René Van Bevern

Robert Bredereck
email: robert.bredereck@tu-berlin.de

Laurent Bulteau
email: l.bulteau@gmail.com

Christian Komusiewicz
email: christian.komusiewicz@uni-jena.de

Nimrod Talmon
email: nimrodtalmon77@gmail.com

Gerhard J Woeginger

Precedence-constrained scheduling problems parameterized by partial order width

Keywords: resource-constrained project scheduling, parallel identical machines, makespan minimization, parameterized complexity, shuffle product

Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1-2):533-562), we show that P2|prec,pj∈{1, 2}|Cmax, the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of k other given words, is W[2]-hard parameterized by k, thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75-82), we show that the more general Resource-Constraint Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.

Introduction

We study the parameterized complexity of the following NP-hard problem and various special cases [START_REF]Handbook on Project Management and Scheduling[END_REF][START_REF] Ullman | NP-complete scheduling problems[END_REF] with respect to the width of the given partial order.

Problem 1.1 (Resource-constrained project scheduling (RCPSP)).

Input: A set J of jobs, a partial order on J, a set R of renewable resources, for each resource ρ ∈ R the available amount R ρ , and for each j ∈ J a processing time p j ∈ N and the amount r jρ ≤ R ρ of resource ρ ∈ R that it consumes.

Find: A schedule (s j) j∈J , that is, a starting time s j ∈ N of each job j, such that 1. for i ≺ j, job i finishes before job j starts, that is, s i + p i ≤ s j , 2. at any time t, at most R ρ units of each resource ρ are used, that is, j∈s(t) r jρ ≤ R ρ , where s(t) := {j ∈ J | t ∈ [s j , s j + p j)}, and 3. the maximum completion time C max := max j∈J (s j + p j) is minimum. A schedule satisfying (1)-(2) is feasible; a schedule satisfying (1)-(3) is optimal.

Intuitively, a schedule (s j) j∈J processes each job j ∈ J non-preemptively in the half-open real-valued interval [s j , s j + p j), which costs r jρ units of resource ρ during that time. After finishing, jobs free their resources for later jobs. If there is only one resource and each job j requires one unit of it, then RCPSP is equivalent to P|prec|C max , the NP-hard problem of non-preemptively scheduling precedence-constrained jobs on a given number m of parallel identical machines to minimize the maximum completion time [START_REF] Ullman | NP-complete scheduling problems[END_REF].

Mnich and Wiese [START_REF] Mnich | Scheduling and fixed-parameter tractability[END_REF] asked whether P|prec|C max is solvable in f (p max , w) • poly(n) time, where p max is the maximum processing time, w is the width of the given partial order , n is the input size, and f is a computable function independent of the input size. In other words, the question is whether P|prec|C max is fixed-parameter tractable parameterized by p max and w. Motivated by this question, which we answer negatively, we strengthen hardness results for P|prec|C max and refine algorithms for RCPSP with small partial order width.

Due to space constraints, some details are deferred to an Appendix.

Stronger hardness results. We obtain new hardness results for the following special cases of P|prec|C max (for basic definitions of parameterized complexity terminology, see the end of this section and recent textbooks [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]):

(1) P2|chains|C max , the case with two machines and precedence constraints given by a disjoint union of total orders, remains weakly NP-hard for width 3.

(2) P2|prec,p j ∈{1, 2}|C max , the case with two machines and processing times 1 and 2, is W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by the partial order width w.

(3) P3|prec,p j =1,size j ∈{1, 2}|C max , the case with three machines, unit processing times, but where each job may require one or two machines, is also W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by the partial order width w.

Towards showing (2) and (3), we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of k other given words, is W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by k. This answers a question of Rizzi and Vialette [START_REF] Rizzi | On recognizing words that are squares for the shuffle product[END_REF]. We put these results into context in the following.

Result [START_REF] Akers | A graphical approach to production scheduling problems[END_REF] complements the fact that P|prec|C max with constant width w is solvable in pseudo-polynomial time using dynamic programming [START_REF] Servakh | Effektivno razreshimy sluchaj zadachi kalendarnogo planirovaniya s vozobnovimymi resursami[END_REF] and that P2|chains|C max is strongly NP-hard for unbounded width [START_REF] Du | Scheduling chain-structured tasks to minimize makespan and mean flow time[END_REF].

Result (2) complements the NP-hardness result for P2|prec,p j ∈{1, 2}|C max due to Ullman [START_REF] Ullman | NP-complete scheduling problems[END_REF] and the W[2]-hardness result for P|prec,p j =1|C max parameterized by the number m machines due to Bodlaender and Fellows [START_REF] Bodlaender | W[2]-hardness of precedence constrained k-processor scheduling[END_REF]. While not made explicit, one can observe that Bodlaender and Fellows' reduction creates hard instances with w = m + 1. This is remarkable since P|prec|C max is trivially polynomial-time solvable if w ≤ m, and also since the result negatively answered Mnich and Wiese's question [START_REF] Mnich | Scheduling and fixed-parameter tractability[END_REF] twenty years before it was posed. Our result (2), however, gives a stronger negative answer: unless W[2] = FPT, not even P2|prec,p j ∈{1, 2}|C max allows for the desired f (w) • poly(n)-time algorithm.

Refined algorithms. Servakh [START_REF] Servakh | Effektivno razreshimy sluchaj zadachi kalendarnogo planirovaniya s vozobnovimymi resursami[END_REF] gave a geometric pseudo-polynomial-time algorithm for RCPSP with constant partial order width w. The degree of the polynomial depends on w and, by (1) above, the algorithm cannot be turned into a true polynomial-time algorithm unless P = NP even for constant w. We refine this algorithm to solve RCPSP in (2λ + 1) w • 2 w • poly(n) time, where λ is the maximum allowed difference between earliest possible and factual starting time of a job. The degree of the polynomial depends neither on w nor λ and is indeed a polynomial of the input size n. This does not contradict (1) since the factor (2λ + 1) w might be superpolynomial in n. We note that fixed-parameter tractability for w or λ alone is ruled out by [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF] and by Lenstra and Rinnooy Kan [START_REF] Lenstra | Complexity of scheduling under precedence constraints[END_REF], respectively.

