occurrences. The oc-

currence and amount models capture 26% and 38% of

the total interannual variability and estimates of their

Pearson correlation coefficients yield rO 5 0.52 and rI 5
0.65, respectively. For the latter, a significance test leads

to p values of p , 1022 based on 10 000 replicates ob-

tained via the iteratively amplitude-adjusted Fourier

transform (Schreiber and Schmitz 1996; Venema et al.

2006). Thus, the interannual variability of the occur-

rences is not captured by the model as well as the

amount signal. The latter is flatter on the decadal scale

and a lot smoother on the interannual scale.

Depicting annually resolved shares of occurrences,

Fig. 18 gives a visual impression of the interannual

variability in the occurrence of types. Drier types are

relatively rare in the first half of the 1960s, peaking in the

beginning of the 1970s and in the mid-1980s. The wet

types 2 and 4 have a pronounced share in the beginning

of the 1960s declining later and recovering toward the

end of the twentieth century. By that time the inter-

mediate types 6 and 9 hold a notable share. Those types

have not been occurring at that rate in the 1960s. The

interannual variation in precipitation occurrence and

frequency as depicted in Fig. 17 is plausible given the

dynamics of weather types. This corroborates the idea

that there is a link between the interannual variability in

weather-type occurrence and precipitation for Senegal.

7. Summary and discussion

a. Summary

We give a spatiotemporal statistical description of

daily precipitation occurrence and amount for Senegal.

Two variants of generalized linear models were used:

logistic regression describing precipitation occurrence

and regression with a gamma-distributed response for

precipitation amounts. In a first step, baseline models

were built using the phase of the seasonal cycle, the

spatial location, and the previous day observations as

input. A selection of relevant input factors was accom-

plished by comparing the performance measures from

a cross-validation experiment. The resulting baseline

models describe the spatially resolved intraannual vari-

ability and serve as spatiotemporal climatologies. As the

locations of the gauges directly enter the model, spatial

interpolation is possible on the predictor level. The

temporal evolution of the spatial occurrence and amount

patterns during thewet season can be visualized.Ageneral

north–south gradient of both occurrence and amounts is

the dominant signal. This gradient is tilted toward the east

at the onset of the monsoon and toward the west for the

late monsoon phase. The tilt is a lot more pronounced for

amounts than for occurrences.

A link to atmospheric dynamics was established using

a set of weather types defined from the NCEP–NCAR

reanalysis 850-hPa winds and 925-hPa relative humidity

within a 308 3 308 box centered over Senegal. These

weather types are an efficient summary of the possible

states of the local atmospheric dynamics and are ex-

pected to describe a notable fraction of the interannual

variation of precipitation. The optimal number of 14

types, as well as the preferred filtering and normaliza-

tion, was determined by the performance of the precipi-

tation model.

The spatial averages of the occurrence responses to

the various weather types lead to a ranking of the types

FIG. 15. Graph of the weather-type transition matrix. The size of

the circles is proportional to the persistence; the width of the ar-

rows is proportional to the transition probability. Arrows are

drawn only if the transition probability exceeds the unconditional

occurrence probability of the target type.
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from dry to wet. The amount response does not follow

this ranking, which suggests that occurrence and amounts

do not respond in the same way to the weather types:

a posteriori justifying a separate modeling. Weather

types were further characterized by composites of their

absolute values of wind and relative humidity, as well as

by the differences of the composites to the respective

seasonal mean fields. Together with the time of their

occurrence, the transition between types, and the asso-

ciated response in precipitation occurrence and amounts,

FIG. 16. Weather-type composites of absolute values (first and third column) and associated difference to the

seasonal mean fields (second and fourth column) of relative humidity. Vectors depict the 850-hPa wind field; relative

humidity is color coded. (top)–(bottom) The peak monsoon types 10, 8, 1, 4, 6, 2, and 9 are in the first column; onset

3, 12, 5, and 7 and offset types 11, 14, and 13 are in the second column.

