N

N

Real-Time Reflection on Moving Vehicles in Urban
Environments

Alexandre Meyer, Céline Loscos

» To cite this version:

Alexandre Meyer, Céline Loscos. Real-Time Reflection on Moving Vehicles in Urban Environ-
ments. Symposium on Virtual reality software and technology (VRST), 2003, Osaka, Japan.
10.1145/1008653.1008662 . hal-01494996

HAL Id: hal-01494996
https://hal.science/hal-01494996
Submitted on 24 Mar 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01494996
https://hal.archives-ouvertes.fr

Real-Time Reflection on Moving Vehicles
in Urban Environments

Alexandre Meyer
a.meyer@cs.ucl.ac.uk

Céline Loscos
c.loscos@cs.ucl.ac.uk

University College London
Computer Science Department
Gower Street, WC1E 6BT London, UK

ABSTRACT

In the context of virtual reality, the simulation of complex
environments with many animated objects is becoming more
and more common. Virtual reality applications have always
promoted the development of new efficient algorithms and
image-based rendering techniques for real-time interaction.
In this paper, we propose a technique which allows the real-
time simulation in a city of the reflections of static geom-
etry (eg. building) on specular dynamic objects (vehicles).
For this, we introduce the idea of multiple environment
maps. We pre-compute a set of reference environment maps
at strategic positions in the scene, that are used at run time
and for each visible dynamic object, to compute local envi-
ronment maps by resampling images. To efficiently manage
a small number of reference environment maps, compared to
the scene dimension, for each vertex of the reconstructed en-
vironment we perform a ray tracing in a heightfield represen-
tation of the scene. We control the frame rate by adaptative
reconstruction of environment maps. We have implemented
this approach, and the results show that it is efficient and
scalable to many dynamic objects while maintaining inter-
active frame rates.

Categories and Subject Descriptors
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.Color, shading, shadowing, and texture.

Keywords
Environment Maps, Image-Based Rendering, Ray Tracing,
Real-Time Rendering.

1. INTRODUCTION

In the context of mixed-reality, content often comes from
different sources mixing real data sources with virtual ones.
When merging the information, one needs to make sure
that the added virtual information stays consistent with the
rest of the scene. Often, the information coming from real
sources looks highly realistic as the 3D model can be mapped
with the textures extracted directly from pictures. In the
European project CREATE!, we test a constructivist ap-
proach (learning through activity) in the context of cultural
heritage and urban planning. A typical scenario for the ur-
ban planning application is to simulate a new configuration
of a city on immersive displays.

Figure 1: Simulation on immersive displays of a new
configuration of a city, here the ”place Massena”
in Nice where a tramway is added. This image
was generated by REVES/INRIA Sophia-Antipolis
(http://www-sop.inria.fr /reves), in the context of
the CREATE project.

The real environment is captured and built from photographs
[25] with additional post-processing to finalize the lighting
consistency. Additional features are then added to com-

LCREATE is a 3-year RTD project funded by the 5th Frame-
work Information Society Technologies (IST) Programme of
the European Union (EU). The official contract with the EU
was signed under the contract number IST-2001-34231. The
project started in March 2002. www.cs.ucl.ac.uk/create/

plement the simulation: crowd simulation, car simulation,
tramway insertion, new placement of pedestrian areas, pedes-
trian crossings, trees, etc. The system will be used by urban
professionals to understand and visualize changes and also
by the general public to whom it is important to sell the
feasibility and the benefits of modifying some areas. It is
therefore important for the simulation to be believable, and
as photorealistic as possible. In figure 1, the reconstructed
model from a real scene is shown, together with the insertion
of virtual trees and a tramway. Shadows of virtual elements
onto the reconstructed model are simulated. However, no
reflections were computed on the tramway making it easy
to recognize it as computer graphics rendering.