Preliminaries. A reflexive, symmetric, and transitive relation on a set X is a partial order. We write x ≺ y if x y and x = y. A subset X ⊆ X is a chain if is a total order on X ; it is an antichain if the elements of X are mutually incomparable by . The width of is the size of largest antichain in

X. A chain decomposition of X is a partition X = X 1 • • • X k such that each X i is a chain.
Recently, the parameterized complexity of scheduling problems attracted increased interest [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]. The idea is to accept exponential running times for solving NP-hard problems, but to restrict them to a small parameter [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]. Instances (x, k) of a parameterized problem Π ⊆ Σ * × N consist of an input x and a parameter k. A parameterized problem Π is fixed-parameter tractable if it is solvable in f (k) • poly(|x|) time for some computable function f . Note that the degree of the polynomial must not depend on k. FPT is the class of fixed-parameter tractable parameterized problems. There is a hierarchy of parameterized complexity classes FPT ⊆ W

[1] ⊆ W[2] ⊆ • • • ⊆ W[P]
, where all inclusions are conjectured to be strict. A parameterized problem

Π 2 is W[t]-hard if there is a parameterized reduction from each problem Π 1 ∈ W[t] to Π 2 , that is, an algorithm that maps an instance (x, k) of Π 1 to an instance (x , k) of Π 2 in time f (k) • poly(|x|) such that k ≤ g(k) and (x, k) ∈ Π 1 ⇔ (x , k) ∈ Π 2 ,

Parallel identical machines and shuffle products

This section presents our hardness results for special cases of P|prec|C max . In Section 2.1, we show weak NP-hardness of P2|chains|C max for three chains. In Section 2.2, we show W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hardness of Shuffle Product as a stepping stone towards showing W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hardness of P3|prec,p j =1,size j ∈{1, 2}|C max and P2|prec,p j ∈{1, 2}|C max parameterized by the partial order width in Section 2.3.

Weak NP-hardness for two machines and three chains

Du et al. [START_REF] Du | Scheduling chain-structured tasks to minimize makespan and mean flow time[END_REF] showed that P2|chains|C max is strongly NP-hard. We complement this result by the following theorem. Theorem 2.1. P2|chains|C max is weakly NP-hard even for precedence constraints of width three, that is, consisting of three chains.

Proof (sketch). We reduce from the weakly NP-hard Partition problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]SP12]: Given a multiset of positive integers A = {a 1 , . . . , a t }, decide whether there is a subset A ⊆ A such that ai∈A a i = ai∈A\A a i . Let A = {a 1 , . . . , a t } be a Partition instance. If b := ai∈A a i /2 is not an integer, then we are facing a no-instance. Otherwise, we construct a P2|chains|C max instance as follows. Create three chains

J 0 := {j 0 1 ≺ • • • ≺ j 0 t }, J 1 := {j 1 1 ≺ • • • ≺ j 1 t+1 }, and J 2 := {j 2 1 ≺ • • • ≺ j 2 t+1 } of jobs.
For each i ∈ {1, . . . , t}, job j 0 i gets processing time a i . The jobs in J 1 ∪ J 2 get processing time 2b each. This construction can be performed in polynomial time and one can show that the input Partition instance is a yes-instance of and only if the created P2|chains|C max instance allows for a schedule with makespan T := (2t + 3)b: in such a schedule, each machine must perform exactly t + 1 jobs from J 1 ∪ J 2 and has b time for jobs from J 0 .

W[2]-hardness for Shuffle Product

In this section, we show a W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hardness result for Shuffle Product that we transfer to P2|prec,p j ∈{1, 2}|C max and P3|prec,p j =1,size j ∈{1, 2}|C max in Section 2.3. We first formally introduce the problem (cf. Figure 2

(i)] = s 1 [i], t[f 2 (j)] = s 2 [j],
and f 1 (i) = f 2 (j). This product is associative and commutative, which implies that the shuffle product of any set of words is well-defined.

Problem 2.3 ((Binary) Shuffle Product).

Input: Words s 1 , . . . , s k , and t over a (binary) alphabet Σ. Parameter: k. Question:

Is t ∈ s 1 s 2 • • • s k ? Binary Shuffle Product is NP-hard for unbounded k [16, Lemma 3.2],
whereas Shuffle Product is polynomial-time solvable for constant k using dynamic programming. Rizzi and Vialette [START_REF] Rizzi | On recognizing words that are squares for the shuffle product[END_REF] asked about the parameterized complexity of Shuffle Product. We answer the question by the following theorem. Theorem 2.4. Binary Shuffle Product is W[2]-hard.

Our proof uses a parameterized reduction from the W[2]-hard Dominating Set problem [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] and is inspired by Bodlaender and Fellows's proof that P|prec,p j =1|C max is W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by the number m of machines [START_REF] Bodlaender | W[2]-hardness of precedence constrained k-processor scheduling[END_REF].

Problem 2.5 (Dominating Set).

Input: A graph G = (V, E) and a natural number k.

Parameter: k. Question: Is there a size-k dominating set D, that is, V ⊆ N [D]? Herein, N [D]
is the set of vertices in D and their neighbors. In order to describe the construction, we introduce some notation. Definition 2.6. We denote the concatenation of words s 1 , . . . , s k as k i=1 s i := s 1 s 2 . . . s k and denote k repetitions of a word s by s k . The number of occurrences of a letter a in a word s is |s| a . Construction 2.7. Given a Dominating Set instance (G, k) with a graph G = (V, E), we construct an instance of Binary Shuffle Product with k + 3 words over Σ = {a, b} in polynomial time as follows. The construction is illustrated in Figure 2.2. Without loss of generality, assume that V = {1, . . . , n}.

For u, v ∈ V , let u,v := 1 if u = v or {u, v} ∈ E, 2 otherwise. (2.1)
Moreover, define two words

A := n u=1 n v=1 ab u,v and B := (a k b 2k) n-1 a k b 2k-1 n .
Finally, let N := 2k(n -1) + 1 and output an instance of Shuffle Product with the following k + 3 words:

s i := A N for each i ∈ {1, . . . , k}, t := B N (a k b 2k) n-1 , s k+1 := a |t|a-k i=1 |si|a
, and

s k+2 := b |t| b -k i=1 |si| b .
Note that A is simply the word that one obtains by concatenating the rows of the adjacency matrix of G and replacing ones by ab and zeroes by abb.