15 OCTOBER 2013 RUST ET AL . 8205

Unauthenticated | Downloaded 06/11/21 07:43 AM UTC



a consistent picture of the types’ dynamics and the as-

sociated response in rainfall could be drawn. Besides

having a four-type dynamic during the onset and three

types for the offset, we could identify two connected

cycles in the peak monsoon phase: one dominating end

of July and August involving types related to the largest

occurrence and strongest amount patterns. Toward

September, this cycle smoothly translates into a second

cycle involving types with less rain. Both cycles can be

related to the African easterly waves.

If an intraseasonal change in occurrence frequencies

and/or transition frequencies of types leads to a shift in

the monsoon, the model developed will be able to track

this shift to what extent it reproduced the weather type

associated rainfall patterns. The occurrence frequency

of the weather types based on the 850-hPa wind field

and 925-hPa relative humidity exhibits a pronounced

interannual variability, expected to propagate to the

precipitation patterns. This modeling approach quan-

tifies the effect of these types from precipitation: they

capture 26% (rO 5 0.52) and 38% (rI 5 0.65) of the

spatially averaged interannual variability of pre-

cipitation, respectively. Thus, this set of weather types

together with their associated spatially resolved pre-

cipitation responses contribute to resolving the question

of how local precipitation responds to large-scale at-

mospheric dynamics.

b. Discussion

It is a priori not evident whether types defined on

absolute (raw) values or anomalies are to be preferred

for downscaling precipitation. Comparing the two var-

iants results in a clear advantage for types defined on

absolute values for the present study, whereas the

differences in normalization do not lead to major

improvements.

FIG. 17. Interannual variability of (left) spatially and temporally averaged rainfall occurrence and (right) amount

relative to the baseline model. Observations for a given year are averaged (dotted line; open symbols) and compared

to the predictions (solid line; closed symbols) of the occurrence and amount. The range of the ordinate is the same in

both plots to illustrate the lower overall variability of precipitation amount.

FIG. 18. Interannual variability of weather-type occurrence. The colors represent precipitation

occurrence probabilities associated with the types (color coding taken from Fig. 11).
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Frequently, the choice of the number of types to be

used is made before developing the statistical down-

scaling model. However, Moron et al. (2008a) chose

the number of types partially according to an in-

formation criterion involving the discrimination of

rainfall by the weather types and thus already with the

application in mind. We suggest a more consequent

implementation of this idea and choose the number of

types according to the performance of the precipitation

model. Among the range of the number of types tested,

14 types yield the optimal model performance. There

is, however, a considerable fraction of remaining var-

iability for both occurrences and amounts. Pre-

cipitation amounts on wet days are better described

than precipitation occurrences on daily as well as in-

terannual time scales. For Senegal, with mesoscale

convective systems being the most important rainfall

generating mechanisms, this implies that it is easier to

predict mean daily amounts given that a mesoscale

system is passing a specific location than predicting

whether a system is arriving at all at that location. The

lower described variability of occurrence probability

on the interannual scale points toward the importance

of influences not captured by the weather types. The

amount signal is instead smoother on that scale and

captured to a larger extent by the weather types. This

underlines the difference in mechanisms for pre-

cipitation occurrences and amounts in the sense that

they do not respond in the same way to large-scale

atmospheric drivers. It supports the separate modeling

approach pursued here.

A potential candidate for driving precipitation—and for

future model refinement—is certainly sea surface tem-

perature (SST), as it might influence precipitation in a dif-

ferent way than via winds and relative humidity captured

by theweather types.According to the previous paragraph,

the predictors for occurrence and amounts do not neces-

sarily have to be constructed from the same variables as

it is the case in this study. Initially, we included also sea

level pressure for the definition of types; it was left out as

it did not improve the results.

We expect an improvement in model performance

when including the previous day weather type as

a predictor. Currently, antecedent information is

only indirectly available through the previous day

precipitation.

