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Abstract
In this paper, spreading properties of a competition-diffusion system of two equations are

studied. This system models the invasion of an empty favorable habitat, by two competing
species, each obeying a logistic growth equation, such that any coexistence state is unstable.
If the two species are initially absent from the right half-line x > 0, and the slowest one
dominates the fastest one on x < 0, then the latter will invade the right space at its Fisher-
KPP speed, and will be replaced by or will invade the former, depending on the parameters,
at a slower speed. Thus, the system forms a propagating terrace, linking an unstable state
to two consecutive stable states.

1 Introduction
This paper is devoted to the study of the spreading of the following competition-diffusion system
between two species s and r: {

∂ts− δ0∂2
xxs = s(α0 − s− γ0r),

∂tr − ∂2
xxr = r(1− β0s− r)

(1)

with positive parameters α0, β0, γ0, δ0 satisfying 1/β0 < α0 < γ0, which ensures that equilibria
(α0, 0) and (0, 1) are both stable for the corresponding ODE system. More precisely, for initial
conditions where both species are absent from the right half-line x > 0, and s dominates r around
x = −∞ initially, if s spreads in absence of r slower than r in absence of r, then solutions of (1)
will approach a propagating terrace, which connects the unstable equilibrium (0, 0) to the stable
equilibrium (0, 1), and then the stable equilibrium (0, 1) to the other stable equilibrium (α0, 0).

Propagating terraces arise when two phenomena spread successively with two different speeds.
Two types of speeds are used in the system (1): one is linked to a monostable scalar equation,
the Fisher-KPP equation, and the second derives from a bistable system of differential equation,
which was studied by Y.Kan-On [19]. Spreading results for reaction-diffusion equations often use
a comparison principle, which derives from a maximum principle on ellipic equations. In the case
of systems of competition-diffusion equations, maximum principles are rarely applicable directly.
Moreover, the appearance of two different propagating speeds forming a propagating terrace
prevents the direct application of most classical methods of scalar reaction-diffusion equations.

System (1) arises from a biological problematic: it describes the propagation of two competing
species in a favorable environment. More specifically, it derives from a study on heterogeneous
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tumours, composed of cancerous cells that are sensitive or resistant to a certain drug. But this
result can be applied to several other biological systems, for example invading species in ecology,
or also to chemical reactions.

Definition and properties of Fisher-KPP and bistable competition-diffusion travelling waves,
alongside with developments linked to these equations, are recalled in the following. This will
allow us to define some notations that will be used in the rest of the article.

Fisher-KPP equation In the model (1), if r(x, t) ≡ 0 or s(x, t) ≡ 0, the other function obeys
a Fisher-KPP equation, which is a classical model for species growth and propagation [20, 12].
It models the evolution of a population n = n(x, t) depending on both position x ∈ R and time
t ≥ 0. Individuals move randomly in space, divide at a certain maximal rate ρ and compete over
nutrients:

∂tu(x, t)−D∆xu(x, t) = u(x, t)(ρ− u(x, t)). (2)

When system (2) is considered on x ∈ R, it admits travelling fronts solutions, i.e. solutions of the
form u(x, t) = U(x − ct) where c is a constant. For sake of notations, the following well-known
result from [20] is recalled:

Let (D, ρ) be two positive parameters. For any c ≥ c∗ = 2
√
Dρ, there exist a unique (up to

translation) solution U ∈ C2(R) of the equation:{
DU ′′ + cU ′ + U(ρ− U) = 0,
limξ→−∞ U(ξ) = ρ and limξ→+∞ U(ξ) = 0.

(3)

If U is a solution of (3), then u : (x, t) 7→ U(x−ct) is a solution to (2). Moreover, a solution u of
(2) with Heavyside initial data u(·, 0) = 1x<0 spreads with speed c∗ in the following sense: for any
c < c∗, it satisfies limt→+∞ supx<ct |u(x, t)−1| = 0 and for any c > c∗, limt→+∞ supx>ct u(x, t) =
0.

In the rest of this article, cS (resp. cR) will denote the minimal speed associated with
parameters (D, ρ) = (δ0, α0) (resp. (D, ρ) = (1, 1)) for system (3). Since all solutions are
invariant up to translation, US (resp. UR) will denote one fixed solution of (3) for parameters
(D, ρ) = (δ0, α0) (resp. (D, ρ) = (1, 1)) and speed cS (resp. cR).

The articles of Fisher [12] and Kolmogorov-Petrovskii-Piscounoff [20] have been a milestone
for the field of reaction diffusion equations. In general, we refer to [25] for results on travelling
waves in physics and biology, and to [26] for a review of this field of research. In [5], the speed
of convergence of solutions u of (2) with Heavyside initial data is investigated with more details:
the authors show that level sets of u travel at a speed slower than c∗. On an other hand, [18]
exhibited a family of initial conditions for (2) such that the solution spreads with accelerated
speed.

System of competition-diffusion equations System (1) is a model of two different species
competing and dispersing in the same habitat. They both follow a Fisher-KPP model for growth
and interaction, but the parameters might differ from one species to another. After a change
of variables and states, the system can be reduced to (1), where α0, β0, γ0 and δ0 are positive
constants. Results on the behaviour of (1) depend on the values of the parameters, and on the
behaviour of the corresponding ODE system:{

∂ts = s(α0 − s− γ0r),
∂tr = r(1− β0s− r).

(4)
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The asymptotic behaviour of this system depends on parameters (α0, β0, γ0). If α0 ≤ min(γ0, 1/β0),
then limt→+∞(s, r)(t) = (0, 1): the r population is the only one stable. If γ0 < α0 < 1/β0, then

lim
t→+∞

(s, r)(t) =
(

1− α0β0

1− β0γ0
,
α0 − γ0

1− β0γ0

)
which means that a mixed population is stable. If 1/β0 < α0 < γ0, then both (α0, 0) and (0, 1) are
stable: almost every solution converges to one of them as t→ +∞. Finally, if α0 ≥ max(1/β0, γ0),
then limt→+∞(s, r)(t) = (α0, 0): the s population is the only one stable. In this paper, the
bistable case is considered: 1/β0 < α0 < γ0.

This range of parameters defines a set of competition-diffusion bistable PDE systems. There
exists diverse results on such systems, especially in ecology modelling. In [19], Y. Kan-On
demonstrates the following result:

Let (α, β, γ, δ) be four positive parameters, such that 1/β < α < γ. Then there exists a unique
speed c ∈ (−2, 2

√
αδ) such that the system

δU ′′ + cU ′ + U(α− U − γV ) = 0,
V ′′ + cV ′ + V (1− βU − V ) = 0,
limξ→−∞ U(ξ) = α and limξ→+∞ U(ξ) = 0,
limξ→−∞ V (ξ) = 0 and limξ→+∞ V (ξ) = 1

(5)

admits a solution (U, V ) ∈ C2(R). This solution is furthermore unique up to translation, positive,
U is decreasing and V is increasing.The speed c depends continuously on the parameters (α, β, γ),
is increasing with respect to α and β and decreasing with respect to γ.