Before showing the correctness of Construction 2.7, we make some basic observations about the words it creates, for which we introduce some terminology.

Definition 2.8 (long and short blocks, positions).

A block in a word s is a maximal consecutive subword using only one letter. A c-block is a block containing only the letter c. A block has position i in s if it is the ith successive block in s. We call b-blocks of length 2k -1 in t short and b-blocks of length 2k long. Blocks of s1 and s2 are mapped into the blocks of t displayed in the same column. The horizontal (blue) rectangles reflect that each si is built as the concatenation of the rows of the adjacency matrix, where zeroes are replaced by abb and ones by ab. The amount of horizontal offset of each si corresponds to the selection of a vertex as dominator (v2 for s1 and v3 for s2). The dark columns (red) correspond to the short b-blocks of t: they ensure that, in each row of the adjacency matrix, at least one selected vertex dominates the vertex corresponding to that row. The base pattern is repeated N times to ensure that at least one occurrence of the pattern is mapped to t without unwanted gaps. Additional words s k+1 and s k+2 are added to match the remaining letters from t.

t = a 2 b 4 a 2 b 4 a 2 b 3 a 2 b 4 a 2 b 4 a 2 b 3 a 2 b 4 a 2 b 4 a 2 b 3 a 2 b 4 a 2 b 4 v 1 v 2 v 3 v 1 v 2 v 3
Observation 2.9.

• • • s k+2 if G has a dominating set of size k. (⇐) Assume that t ∈ s 1 s 2 • • • s k+2 .
We show that G has a dominating set of size k. To this end, for i ∈ {1, . . . , k}, let y i (x) be the position of the block in t into which the last letter of the block at position x of s i is mapped and let δ i (x) = y i (x) -x. We will see that, intuitively, one can think of δ i (x) as the shift of the xth block of s i in t. To show that G has a dominating set of size k, we use the following two facts about δ i , which we will prove afterwards.

(i) For i ∈ {1, . . . , k} and x ∈ {1, . . . , 2N n 2 }, one has δ i (x) ∈ {0, . . . , 2(n -1)}. (ii) There is a p ∈ {0, . . . , N -1} such that, for all i ∈ {1, . . . , k}, δ i is constant over the interval I p = {2pn 2 + 1, . . . , 2(p + 1)n 2 + 1}.

We now focus on a p ∈ {0, . . . , N -1} as in (ii) and write δ i for the value δ i (x) taken for all x ∈ I p . We show that D :

= {d i = n -δ i /2 | k ∈ {1, . . . , k}} is a dominating set of size k for G, that is, we show D ⊆ V and V ⊆ N [D].
To this end, consider a vertex u ∈ V and the block β of t at position 2pn 2 + 2un = 2hn for h = pn + u ∈ {1, . . . , N n}. By Observation 2.9(iv), β is a short b-block. For any i ∈ {1, . . . , k}, let α i be the block at position 2pn 2 + 2un -δ i in s i . Because of (i), this position is in I p . By definition of δ i , the last letter of α i is mapped into β. Thus, α i is a b-block. Note that this implies that δ i is even since a-blocks and b-blocks are alternating in t and s i . Moreover, by (i),

d i = n -δ i /2 ∈ {1, . . . , n} = V . It follows that D ⊆ V . We show that u ∈ N [D].
To this end, note that the a-block in s i at position 2pn 2 + 2un -δ i -1 ∈ I p directly preceding α i is mapped into the a-block of t at position 2pn 2 + 2un -1 directly preceding β. Thus, all letters of α i are mapped into β and one has It remains to prove (i) and (ii). For (i), note that y i (1) ≥ 1 and y i (x + 1) ≥ y i (x) + 1. Hence, δ i is non-decreasing with all values being non-negative. Furthermore, for x = 2N n 2 , y i (x) ≤ 2N n 2 + 2(n -1) since t has only so many blocks by Observation 2.9(ii). Thus, the maximum possible value of δ i is 2(n -1). Towards (ii), we say that a value of p ∈ {0, . . . , N -1} is bad for i if δ i is not constant over I p . For such a p, one has δ i (2pn 2 +1) < δ i (2(p+1)n 2 +1). Hence, there can be at most 2(n-1) values of p that are bad for i. Overall, there are at most 2k(n-1) < N values of p that are bad for some i ∈ {1, . . . , k}. Thus, at least one value is not bad for any i. For this value of p, every δ i is constant over the interval I p .

k i=1 |α i | ≤ |β|. (2

W[2]-hardness of scheduling problems parameterized by width

In the previous section, we showed W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hardness of Shuffle Product. We now transfer this result to scheduling problems on parallel identical machines.

Theorem 2.11. The following two problems are W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by the width of the partial order giving the precedence constraints.

(i) P2|prec,p j ∈{1, 2}|C max , (ii) P3|prec,p j =1,size j ∈{1, 2}|C max .

We prove (i) using the following parameterized reduction from Shuffle Product with k + 1 words to P2|prec,p j ∈{1, 2}|C max with k + 2 chains.

Construction 2.12. Let (s 1 , . . . , s k , t) be a Shuffle Product instance over the alphabet Σ = {1, 2}. Assume that

|t| 1 = k i=1 |s i | 1 and |t| 2 = k i=1 |s i | 2 (otherwise,
it is a no-instance). We create an instance of P2|prec,p j ∈{1, 2}|C max :

(1) For each i ∈ {1, . . . , k}, create a chain of worker jobs j i1 ≺ j i2 ≺ • • • ≺ j i|si| , where j i,x has length s i [x].

(2) For each x ∈ {1, . . . , |t|}, create three floor jobs z x,1 , z x,2 , z x,3 with z x,1 ≺ z x,2 and z x,1 ≺ z x,3 , where z x,1 has length t[x], and z x,2 and z x,3 have length 1. If x < |t|, then also add the precedence constraints z x,2 ≺ z x+1,1 and z x,3 ≺ z x+1,1 .

