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Spreading speeds for a two-species competition-diffusion system

In this paper, spreading properties of a competition-diffusion system of two equations are studied. This system models the invasion of an empty favorable habitat, by two competing species, each obeying a logistic growth equation, such that any coexistence state is unstable. If the two species are initially absent from the right half-line x > 0, and the slowest one dominates the fastest one on x < 0, then the latter will invade the right space at its Fisher-KPP speed, and will be replaced by or will invade the former, depending on the parameters, at a slower speed. Thus, the system forms a propagating terrace, linking an unstable state to two consecutive stable states.

Introduction

This paper is devoted to the study of the spreading of the following competition-diffusion system between two species s and r:

∂ t s -δ 0 ∂ 2 xx s = s(α 0 -s -γ 0 r), ∂ t r -∂ 2 xx r = r(1 -β 0 s -r) (1) 
with positive parameters α 0 , β 0 , γ 0 , δ 0 satisfying 1/β 0 < α 0 < γ 0 , which ensures that equilibria (α 0 , 0) and (0, 1) are both stable for the corresponding ODE system. More precisely, for initial conditions where both species are absent from the right half-line x > 0, and s dominates r around x = -∞ initially, if s spreads in absence of r slower than r in absence of r, then solutions of (1) will approach a propagating terrace, which connects the unstable equilibrium (0, 0) to the stable equilibrium (0, 1), and then the stable equilibrium (0, 1) to the other stable equilibrium (α 0 , 0). Propagating terraces arise when two phenomena spread successively with two different speeds. Two types of speeds are used in the system (1): one is linked to a monostable scalar equation, the Fisher-KPP equation, and the second derives from a bistable system of differential equation, which was studied by Y.Kan-On [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF]. Spreading results for reaction-diffusion equations often use a comparison principle, which derives from a maximum principle on ellipic equations. In the case of systems of competition-diffusion equations, maximum principles are rarely applicable directly. Moreover, the appearance of two different propagating speeds forming a propagating terrace prevents the direct application of most classical methods of scalar reaction-diffusion equations.

System [START_REF] André | Mathematical model of cancer growth controled by metronomic chemotherapies[END_REF] arises from a biological problematic: it describes the propagation of two competing species in a favorable environment. More specifically, it derives from a study on heterogeneous System of competition-diffusion equations System (1) is a model of two different species competing and dispersing in the same habitat. They both follow a Fisher-KPP model for growth and interaction, but the parameters might differ from one species to another. After a change of variables and states, the system can be reduced to [START_REF] André | Mathematical model of cancer growth controled by metronomic chemotherapies[END_REF], where α 0 , β 0 , γ 0 and δ 0 are positive constants. Results on the behaviour of (1) depend on the values of the parameters, and on the behaviour of the corresponding ODE system:

∂ t s = s(α 0 -s -γ 0 r), ∂ t r = r(1 -β 0 s -r). ( 4 
)
The asymptotic behaviour of this system depends on parameters (α 0 , β 0 , γ 0 ). If α 0 ≤ min(γ 0 , 1/β 0 ), then lim t→+∞ (s, r)(t) = (0, 1): the r population is the only one stable. If γ 0 < α 0 < 1/β 0 , then lim t→+∞ (s, r)(t) = 1 -α 0 β 0 1 -β 0 γ 0 , α 0 -γ 0 1 -β 0 γ 0 which means that a mixed population is stable. If 1/β 0 < α 0 < γ 0 , then both (α 0 , 0) and (0, 1) are stable: almost every solution converges to one of them as t → +∞. Finally, if α 0 ≥ max(1/β 0 , γ 0 ), then lim t→+∞ (s, r)(t) = (α 0 , 0): the s population is the only one stable. In this paper, the bistable case is considered: 1/β 0 < α 0 < γ 0 . This range of parameters defines a set of competition-diffusion bistable PDE systems. There exists diverse results on such systems, especially in ecology modelling. In [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF], Y. Kan-On demonstrates the following result:

Let (α, β, γ, δ) be four positive parameters, such that 1/β < α < γ. Then there exists a unique speed c ∈ (-2, 2

√ αδ) such that the system

         δU + cU + U (α -U -γV ) = 0, V + cV + V (1 -βU -V ) = 0, lim ξ→-∞ U (ξ) = α and lim ξ→+∞ U (ξ) = 0, lim ξ→-∞ V (ξ) = 0 and lim ξ→+∞ V (ξ) = 1 (5) admits a solution (U, V ) ∈ C 2 (R).
This solution is furthermore unique up to translation, positive, U is decreasing and V is increasing.The speed c depends continuously on the parameters (α, β, γ), is increasing with respect to α and β and decreasing with respect to γ. Since solutions of ( 5) are unique up to translation, in the rest of this article, (S, R) will denote a fixed pair of solutions and c SR the speed solution of (5) for parameters (α, β, γ, δ) = (α 0 , β 0 , γ 0 , δ 0 ).

In relation to this result, [START_REF] Robert | Existence and stability of travelling wave solutions of competition models: A degree theoretic approach[END_REF] showed with a degree theoretic approach that such travelling waves are C 0 stable. Recently [START_REF] Girardin | Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed[END_REF] shows that travelling waves still exist if the competition becomes strong, which is to be expected for very aggressive species. In the setting of this article, it corresponds to fixing γ = βk, and letting k → +∞. Finally, [START_REF] Bao | Existence and stability of time periodic traveling waves for a periodic bistable lotka-volterra competition system[END_REF] demonstrated the existence and stability of pulsating waves if the parameters α 0 , β 0 , γ 0 and δ 0 are all periodic in time with the same period: this would, for example, model a periodic external action on the environment.