Lighting effects ranging from shadows, direct illumination,
to global illumination as well as transparency and reflec-
tion/refraction, have been shown to be extremely important
for realism in certain applications [24], giving to the user
valuable cues on the environment, about where objects are
physically placed, and their material properties, making it
easier to identify them. However, the computation of these
effects is often restricted to very limited local areas and too
few dynamic (moving) objects. In our mixed-reality appli-
cation, the available computation time is even smaller as it
needs to be shared by the display of the static model, the
various dynamic objects, their simulation, the sound simula-
tion and the haptic interaction. To be general, our main goal
is thus to increase the photo-realism in real-time computer
graphics applications with no restriction on the geometry
and the number of dynamic objects.

In this paper, we concentrate on simulating reflections of the
environment onto animated, specular virtual objects mov-
ing in a structured complex virtual environment: vehicles
driving in a city. Often, environment maps (EMs) [4, 12,
32] are used for real-time applications instead of computa-
tionally intense algorithms such as ray tracing. The concept
of EM techniques is to store images of the environment onto
a simple geometric object (a sphere or a cube) and to use
this information as a texture for computing the reflections
onto an object, instead of using the geometry of the scene.
Since environment maps are valid for one particular point
or its surrounding, the case of moving objects far from this
point forces an expensive re-computation of the EM for each
object’s new position. In the case of environment cube maps
it corresponds to rendering the scene six times per object,
once for each face of the cube. Currently, to maintain a
constant frame rate, only a few moving objects are allowed
(usually one).

We propose a new technique, called multiple environment
maps or MEM, making use of the advantages of image-
based approaches, to interactively compute individual en-
vironment maps around each moving object, thus obtaining
realistic reflections with a quality comparable to ray-traced
rendering. Our approach is simple and needs a classical
graphic hardware since the most advanced feature we use is
the well-supported cube map and multi-texturing extension.

In section 2, we briefly introduce previous work relevant
to our method. We then summarize our contributions by
giving an overview of the MEM in section 3. In section 4,
we describe the techniques used for each of the steps of the

method. Section 5 describes our levels of detail and we, then
present some implementation and discussion in section 6 and
results in section 7, and then conclude.

2. PREVIOUS WORK
2.1 Environment Maps

Accurate reflections between arbitrary objects can be pro-
duced by ray tracing [33], even at interactive frame rates
with a cluster of PCs [23]. Nevertheless, with a single com-
puter with a common graphic board the cost is significantly
higher than texture-mapped polygon rendering, and thus it
is fair to say that ray tracing is still difficult to use for real-
time applications.

Environment maps are heavily used nowadays in computer
graphics. They were introduced to approximate reflections
for interactive rendering [4, 12, 32]. But they can be used
as a means to render glossy reflections [20, 6, 15, 16] by
pre-filtering a map with a fixed reflection model or a BRDF
(bidirectional reflectance distribution function). Recent graph-
ics card extensions support the use of environment maps in
realtime. Graphics cards now support commonly cube maps
[22], and last year, ATI [3] presented at SIGGRAPH a real-
time demonstration of high-resolution normal maps to illus-
trate the importance of normal precision in this technique.

Attempts have been made to use environment maps for less
constrained navigation than the one described previously.
Quicktime VR [8] is a pure image-based technique, which
uses a series of captured environment maps to allow the user
to look around a scene from fixed points in space. Cabral et
al. [6] store a collection of view-dependent EMs. Hakura et
al. [13, 14] tackle the problem of transition between EMs.
Our framework is similar to these methods,however we differ
in two different aspects. First, in the way we capture the
EM. Their parameterized EM is a sequence of EMs recorded
over a dense set of viewpoints whereas our technique needs a
less dense set of pre-computed EMs. Second, to recompute
an intermediate EM, they represent reflected geometry by
simple geometry, such as a box, a parallelepiped, a sphere,
an ellipsoids. In contrast, we represent the environment by
an accurate representation of the geometry.

2.2 Computing New Views

The problem of computing an intermediate view starting
from pre-computed is well known in image-based rendering.
Only few papers [13, 14] apply this to EM. The spectrum
of image-based methods to solve this problem ranges from
those that exclusively use images to those that re-project
acquired imagery onto geometric models.