Observe that {z x,1 , z x,2 | 1 ≤ x ≤ |t|} is chain. Thus, the makespan of any schedule is at least T := |t| x=1 (t[x] + 1). For x ∈ {1, . . . , n}, let τ (x) :=

x-1 i=1 (t[x] + 1). Observation 2.13. A schedule with makespan T must schedule job z x,1 at time τ (x), and jobs z x,2 and z x,3 at time τ (x) + t[x]. Thus, for x ∈ {1, . . . , |t|}, both machines are used by floor jobs from τ (x) + t[x] to τ (x) + t[x] + 1 and one machine is free of floor jobs between τ (x) and τ (x) + t[x] for t[x] time units. We call these available time slots. Construction 2.12 runs in polynomial time. Moreover, from k + 1 input words, it creates instances of width k + 2: there are k chains of worker jobs and the floor decomposes into two chains {z

x,1 , z x,2 | 1 ≤ x ≤ |t|} and {z x,1 , z x,3 | 1 ≤ x ≤ |t|}.
To prove Theorem 2.11(i), one can thus show that t ∈ s 1 • • • s k if and only if the created P2|prec,p j ∈{1, 2}|C max instance allows for a schedule of makespan T . By Observation 2.13, any such schedule has available time slots of lengths corresponding to the letters in t, each of which can accommodate a worker job corresponding to a letter of s 1 , . . . , s k . The precedence constraints ensure that these worker jobs get placed into the time slots corresponding to letters of t in increasing order.

The proof of Theorem 2.11(ii) works analogously: one simply replaces worker jobs of length two by worker jobs of length one that require two machines and modifies the floor jobs so that they do not create time slots of length one or two, but so that each created time slot is available on only one or on two machines. To achieve this, the construction uses three machines.

Resource-Constrained Project Scheduling

In Section 2.3, we have seen that P3|prec,p j =1,size j ∈{1, 2}|C max is W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by the partial order width. It follows that also RCPSP (cf. Problem 1.1) is W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard for this parameter, even if the number of resources and the maximal resource usage are bounded by two and all jobs have unit processing times. In this section, we additionally consider the lag parameter: Definition 3.1 (earliest possible starting time, lag). Let J 0 ⊆ J be the jobs that are minimal elements in the partial order . The earliest possible starting time σ j is 0 for a job j ∈ J 0 and, inductively, max i≺j (σ i + p i) for a job j ∈ J \ J 0 . The lag of a feasible schedule (s j) j∈J is λ := max j∈J s j -σ j .

Lenstra and Rinnooy Kan's NP-hardness proof for P|prec,p j =1|C max [START_REF] Lenstra | Complexity of scheduling under precedence constraints[END_REF] shows that it is even NP-hard to decide whether there is a schedule of makespan at most three and lag at most one. Thus, the lag λ alone cannot lead to a fixedparameter algorithm for RCPSP, just as the width w alone cannot. We show a fixed-parameter algorithm for the parameter λ + w. Theorem 3.2. An optimal schedule with lag at most λ for RCPSP is computable in (2λ + 1) w • 2 w • poly(n) time if it exists, where w is the partial order width.

Our algorithm is a refinement of Servakh's pseudo-polynomial-time algorithm for RCPSP with constant width [START_REF] Servakh | Effektivno razreshimy sluchaj zadachi kalendarnogo planirovaniya s vozobnovimymi resursami[END_REF], which is based on graphical optimization methods introduced by Akers [START_REF] Akers | A graphical approach to production scheduling problems[END_REF] and Hardgrave and Nemhauser [START_REF] Hardgrave | A geometric model and a graphical algorithm for a sequencing problem[END_REF] for handoptimizing Job Shop schedules for two jobs. We provide a concise translation of Servakh's algorithm in Section 3.1 before we prove Theorem 3.2 in Section 3.2.

Geometric interpretation of RCPSP

Given an RCPSP instance with precedence constraints of width w, by Dilworth's theorem, we can decompose our set J of jobs into w pairwise disjoint chains. More specifically, these chains are efficiently computable [START_REF] Felsner | Recognition algorithms for orders of small width and graphs of small Dilworth number[END_REF]. For ∈ {1, . . . , w}, denote the jobs in chain by a sequence (j k) n k=1 such that j k ≺ j k+1 and let L i := i k=1 p j k be the sum of processing times of the first i jobs on chain , L := L n be the sum of processing times of all jobs on chain .

Let 0 := (0, . . . , 0) ∈ R w and L := (L 1 , . . . , L w). Each point in the w-dimensional orthotope X := {x ∈ R w | 0 ≤ x ≤ L} describes a state as follows. Definition 3.3 (running, completed, feasibility). Let x = (x 1 , . . . , x w) ∈ X. For each chain ∈ {1, . . . , w}, if x ∈ [L i-1 , L i), then the jobs (j k) i-1 k=1 of chain are completed and job j i has been processed for x -L i-1 time. We call job j i running if L i-1 < x < L i . We denote by J(x) ⊆ J the set of jobs running in state x and by C(x) ⊆ J the set of jobs completed in state x.

A point x ∈ X is feasible if it holds that both (IF1) the jobs J(x) comply with resource constraints, that is, j∈J(x) r jρ ≤ R ρ for each resource ρ ∈ R, and (IF2) if there are two jobs i ≺ j such that j ∈ J(x), then i ∈ C(x).

Note that points x ∈ X may indeed violate (IF2): there are not only precedence constraints between jobs on one chain, but also between jobs on different chains.

Each feasible schedule now yields a path of feasible points in the orthotope X from the point 0, where no job has started, to the point L, where all jobs are completed. Each such path consists of (linear) segments of the form [x, x + tδ] for some δ = (δ 1 , . . . , δ w) ∈ {0, 1} w , which corresponds to running exactly the jobs on the chains with δ = 1 for t units of time. Since all processing times and starting times are integers (cf. Problem 1.1), we can assume t ∈ N.

Definition 3.4 (feasibility of segments and their lengths).

The length of a segment [x, x + tδ] is t. The length of a path is the sum of the lengths of its segments. A segment [x, x + tδ] is feasible if it contains only feasible points and interrupts no jobs; that is, if there is a job j ∈ J(x) on chain , then δ = 1.

There is now a one-to-one correspondence between feasible schedules and paths from 0 to L consisting only of feasible segments and between the shortest of these paths and optimal schedules. This leads to the following algorithm.