The GLM approach with spatial location explicitly

entering the predictor allows a spatially resolved mod-

eling of precipitation occurrence probability and amount.

A pointwise realization of precipitation scenarios is

straightforwardly possible (e.g., to be used for agricul-

tural models). In the context of climate change pro-

jections, the model can be used for downscaling under

the common assumption that the weather types remain

the same but their frequency changes. Furthermore,

as the result is a probability distribution for occurrence

probability and amounts varying in space and time, this

model allows, for example, a mapping of the drought

risks or risk of the exceedance of a certain amount of

rain in a given time span. As these maps can be gener-

ated from GCM climate change projections, they are

a valuable tool for impact assessment.
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APPENDIX

Technical Supplements

a. Goff–Gratch equation

log10psat 5 27:902 98

�
373:16

T
2 1

�
1 5:028 08 log10

�
373:16

T

�
2 1:38163 1027f1011:344[12(T/373:16)] 2 1g

1 8:13283 1023f1023:491 49[(373:16/T)21] 2 1g1 log10(1013:246).

b. Model performance

Model performance is assessed in twoways: (i) with an

information criterion (modified AIC) and (ii) with a

prediction error estimated with cross validation. The

modified AIC is given by

AIC5 22 logL(u j x1 . . . xN)1 km , (A1)

with L as the likelihood, m as the number of parame-

ters used, and k 5 6.63 (standard AIC: k 5 2). This

corresponds roughly to a likelihood-ratio test against the

x2 distribution on the 1% level.

Furthermore, we use cross validation to calculate

amean prediction error. For the latter, the set of stations

is randomly divided into three disjunctive sets of roughly

equal size and roughly uniform spatial distribution.
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Model parameters are estimated for all stations in two of

the three sets and a mean-square prediction error F is

calculated for all stations and all days in the third set.

This is repeated, exchanging the sets until a mean pre-

diction over all stations is obtained. For the amount

model, the mean-square prediction error is calculated as

Fr 5 1/N�
i
[ri 2 g21

r (hi)]
2 , (A2)

with the inverse link function g21 and observations of

amounts ri. As precipitation occurrence is described

with a binomial variable, the equivalent measure is de-

rived from the Brier score (Brier 1950; Friederichs and

Hense 2008)

Fp 5 1/N�
i
[pi 2 g21

p (hi)]
2 . (A3)

A forecast skill score with respect to a reference model

can be calculated as (Wilks 2006)

SS5 12
F(model)

F(reference)
. (A4)

c. Harmonic functions

Similar toRust et al. (2009) andMaraun et al. (2009), we

use harmonic functions to describe seasonal variability:

hseason 5 �
i

�
bi,sin sin

�
2p

idoy(t)

365:25

�

1bi,cos cos

�
2p

idoy(t)

365:25

��
, (A5)

where doy(t) gives the day of the year for a given date t

[e.g., for doy(1 May 2000) 5 122].

d. Legendre polynomials

Legendre polynomials are a series of orthogonal

polynomials on the subset [21, 1] of real numbers and

are used here to describe spatial variability in the

baseline model. We use

hspatial5 �
j
bj,PP(x, j)1 �

k

bk,PP(y, k)1 �
l

bl,PP(z, l) ,

(A6)

with P(x, j) being the Legendre polynomial for order

j (Abramowitz and Stegun 1965). Consequently, we

shifted and rescaled the spatial coordinates in such away

that they obtain values between 21 and 1 for longitude

(x) and latitude (y) or 0 and 1 for altitude (z) in the cube

defined by 188–118W 3 128–178N 3 0–400m. The lon-

gitudinal and latitudinal extension covers the whole

country; altitude is restricted to 400m, which includes

the highest rain gauge used here (Fongolimby at 396m).

Precipitation data for higher elevations, like Nepen

Diakha (584m), are not available. Similar to harmonic

functions, Legendre polynomials form an orthogonal

basis and ensure the independence of successively in-

cluded factors of higher order.
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