Since solutions of (5) are unique up to translation, in the rest of this article, (S,R) will
denote a fixed pair of solutions and cSR the speed solution of (5) for parameters (α, β, γ, δ) =
(α0, β0, γ0, δ0).

In relation to this result, [13] showed with a degree theoretic approach that such travelling
waves are C0 stable. Recently [16] shows that travelling waves still exist if the competition
becomes strong, which is to be expected for very aggressive species. In the setting of this article,
it corresponds to fixing γ = βk, and letting k → +∞. Finally, [3] demonstrated the existence
and stability of pulsating waves if the parameters α0, β0, γ0 and δ0 are all periodic in time with
the same period: this would, for example, model a periodic external action on the environment.

Propagating terraces Bearing in mind that travelling waves exist between the two stable
states, a spreading result will here be demonstrated, i.e. the long-time behaviour of the system
for a class of initial conditions. Suppose species s and r are present on the left side of the plane,
with r smaller than a certain exponential function at t = 0:

s(x, 0) = φ(x) for x < 0 with 0 < φm ≤ φ(x) ≤ φM < α0,

s(x, 0) = 0 for x ≥ 0,
1 > r(x, 0) > 0 for x < 0 and r(x, 0) = O

x→−∞
(−xe 1

2x),

r(x, 0) = 0 for x ≥ 0.

(6)

Numerical experiments suggest that the long-time behaviour of this system is organized in a
propagating terrace, which means that several speeds of invasion can be observed, depending
on the parameters. Propagating terraces have been first exhibited by [11] for a scalar equation
∂tu−∆u = f(u), with f bistable on range [0, a] with speed c1, and bistable on range [a, 1] with
speed c2 > c1.
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Figure 1: Numerical simulation of a propagating terrace for f(u) = u(u− 1)(u− 1.2)(u− 3)

Figure 1 shows a numerical example of propagating terrace, performed on Scilab.
In recent developments, [10] proved that such propagating terraces exist and are stable in

a sense for periodic in space medium. The proof of theorem 1 will develop technics to show
the existence of a propagating terrace for a system of coupled differential equations. In [9], the
authors show that a prey-predator system will develop such propagating terraces. If the prey is
faster than its predator, it will develop out of the predator’s reach, at its natural speed (i.e. the
speed at which it would propagate if there was no predators), then it is preyed on at a lower
speed. The proof of invasion of the empty space relies on properties of the growth function of
preys similar to Fisher-KPP. As growth functions in (1) are of Fisher-KPP type, the invasion
of empty space will rely on a similar proof. On another hand, competition will intervene in the
proof of replacement of one species by the other in (1): this competition is not symmetrical in
[9], thus their results do not apply in the present paper case.

Statement of the theorem and outline of the paper The aim of this paper is to demon-
strate the following theorem:

Theorem 1. Let (s, r) be a bounded solution of (1) with initial conditions (6) where the param-
eters (α0, β0, γ0) satisfy the bistability criterium:

1
β0

< α0 < γ0 (7)

Then the following spreading results hold:

∀ c > max(cS , cR), lim
t→+∞

sup
x>ct
|s(x, t)|+ |r(x, t| = 0,

∀ c < cSR, lim
t→+∞

sup
x<ct
|s(x, t)− α0|+ |r(x, t)| = 0.

(8)

(9)

Suppose furthermore that cS < cR, then

∀ cSR < c1 < c2 < cR, lim
t→+∞

sup
c1t<x<c2t

|s(x, t)|+ |r(x, t)− 1| = 0. (10)
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(a) If cS > cR and cSR > 0,
population r is not visible.
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(b) If cS < cR and cSR > 0, r
creates a front at speed cR, and
is then replaced by s.
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(c) If cS < cR and cSR < 0,
r creates a front at speed cR
on the right and replaces s at
speed cSR on the left.

population s population r

Figure 2: Numerical simulations of the system for different values of the parameters: the global
behaviour depends on the comparison between cS and cR, and on the sign of cSR.

In the case cS > cR, the behaviour of the system depends on the sign of cSR and on the
initial conditions. Indeed, if cSR > 0, one can adapt the proof to show that

∀ c > cS , lim
t→+∞

sup
x>ct
|s(x, t)|+ |r(x, t| = 0,

∀ c < cS , lim
t→+∞

sup
x<ct
|s(x, t)− α0|+ |r(x, t)| = 0.

(11)

(12)

The system thus almost eliminates species r: it does not appear in the long time behaviour.
If cSR < 0, the global behaviour depends on the initial repartition of s and r, this case is not
treated in this paper.

Figure 2 shows numerical simulations of the evolution of (1), preformed on Scilab for different
values of the parameters.

A partial result for (10) can be extended to a more general type of growth functions. More
specifically, the limit result:

∀ cS < c1 < c2 < cR, lim
t→+∞

sup
c1t<x<c2t

|s(x, t)|+ |r(x, t)− 1| = 0

still holds if instead of system (1) we consider:{
∂ts− ∂2

xxs = sF (s, r),
∂tr − δ∂2

xxr = rG(s, r)

where F , G are C1 functions satisfying:

• ∀s > 0 (resp. r > 0), r 7→ F (s, r) (resp. s 7→ G(s, r)) is stricly decreasing,

• there exists a, b > 0 such that F (a, 0) = 0 and G(0, b) = 0,

• ∀s ∈ [0, a) (resp. r ∈ [0, b), F (s, 0) > 0 (resp. G(0, v) > 0),
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• ∀s, r ≥ 0, F (s, r) ≤ F (0, r) and G(s, r) ≤ G(s, 0).

The first hypothesis ensures that there is competition between the two species. The second and
third ones give us a hair-trigger effect: when only one of the species is present, it will grow until it
reaches its maximum capacity, a or b. The last hypothesis, finally, states that the species attain
their maximal growth rates for small densities ; this suggests that their propagation speeds can
be determined by the leading edge, as in the Fisher-KPP framework. For more details on this
proof, see [9].

However, the proofs of (9) and (10) heavily rely on the existence of a travelling wave connect-
ing the two stable states (α0, 0) and (0, 1), and on the dependance of the speed cSR on α0 and
other parameters. These results all are present in [19], but as far as the author knows, they have
not been generalized to other types of growth functions. Theorem 1 is thus stated only under
the Fisher-KPP hypothesis.