Algorithm 3.5 (Servakh [14]

). Compute a shortest feasible path from 0 to L using dynamic programming: for each feasible point x ∈ X ∩ N w in lexicographically increasing order, compute the length P (x) of a shortest feasible path from 0 to x using the recurrence relation

P (0) = 0, P (x) = min δ∈∆x P (x -δ) + 1 for feasible x ∈ X ∩ N w \ {0}, (3.1)
where ∆ x is the set of vectors δ ∈ {0, 1} w such that segment [xδ, x] is feasible.

To compute P (L), one thus iterates over at most w =1 (L + 1) points x ∈ X ∩ N w , for each of them over 2 w vectors δ ∈ {0, 1} w , and, for each, decides whether [xδ, x] is feasible. Since the set of running jobs is the same for all interior points of the segment, it is enough to check the feasibility of its end points and one interior point, which can be done in polynomial time. Thus, the algorithm runs in w =1 (L + 1) • 2 w • poly(n) time, which is pseudo-polynomial for constant w.

We can now prove the following result by computing recurrence (3.1) for each of the (λ + 1) w feasible points x ∈ Γ λ (t) ∩ Z w for all t ∈ {0, . . . , L}. Proposition 3.10. An optimal schedule of lag at most λ for RCPSP if it exists is computable in (λ + 1) w • 2 w • poly(L) time, where L is the sum of all processing times and w is the partial order width.

However, note that this is a fixed-parameter algorithm only for polynomial processing times, which is why we skip the proof and go on towards proving Theorem 3.2a fixed-parameter algorithm that works for arbitrarily large processing times. To this end, we prove that all maximal segments of a path corresponding to a schedule with lag at most λ start and end in one of 2•|J| hypercubes with edge length 2λ+1. Lemma 3.11. Let q be the path of a feasible schedule (s j) j∈S of lag at most λ and let t 2 ≤ t 1 ≤ t 2 + λ. Then, q(t 1) ∈ Γ 2λ (t 2 + λ) (cf. Definition 3.7).

Proof. Consider the schedule (σ j) j∈J that starts each job at the earliest possible time and its path p. Our aim is to show

p(t 2 + λ) -2λ ≤ q(t 1) ≤ p(t 2 + λ),
where λ = (λ, . . . , λ) ∈ N w . By Lemma 3.8, q is λ-corridored. Thus,

p(t 1) -λ ≤ q(t 1) ≤ p(t 1) and p(t 2 + λ) -λ ≤ q(t 2 + λ) ≤ p(t 2 + λ).
From this, one easily gets q(t 1) ≤ p(t 1) ≤ p(t 2 + λ). Moreover, one has

p(t 2 + λ) -2λ ≤ q(t 2 + λ) -λ ≤ q(t 2) + λ -λ = q(t 2) ≤ q(t 1).
Lemma 3.12. Let q be the path of a feasible schedule (s j) j∈S of lag at most λ and let [x, x + tδ] be a maximal segment of q such that the set J(x + τ δ) of running jobs (cf. Definition 3.3) is the same for all τ ∈ (0, t). Then,

{x, x + tδ} ⊆ Γ := j∈J Γ 2λ (σ j + λ) ∪ j∈J Γ 2λ (σ j + p j + λ),
where (σ j) j∈J is the schedule that starts each job at the earliest possible time.

Proof. Let t 0 be chosen arbitrarily such that q(t 0) ∈ {x, x + tδ}. By maximality of the segment, some job j ∈ J is starting or ending at time t 0 , that is, t 0 = s j or t 0 = s j + p j . Then, {x, x + tδ} ⊆ Γ 2λ (σ j + λ) ∪ Γ 2λ (σ j + p j + λ) follows from σ j ≤ s j ≤ σ j + λ and Lemma 3.11.

We are now ready to show a fixed-parameter algorithm for RCPSP parameterized by length and maximum lag. That is, we prove Theorem 3.2.

Proof (of Theorem 3.2).

We compute the shortest feasible λ-corridored path from the state 0, were no job has started, to the state L, where all jobs have been completed (cf. Lemma 3.8). We use dynamic programming similarly to Algorithm 3.5. By Lemma 3.12, it is enough to consider those paths whose segments start and end in Γ . Thus, for each x ∈ Γ ∩ N w in lexicographically increasing order, we compute the length P (x) of a shortest λ-corridored path from 0 to x with segments starting and ending in Γ . To this end, for an x ∈ Γ ∩N w , let ∆ x be the set of vectors δ ∈ {0, 1} w such that, (i) there is a smallest integer t δ ≥ 1 such that x -t δ • δ ∈ Γ and such that (ii) the segment [x -t δ • δ, x] is feasible.

Then, P (0) = 0 and, for feasible x ∈ Γ ∩ N w \ {0}, one has

P (x) = min{P (x -t δ • δ) + t δ | δ ∈ ∆ x and x ∈ Γ λ (P (x -t δ • δ) + t δ)},
where min ∅ = ∞ and the last condition on x uses Lemma 3.9 to ensure that we are indeed computing the length P (x) of a λ-corridored path (cf. Definition 3.7) to x: by induction, we know that P (x -t δ • δ) is the length of a shortest λ-corridored path to x -t δ • δ, and thus x -

t δ • δ ∈ Γ λ (P (x -t δ • δ)).
We have to discuss how to check (i) and (ii). One can check (ii) in polynomial time since it is enough to check feasibility at the end points and one interior point of the segment since the set of jobs running at the interior points of [x -t δ • δ, x] does not change: otherwise, since jobs are started or finished only at integer times, there is a maximal subsegment [x, x -t • δ] with t ≤ t δ -1 where the set of running jobs does not change. Then x -t • δ ∈ Γ by Lemma 3.12, contradicting the minimality of t δ .