Quicktime VR [8] offers a realistic view of the scene, but
the user has a correct perspective from a set of specific loca-
tions. Image morphing approaches [7, 27] allow some range
of motion. However, the transformation of the reference
views to the desired views is approximated by interpolation.
To maintain a high frame rate, the Talisman architecture
[31] reused portions of rendered images and re-project them
onto a new view using 2D warping. The Lumigraph [11]
and Light Field [17] densely sample light rays to create a
ray database. Unfortunately, these techniques are not de-
signed to manage objects with very different scales as we
have in our case.

At the other end of the spectrum are methods based largely
on geometry. Texture mapping is the most common way to
incorporate images into the scene description. Debevec et
al. [9] represent the scene with an approximate geometric
model (semi-automatically created) texture-mapped, in a
view dependent fashion, from photographs.

McMillan and Bishop’s [19] and Shade et al. [28] methods
are in the middle of the spectrum, representing the scene
as a collection of images that in addition to color also store
depth at each pixel. The desired view is generated by a
3D-warp of the depth images. Buehler et al. in [5] gener-
alize both the Lumigraph and texture mapping approaches.
Their algorithm is defined to work on a wide range of dif-
fering inputs, from few images with an accurate geometric
model to many images with minimal geometric information.

We differ from texture-based approaches in the sense that
we do not re-project all pre-computed images, nor all geom-
etry. Indeed, with the help of a geometry representation we
find which parts of the pre-computed images can be used.
Moreover, because our algorithm is based on this geometry,
it minimizes the size of the stored data, which makes it more
accurate than morphing techniques.

3. OVERVIEW

Since re-rendering the whole scene on a new EM around
each moving objects makes it impossible for real-time (See
table 1), we propose a new method based on pre-computed
EMs to interactively, on-the-fly reconstruct these new EMs.
We place around the environment a set of reference enwvi-
ronment maps or REMs, pre-computed before the simula-
tion. Each of these REMs stores information both on colors
and on the depth from the static surrounding environment.
The positions of the pre-computed REMs define in the scene
a non-constraining path, where the objects will be able to
move. The current navigation algorithm allows objects to
move away from this area, however there is no guarantee
that the information provided by the REMs will be suffi-
cient for the computation of the reflections onto these ob-
jects. Our paper does not address the problem of positioning
the REMs. We assume that the REMs are set around the
scene, so that a maximum of visible objects are captured
in the area where dynamic reflective objects move. Several
papers tackle this problem [10, 29, 1].

At run time, each time a reflective vehicle moves we need to
reconstruct a local EM around it using surrounding REMs.
Instead of a simple blending? between pre-computed EMs,
which would provide many artifacts®, we reconstruct a lo-
cal EM by extracting and blending the correct sub-parts of
surrounding REMs (See section 4.1 and 4.2). In section 4.3,
we adapt our algorithm to possibly invalid REMs and we in-
troduce an adaptative reconstruction to avoid discontinuity
(See section 4.4) and control the frame rate (See section 5).

2The reflection direction is used to access the pixel color in
the REM and a blend is applied to get the final color.

3For example, when a camera tracks an object, the sur-
rounding environment reflection seems to be translating.
With a simple blend, the environment would simply appear
and disappear with a ghosting blur effect as you can see in
figure 9 (a).

To summarize our contributions, we provide a framework
to use reference environment maps, placed around a com-
plex scene. We propose a method for computing dynamic
environment maps for multiple moving objects, blending in-
formation provided by a subset of the reference environment
maps; the blending is geometry-based and uses discontinu-
ities detection, by efficiently analyzing changes in visibility
in the geometry, to provide accurate reflections of the en-
vironment. With this new technique we also improve the
frame rate using different levels of detail for EMs.

Figure 2: At the geometric point P the camera views
the reflection of the scene as in point /. This infor-
mation can be associated to the two pre-computed
REMs (A and B). The vector C4I can be used as
texture coordinates for the EM A, and similarly the
vector Cpl can be used as texture coordinates for
the EM B.