This paper is organized as follows. The first part will present the biological problem which
called for the study of system (1), and an interpretation of Theorem 1. In the second part,
a lemma that will be useful for the whole study is stated ; the system behaviour far from
competition is then studied, showing that the fastest species can grow out of reach of the slowest
one. The third part is concerned with what happens in the competition zone, and will show that
the replacement of one species by the other will in fact occur at the speed defined by Kan-On
[19].

2 Biological interpretation: a model of cancer growth
Model (1) has been used to study heterogeneous tumour growth. Solid tumours are subject to
non uniform phenomena, and as such, can develop heterogeneous behaviours. Especially, the
use of chemotherapy to cure cancers often triggers the emergence of resistant lineages, that will
not be affected by the drug, by selecting them against more sensitive cells. When the tumour
does not reply to the treatment any more, medical doctors then have to find a different drug, if
it exists, to tackle this new kind of cancerous cells, which can be more harmful for the patient.
In any case, appearance of a resistance to the chemotherapy is a cause of treatment failure, and
should be avoided. Moreover, cytotoxic drugs, which are widely used in classical protocols, cause
unwanted toxic side effects, thus their dosage should be carefully designed.

These problems can be addressed by in vivo or in vitro experimentation, and also by mathe-
matical modelling of the different phenomena inside tumours. Therapy optimization in the case
of heterogeneous tumours, for example, has been studied among others with the use of cellular
automata [24, 15], with the construction of complex systems and their numerical studies [1],
and also with the construction of simple models and their analytical studies, using, for example,
Pontryagin Maximum Principle [8, 21]. We refer to [7] for a review of mathematical modelling
of resistance apparition in solid tumours.

In a previous article [6], the author studied the effect of chemotherapy on heterogeneous
tumours. A series of biological experimentations on in vitro tumours, composed of sensitive
and resistant cells, showed that large doses of chemotherapy would kill all sensitive cells and let
resistant cells grow to a maximum population. A mathematical ODE model adapted to these
experimentations was designed, and different adaptive treatment protocols to reduce risks of
resistance to chemotherapy were constructed, notably with optimal control theory. The main
idea is to choose the maximal drug dosage such that, in the model (4), a population with only
sensitive cells is stable and locally attractive, and to bring the system in this bassin of attraction.
In order to better understand the experiments, it appeared crucial that spatial diffusion should
be taken into account, which is why system (1) was constructed.
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Spatial heterogeneity has a great influence on cancer virulence and evolution, as illustrated in
[14]. In [22], the authors construct a model of solid tumours taking into account spatial diffusion
of nutrients, treatment and cells, as well as the resistance of cells as a continuous trait. Diverse
treatment protocols can be tested and compared in this framework, like combination of constant
infusion and alternative maximum-minimum delivery of cytotoxic drugs. Game theory is used
in [4] to explain how a more invasive lineage can be selected against a proliferative one. It uses
cellular automata, and support the use of therapies that would increase the cost of motility, in
order to maintain the tumour at a benign state. We are developing in our article a PDE model
that enhances this idea, that cytotoxic drugs will be efficient as long as it does not favour a more
motile lineage.

In model (1), s represents the population of cells that are sensitive to a certain drug, and
r a lineage of resistant cells. They divide, spread and compete at different rates. We do not
investigate how the resistant trait emerge, but only how they spread with the tumour once they
have appeared. Thus, we do not take into account mutations of sensitive cells into resistant cells,
or resistant cells into sensitive cells. Using the hypothesis of mutations, [17] showed the existence
of a travelling wave connecting (0, 0) to a coexistence state. Finally, the action of chemotherapy
is taken into account through parameter α0, the growth rate of s. If no treatment is applied, α0
is at a maximal value, and as treatment dosage increases, α0 decreases. The bistability criterium
(7) states that if α0 < 1/β0, then the sensitive population (s, r) = (α0, 0) is no longer stable:
this property gives us a limit value for treatment dosage. Since we are interested in biological
coherent solutions, we only consider bounded solutions of (1).

Theorem 1 states that the fastest species will escape the region where the slowest one is
present, and act as if there was no competition. Let us rephrase these results in the framework
of cancer modelling. If α0 > 1/δ0, then the overall growth speed of the tumour is 2

√
δ0α0,

this speed decreases as we augment the drug dosage. But as soon as α0 < 1/δ0, resistant cells
are selected by the treatment, and form a growing ring around the sensitive core ; the global
growth speed becomes 2 and does not depend on the treatment any more. Even worse, as α0
decreases, cSR may become negative: resistant cells will replace sensitive cells in already invaded
environments. In a previous paper [6] where no spatial effects were taken into account, we stated
that treatment protocols could be designed for the ODE system (4), such that the steady state
with only sensitive cells is always stable, and that reduce the number of cancerous cells to a
minimum. We thus proposed α0 > 1/β0 as a limiting value for the treatment. With spatial
effects, we see that the motility of cells – that is, their ability to move – should also be taken
into account when designing a treatment protocol, as explained also in [4].

With results from [3], we could extent our theorem to time periodic coefficients. This would
model, for example, periodic chemotherapy dosages, or periodic growth cycles for cells. As the
overall behaviour of solutions from [3] only depends on the means and extrema of the parameters,
our results would not be drastically modified ; we thus decided not to take this phenomenon into
account.

3 Outside of competition
3.1 Comparison lemma
The following comparison lemma for competitive systems will be crucial in the demonstration of
Theorem 1.

Lemma 1 (Comparison principle). Let (s1, r1) and (s2, r2) be such that for all (x, t) ∈ D ×R+
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with D ⊆ R, we have 0 ≤ si(x, t) ≤ α0, 0 ≤ ri(x, t) ≤ 1 for i = 1, 2, and such that{
∂ts1 − δ0∂2

xxs1 − s1(α0 − s1 − γ0r1) ≤ 0,
∂tr1 − ∂2

xxr1 − r1(1− β0s1 − r1) ≥ 0
and

{
∂ts2 − δ0∂2

xxs2 − s2(α0 − s2 − γ0r2) ≥ 0,
∂tr2 − ∂2

xxr2 − r2(1− β0s2 − r2) ≤ 0

and such that for all x ∈ D,

s1(x, 0) ≤ s2(x, 0) and r1(x, 0) ≥ r2(x, 0),

and for all x ∈ ∂D and t ≥ 0,

s1(x, t) ≤ s2(x, t) and r1(x, t) ≥ r2(x, t).

Then for all t ≥ 0 and for all x ∈ D,

s1(x, t) ≤ s2(x, t) and r1(x, t) ≥ r2(x, t).

This lemma is a consequence of both a comparison theorem for cooperative systems (ap-
plied here to (s,−r)), which can be found in [23], and the Phragmèn-Lindelöf principle, also
demonstrated in [23].