Towards (i), we search for the minimum t δ ≥ 1 such that x -t δ • δ ∈ Γ . Consider the schedule (σ j) j∈J that schedules each job at the earliest possible time (cf. Definition 3.1). It is computable in polynomial time. By Lemma 3.12, we search for the minimum t δ ≥ 1 such that x -t δ • δ ∈ Γ 2λ (σ j + λ) or x -t δ • δ ∈ Γ 2λ (σ j + p j + λ) for some job j ∈ J. That is, by Definition 3.7, for each job j, we find the minimum t j ≥ 1 that solves a system of linear inequalities of the form y -2λ ≤ x-t j •δ ≤ y, where δ = (δ 1 , . . . , δ w) ∈ {0, 1} w . Writing y = (y 1 , . . . , y w) and x = (x 1 , . . . , x w), either t j = max({1} ∪ {x -y | δ = 1}) is the minimum such t j or there is no solution for job j. Note that t j is an integer since x and y are integer vectors. Thus, t δ = min j∈J t j is computable in polynomial time.

We conclude that we process each x ∈ Γ ∩ N w in 2 w • poly(n) time. Moreover, Γ contains at most 2 • |J| • (2λ + 1) w integer points since each job j ∈ J contributes at most (2λ + 1) w points in Γ 2λ (σ j + λ) and at most (2λ + 1) w points in Γ 2λ (σ j + p j + λ). A total running time of (2λ + 1) w • 2 w • poly(n) follows.

Conclusion

Our algorithm for RCPSP shows, in particular, that P3|prec,p j =1|C max is fixedparameter tractable parameterized by the partial order width w and allowed lag λ. Since the NP-hardness of this problem is a long-standing open question [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]OPEN8], it would be surprising to show W [START_REF] Akers | A graphical approach to production scheduling problems[END_REF]-hardness of this problem for any parameter: this would exclude polynomial-time solvability unless FPT = W [START_REF] Akers | A graphical approach to production scheduling problems[END_REF]. Thus, it makes sense to search for a fixed-parameter algorithm for P3|prec,p j =1|C max parameterized by w, whereas we showed that already P2|prec,p j ∈{1, 2}|C max and P3|prec,p j =1,size j ∈{1, 2}|C max are W [START_REF] Van Bevern | FPT in operations research: Opportunities and challenges[END_REF]-hard parameterized by w.

A Appendix: Omitted proofs

A.1 Proofs for Section 2.1 Theorem 2.1. P2|chains|C max is weakly NP-hard even for precedence constraints consisting of three chains.

Proof. We reduce from the weakly NP-hard Partition problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]SP12]: Given a multiset of positive integers A = {a 1 , . . . , a t }, decide whether there is a subset A ⊆ A such that ai∈A a i = ai∈A\A a i . Let A = {a 1 , . . . , a t } be a Partition instance. If b := ai∈A a i /2 is not an integer, then we are facing a no-instance. Otherwise, we construct a P2|chains|C max instance as follows. Create three chains of jobs J

0 := {j 0 1 ≺ • • • ≺ j 0 t }, J 1 := {j 1 1 ≺ • • • ≺ j 1 t+1 }, and
J 2 := {j 2 1 ≺ • • • ≺ j 2 t+1 }.
The jobs j 0 i with i ∈ {1, . . . , t} have processing time a i . The jobs j i with ∈ {1, 2} and i ∈ {1, . . . , t + 1} have processing time 2b. This completes the construction, which can be performed in polynomial time. We show that the input Partition instance is a yes-instance of and only if the created P2|chains|C max instance allows for a schedule with makespan T := (2t + 3)b.

(⇐) Assume that our constructed P2|chains|C max instance has a schedule of makespan T . Since we have two chains J 1 and J 2 each containing t + 1 long jobs with processing time 2b, each machine must perform exactly t + 1 long jobs from J 1 ∪J 2 and may perform additional short jobs with processing times at most b from J 0 . Let A be the set of elements in A corresponding to the jobs from J 0 processed by the first machine. Then, A \ A corresponds to the jobs from J 0 that are performed by the second machine. Since the makespan is T = (2t + 3)b and the long jobs already need (2t + 2)b time units on each machine, it holds that ai∈A a i = ai∈A\A a i = b. Thus, A is a solution for our Partition instance. (⇒) Let A ⊆ A with ai∈A a i = ai∈A\A a i = b be a solution for Partition and let J 0 ⊆ J 0 denote the set of jobs corresponding to the elements in A ⊆ A. We construct a schedule of makespan T as follows. First, ignoring the jobs in J 0 , schedule each jobs in J 1 ∪ J 2 at the earliest possible time, that is, the starting time of each job equals the sum of processing times of all preceding jobs in its chain. So far, the maximum completion time is (2t+2)b and each chain is processed by one machine. Next, we modify this schedule by "inserting" the jobs from J 0 in between two already scheduled jobs. Herein, inserting job j between job j , j ∈ J z for z ∈ {1, 2} means to set the starting time of j to the starting time of j and to increase the starting times of j and of all its successors in J z by the processing time of j. We insert all jobs from J 0 according to the precedence constraints on J 0 : we insert job j 0 i between jobs j 1 i and j 1 i+1 if a i ∈ A and between job j 2 i and job j 2 i+1 if a i ∈ A\A . The way we defined the insertion operation ensures that the schedule can still realized by two machines. Since ai∈A a i = ai∈A\A a i = b, it further holds that the starting time of every job was increased by at most b and, hence, the constructed schedule has makespan at most T = (2t + 3)b (the latest executed jobs are still job j 1 t+1 and job j 2 t+1). It remains to check that the precedence constraints are fulfilled: constraints between jobs from J 1 or from J 2 remain fulfilled since we do not change their relative execution order. The constraints between jobs j 0 i and j 0 i for 1 ≤ i < i ≤ t are fulfilled because, in our constructed schedule, the starting time of job we schedule the worker job j i,x to time τ (f i (x)). Note that the precedence constraints of the worker jobs are satisfied since the functions f i are strictly increasing and the difference between two consecutive values of τ is at least 2 (which is the maximal length of a job). Moreover, for each y ∈ {1, . . . , |t|} there is exactly one i such that y = f i (x) for some x. Hence, a worker job j i,x can use the available time slot at τ (y) without any other worker job occupying it. Finally, this worker job j i,x needs time s i [x] = t[f i (x)] = t[y], which is exactly the length of the available time slot at τ (y).