Propagating terraces

Bearing in mind that travelling waves exist between the two stable states, a spreading result will here be demonstrated, i.e. the long-time behaviour of the system for a class of initial conditions. Suppose species s and r are present on the left side of the plane, with r smaller than a certain exponential function at t = 0:

           s(x, 0) = φ(x) for x < 0 with 0 < φ m ≤ φ(x) ≤ φ M < α 0 , s(x, 0) = 0 for x ≥ 0, 1 > r(x, 0) > 0 for x < 0 and r(x, 0) = O x→-∞ (-xe 1 2 x ), r(x, 0) = 0 for x ≥ 0. ( 6 
)
Numerical experiments suggest that the long-time behaviour of this system is organized in a propagating terrace, which means that several speeds of invasion can be observed, depending on the parameters. Propagating terraces have been first exhibited by [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] 

(u) = u(u -1)(u -1.2)(u -3)
Figure 1 shows a numerical example of propagating terrace, performed on Scilab. In recent developments, [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF] proved that such propagating terraces exist and are stable in a sense for periodic in space medium. The proof of theorem 1 will develop technics to show the existence of a propagating terrace for a system of coupled differential equations. In [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF], the authors show that a prey-predator system will develop such propagating terraces. If the prey is faster than its predator, it will develop out of the predator's reach, at its natural speed (i.e. the speed at which it would propagate if there was no predators), then it is preyed on at a lower speed. The proof of invasion of the empty space relies on properties of the growth function of preys similar to Fisher-KPP. As growth functions in (1) are of Fisher-KPP type, the invasion of empty space will rely on a similar proof. On another hand, competition will intervene in the proof of replacement of one species by the other in (1): this competition is not symmetrical in [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF], thus their results do not apply in the present paper case.

Statement of the theorem and outline of the paper

The aim of this paper is to demonstrate the following theorem: Theorem 1. Let (s, r) be a bounded solution of (1) with initial conditions [START_REF] Carrere | Optimization of an in vitro chemotherapy to avoid resistant tumours[END_REF] where the parameters (α 0 , β 0 , γ 0 ) satisfy the bistability criterium:

1 β 0 < α 0 < γ 0 (7) 
Then the following spreading results hold:

∀ c > max(c S , c R ), lim t→+∞ sup x>ct |s(x, t)| + |r(x, t| = 0, ∀ c < c SR , lim t→+∞ sup x<ct |s(x, t) -α 0 | + |r(x, t)| = 0. ( 8 
) ( 9 
)
Suppose furthermore that c S < c R , then In the case c S > c R , the behaviour of the system depends on the sign of c SR and on the initial conditions. Indeed, if c SR > 0, one can adapt the proof to show that

∀ c SR < c 1 < c 2 < c R , lim
∀ c > c S , lim t→+∞ sup x>ct |s(x, t)| + |r(x, t| = 0, ∀ c < c S , lim t→+∞ sup x<ct |s(x, t) -α 0 | + |r(x, t)| = 0. (11) (12) 
The system thus almost eliminates species r: it does not appear in the long time behaviour. If c SR < 0, the global behaviour depends on the initial repartition of s and r, this case is not treated in this paper.

Figure 2 shows numerical simulations of the evolution of (1), preformed on Scilab for different values of the parameters.

A partial result for [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF] can be extended to a more general type of growth functions. More specifically, the limit result:

∀ c S < c 1 < c 2 < c R , lim t→+∞ sup c1t<x<c2t |s(x, t)| + |r(x, t) -1| = 0
still holds if instead of system (1) we consider:

∂ t s -∂ 2 xx s = sF (s, r), ∂ t r -δ∂ 2 xx r = rG(s, r)
where F , G are C 1 functions satisfying:

• ∀s > 0 (resp. r > 0), r → F (s, r) (resp. s → G(s, r)) is stricly decreasing,

• there exists a, b > 0 such that F (a, 0) = 0 and G(0, b) = 0,

• ∀s ∈ [0, a) (resp. r ∈ [0, b), F (s, 0) > 0 (resp. G(0, v) > 0),
• ∀s, r ≥ 0, F (s, r) ≤ F (0, r) and G(s, r) ≤ G(s, 0).

The first hypothesis ensures that there is competition between the two species. The second and third ones give us a hair-trigger effect: when only one of the species is present, it will grow until it reaches its maximum capacity, a or b. The last hypothesis, finally, states that the species attain their maximal growth rates for small densities ; this suggests that their propagation speeds can be determined by the leading edge, as in the Fisher-KPP framework. For more details on this proof, see [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF]. However, the proofs of ( 9) and ( 10) heavily rely on the existence of a travelling wave connecting the two stable states (α 0 , 0) and (0, 1), and on the dependance of the speed c SR on α 0 and other parameters. These results all are present in [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF], but as far as the author knows, they have not been generalized to other types of growth functions. Theorem 1 is thus stated only under the Fisher-KPP hypothesis.

This paper is organized as follows. The first part will present the biological problem which called for the study of system (1), and an interpretation of Theorem 1. In the second part, a lemma that will be useful for the whole study is stated ; the system behaviour far from competition is then studied, showing that the fastest species can grow out of reach of the slowest one. The third part is concerned with what happens in the competition zone, and will show that the replacement of one species by the other will in fact occur at the speed defined by Kan-On [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF].

Biological interpretation: a model of cancer growth

Model [START_REF] André | Mathematical model of cancer growth controled by metronomic chemotherapies[END_REF] has been used to study heterogeneous tumour growth. Solid tumours are subject to non uniform phenomena, and as such, can develop heterogeneous behaviours. Especially, the use of chemotherapy to cure cancers often triggers the emergence of resistant lineages, that will not be affected by the drug, by selecting them against more sensitive cells. When the tumour does not reply to the treatment any more, medical doctors then have to find a different drug, if it exists, to tackle this new kind of cancerous cells, which can be more harmful for the patient. In any case, appearance of a resistance to the chemotherapy is a cause of treatment failure, and should be avoided. Moreover, cytotoxic drugs, which are widely used in classical protocols, cause unwanted toxic side effects, thus their dosage should be carefully designed.

These problems can be addressed by in vivo or in vitro experimentation, and also by mathematical modelling of the different phenomena inside tumours. Therapy optimization in the case of heterogeneous tumours, for example, has been studied among others with the use of cellular automata [START_REF] Robertson-Tessi | Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes[END_REF][START_REF] Robert A Gatenby | Adaptive therapy[END_REF], with the construction of complex systems and their numerical studies [START_REF] André | Mathematical model of cancer growth controled by metronomic chemotherapies[END_REF], and also with the construction of simple models and their analytical studies, using, for example, Pontryagin Maximum Principle [START_REF] Alberto D'onofrio | On optimal delivery of combination therapy for tumors[END_REF][START_REF] Ledzewicz | An optimal control approach to cancer chemotherapy with tumor-immune system interactions[END_REF]. We refer to [START_REF] Chisholm | Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation[END_REF] for a review of mathematical modelling of resistance apparition in solid tumours.