In order to simplify notations, in the rest of the article the functionals N1 and N2 are defined
on functions (u, v) : R× R+ → R by:

N1[u, v](x, t) = ∂tu(x, t)− δ0∂2
xxu(x, t)− u(α0 − u− γ0v),

N2[u, v](x, t) = ∂tv(x, t)− ∂2
xxv(x, t)− v(1− β0u− v).

(13)
(14)

We will also note (s1, r1) � (s2, r2) if s1 ≤ s2 and r1 ≥ r2.

3.2 Limitation of speeds in both directions
This first part will show that the species s and r do not develop faster than if they were without
competition.

Recall US is a solution of {
δ0U

′′
S + cU ′S + US(α0 − US) = 0,

US(−∞) = α0 and US(+∞) = 0
(15)

with c = cS : it is the KPP front defined in (3). There exists x0 ∈ R such that for all x ∈ R,
φ(x) ≤ US(x− x0). Then (s̄, r) : (x, t) 7→ (US(x− x0 − cSt), 0) satisfies:

N1[s̄, r](x, t) = ∂ts̄(x, t) − δ0∂
2
xxs̄(x, t) − s̄(x, t)(α0 − s̄(x, t))

= −cSU ′S(x− x0 − cSt) − δ0U
′′
S (x− x0 − cSt) − US(x− x0 − cSt)(α0 − US(x− x0 − cSt))

= 0

and N2[s̄, r](x, t) = 0. Thus, according to the comparison lemma 1, (s, r) � (s̄, r).
Then, let c > cS : the first population s satisfies for every t ≥ 0 and every x > ct:

s(x, t) ≤ US(x− x0 − cSt) ≤ US((c− cS)t− x0)

8



because US is decreasing. Using that limξ→+∞ US(ξ) = 0, we conclude that:

lim
t→+∞

sup
x>ct

s(x, t) = 0. (16)

Reasonning similarly on r we show that, for every c > cR,

lim
t→+∞

sup
x>ct

r(x, t) = 0.

Moreover, [20] gives an asymptotic estimation on UR around +∞: there exists C > 0 such that

UR(ξ) = Cξe−
cR
2 ξ(1 + o

ξ→+∞
(1)). (17)

Thus, we can deduce a similar result around −∞: for any c > cR,

lim
t→+∞

sup
x<−ct

r(x, t) = 0

in the other direction.
These results conclude the demonstration of (8).

3.3 Invasion of the empty space by the fastest species
In this section, we will show that the fastest species invades the right empty space at its Fisher-
KPP speed. Let us suppose that, for example, cR > cS .

Lemma 2. Let c1, c2 be two speeds such that cS < c1 < c2 < cR. Then

lim
t→+∞

sup
c1t<x<c2t

|s(x, t)|+ |r(x, t)− 1| = 0.

It is a partial proof of (10). We already know because of 3.2 that

lim
t→+∞

sup
c1t<x<c2t

|s(x, t)| = 0

for any cS < c1 < c2 < cR. The idea of this lemma is that because r moves faster than s, it does
not see any competition ahead of cSt, and thus acts as a Fisher-KPP front.

To prove this, we will need an intermediate lemma:

Lemma 3. For any c such that cS < c < cR, for any x ∈ R, we have

lim
t→+∞

r(x+ ct, t) = 1

where the convergence is uniform on every compact for x.

Proof. This proof will be divided into three steps. Let c be such that cS < c < cR.
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Step 1: Let c′ be such that c < c′ < cR. We claim that there exists a > 0, x2 ∈ R and η1 > 0
such that:

lim inf
t→+∞

inf
x∈(−a,a)

r(x+ ct+ x2,
ct

c′
) ≥ η1. (18)

In other words, the solution r is greater than a small bump travelling at the speed c′.
To prove this, let ε > 0 be such that:

c′ < 2
√

1− εβ0 < cR. (19)

For any a > 0, we define ψa : R → R the principal eigenfunction of the Laplace operator on a
ball [−a, a] with Dirichlet boundary conditions, normalized with ||ψa||∞ = 1, i.e:

∂2
xxψa = λaψa on (−a, a),
ψa(−a) = ψa(a) = 0,
ψa > 0 on (−a, a),
||ψa||∞ = 1.

(20)

Here, λa is the principle eigenvalue and satisfies λa < 0 for any a > 0, and tends to 0 as a tends
to +∞. In the following, we extend the definition of ψa on the whole space by setting ψa(x) = 0
if |x| ≥ a.

We now define:
r(x, t) := ηe−

c′
2 (x−c′t)ψ2a(x− c′t− x2)

where a, x2 and η will be characterized later. Let s̄(x, t) := US(x− x0 − cSt), where x0 is such
that (s, r) � (s̄, 0). There exists x1 ∈ R such that for any x > x1 + x0 + cSt, we have s̄(x, t) < ε.
We will choose a, x2 and η such that (s, r) � (s̄, r). First,

N1[s̄, r](x, t) = ∂ts̄(x, t)− δ0∂2
xxs̄(x, t)− s̄(x, t)(α0 − s̄(x, t)− γ0r(x, t))

= γ0US(x− cSt− x0)r(x, t)
≥ 0.

Moreover, by taking x2 ≥ x1 +2a, we ensure that for −2a < x−c′t−x2 < 2a, we have r(x, t) > 0
and s̄(x, t) = US(x− cSt− x0) ≤ US(x− c′t− x0) ≤ US(−2a+ x2 − x0) ≤ ε. Thus:

N2[s̄, r](x, t) = ∂tr(x, t)− ∂2
xxr(x, t)− r(x, t)(1− β0s̄(x, t)− r(x, t))

≤
(
c′2

4 − λ2a

)
r(x, t)− r(x, t)(1− β0ε− r(x, t))

≤ r(x, t)
(
c′2

4 − λ2a − (1− β0ε− r(x, t))
)
.

We can then choose a large enough such that c′2

4 − λ2a − (1 − β0ε) < 0 because of (19), and η
small enough such that c′2

4 − λ2a − (1 − β0ε − ηe−
c′
2 (x2−2a)) < 0. Then N2[s̄, r](x, t) ≤ 0 for all

(x, t) ∈ R× R+.
Finally, for any fixed t0 > 0, we can further reduce η such that r(x, t0) ≥ r(x, t0). Then, by

the comparison lemma 1, (s, r) � (s̄, r). By setting

η1 := ηe−
c′
2 (x2+a) min

x∈(−a,a)
ψ2a(x),

we get that, since r(x, ctc′ ) ≥ r(x,
ct
c′ ) = r(x− ct, 0), the limit (18) is satisfied.
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Step 2: We now claim that there exists b > 0, η2 > 0 and x3 ∈ R such that

lim inf
t→+∞

inf
x∈(−b,b)
t′∈( ct

c′ ,t)

r(x+ ct+ x3, t
′) > η2. (21)

In other words, the bump does in fact persist under r for time t′ between ct
c′ and t.