j 0 i is in the interval [i • 2b, i • 2b + b), the starting time of job j 0 i is in the interval [i • 2b, i • 2b + b),
(⇐) Consider a scheduling with makespan T , and let n 1 = |t| 1 and n 2 = |t| 2 . We construct functions f 1 , . . . , f k mapping the letters of s 1 , . . . , s k to the letters of t as required by Definition 2.2. From Observation 2.13, we know that only time slots of lengths one and two are available for worker jobs. Hence, each job j i,x with length s i [x] = 2 is scheduled to a time τ (y) for some y ∈ {1, . . . , |t|} with t[y] = 2. We put f i (x) := y. Since the number of worker jobs of length two is k i=1 |s i | 2 = n 2 , all available time slots of length two are used by worker jobs of length two. Thus, jobs of length one must use pairwise distinct available time slots of length one. Thus, each job j i,x of length s i [x] = 1 is scheduled to a time τ (y) for some y ∈ {1, . . . , |t|} with t[y] = 1. Put f i (x) := y. Clearly, each of the constructed functions f i is total on {1, . . . , |s i |}. Moreover, no two functions share a value since the execution times of worker jobs do not intersect. Finally, each function is increasing: due to the precedence constraints, job j i,x is scheduled before j i,x+1 and thus, τ (f i (x)) < τ (f i (x + 1)) and f i (x) < f i (x + 1) since τ is increasing. Finally, note that t[f i (x)] = s i [x] by construction, hence functions f i define a valid mapping of the letters of s i into t.

A.3 Proofs of Section 3.2 Lemma 3.8. A feasible schedule (s j) j∈J has lag at most λ if and only if its corresponding path q is λ-corridored.

Proof. (⇒) Consider a point q(t) on q and the corresponding point p(t) on the path p corresponding to schedule (σ j) j∈J (cf. Definition 3.7). Then one has q(t) ≤ p(t) since, at time t, schedule (s j) j∈J cannot have processed any chain for more time than schedule (σ j) j∈J . Moreover, one has q(t) ≥ p(t) -λ since, at time t, a chain that has been processed for x time by schedule (σ j) j∈J has been processed for at least x -λ time by schedule (s j) j∈J . Thus, q(t) ∈ Γ λ (t).

(⇐) We show that s j -σ j ≤ λ for an arbitrary job j. Since q(s j) ∈ Γ λ (s j), one has p(s j) -λ ≤ q(s j) ≤ p(s j). In particular q(s j) ≤ p(s j) + λ. In state q(s j), job j has not been processed for any time yet. It follows that it has been processed for at most λ time in state p(s j). Since this is the state of schedule (σ j) j∈J at time s j , we get σ j ≥ s j -λ, that is, s j -σ j ≤ λ.

Fig. 2 . 1 .

 21 Fig. 2.1. Illustration of a shuffle product: for s1 = acbb, s2 = bbc, and s3 = cab, one has t = acbcbbcabb ∈ s1 s2 s3. Dashed arcs show how the letters of each si map into t.

 bb a b a bb a b a bb a b a bb a b s2 = a b a bb a b a bb a b a bb a b a bb a b

Fig. 2 . 2 .

 22 Fig. 2.2.Left: A Dominating Set instance with k = 2 and a solution {v2, v3} (the gray nodes). Right: The "base pattern" of the corresponding Shuffle Product instance (only one repetition of A in s1 and s2 and only one repetition of B in t is shown). Blocks of s1 and s2 are mapped into the blocks of t displayed in the same column. The horizontal (blue) rectangles reflect that each si is built as the concatenation of the rows of the adjacency matrix, where zeroes are replaced by abb and ones by ab. The amount of horizontal offset of each si corresponds to the selection of a vertex as dominator (v2 for s1 and v3 for s2). The dark columns (red) correspond to the short b-blocks of t: they ensure that, in each row of the adjacency matrix, at least one selected vertex dominates the vertex corresponding to that row. The base pattern is repeated N times to ensure that at least one occurrence of the pattern is mapped to t without unwanted gaps. Additional words s k+1 and s k+2 are added to match the remaining letters from t.

.1). Definition 2.2 (shuffle product). By s[i], we denote the ith letter in a word s. A word t is said to be in the shuffle product of words s 1 and s 2 , denoted by t ∈ s 1 s 2 , if t can be obtained by interleaving the letters of s 1 and s 2 . Formally, t ∈ s 1 s 2 if there are increasing functions f 1 : {1

 , . . . , |s 1 |} → {1, . . . , |t|} and f 2 : {1, . . . , |s 2 |} → {1, . . . , |t|} mapping positions of s 1 and s 2 to positions of t such that, for all i ∈ {1, . . . , |s 1 |} and j ∈ {1, . . . , |s 2 |}, one has t[f 1

 We describe t as a shuffle product of the words s i as follows. For each i ∈ {1, . . . , k}, map all letters from the block at position x of s i into block x + 2(n -d i) of t, that is, consecutive blocks of s i are mapped into consecutive blocks of t with a small offset depending on d i . So far, at most k letters are mapped into each a-block of t and at most 2k letters are mapped into each b-block of t. Hence, all a-blocks and all long b-blocks of t are long enough to accommodate all their designated letters. It remains to show that at most 2k -1 letters are mapped into each short b-block β of t. By Observation 2.9(iv), β is at position 2hn for some h ∈ {1, . . . , N n}. Thus, there are p ∈ {0, . . . , N -1} and u ∈ {1, . . . , n} such that 2hn = 2(pn + u)n = 2pn 2 + 2un. For each s i , the block α i of s i mapped into β has position (2pn 2 + 2un) -2(n -d i) = 2pn 2 + 2(u -1)n + 2d i . Hence, α i has length u,di by Observation 2.9(v). Since D is a dominating set, it contains a vertex d i * such that d i * = u or {d i * , u} ∈ E. Thus, by (2.1), α i * has length u,d i * = 1. Overall, at most k b-blocks of {s 1 , . . . , s k } are mapped into β. We have shown that at least one of them, namely α i * , has length one. Since the others have length at most two, at most 2k -1 letters are mapped into block β.We have seen a mapping of the words s i with i ∈ {1, . . . , k} to t. Thus, we have|t| a ≥ k i=1 |s i | a and |t| b ≥ k i=1 |s i | band the words s k+1 and s k+2 are welldefined. It remains to map s k+1 and s k+2 to t. Since s k+1 consists only of a and s k+2 only of b, we only have to check that t contains as many letters with letters a or b as all words s i together, which is true by the definition of s k+1 and s k+2 . We conclude that t ∈ s 1 s 2