In a previous article [START_REF] Carrere | Optimization of an in vitro chemotherapy to avoid resistant tumours[END_REF], the author studied the effect of chemotherapy on heterogeneous tumours. A series of biological experimentations on in vitro tumours, composed of sensitive and resistant cells, showed that large doses of chemotherapy would kill all sensitive cells and let resistant cells grow to a maximum population. A mathematical ODE model adapted to these experimentations was designed, and different adaptive treatment protocols to reduce risks of resistance to chemotherapy were constructed, notably with optimal control theory. The main idea is to choose the maximal drug dosage such that, in the model ( 4), a population with only sensitive cells is stable and locally attractive, and to bring the system in this bassin of attraction. In order to better understand the experiments, it appeared crucial that spatial diffusion should be taken into account, which is why system (1) was constructed.

Spatial heterogeneity has a great influence on cancer virulence and evolution, as illustrated in [START_REF] Robert | A reaction-diffusion model of cancer invasion[END_REF]. In [START_REF] Lorz | Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors[END_REF], the authors construct a model of solid tumours taking into account spatial diffusion of nutrients, treatment and cells, as well as the resistance of cells as a continuous trait. Diverse treatment protocols can be tested and compared in this framework, like combination of constant infusion and alternative maximum-minimum delivery of cytotoxic drugs. Game theory is used in [START_REF] Basanta | Studying the emergence of invasiveness in tumours using game theory[END_REF] to explain how a more invasive lineage can be selected against a proliferative one. It uses cellular automata, and support the use of therapies that would increase the cost of motility, in order to maintain the tumour at a benign state. We are developing in our article a PDE model that enhances this idea, that cytotoxic drugs will be efficient as long as it does not favour a more motile lineage.

In model ( 1), s represents the population of cells that are sensitive to a certain drug, and r a lineage of resistant cells. They divide, spread and compete at different rates. We do not investigate how the resistant trait emerge, but only how they spread with the tumour once they have appeared. Thus, we do not take into account mutations of sensitive cells into resistant cells, or resistant cells into sensitive cells. Using the hypothesis of mutations, [START_REF] Griette | Existence and qualitative properties of travelling waves for an epidemiological model with mutations[END_REF] showed the existence of a travelling wave connecting (0, 0) to a coexistence state. Finally, the action of chemotherapy is taken into account through parameter α 0 , the growth rate of s. If no treatment is applied, α 0 is at a maximal value, and as treatment dosage increases, α 0 decreases. The bistability criterium [START_REF] Chisholm | Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation[END_REF] states that if α 0 < 1/β 0 , then the sensitive population (s, r) = (α 0 , 0) is no longer stable: this property gives us a limit value for treatment dosage. Since we are interested in biological coherent solutions, we only consider bounded solutions of (1).

Theorem 1 states that the fastest species will escape the region where the slowest one is present, and act as if there was no competition. Let us rephrase these results in the framework of cancer modelling. If α 0 > 1/δ 0 , then the overall growth speed of the tumour is 2 √ δ 0 α 0 , this speed decreases as we augment the drug dosage. But as soon as α 0 < 1/δ 0 , resistant cells are selected by the treatment, and form a growing ring around the sensitive core ; the global growth speed becomes 2 and does not depend on the treatment any more. Even worse, as α 0 decreases, c SR may become negative: resistant cells will replace sensitive cells in already invaded environments. In a previous paper [START_REF] Carrere | Optimization of an in vitro chemotherapy to avoid resistant tumours[END_REF] where no spatial effects were taken into account, we stated that treatment protocols could be designed for the ODE system (4), such that the steady state with only sensitive cells is always stable, and that reduce the number of cancerous cells to a minimum. We thus proposed α 0 > 1/β 0 as a limiting value for the treatment. With spatial effects, we see that the motility of cells -that is, their ability to move -should also be taken into account when designing a treatment protocol, as explained also in [START_REF] Basanta | Studying the emergence of invasiveness in tumours using game theory[END_REF].

With results from [START_REF] Bao | Existence and stability of time periodic traveling waves for a periodic bistable lotka-volterra competition system[END_REF], we could extent our theorem to time periodic coefficients. This would model, for example, periodic chemotherapy dosages, or periodic growth cycles for cells. As the overall behaviour of solutions from [START_REF] Bao | Existence and stability of time periodic traveling waves for a periodic bistable lotka-volterra competition system[END_REF] only depends on the means and extrema of the parameters, our results would not be drastically modified ; we thus decided not to take this phenomenon into account.

Outside of competition 3.1 Comparison lemma

The following comparison lemma for competitive systems will be crucial in the demonstration of Theorem 1.

Lemma 1 (Comparison principle). Let (s 1 , r 1 ) and (s 2 , r 2 ) be such that for all (x, t) ∈ D × R + with D ⊆ R, we have 0 ≤ s i (x, t) ≤ α 0 , 0 ≤ r i (x, t) ≤ 1 for i = 1, 2, and such that

∂ t s 1 -δ 0 ∂ 2 xx s 1 -s 1 (α 0 -s 1 -γ 0 r 1 ) ≤ 0, ∂ t r 1 -∂ 2 xx r 1 -r 1 (1 -β 0 s 1 -r 1 ) ≥ 0 and ∂ t s 2 -δ 0 ∂ 2 xx s 2 -s 2 (α 0 -s 2 -γ 0 r 2 ) ≥ 0, ∂ t r 2 -∂ 2 xx r 2 -r 2 (1 -β 0 s 2 -r 2 ) ≤ 0
and such that for all x ∈ D, s 1 (x, 0) ≤ s 2 (x, 0) and r 1 (x, 0) ≥ r 2 (x, 0), and for all x ∈ ∂D and t ≥ 0,

s 1 (x, t) ≤ s 2 (x, t) and r 1 (x, t) ≥ r 2 (x, t).
Then for all t ≥ 0 and for all x ∈ D,

s 1 (x, t) ≤ s 2 (x, t) and r 1 (x, t) ≥ r 2 (x, t).
This lemma is a consequence of both a comparison theorem for cooperative systems (applied here to (s, -r)), which can be found in [START_REF] Murray | Maximum principles in differential equations[END_REF], and the Phragmèn-Lindelöf principle, also demonstrated in [START_REF] Murray | Maximum principles in differential equations[END_REF].

In order to simplify notations, in the rest of the article the functionals N 1 and N 2 are defined on functions (u, v) : R × R + → R by:

N 1 [u, v](x, t) = ∂ t u(x, t) -δ 0 ∂ 2 xx u(x, t) -u(α 0 -u -γ 0 v), N 2 [u, v](x, t) = ∂ t v(x, t) -∂ 2 xx v(x, t) -v(1 -β 0 u -v). (13) (14) 
We will also note (s 1 , r 1 ) (s 2 , r 2 ) if s 1 ≤ s 2 and r 1 ≥ r 2 .