For that, let us fix t > 0, and define:

r(x, t′) := η′ψa(x− ct− x2)

where η′ will be characterized later. For any t′ < t, the pair (s̄, r) satisfies N1[s̄, r](x, t′) ≥ 0,
and:

N2[s̄, r](x, t′) = ∂tr(x, t′)− ∂2
xxr(x, t′)− r(x, t′)(1− β0s̄(x, t′)− r(x, t′))

≤ −r(x, t′)(1 + λa − r(x, t′)− β0ε).

By increasing a if necessary, we can suppose 1 +λa−β0ε > 0. Then, by taking η′ < 1 +λa−β0ε,
we get that N2[s̄, r](x, t′) ≤ 0 for any t′ < t. We can further reduce η′ such that r(x+ct+x2,

ct
c′ ) ≥

r(x, ctc′ ). Because of (18), for t large enough, η′ does not depend on t. Then, by the comparison
lemma 1, we have (s, r) � (s̄, r) for any x ∈ R and any t′ such that ct

c′ < t′ < t. By setting b = a
2

and η2 = η′minx∈(−b,b) ψa(x), we get (21).

Step 3: Now we demonstrate the convergence towards 1 of r(x+ct, t) when t→ +∞, uniformly
on compact subsets. Let (tn)n be such that tn → +∞. We define the following sequence of
functions:

rn(x, t) = r(x+ ctn, t+ tn) ∀(x, t) ∈ R× [−tn,+∞).

Standard parabolic estimates allow us to use Arzela theorem: we can extract a subsequence still
denoted tn such that rn converges locally uniformly to r∞, which satisfies:

∂tr∞ − ∂2
xxr∞ − r∞(1− β0ε− r∞) ≥ 0 ∀(x, t) ∈ R2

Moreover, because of (21), we know that for any t ≤ 0, infx∈(−b,b) r∞(x+ x3, t) ≥ η2. Let rε be
the solution of {

∂trε − ∂2
xxrε − rε(1− β0ε− rε) = 0,

rε(x, 0) = η21(−b,b)(x− x3).

Then for any x ∈ R and any t ≥ 0, by the classical comparison principle, r∞(x, 0) ≥ rε(x, t). But
rε converges locally uniformly to 1− β0ε [20], thus for any x ∈ R we have r∞(x, 0) ≥ 1− β0ε.

Looking back at the definition of r∞, we deduce that for all (x, t) ∈ R× R+ we have

lim inf
t→+∞

r(x+ ct, t) ≥ 1− β0ε

locally uniformly with respect to x. This is true for any ε > 0 small enough, so we have

lim
t→+∞

r(x+ ct, t) = 1

which concludes the proof of lemma 3.

We are now equipped to prove lemma 2.

11



Proof. Let c1 and c2 be two speeds such that cS < c1 < c2 < cR. Let ε > 0 be such that
c∗ = 2

√
1− β0ε satisfies c2 < c∗ < cR. For any θ < 1−β0ε close enough to 1−β0ε, the following

system: {
R̂′′ + c∗R̂′ + R̂(1− β0ε− R̂) = 0,
R̂(0) = θ and R̂′(0) = 0

admits a solution R̂ that satisfies R̂(b) = 0 for a certain b > 0, and R̂′(ξ) < 0 for any ξ ∈ (0, b].
We refer for example to [2] for a proof of existence of such a solution ; it relies mostly on phase
plane analysis. We then define r : R× R+ → R by:

r(x, t) =


θ if x− c∗t < ρ,

R̂(x− c∗t− ρ) if ρ ≤ x− c∗t < ρ+ b,

0 if x− c∗t ≥ ρ+ b

where ρ is to be chosen later.
Consider now (s̄, r) where s̄(x, t) = US(x−cSt−x0) is a Fisher-KPP front satisfying s̄(x, 0) ≥

s(x, 0) for any x ∈ R. There exists x1 ∈ R such that for any x > x1, we have US(x) ≤ ε .Then,
for any (x, t) ∈ R× R+:

N1[s̄, r](x, t) = γ0US(x− cSt− x0)r(x, t) ≥ 0

and for any (x, t) such that x ≥ x1 + cSt:

N2[s̄, r](x, t) =


θ(β0US(x− cSt− x0)− 1 + θ) if x− c∗t < ρ

β0R̂(x− c∗t− ρ)(US(x− cSt− x0)− ε) if ρ ≤ x− c∗t < ρ+ b

0 if x− c∗t ≥ ρ+ b

≤ 0.

Moreover, we know that limt→+∞ r(c1t, t) = 1 because of lemma 3, thus there exists T > 0
such that for any t > T , r(c1t, t) ≥ θ.

Finally, consider the situation at time t = T . By setting ρ ≤ −b + (c1 − c∗)T , we have
r(x, T ) = 0 for any x ≥ c1T . Thus, by using the comparison lemma 1, for any t ≥ T and x ≥ c1t,

r(x, t) ≥ r(x, t). (22)

For t large enough, ρ+ c∗t > c2t, thus

lim inf
t→+∞

c1t<x<c2t

r(x, t) ≥ θ.

This is true for any θ < 1 − β0ε close enough to 1 − β0ε and for any ε > 0 small enough, so we
can pass to the limit as ε→ 0 and θ → 1, and deduce that

lim inf
t→+∞

c1t<x<c2t

r(x, t) ≥ 1 (23)

which concludes the proof of lemma 2.

This proof uses loosely the Fisher-KPP hypothesis: we could have taken more general growth
functions for sensitive and resistant cells, and still have this result of invasion, as stated in 1.

With a similar reasoning, we can prove the following lemma:
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Lemma 4. For all c < −cR,

lim
t→+∞

sup
x<ct
|s(x, t)− α0|+ |r(x, t)| = 0.

This lemma is an intermediate proof of (9).

4 Competition between species
We are now interested in an intermediate zone, where competition between species can have an
influence on their behaviour. We will first prove (9). In a second part, we will complete the proof
of (10) by studying the zone of interaction of s and r.

4.1 Left side of the interaction zone
We know that limt→+∞ supx<ct |s(x, t)− α0|+ |r(x, t)| = 0 for any c < −cR because of Lemma
4. Let us now prove that it is the case for any c < cSR. The method we use here is developed
for a scalar equation in [11].