The words s 1 , . . . , s k and t created by Construction 2.7 from a Dominating Set instance (G, k) have the following properties: (i) Each s i for i ∈ {1, . . . , k} contains 2N n 2 blocks. (ii) The word t contains 2N n 2 + 2(n -1) blocks. (iii) For i ∈ {1, . . . , k}, all a-blocks in s i have length 1. All a-blocks of t have length k. (iv) For h ∈ {1, . . . , N n}, the b-blocks at position 2hn in t are short. All other b-blocks in t are long. (v) For each i ∈ {1, . . . , k}, p ∈ {0, . . . , N -1}, and u, v ∈ {1, . . . , n}, the b-block at position 2pn 2 + 2n(u -1) + 2v in s i has length u,v : it corresponds to the entry in the uth row and vth column of the adjacency matrix of G. Since Construction 2.7 runs in polynomial time and the number of words in the created Shuffle Product instance only depends on the size of the sought dominating set, for Theorem 2.4, it remains to prove the following lemma. Lemma 2.10. Let s 1 , . . . , s k+2 and t be the words created by Construction 2.7 from a Dominating Set instance (G, k). Then G has a dominating set of size k if and only if t ∈ s 1 s 2 • • • s k+2 . Proof. (⇒) Assume first that G = (V, E) has a dominating set D = {d 1 , . . . , d k }.

 ∈ {1, . . . , k} with u,d i * = 1. By (2.1), that means d i * = u or {u, d i * } is an edge in G. Hence, u ∈ N [D] and D is a dominating set of size k for of G.

	is some i	
		.2)
	By Observation 2.9(v), α i has length u,(n-δi/2) = u,di . Since β is a short b-
	block, it has length 2k -1. From (2.2), we get	k i=1 u,di ≤ 2k -1. Thus, there

*

 and these interval do not intersect. Shuffle Product instance (t, s 1 , . . . , s k) is a yes-instance if and only if the P2|prec,p j ∈{1, 2}|C max instance created by Construction 2.12 allows for a schedule of makespan T := Proof. (⇒) Consider k functions f 1 , . . . , f k mapping the letters of s 1 , . . . , s k to the letters of t as required by Definition 2.2. We use the schedule described by Observation 2.13 for the floor jobs, and, for i ∈ {1, . . . , k} and x ∈ {1, . . . , |s i |},

	A.2 Proofs of Section 2.3
	Lemma A.2. A |t| x=1 (t[x] + 1).

Acknowledgments. The authors are thankful to Sergey Sevastyanov for pointing out the work of Akers [1] and Servakh [14]. This research was initiated at the annual research retreat of the algorithms and complexity group of TU Berlin, April 3-9, 2016, Krölpa, Germany.

Supported by project 16-31-60007 mol_a_dk of the Russian Foundation for Basic Research. Supported by the DFG, project MAGZ (KO 3669/4-1). Supported by a postdoctoral fellowship from I-CORE ALGO.

Fixed-parameter algorithm for arbitrary processing times

The bottleneck of Algorithm 3.5 is that it searches for a shortest path from 0 to L in the whole orthotope X. For the case where we are only accepting schedules of maximum lag λ, we will shrink the search space significantly: we show that we only have to search for paths within a tight corridor around the path corresponding to the schedule (σ j) j∈J that starts jobs at the earliest possible time.

Definition 3.6 (point at time t on a path).

Let p be the path from 0 to L corresponding to a not necessarily feasible schedule (s j) j∈J that, however, respects precedence constraints. Let t ≥ 0 and T be the length of p.

Then, p(t) is the endpoint of the subpath of length t of p starting in 0 for t ≤ T , and p(t) := L for t > T .

Since the definition requires (s j) j∈J to respect precedence constraints, p(t) determines the state (cf. Definition 3.3) at time t according to schedule (s j) j∈J .

Definition 3.7 (λ-corridored).

Let p be the path corresponding to the schedule (σ j) j∈J that starts jobs at the earliest possible time (cf. Definition 3.1).

We call a path q λ-corridored if q(t) ∈ Γ λ (t) for all t ≥ 0.

Note that points on the path p in Definition 3.7 may violate Definition 3.3(IF1), but not (IF2). One can show the following relation between λ-corridored paths and schedules of lag λ. Lemma 3.8. A feasible schedule (s j) j∈J has lag at most λ if and only if its corresponding path q is λ-corridored. Lemma 3.8 allows us to compute a shortest feasible path from 0 to L using only points in Γ λ (t) for some t. Herein, we will exploit the following condition for checking whether a path segment can be part of a λ-corridored path. Lemma 3.9. Let [x, x + tδ] for δ ∈ {0, 1} w . If x ∈ Γ λ (t 0) and x + tδ ∈ Γ λ (t 0 + t) for some t 0 ≥ 0, then x + τ δ ∈ Γ λ (t 0 + τ) for all 0 ≤ τ ≤ t.

Proof. Let p be the path corresponding to schedule (σ j) j∈J as in Definition 3.7 and let δ = (δ 1 , . . . , δ w) ∈ {0, 1} w . For any τ ∈ [0, t], consider x τ = (x τ 1 , . . . , x τ w) := x + τ δ and y τ = (y τ 1 , . . . , y τ) := p(t 0 + τ). By the prerequisites of the lemma, we have y 0 -λ ≤ x 0 ≤ y 0 and y t -λ ≤ x t ≤ y t . We show y τλ ≤ x τ ≤ y τ for any τ ∈ [0, t].

We start with x τ ≤ y τ . For the sake of contradiction, assume that there is some chain and a τ ∈ [0, t] such that x τ > y τ . Then, x τ > y τ ≥ y 0 ≥ x 0 . It follows that δ = 1, which contradicts x t ≤ y t because, then,

Now, we show y τ -λ ≤ x τ . Consider some chain . If δ = 1, then we have y τ -λ ≤ y 0 + τ -λ ≤ x 0 + τ = x τ and we are fine. If δ = 0 and there is a τ ∈ [0, t] such that y τ -λ > x τ , then y t -λ ≥ y τ -λ > x τ = x t , contradicting y tλ ≤ x t .