Limitation of speeds in both directions

This first part will show that the species s and r do not develop faster than if they were without competition.

Recall U S is a solution of

δ 0 U S + cU S + U S (α 0 -U S ) = 0, U S (-∞) = α 0 and U S (+∞) = 0 (15) 
with c = c S : it is the KPP front defined in (3). There exists

x 0 ∈ R such that for all x ∈ R, φ(x) ≤ U S (x -x 0 ). Then (s, r) : (x, t) → (U S (x -x 0 -c S t), 0) satisfies: N1[s, r](x, t) = ∂ts(x, t) -δ0∂ 2 xx s(x, t) -s(x, t)(α0 -s(x, t)) = -cSU S (x -x0 -cSt) -δ0U S (x -x0 -cSt) -US(x -x0 -cSt)(α0 -US(x -x0 -cSt)) = 0
and N 2 [s, r](x, t) = 0. Thus, according to the comparison lemma 1, (s, r) (s, r).

Then, let c > c S : the first population s satisfies for every t ≥ 0 and every x > ct:

s(x, t) ≤ U S (x -x 0 -c S t) ≤ U S ((c -c S )t -x 0 )
because U S is decreasing. Using that lim ξ→+∞ U S (ξ) = 0, we conclude that:

lim t→+∞ sup x>ct s(x, t) = 0. ( 16 
)
Reasonning similarly on r we show that, for every c > c R ,

lim t→+∞ sup x>ct r(x, t) = 0.
Moreover, [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application à un probleme biologique[END_REF] gives an asymptotic estimation on U R around +∞: there exists C > 0 such that

U R (ξ) = Cξe -c R 2 ξ (1 + o ξ→+∞ (1)). ( 17 
)
Thus, we can deduce a similar result around -∞:

for any c > c R , lim t→+∞ sup x<-ct r(x, t) = 0
in the other direction. These results conclude the demonstration of (8).

Invasion of the empty space by the fastest species

In this section, we will show that the fastest species invades the right empty space at its Fisher-KPP speed. Let us suppose that, for example, c R > c S .

Lemma 2. Let c 1 , c 2 be two speeds such that c S < c 1 < c 2 < c R . Then lim t→+∞ sup c1t<x<c2t |s(x, t)| + |r(x, t) -1| = 0.
It is a partial proof of [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF]. We already know because of 3. for any c S < c 1 < c 2 < c R . The idea of this lemma is that because r moves faster than s, it does not see any competition ahead of c S t, and thus acts as a Fisher-KPP front.

To prove this, we will need an intermediate lemma:

Lemma 3. For any c such that c S < c < c R , for any x ∈ R, we have

lim t→+∞ r(x + ct, t) = 1
where the convergence is uniform on every compact for x.

Proof. This proof will be divided into three steps. Let c be such that c S < c < c R .

Step 1: Let c be such that c < c < c R . We claim that there exists a > 0, x 2 ∈ R and η 1 > 0 such that: lim inf

t→+∞ inf x∈(-a,a) r(x + ct + x 2 , ct c ) ≥ η 1 . ( 18 
)
In other words, the solution r is greater than a small bump travelling at the speed c . To prove this, let > 0 be such that:

c < 2 1 -β 0 < c R . ( 19 
)
For any a > 0, we define ψ a : R → R the principal eigenfunction of the Laplace operator on a ball [-a, a] with Dirichlet boundary conditions, normalized with ||ψ a || ∞ = 1, i.e:

         ∂ 2 xx ψ a = λ a ψ a on (-a, a), ψ a (-a) = ψ a (a) = 0, ψ a > 0 on (-a, a), ||ψ a || ∞ = 1. (20) 
Here, λ a is the principle eigenvalue and satisfies λ a < 0 for any a > 0, and tends to 0 as a tends to +∞. In the following, we extend the definition of ψ a on the whole space by setting ψ a (x) = 0 if |x| ≥ a.

We now define:

r(x, t) := ηe -c 2 (x-c t) ψ 2a (x -c t -x 2 )
where a, x 2 and η will be characterized later. Let s(x, t) := U S (x -x 0 -c S t), where x 0 is such that (s, r) (s, 0). There exists x 1 ∈ R such that for any x > x 1 + x 0 + c S t, we have s(x, t) < . We will choose a, x 2 and η such that (s, r) (s, r). First,

N 1 [s, r](x, t) = ∂ t s(x, t) -δ 0 ∂ 2 xx s(x, t) -s(x, t)(α 0 -s(x, t) -γ 0 r(x, t)) = γ 0 U S (x -c S t -x 0 )r(x, t) ≥ 0.
Moreover, by taking x 2 ≥ x 1 + 2a, we ensure that for -2a < x -c t -x 2 < 2a, we have r(x, t) > 0 and s(x, t) = U S (x -c S t -x 0 ) ≤ U S (x -c t -x 0 ) ≤ U S (-2a + x 2 -x 0 ) ≤ . Thus:

N 2 [s, r](x, t) = ∂ t r(x, t) -∂ 2 xx r(x, t) -r(x, t)(1 -β 0 s(x, t) -r(x, t)) ≤ c 2 4 -λ 2a r(x, t) -r(x, t)(1 -β 0 -r(x, t)) ≤ r(x, t) c 2 4 -λ 2a -(1 -β 0 -r(x, t)) .
We can then choose a large enough such that c 2 4 -λ 2a -(1 -β 0 ) < 0 because of ( 19), and η small enough such that

c 2 4 -λ 2a -(1 -β 0 -ηe -c 2 (x2-2a) ) < 0. Then N 2 [s, r](x, t) ≤ 0 for all (x, t) ∈ R × R + .
Finally, for any fixed t 0 > 0, we can further reduce η such that r(x, t 0 ) ≥ r(x, t 0 ). Then, by the comparison lemma 1, (s, r) (s, r). By setting

η 1 := ηe -c 2 (x2+a) min x∈(-a,a) ψ 2a (x),
we get that, since r(x, ct c ) ≥ r(x, ct c ) = r(x -ct, 0), the limit (18) is satisfied.