Let c be such that c < cSR. We recall that as stated in the introduction 5 and in [19],
cSR depends continuously on the parameters and is increasing with respect to α0. Thus, there
exists α < α0 such that 1/β0 < α < γ0 and the Kan-On speed cSR corresponding to parameters
(α, β0, γ0, δ0) satisfies c < cSR < cSR. We define (S,R) the corresponding Kan-On front; it
satisfies: 

δ0S
′′ + cSRS

′ + S(α− S − γ0R) = 0,
R
′′ + cSRR

′ +R(1− β0S −R) = 0,
limξ→−∞ S(ξ) = α and limξ→+∞ S(ξ) = 0,
limξ→−∞R(ξ) = 0 and limξ→+∞R(ξ) = 1.

We now define (s, r̄) on R× R+ by:{
s(x, t) = max(0, S(x− cSRt− ξ(t))− q(t)),
r̄(x, t) = min(1, R(x− cSRt− ξ(t)) + p(t))

where ξ, p and q will be characterized later.
Let ε > 0 be such that ε < min(α, α − 1

β0
, γ0−α0

γ0
, 1

3 ) (this is possible because of (7) and the
definition of α). Because S is strictly decreasing and R is strictly increasing, there exists η > 0
such that, for any ζ satisfying either ε < S(ζ) < α− ε or ε < R(ζ) < 1− ε, we have S′(ζ) < −η
and R′(ζ) > η. We then state the following lemma, that will impose conditions on p, q and ξ.

Lemma 5. We choose ξ, p and q of the form
ξ(t) = ξ1 + ξ0e

−µt,

p(t) = p0e
−µt,

q(t) = q0e
−µt

where p0, q0 and µ > 0, p0 satisfies
p0 <

α0 − α
2γ0

, (24)
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q0 and µ satisfy
q0 <

εp0

2β0
,

q0 + µ < γ0(1− ε)− α0,

β0q0 + µ < β0(α− ε)− 1,

q0(α0 + µ+ q0) < (α− ε)α0 − α
2 ,

µ <
1− 3ε

2 ,

µ < γ0 − α0,

(25)

(26)
(27)

(28)

(29)

(30)
and ξ0 satisfies

ξ0 >
q0γ0(1− ε)

µη
,

ξ0 >
p0β0(α− ε)

µη
.

(31)

(32)

Then we have for any (x, t) ∈ R× R+ that:

N1[s, r̄](x, t) ≤ 0,
N2[s, r̄](x, t) ≥ 0.

Proof. For any (x, t) ∈ R×R+, we have with ζ = x−cSRt−ξ(t) and if s(x, t) > 0 and r̄(x, t) < 1:

N1[s, r̄](x, t) = ∂ts(x, t)− δ0∂2
xxs(x, t)− s(x, t)(α0 − s(x, t)− γ0r̄(x, t))

= −ξ′(t)S′(ζ)− q′(t) + S(ζ)(α− α0 + γ0p(t)− q(t))
+ q(t)(α0 − S(ζ)− γ0R(ζ) + q(t)− γ0p(t))

and
N2[s, r̄](x, t) = ∂tr̄(x, t) − ∂2

xxr̄(x, t) − r̄(x, t)(1 − β0s(x, t) − r̄(x, t))

= −ξ′(t)R′(ζ) + p′(t) +R(ζ)(p(t) − β0q(t)) − p(t)(1 −R(ζ) − β0S(ζ) − p(t) + β0q(t))

Around ±∞ Let (x, t) be such that S(x − cSRt − ξ(t)) > α − ε and R(x − cSRt − ξ(t)) < ε.
Then:

N1[s, r̄](x, t) = −ξ′(t)S′ − q′(t) + S(α− α0 + γ0p(t) − q(t)) + q(t)(α0 − S − γ0R+ q(t) − γ0p(t))
≤ −q′(t) + S(α− α0 + γ0p0) + q(t)(α0 + q0)

if we take ξ0 > 0

≤ q0e
−µt(µ+ α0 + q0) + (α− ε)α− α0

2 because of (24)

≤ 0

because of (28). Furthermore,

N2[s, r̄](x, t) = −ξ′(t)R′ + p′(t) +R(p(t)− β0q(t))− p(t)(1−R− β0S − p(t) + β0q(t))
≥ p′(t) + p(t)(β0(α− ε)− 1− β0q(t)) because of (25)
≥ p(t)(β0(α− ε)− 1− β0q0 − µ)
≥ 0

(33)
(34)
(35)
(36)

14



because of (27).
Now, let (x, t) be such that S(x− cSRt− ξ(t)) < ε and R(x− cSRt− ξ(t)) > 1− ε. Then:

N1[s, r̄](x, t) = −ξ′(t)S′ − q′(t) + S(α− α0 + γ0p(t) − q(t)) + q(t)(α0 − S − γ0R+ q(t) − γ0p(t))
≤ −q′(t) + q(t)(α0 − γ0(1 − ε) + q(t))
≤ q(t)(α0 − γ0(1 − ε) + q0 + µ)
≤ 0

(37)
(38)
(39)
(40)

because of (26). Furthermore,

N2[s, r̄](x, t) = −ξ′(t)R′ + p′(t) +R(p(t)− β0q(t))− p(t)(1−R− β0S − p(t) + β0q(t))
≥ p′(t) + (1− ε)(p0 − β0q0)− εp(t)

≥ p′(t) + (1− ε)p(t)2 − εp(t) because of (25)

≥ p(t)
2 (1− 3ε− 2µ)

≥ 0

because of (29).

In the intermediary zone Let (x, t) be such that ε < S(x − cSRt − ξ(t)) < α − ε or ε <
R(x − cSRt − ξ(t)) < 1 − ε. Then because S is strictly decreasing, and R is strictly increasing,
there exists η > 0 such that S′(x− cSRt− ξ(t)) < −η and R′(x− cSRt− ξ(t)) > η. Then:

N1[s, r̄](x, t) = −ξ′(t)S′ − q′(t) + S(α− α0 + γ0p(t) − q(t)) + q(t)(α0 − S − γ0R+ q(t) − γ0p(t))
≤ ξ′(t)η − q(t)(α0 − γ0(1 − ε) + q(t)) + q(t)(α0 + q(t))

because of (40)
≤ (−ξ0µη + q0γ0(1 − ε))e−µt

≤ 0

because of (31). Furthermore,

N2[s, r̄](x, t) = −ξ′(t)R′ + p′(t) +R(p(t)− β0q(t))− p(t)(1−R− β0S − p(t) + β0q(t))
≥ −ξ′(t)η − p(t)(β0(α− ε)− 1− β0q(t))− p(t)(1 + β0q(t))

because of (36)
≥ (ξ0µη − p0β0(α− ε))e−µt

≥ 0

because of (32).