4. INTERACTIVE RECONSTRUCTION OF
THE LOCAL ENVIRONMENT MAP

4.1 General Idea

This section explains the heart of our method. Given a point
P on the reflective object, we need to deduce a reflected color
from the pre-computed REMs. We use here the term point
in the general sense of geometric point, we will see next
paragraph how this idea is used in practice. As describe on
figure 2, the normal of the object in P and the view-point
position V' define the reflected ray by through the angle of
reflection about the normal being equal to the angle of inci-
dence, with the incident and reflected ray in the same plane.
This reflected ray intersects the surrounding environment at
a point I. With the classical local illumination model, the
color at the point P is the sum of the ambient/diffuse term
of the object with the color of I (specular term). If we as-
sume that reflected objects such as building are only diffuse,
the color of I can be associated with the surrounding two
REMs A and B. Notice, we use only two REMs because
this number is appropriate in our case of vehicles moving
in paths defined by streets. Nevertheless, for other types
of scene, one might consider a larger number of REMs if
necessary.

The reflection is applied as a texture on each polygon of
the reflective object combining these two REMs with multi-
texturing. For each vertex, a computation as previously

explains for the point P is done: a point [is computed

and the vector Cal is passed to the hardware as texture
coordinates (C4 is the center of the EM A). Similarly, with

the multi-texturing, the vector m is used with the EM
B. We avoid complex computation for each pixel of the
polygon, since texture coordinates are interpolated during
the rasterisation. Because the texture interpolation does
not match necessary with the geometry of the environment,
it may result some discontinuities. We propose a solution to
this problem in section 4.4.

Figure 3: For each vertex, a weight for each sur-
rounding REM is applied to take into account the
distance and the validity of the computed coordi-
nates from each REM.

For each vertex, a weight for each surrounding REM is ap-
plied to take into account the distance and the validity of
the computed coordinates from each REM. The point I, is
the projection of I on the axis defined by the center of each
of the two REMs. From the distance of the center of the
EMs to the projected point I, we can deduce the weight to
apply on each reference map for the blending:

Dy = dist(CA,Ip)/diSt(CA,CB)
and
Dp = dist(I,,Cg)/dist(Ca,CB)

The weights to apply for the blending are W4 = 1— D4 and
Wpg =1— Dpg, with D4 and Dp clamped between 0 to 1 as
I, can be situated outside the segment [C'4, Cg]. Note that
Wa+Wgs=1.

4.2 Computation of the Intersection Point I
The technique presented in section 4.1 does not need to know
which primitive of the scene is intersected by the reflective
ray, only the intersection point I is needed. To find I, we
avoid a complete ray tracing computation by tracing our
ray from P in a discrete representation of the geometry.
Notice that it could be possible to perform this ray tracing
on images of the REMs since we have also the depth values,
as presented in [18]. We excluded these methods because
they are dependent on the number of pre-computed images,
since the ray tracing has to be done in each image. Not so far
from this idea, we prefer to use a heightfield representation
since urban scenes are often 2.5D. Note that for other scene
a regular grid could be used. The heightfield is a greyscale
image of the city taken from a top view with an orthographic
projection, where each pixel refers to the height of the scene.
An example of the heightfield used for one of our model is
presented in figure 4.

To find I, we trace the ray from P through the heightfield
representation as described in [21, 2]. The ray stops when it

arrives in a pixel where the value is higher than the height
of the ray. We assume that the heightfield representation
is close enough to the geometric representation of the scene
to use the entering point I. of the ray into the cell instead
of I. By using this heightfield representation instead of the
whole geometry for the ray tracing we introduce artifacts,
since it does not match exactly with the geometric repre-
sentation. Typically, this results in errors as in figure 9 (c)
where discontinuities are not always well defined. The im-
portant point to notice is that the error introduced here is
constant and continue, since we use the heightfield represen-
tation as a continuous structure. This continuity permits to
avoid sudden variation on the reconstructed EM. However,
there is a trade off on the resolution of the discreet repre-
sentation. The more precise the resolution of the heightfield
is, the more accurate the results will be. However, in terms
of computation time a small resolution is preferable.