Step 2: We now claim that there exists b > 0, η 2 > 0 and

x 3 ∈ R such that lim inf t→+∞ inf x∈(-b,b) t ∈( ct c ,t) r(x + ct + x 3 , t ) > η 2 . ( 21 
)
In other words, the bump does in fact persist under r for time t between ct c and t. For that, let us fix t > 0, and define:

r(x, t ) := η ψ a (x -ct -x 2 )
where η will be characterized later. For any t < t, the pair (s, r) satisfies N 1 [s, r](x, t ) ≥ 0, and:

N 2 [s, r](x, t ) = ∂ t r(x, t ) -∂ 2 xx r(x, t ) -r(x, t )(1 -β 0 s(x, t ) -r(x, t )) ≤ -r(x, t )(1 + λ a -r(x, t ) -β 0 ).
By increasing a if necessary, we can suppose 1 + λ a -β 0 > 0. Then, by taking η < 1 + λ a -β 0 , we get that N 2 [s, r](x, t ) ≤ 0 for any t < t. We can further reduce η such that r(x+ct+x 2 , ct c ) ≥ r(x, ct c ). Because of ( 18), for t large enough, η does not depend on t. Then, by the comparison lemma 1, we have (s, r) (s, r) for any x ∈ R and any t such that ct c < t < t. By setting b = a 2 and η 2 = η min x∈(-b,b) ψ a (x), we get [START_REF] Ledzewicz | An optimal control approach to cancer chemotherapy with tumor-immune system interactions[END_REF].

Step 3: Now we demonstrate the convergence towards 1 of r(x+ct, t) when t → +∞, uniformly on compact subsets. Let (t n ) n be such that t n → +∞. We define the following sequence of functions:

r n (x, t) = r(x + ct n , t + t n ) ∀(x, t) ∈ R × [-t n , +∞).
Standard parabolic estimates allow us to use Arzela theorem: we can extract a subsequence still denoted t n such that r n converges locally uniformly to r ∞ , which satisfies:

∂ t r ∞ -∂ 2 xx r ∞ -r ∞ (1 -β 0 -r ∞ ) ≥ 0 ∀(x, t) ∈ R 2
Moreover, because of ( 21), we know that for any t ≤ 0, inf x∈(-b,b) r ∞ (x + x 3 , t) ≥ η 2 . Let r be the solution of

∂ t r -∂ 2 xx r -r (1 -β 0 -r ) = 0, r (x, 0) = η 2 1 (-b,b) (x -x 3 ).
Then for any x ∈ R and any t ≥ 0, by the classical comparison principle, r ∞ (x, 0) ≥ r (x, t). But r converges locally uniformly to 1 -β 0 [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application à un probleme biologique[END_REF], thus for any x ∈ R we have r ∞ (x, 0) ≥ 1 -β 0 .

Looking back at the definition of r ∞ , we deduce that for all (x, t) ∈ R × R + we have

lim inf t→+∞ r(x + ct, t) ≥ 1 -β 0
locally uniformly with respect to x. This is true for any > 0 small enough, so we have

lim t→+∞ r(x + ct, t) = 1
which concludes the proof of lemma 3.

We are now equipped to prove lemma 2.

Proof. Let c 1 and c 2 be two speeds such that c We refer for example to [START_REF] Donald | Multidimensional nonlinear diffusion arising in population genetics[END_REF] for a proof of existence of such a solution ; it relies mostly on phase plane analysis. We then define r : R × R + → R by:

S < c 1 < c 2 < c R . Let > 0 be such that c * = 2 √ 1 -β 0 satisfies c 2 < c * < c R . For any θ < 1 -β 0 close enough to 1 -β 0 , the following system: R + c * R + R(1 -β 0 -R) = 0, R ( 
r(x, t) =      θ if x -c * t < ρ, R(x -c * t -ρ) if ρ ≤ x -c * t < ρ + b, 0 if x -c * t ≥ ρ + b
where ρ is to be chosen later. Consider now (s, r) where s(x, t) = U S (x-c S t-x 0 ) is a Fisher-KPP front satisfying s(x, 0) ≥ s(x, 0) for any x ∈ R. There exists x 1 ∈ R such that for any x > x 1 , we have U S (x) ≤ .Then, for any (x, t) ∈ R × R + :

N 1 [s, r](x, t) = γ 0 U S (x -c S t -x 0 )r(x, t) ≥ 0 and for any (x, t) such that x ≥ x 1 + c S t: N 2 [s, r](x, t) =      θ(β 0 U S (x -c S t -x 0 ) -1 + θ) if x -c * t < ρ β 0 R(x -c * t -ρ)(U S (x -c S t -x 0 ) -) if ρ ≤ x -c * t < ρ + b 0 if x -c * t ≥ ρ + b ≤ 0.
Moreover, we know that lim t→+∞ r(c 1 t, t) = 1 because of lemma 3, thus there exists T > 0 such that for any t > T , r(c 1 t, t) ≥ θ.

Finally, consider the situation at time t = T . By setting ρ ≤ -b + (c 1 -c * )T , we have r(x, T ) = 0 for any x ≥ c 1 T . Thus, by using the comparison lemma 1, for any t ≥ T and x ≥ c 1 t, r(x, t) ≥ r(x, t).

(
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For t large enough, ρ + c * t > c 2 t, thus lim inf

t→+∞ c1t<x<c2t r(x, t) ≥ θ.
This is true for any θ < 1 -β 0 close enough to 1 -β 0 and for any > 0 small enough, so we can pass to the limit as → 0 and θ → 1, and deduce that lim inf

t→+∞ c1t<x<c2t r(x, t) ≥ 1 (23) 
which concludes the proof of lemma 2.

This proof uses loosely the Fisher-KPP hypothesis: we could have taken more general growth functions for sensitive and resistant cells, and still have this result of invasion, as stated in 1.

With a similar reasoning, we can prove the following lemma:

Lemma 4. For all c < -c R , lim t→+∞ sup x<ct |s(x, t) -α 0 | + |r(x, t)| = 0.
This lemma is an intermediate proof of [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF].

Competition between species

We are now interested in an intermediate zone, where competition between species can have an influence on their behaviour. We will first prove [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF]. In a second part, we will complete the proof of ( 10) by studying the zone of interaction of s and r.

Left side of the interaction zone

We know that lim t→+∞ sup x<ct |s(x, t) -α 0 | + |r(x, t)| = 0 for any c < -c R because of Lemma 4. Let us now prove that it is the case for any c < c SR . The method we use here is developed for a scalar equation in [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF].