In flat zones We now want to check that N1[s, r̄](x, t) ≤ 0 and N2[s, r̄](x, t) ≥ 0 even if
s(x, t) = 0 or r̄(x, t) = 1.

Let (x, t) ∈ R × R+ be such that s(x, t) = 0, i.e. S(x − cSRt − ξ(t)) < q(t), and r̄(x, t) < 1.
Then N1[s, r̄](x, t) = 0 and up to further reducing q0, we can suppose R(x− cSRt− ξ(t)) > 3/4,
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thus:
N2[s, r̄](x, t) = ∂tr̄ − ∂2

xxr̄ − r̄(1− r̄)

= −ξ′(t)R′ + p′(t) +R(1− β0S −R)− (R+ p(t))(1−R− p(t))
≥ p′(t) +R(p(t)− β0q(t))− p(t)(1−R)

≥ p′(t) + 1
2p(t)−

3
4β0q(t)

≥ (−µp0 + 1
2p0 −

3
4β0q0)e−µt

≥ 0
because of (29) and (25).

Now, let (x, t) ∈ R × R+ be such that s(x, t) > 0 and r̄(x, t) = 1, i.e. R(x − cSRt − ξ(t)) >
1− p(t). Then N2[s, r̄](x, t) = β0s ≥ 0 and

N1[s, r̄](x, t) = ∂ts(x, t)− δ0∂2
xxs(x, t)− s(x, t)(α0 − s(x, t)− γ0)

= −ξ′(t)S′ − q′(t) + S(α− S − γ0R)− (S − q(t))(α0 − S − γ0 + q(t))
≤ −q′(t) + S(α− α0 − γ0R+ γ0 − q(t)) + q(t)(α0 − γ0 − (S − q(t)))
≤ −q′(t) + S(α− α0 + γ0p(t)− q(t)) + q(t)(α0 − γ0)
≤ q(t)(µ+ α0 − γ0)
≤ 0

because of (30).
Finally, if (x, t) is such that s(x, t) = 0 and r̄(x, t) = 1, then N1[s, r̄](x, t) = N2[s, r̄](x, t) = 0.

We have constructed a "sub-super solution" (s, r̄) of (1). We now want to compare it to the
solution (s, r) with initial condition (6). To demonstrate the following lemma, we will finally
characterize the constant ξ1:

Lemma 6. There exists T > 0 and c∗ < c such that for every t ≥ T :

s(c∗t, t) ≥ s(c∗t, t) and r(c∗t, t) ≤ r̄(c∗t, t),

and for every x ≥ c∗T :
s(x, T ) ≥ s(x, T ) and r(x, T ) ≤ r̄(x, T ).

Proof. Let c∗ < c be such that c∗ < −cR. Because of Lemma 4, we know that

lim
t→+∞

|s(c∗t, t)− α0|+ |r(c∗t, t)| = 0.

Thus, there exists T1 > 0 such that for every t ≥ T1, s(c∗t, t) > α and r(c∗t, t) < p0. Then, we
already have that s(c∗t, t) ≥ s(c∗t, t) for every t ≥ T1.

Furthermore, we know that there exists X ∈ R such that r(x, t) ≤ ŨR(x − cRt −X) for all
(x, t) ∈ R× R+, where ŨR is the Fisher-KPP front satisfying:{

Ũ ′′R + cRŨ
′
R + ŨR(1− ŨR) = 0,

ŨR(−∞) = 0 and ŨR(+∞) = 1.
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We also know from [20] that ŨR satisfies for a certain constant C > 0 and any ζ ∈ R:

ŨR(ζ) ≤ Cζe
cR
2 ζ .

Thus for all t > 0, we have

r(c∗t, t) ≤ ŨR((c∗ − cR)t−X) ≤ C((c∗ − cR)t−X)e
cR
2 ((c∗−cR)t−X).

If we further reduce µ such that µ < cR

2 (cR − c∗), there exists T2 > 0 such that for all t > T2,

C((c∗ − cR)t−X)e
cR
2 ((c∗−cR)t−X) ≤ p0e

−µt.

Then, by taking T = max(T1, T2), we get that for all t > T ,

s(c∗t, t) ≥ s(c∗t, t) and r(c∗t, t) ≤ r̄(c∗t, t).

Now consider (s, r̄) at time T and for x ≥ c∗T , and recall that S is decreasing and R
increasing:

s(x, T ) = max(0, S(x− cSRT − ξ(T ))− q(T ))
≤ max(0, S(c∗T − cSRT − x1 − x0e

−µT )− q(T ))
= 0

if we take ξ1 < 0 small enough. In the same way:

r̄(x, T ) = min(1, R(x− cSRT − ξ(T )) + p(T ))
≥ min(1, R(c∗T − cSRT − x1 − x0e

−µT ) + p(T ))
= 1

by possibly taking ξ1 smaller. We then get the second part of the lemma.

Lemmas 5 and 6 allow us to conclude that, because of the comparison lemma 1,

∀t ≥ T, ∀x ≥ ct, (s, r̄)(x, t) � (s, r)(x, t).

We thus have the following spreading result:

lim
t→+∞

inf
x≥ct

s(x, t) ≥ α and lim
t→+∞

inf
x≥ct

r(x, t) ≤ 0. (41)

This is true for any α < α0 close enough to α0, and for any (x, t) ∈ R×R+ we have s(x, t) < α0,
so in conclusion:

lim
t→+∞

sup
x≥ct
|s(x, t)− α0|+ |r(x, t)| = 0,

wich concludes the proof of (9).

4.2 Right side of the interaction zone
This section is devoted to the demonstration of (10). We already proved in Subsection 3.3 that
if cS < cR, for any c1, c2 satisfying cS < c1 < c2 < cR, we have:

lim
t→+∞

sup
c1t<x<c2t

|s(x, t)|+ |r(x, t)− 1| = 0.
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We will now prove that it is in fact true for cSR < c1 < c2 < cR.
Let c1 and c2 be such that cSR < c1 < c2 < cR. In a proof similar to what we did in 4.1, we

define a pair (s̄, r) : R× R+ → R that will satisfy (s, r) � (s̄, r) on an appropriate domain, with
(s̄, r) almost travelling at a speed faster than cSR and slower than c1.

Let 1 > θ > 0 and ᾱ > 0 to be characterized later, and consider the following system for
c ∈ R and (S,R): 

δ0S
′′(ξ) + cS

′(ξ) + S(ξ)(ᾱ− S(ξ)− γ0R(ξ)) = 0,
R′′(ξ) + cR′(ξ) +R(ξ)(θ − β0S(ξ)−R(ξ)) = 0,
S(−∞) = ᾱ and S(+∞) = 0,
R(−∞) = 0 and R(+∞) = θ.