Figure 4: To find the reflected point (See figure 2)
we perform a discrete ray tracing in a heightfiel rep-
resentation of the scene.

4.3 Reference Environment Map Validity

As illustrated in figure 5, sometime the point I is not visible
from one of the REMs which is then considered as invalid for
the vertex currently considered. To test the local validity of
the REM, we add a depth-test after finding the point I.

Together with the textures of the REMs, we store depth
maps for each face of the cube. Then, we compare the
depth value stored in the pixel corresponding to the direc-
tion [Ca,I] of the depth map with the depth value of I
(distance between C4 and I). If the depth value of the di-
rection [Ca, I] is less than the distance between C4 and I,
this means that the REM is invalid for the vertex currently
considered, because an object occludes the point I from C4.
Therefore, we cannot use this REM and associated weight
W4 is set to 0. Since we compute the intersection point [
for each vertex of a polygon, each vertex has its weight that
can be potentially null. Notice, the depth-test is similar to
the one carried out in the shadow map algorithm [26].

If all the REMs are invalid we do not have the information
we are looking for, and thus a special treatment needs to be
done to avoid black regions that can appear in the reflec-
tion. One solution would be to add a REM at this point.
The detection of such a case could be used to add automat-
ically a new REM at this position. In our implementation,
the closest REM (the one with the highest weight before
the validity test) is considered to avoid gaps regions being
displayed.

Figure 5: Example of an invalid case when using the
reference maps. Point [should be reflected on the
dynamic object in point P. However, it is occluded
from one of the REMs, in this case A, by an object.
To avoid errors in the reflection, A needs to be in-
validated and dismissed when computing the local
EM around the dynamic object.

4.4 Adaptative Mesh

The complete process of extracting information from the
REMSs could be performed at each polygon of the reflective
object. However, this has several drawbacks. First, the com-
putation cost depends on the number of polygons. Second,
the distribution of the vertices might be irregular, result-
ing in distortion and discontinuity of the reflection for some
areas and too high precision for others. Third, because re-
flections depend on the camera position, if the object stops
moving, we still have to perform our algorithm when the
camera moves.

For this reasons, we decided to compute first a local EM as
the one presented in figure 6, and then use it as a regular
EM. Thus, we are able to control the operation cost and
the desired quality. The reconstruction is done separately
for each of the six images of the cube with an off-screen
rendering. The aim is to reconstruct faster an EM without
rendering the whole scene, but with a similar quality. Such
a reconstructed EM is presented figure 7.

We compute each face of the new EM with a mesh on which
we apply the process described in the previous sections 4.1,
4.2 and 4.3. We start with a regular mesh 10 x 10 that will
be refined if necessary. For each vertex of this mesh, we
trace a ray starting from the center of the moving object
and going through the vertex. Then the intersecting point
is used to compute the texture coordinate of the vertex and
two weights for the two surrounding REM are computed.

Figure 6: Illustration of the decision on the mesh
subdivision of the EM, depending on the depth vari-
ation at vertices.

The reflected environment has some depth discontinuities to
which our algorithm is sensitive, resulting in some popping
effects. The method used to overcome this problem is illus-
trated in figure 6. We recursively subdivide the initial mesh
depending on the depth variations of the reflected point at
the vertices. Given a quad of the mesh described by the ver-
tices 1,2, 3,4, and the associate depth values Z1, Z2, Z3, Z4,
we subdivide if our criteria is true. Our criteria is true if one
of |Z; — Z;|/min(Zi, Z;) > Ris truefori,j =1,2,3,4,i # j
and where R is a constant ratio chosen to reflect important
changing in the scale of our model. This criteria means that
if there is a large variation in depth between vertices of a
patch of the mesh, the patch is subdivided until the appro-
priate level is found. The maximum subdivision corresponds
to either a threshold set by the user or to the size of a pixel.
A result of this subdivision process is shown in figure 7.