Let c be such that c < c SR . We recall that as stated in the introduction 5 and in [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF], c SR depends continuously on the parameters and is increasing with respect to α 0 . Thus, there exists α < α 0 such that 1/β 0 < α < γ 0 and the Kan-On speed c SR corresponding to parameters (α, β 0 , γ 0 , δ 0 ) satisfies c < c SR < c SR . We define (S, R) the corresponding Kan-On front; it satisfies:

         δ 0 S + c SR S + S(α -S -γ 0 R) = 0, R + c SR R + R(1 -β 0 S -R) = 0, lim ξ→-∞ S(ξ) = α and lim ξ→+∞ S(ξ) = 0, lim ξ→-∞ R(ξ) = 0 and lim ξ→+∞ R(ξ) = 1.
We now define (s, r) on R × R + by:

s(x, t) = max(0, S(x -c SR t -ξ(t)) -q(t)), r(x, t) = min(1, R(x -c SR t -ξ(t)) + p(t))
where ξ, p and q will be characterized later. Let > 0 be such that < min(α, α -1 β0 , γ0-α0 γ0 , 1 3 ) (this is possible because of ( 7) and the definition of α). Because S is strictly decreasing and R is strictly increasing, there exists η > 0 such that, for any ζ satisfying either < S(ζ) < α -or < R(ζ) < 1 -, we have S (ζ) < -η and R (ζ) > η. We then state the following lemma, that will impose conditions on p, q and ξ. Lemma 5. We choose ξ, p and q of the form

     ξ(t) = ξ 1 + ξ 0 e -µt , p(t) = p 0 e -µt , q(t) = q 0 e -µt
where p 0 , q 0 and µ > 0, p 0 satisfies

p 0 < α 0 -α 2γ 0 , ( 24 
)
q 0 and µ satisfy

q 0 < p 0 2β 0 , q 0 + µ < γ 0 (1 -) -α 0 , β 0 q 0 + µ < β 0 (α -) -1, q 0 (α 0 + µ + q 0 ) < (α -) α 0 -α 2 , µ < 1 -3 2 , µ < γ 0 -α 0 , (25) (26) (27) (28) (29) (30) 
and ξ 0 satisfies

ξ 0 > q 0 γ 0 (1 -) µη , ξ 0 > p 0 β 0 (α -) µη . ( 31 
) (32)
Then we have for any (x, t) ∈ R × R + that:

N 1 [s, r](x, t) ≤ 0, N 2 [s, r](x, t) ≥ 0.
Proof. For any (x, t) ∈ R×R + , we have with ζ = x-c SR t-ξ(t) and if s(x, t) > 0 and r(x, t) < 1:

N 1 [s, r](x, t) = ∂ t s(x, t) -δ 0 ∂ 2 xx s(x, t) -s(x, t)(α 0 -s(x, t) -γ 0 r(x, t)) = -ξ (t)S (ζ) -q (t) + S(ζ)(α -α 0 + γ 0 p(t) -q(t)) + q(t)(α 0 -S(ζ) -γ 0 R(ζ) + q(t) -γ 0 p(t)) and N2[s, r](x, t) = ∂t r(x, t) -∂ 2 xx r(x, t) -r(x, t)(1 -β0s(x, t) -r(x, t)) = -ξ (t)R (ζ) + p (t) + R(ζ)(p(t) -β0q(t)) -p(t)(1 -R(ζ) -β0S(ζ) -p(t) + β0q(t))
Around ±∞ Let (x, t) be such that S(x -c SR t -ξ(t)) > α -and R(x -c SR t -ξ(t)) < . Then:

N1[s, r](x, t) = -ξ (t)S -q (t) + S(α -α0 + γ0p(t) -q(t)) + q(t)(α0 -S -γ0R + q(t) -γ0p(t)) ≤ -q (t) + S(α -α0 + γ0p0) + q(t)(α0 + q0) if we take ξ0 > 0 ≤ q0e -µt (µ + α0 + q0) + (α -) α -α0 2 because of (24)
≤ 0 because of (28). Furthermore,

N 2 [s, r](x, t) = -ξ (t)R + p (t) + R(p(t) -β 0 q(t)) -p(t)(1 -R -β 0 S -p(t) + β 0 q(t)) ≥ p (t) + p(t)(β 0 (α -) -1 -β 0 q(t)) because of (25) ≥ p(t)(β 0 (α -) -1 -β 0 q 0 -µ) ≥ 0 (33) (34) (35) (36) 
because of (27). Now, let (x, t) be such that S(x -c SR t -ξ(t)) < and R(x -c SR t -ξ(t)) > 1 -. Then:

N1[s, r](x, t) = -ξ (t)S -q (t) + S(α -α0 + γ0p(t) -q(t)) + q(t)(α0 -S -γ0R + q(t) -γ0p(t))

≤ -q (t) + q(t)(α0 -γ0(1 -) + q(t))

≤ q(t)(α0 -γ0(1 -) + q0 + µ) ≤ 0 (37) (38) (39) 
(40)

because of [START_REF] Xin | Front propagation in heterogeneous media[END_REF]. Furthermore,

N 2 [s, r](x, t) = -ξ (t)R + p (t) + R(p(t) -β 0 q(t)) -p(t)(1 -R -β 0 S -p(t) + β 0 q(t)) ≥ p (t) + (1 -)(p 0 -β 0 q 0 ) -p(t) ≥ p (t) + (1 -) p(t) 2 -p(t) because of (25) ≥ p(t) 2 (1 -3 -2µ)
≥ 0 because of (29).

In the intermediary zone Let (x, t) be such that < S(x -

c SR t -ξ(t)) < α -or < R(x -c SR t -ξ(t)) < 1 -.
Then because S is strictly decreasing, and R is strictly increasing, there exists η > 0 such that S (x -c SR t -ξ(t)) < -η and R (x -c SR t -ξ(t)) > η. Then:

N1[s, r](x, t) = -ξ (t)S -q (t) + S(α -α0 + γ0p(t) -q(t)) + q(t)(α0 -S -γ0R + q(t) -γ0p(t)) ≤ ξ (t)η -q(t)(α0 -γ0(1 -) + q(t)) + q(t)(α0 + q(t))
because of ( 40)

≤ (-ξ0µη + q0γ0(1 -))e -µt
≤ 0 because of (31). Furthermore,

N 2 [s, r](x, t) = -ξ (t)R + p (t) + R(p(t) -β 0 q(t)) -p(t)(1 -R -β 0 S -p(t) + β 0 q(t)) ≥ -ξ (t)η -p(t)(β 0 (α -) -1 -β 0 q(t)) -p(t)(1 + β 0 q(t))
because of (36)

≥ (ξ 0 µη -p 0 β 0 (α -))e -µt
≥ 0 because of (32).