(42)

After the change of variable ξ̃ =
√
θξ and of states S = θS̃, R = θR̃, we find that it is

equivalent to the following system:
δ0S̃
′′(ξ̃) +

√
θcS̃′(ξ̃) + S̃(ξ̃)( ᾱθ − S̃(ξ̃)− γ0R̃(ξ̃)) = 0,

R̃′′(ξ̃) +
√
θcR̃′(ξ̃) + R̃(ξ̃)(1− β0S̃(ξ̃)− R̃(ξ̃)) = 0,

S̃(−∞) = ᾱ
θ and S̃(+∞) = 0,

R̃(−∞) = 0 and R̃(+∞) = 1.

(43)

This corresponds to the Kan-On system of equations: we know because of [19] that it admits
a solution (S̃, R̃) when c̃ = c√

θ
is the Kan-On speed of propagation associated to parameters

( ᾱθ , β0, γ0, δ0). We deduce that (42) has a unique solution (S,R) up to translation if c =
√
θc̃.

Note that for this result to hold, we need that γ0 >
ᾱ
θ >

1
β0
.

If ᾱ = α0, we have that c =
√
θc̃ >

√
θcSR. Numerical tests suggest that in fact, if ᾱ = α0,

we have c > cSR: this seems reasonable, since in (42), we reduce the growth rate of the right-side
placed species. But we do not need this inequality to prove our spreading result. As a matter of
fact, for any ᾱ > α0 close enough to α0, there exists θ < 1 such that, if c̃ is the Kan-On speed
associated to parameters ( ᾱθ , β0, γ0, δ0), then c̃ > cSR√

θ
.

We choose such ᾱ, θ, and the corresponding speed c, that we will now note c̄SR and that
satisfies c̄SR > cSR. By possibly taking a bigger θ and a smaller ᾱ, we can suppose cSR < c̄SR <
c1 by continuity of the Kan-On speed with respect to the parameters. We can now state the
following lemma:

Lemma 7. Let (S,R) be a solution of (42) with c = c̄SR. We define (s̄, r) : R× R+ → R2 by{
s̄(x, t) = min(α0, S(x− c̄SRt− ξ(t)) + q(t)),
r(x, t) = max(0, R(x− c̄SRt− ξ(t)) − p(t)).

Then for p, q and ξ well-chosen functions of t, (s̄, r) satisfies for any (x, t) ∈ R × R+,
N1[s̄, r](x, t) ≥ 0 and N2[s̄, r](x, t) ≤ 0.

Proof. The proof of lemma 7 is very similar to the proof of lemma 5. We impose p(t) = p0e
−µt,

q(t) = q0e
−µt and ξ(t) = ξ1 + ξ0e

−µt. Recall ᾱ satisfies γ0 > ᾱ
θ > 1

β . Let ε > 0 be such
that γ0(θ − ε) − α0 > 0, θ > ε, ᾱ − α0 > ε and β0(ᾱ − ε) > 1. There exists η such that, if
ε < S(ζ) < α0 − ε or ε < R(ζ) < θ − ε, then S

′(ζ) < −η and R′(ζ) > η. Then, the choice of
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parameters p0 > 0, q0 > 0, µ > 0 and ξ0 < 0 satisfying:

γ0p0 < ᾱ− α0,

γ0p0 + µ < γ0(θ − ε)− α0,

p0(µ+ 2) < 1− θ
2 (θ − ε),

β0q0 <
1− θ

2 ,

γ0p0 <
ᾱ− α0 − ε

2 ,

µ <
ᾱ− α0 − ε

2 ,

p0 + µ < β0(ᾱ− ε)− 1,

ξ0 < −
q0γ0(θ − ε)

ηµ
,

ξ0 < −
p0β0(ᾱ− ε)

ηµ
,

(44)
(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

is enough to ensure that, for every (x, t) ∈ R×R+, we haveN1[s̄, r](x, t) ≥ 0 andN2[s̄, r](x, t) ≤ 0.

As in 4.1, we now want to choose ξ1 and maybe further reduce µ such that (s̄, r) and (s, r)
are well-ordered at some time T and on a well-chosen border.

Recall that c2 < cR. We state the following lemma:

Lemma 8. There exists T > 0 and c∗ > c2 such that for every t ≥ T :

and for every x ≤ c∗T :
s(x, T ) ≤ s̄(x, T ) and r(x, T ) ≥ r(x, T ).

Proof. We take c∗ > c2 such that cS < c∗ < cR. Just as in the proof of lemma 6, we know that

lim
t→+∞

|s(c∗t, t)|+ |r(c∗t, t)− 1| = 0.

Thus, there exists T1 > 0 such that for any t > T1, s(c∗t, t) ≤ q0 and r(c∗t, t) ≥ θ.
We also know that there exists X ∈ R such that for any (x, t) ∈ R × R+, s(x, t) ≤ US(x −

cSt−X) where US is a Fisher-KPP front defined in (3). We also know from [20] that US satisfies
for a certain constant C > 0 and any ζ ∈ R:

US(ζ) ≤ Cζe−
cS
2 ζ .

Thus for all t > 0, we have

s(c∗t, t) ≤ US((c∗ − cS)t−X) ≤ C((c∗ − cS)t−X)e−
cS
2 ((c∗−cS)t−X).

If we further reduce µ such that µ < cS

2 (c∗ − cS), there exists T2 > 0 such that for all t > T2,

C((c∗ − cS)t−X)e−
cS
2 ((c∗−cS)t−X) ≤ q0e

−µt.
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Then, by taking T = max(T1, T2), we get that for all t > T ,

s(c∗t, t) ≤ s̄(c∗t, t) and r(c∗t, t) ≥ r(c∗t, t).

The parameter ξ1 remains to be chosen. We can take it large enough that for any x ≤ c∗T ,

s̄(x, T ) = ᾱ and r(x, T ) = 0,

which concludes the second part of the lemma.

We can then apply the comparison lemma 1 with lemmas 7 and 8 to conclude that:

∀t ≥ T, ∀x ∈ [c1t, c2t], (s, r)(x, t) � (s̄, r)(x, t).

We thus have the following spreading result:

lim
t→+∞

inf
c1t≤x≤c2t

s(x, t) ≤ 0 and lim
t→+∞

inf
c1t≤x≤c2t

r(x, t) ≥ θ. (53)

This is true for any θ < 1 close enough to 1, and for any (x, t) ∈ R× R+ we have r(x, t) < 1, so
in conclusion:

lim
t→+∞

sup
c1t≤x≤c2t

|s(x, t)|+ |r(x, t)− 1| = 0,

wich concludes the proof of Theorem 1.
As stated in 1, the proof of these results relies heavily on the Fisher-KPP hypothesis and

theorems from [19].
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