In flat zones

We now want to check that N 1 [s, r](x, t) ≤ 0 and N 2 [s, r](x, t) ≥ 0 even if s(x, t) = 0 or r(x, t) = 1. Let (x, t) ∈ R × R + be such that s(x, t) = 0, i.e. S(x -c SR t -ξ(t)) < q(t), and r(x, t) < 1. Then N 1 [s, r](x, t) = 0 and up to further reducing q 0 , we can suppose R(x -c SR t -ξ(t)) > 3/4, thus:

N 2 [s, r](x, t) = ∂ t r -∂ 2 xx r -r(1 -r) = -ξ (t)R + p (t) + R(1 -β 0 S -R) -(R + p(t))(1 -R -p(t)) ≥ p (t) + R(p(t) -β 0 q(t)) -p(t)(1 -R) ≥ p (t) + 1 2 p(t) - 3 4 β 0 q(t) ≥ (-µp 0 + 1 2 p 0 - 3 4 β 0 q 0 )e -µt
≥ 0 because of ( 29) and [START_REF] Aizik | Traveling wave solutions of parabolic systems[END_REF]. Now, let (x, t) ∈ R × R + be such that s(x, t) > 0 and r(x,

t) = 1, i.e. R(x -c SR t -ξ(t)) > 1 -p(t). Then N 2 [s, r](x, t) = β 0 s ≥ 0 and N 1 [s, r](x, t) = ∂ t s(x, t) -δ 0 ∂ 2 xx s(x, t) -s(x, t)(α 0 -s(x, t) -γ 0 ) = -ξ (t)S -q (t) + S(α -S -γ 0 R) -(S -q(t))(α 0 -S -γ 0 + q(t)) ≤ -q (t) + S(α -α 0 -γ 0 R + γ 0 -q(t)) + q(t)(α 0 -γ 0 -(S -q(t))) ≤ -q (t) + S(α -α 0 + γ 0 p(t) -q(t)) + q(t)(α 0 -γ 0 ) ≤ q(t)(µ + α 0 -γ 0 ) ≤ 0 because of (30). Finally, if (x, t) is such that s(x, t) = 0 and r(x, t) = 1, then N 1 [s, r](x, t) = N 2 [s, r](x, t) = 0.
We have constructed a "sub-super solution" (s, r) of ( 1). We now want to compare it to the solution (s, r) with initial condition [START_REF] Carrere | Optimization of an in vitro chemotherapy to avoid resistant tumours[END_REF]. To demonstrate the following lemma, we will finally characterize the constant ξ 1 : Lemma 6. There exists T > 0 and c * < c such that for every t ≥ T : s(c * t, t) ≥ s(c * t, t) and r(c * t, t) ≤ r(c * t, t), and for every x ≥ c * T : s(x, T ) ≥ s(x, T ) and r(x, T ) ≤ r(x, T ).

Proof. Let c * < c be such that c * < -c R . Because of Lemma 4, we know that

lim t→+∞ |s(c * t, t) -α 0 | + |r(c * t, t)| = 0.
Thus, there exists T 1 > 0 such that for every t ≥ T 1 , s(c * t, t) > α and r(c * t, t) < p 0 . Then, we already have that s(c * t, t) ≥ s(c * t, t) for every t ≥ T 1 . Furthermore, we know that there exists X ∈ R such that r(x, t) ≤ ŨR (x -c R t -X) for all (x, t) ∈ R × R + , where ŨR is the Fisher-KPP front satisfying:

Ũ R + c R Ũ R + ŨR (1 -ŨR ) = 0, ŨR (-∞) = 0 and ŨR (+∞) = 1.
We also know from [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application à un probleme biologique[END_REF] that ŨR satisfies for a certain constant C > 0 and any ζ ∈ R:

ŨR (ζ) ≤ Cζe c R 2 ζ .
Thus for all t > 0, we have

r(c * t, t) ≤ ŨR ((c * -c R )t -X) ≤ C((c * -c R )t -X)e c R 2 ((c * -c R )t-X) .
If we further reduce µ such that µ < c R 2 (c R -c * ), there exists T 2 > 0 such that for all t > T 2 ,

C((c * -c R )t -X)e c R 2 ((c * -c R )t-X) ≤ p 0 e -µt .
Then, by taking T = max(T 

(x, T ) = max(0, S(x -c SR T -ξ(T )) -q(T )) ≤ max(0, S(c * T -c SR T -x 1 -x 0 e -µT ) -q(T ))
= 0 if we take ξ 1 < 0 small enough. In the same way:

r(x, T ) = min(1, R(x -c SR T -ξ(T )) + p(T )) ≥ min(1, R(c * T -c SR T -x 1 -x 0 e -µT ) + p(T )) = 1
by possibly taking ξ 1 smaller. We then get the second part of the lemma. Lemmas 5 and 6 allow us to conclude that, because of the comparison lemma 1, ∀t ≥ T, ∀x ≥ ct, (s, r)(x, t) (s, r)(x, t).

We thus have the following spreading result:

lim t→+∞ inf x≥ct s(x, t) ≥ α and lim t→+∞ inf x≥ct r(x, t) ≤ 0. (41) 
This is true for any α < α 0 close enough to α 0 , and for any (x, t) ∈ R × R + we have s(x, t) < α 0 , so in conclusion: lim

t→+∞ sup x≥ct |s(x, t) -α 0 | + |r(x, t)| = 0,
wich concludes the proof of (9).

Right side of the interaction zone

This section is devoted to the demonstration of [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF]. We already proved in Subsection 3. We will now prove that it is in fact true for c SR < c 1 < c 2 < c R . Let c 1 and c 2 be such that c SR < c 1 < c 2 < c R . In a proof similar to what we did in 4.1, we define a pair (s, r) : R × R + → R that will satisfy (s, r) (s, r) on an appropriate domain, with (s, r) almost travelling at a speed faster than c SR and slower than c 1 .

Let 1 > θ > 0 and ᾱ > 0 to be characterized later, and consider the following system for c ∈ R and (S, R): This corresponds to the Kan-On system of equations: we know because of [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF] that it admits a solution ( S, R) when c = c √ θ is the Kan-On speed of propagation associated to parameters ( ᾱ θ , β 0 , γ 0 , δ 0 ). We deduce that (42) has a unique solution (S, R) up to translation if c = √ θc. Note that for this result to hold, we need that γ 0 > ᾱ θ > 1 β0 . If ᾱ = α 0 , we have that c = √ θc > √ θc SR . Numerical tests suggest that in fact, if ᾱ = α 0 , we have c > c SR : this seems reasonable, since in (42), we reduce the growth rate of the right-side placed species. But we do not need this inequality to prove our spreading result. As a matter of fact, for any ᾱ > α 0 close enough to α 0 , there exists θ < 1 such that, if c is the Kan-On speed associated to parameters ( ᾱ θ , β 0 , γ 0 , δ 0 ), then c > c SR √ θ . We choose such ᾱ, θ, and the corresponding speed c, that we will now note cSR and that satisfies cSR > c SR . By possibly taking a bigger θ and a smaller ᾱ, we can suppose c SR < cSR < c 1 by continuity of the Kan-On speed with respect to the parameters. We can now state the following lemma: Lemma 7. Let (S, R) be a solution of (42) with c = cSR . We define (s, r) : R × R + → R 2 by s(x, t) = min(α0, S(x -cSRt -ξ(t)) + q(t)), r(x, t) = max(0, R(x -cSRt -ξ(t)) -p(t)).

        
Then for p, q and ξ well-chosen functions of t, (s, r) satisfies for any (x, t) ∈ R × R + , N 1 [s, r](x, t) ≥ 0 and N 2 [s, r](x, t) ≤ 0.

Proof. The proof of lemma 7 is very similar to the proof of lemma 5. We impose p(t) = p 0 e -µt , q(t) = q 0 e -µt and ξ(t) = ξ 1 + ξ 0 e -µt . Recall ᾱ satisfies γ 0 > ᾱ θ > 1 β . Let > 0 be such that γ 0 (θ -) -α 0 > 0, θ > , ᾱ -α 0 > and β 0 ( ᾱ -) > 1. There exists η such that, if < S(ζ) < α 0 -or < R(ζ) < θ -, then S (ζ) < -η and R (ζ) > η. Then, the choice of Then, by taking T = max(T 1 , T 2 ), we get that for all t > T , s(c * t, t) ≤ s(c * t, t) and r(c * t, t) ≥ r(c * t, t).

The parameter ξ 1 remains to be chosen. We can take it large enough that for any x ≤ c * T , s(x, T ) = ᾱ and r(x, T ) = 0, which concludes the second part of the lemma.

We can then apply the comparison lemma 1 with lemmas 7 and 8 to conclude that: ∀t ≥ T, ∀x ∈ [c 1 t, c 2 t], (s, r)(x, t) (s, r)(x, t).

We thus have the following spreading result: (53) This is true for any θ < 1 close enough to 1, and for any (x, t) ∈ R × R + we have r(x, t) < 1, so in conclusion: lim As stated in 1, the proof of these results relies heavily on the Fisher-KPP hypothesis and theorems from [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition-diffusion equations[END_REF].
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 21 Figure 1: Numerical simulation of a propagating terrace for f(u) = u(u -1)(u -1.2)(u -3)

  If cS > cR and cSR > 0, population r is not visible.

Figure 2 :

 2 Figure 2: Numerical simulations of the system for different values of the parameters: the global behaviour depends on the comparison between c S and c R , and on the sign of c SR .

  0) = θ and R (0) = 0 admits a solution R that satisfies R(b) = 0 for a certain b > 0, and R (ξ) < 0 for any ξ ∈ (0, b].

  3 that if c S < c R , for any c 1 , c 2 satisfying c S < c 1 < c 2 < c R ,we have: lim t→+∞ sup c1t<x<c2t |s(x, t)| + |r(x, t) -1| = 0.

δ 0 S

 0 (ξ) + cS (ξ) + S(ξ)( ᾱ -S(ξ) -γ 0 R(ξ)) = 0, R (ξ) + cR (ξ) + R(ξ)(θ -β 0 S(ξ) -R(ξ)) = 0, S(-∞) = ᾱ and S(+∞) = 0, R(-∞) = 0 and R(+∞) = θ. (42)After the change of variable ξ = √ θξ and of states S = θ S, R = θ R, we find that it is equivalent to the following system:0 S ( ξ) + √ θc S ( ξ) + S( ξ)( ᾱ θ -S( ξ) -γ 0 R( ξ)) = 0, R ( ξ) + √ θc R ( ξ) + R( ξ)(1 -β 0 S( ξ) -R( ξ)) = 0, S(-∞) = ᾱθ and S(+∞) = 0, R(-∞) = 0 and R(+∞) = 1.(43)

  lim t→+∞ inf c1t≤x≤c2t s(x, t) ≤ 0 and lim t→+∞ inf c1t≤x≤c2t r(x, t) ≥ θ.

  t→+∞ sup c1t≤x≤c2t |s(x, t)| + |r(x, t) -1| = 0, wich concludes the proof of Theorem 1.

  1 , T 2 ), we get that for all t > T , s(c * t, t) ≥ s(c * t, t) and r(c * t, t) ≤ r(c * t, t). Now consider (s, r) at time T and for x ≥ c * T , and recall that S is decreasing and R increasing: s
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parameters p 0 > 0, q 0 > 0, µ > 0 and ξ 0 < 0 satisfying:

is enough to ensure that, for every (x, t) ∈ R×R + , we have

As in 4.1, we now want to choose ξ 1 and maybe further reduce µ such that (s, r) and (s, r) are well-ordered at some time T and on a well-chosen border.

Recall that c 2 < c R . We state the following lemma:

Lemma 8. There exists T > 0 and c * > c 2 such that for every t ≥ T :

and for every x ≤ c * T : s(x, T ) ≤ s(x, T ) and r(x, T ) ≥ r(x, T ).

Proof. We take c * > c 2 such that c S < c * < c R . Just as in the proof of lemma 6, we know that

Thus, there exists T 1 > 0 such that for any t > T 1 , s(c * t, t) ≤ q 0 and r(c * t, t) ≥ θ. We also know that there exists X ∈ R such that for any (x, t) ∈ R × R + , s(x, t) ≤ U S (xc S t -X) where U S is a Fisher-KPP front defined in [START_REF] Bao | Existence and stability of time periodic traveling waves for a periodic bistable lotka-volterra competition system[END_REF]. We also know from [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application à un probleme biologique[END_REF] that U S satisfies for a certain constant C > 0 and any ζ ∈ R:

Thus for all t > 0, we have

If we further reduce µ such that µ < c S 2 (c * -c S ), there exists T 2 > 0 such that for all t > T 2 , C((c * -c S )t -X)e -c S 2 ((c * -c S )t-X) ≤ q 0 e -µt .