Figure 7: An example of a reconstructed EM. In
red, one can see the adaptive mesh subdivision de-
pending on the depth variation at vertices.

5. ADAPTIVE QUALITY FOR CONTROL-
LING THE INTERACTIVITY

In our case, we need to consider multiple objects in very
complex environments. Therefore, we absolutely need to
be able to control and adapt the rendering cost to keep a
constant frame rate. For example, the algorithm can be
modified to treat the reflections differently, depending on
the viewpoint distance or on the degree of interest of the
user. With our algorithm we can produce several levels of
detail by controlling the resolution of the mesh of the recon-
structed EM. T'wo other parameters, also existing in the case
of re-rendering all the geometry, can be added: controlling
the resolution of the reconstructed images of the EM and
deciding which blending to apply for far objects.

We control the resolution of the mesh of the reconstructed
EM according to the size of the object on the screen. The
size of the smallest quad of our adaptive mesh (See figure 7)
does not have to be smaller than a pixel after being pro-
jected on the final image. For a dynamic object, we then
compute the size in pixels of the projected bounding box of
the dynamic object on the screen. We divide this size by the
resolution of the EM (128 or 256 pixels in our implementa-
tion) to obtain the minimum size in pixels of the quads that
compose our mesh. Notice, this number can be deliberately
increased to give a blur effect to the reflection that can fake
motion blur and then significantly increases the realism of
the dynamic object.

When objects are sufficiently far away, a simple blending is
applied. As shown in section 7, this also significantly helps
to accelerate the results.

6. IMPLEMENTATION AND DISCUSSION

Our simulation runs on a 2Ghz Intel Pentium PC with a
GeForce4 Ti4600 graphics card. The basic display is han-
dled by Performer™ on Linux, and therefore we benefit from
view-frustum culling and the scene graph. We also use the
hardware capacity to accelerate the rendering. Our method,
consist in computing the texture coordinates of each vertex
with a ray tracing on the heightfield, which is done in soft-
ware. Then the hardware capacity is used for the environ-
ment map rendering. Since we do not use unusual features
of graphics hardware, our implementation will be able to run
both on SGI and on PCs that could drive different kinds of
display: CAVE-like, immersive desk, etc.

Moreover, according to the latest nVIDIA information on
ray tracing in the vertex engine*, we believe that the per-
formance could be improved with the latest graphics boards
(GeForce FX). Indeed, this generation of board will allow
enough functionality to compute the texture coordinates
(mostly the ray tracing in heightfield) in a vertex shader
program.

Our method provides an efficient solution to reconstruct
EMs around moving objects. Due to the pre-computation of
the REM, our technique is able to manage only static objects
like buildings as object that can be reflected. Of course the
reflecting objects are dynamic. It is clear that static objects

1Ray-traced Reflection Demo,
http://www.cgshaders.org/shaders

are the major components of a typical scene. Nevertheless,
we can render other dynamic objects on the reconstructed
EM to reflect both static and dynamic geometry. We have
started to explore this direction by rendering dynamic vir-
tual humans [30] in a second pass on the reconstructed EM
(See images (e), (f) and (g) on figure 10). We have not im-
plemented yet the rendering of other dynamic vehicles on
the reconstructed EM because of technical difficulties about
Performer.

7. RESULTS

Since the complete reconstruction of the ”Place Massena”
in Nice has not been achieved yet, we have tested our tech-
nique in a virtual city. This virtual model provides extended
polygonal complexity and thus dynamic objects can provide
complex reflective results. In this paper, we focused on the
rendering of reflection effects, and therefore the behavior of
objects, especially for cars, inside the virtual scene is very
simplistic.

Figure 8: Cropped view of the distribution of the
reference environment maps.

We applied our algorithm for the case of vehicles moving
around a virtual city composed of buildings (25,600 tri-
angles) and 8 trees (59,100 triangles each) with a total of
500,000 triangles. The local model where the simulation
runs has 8 roads and covers an area of 1 km?. For our
heightfield ray tracing the size of one cell is 1 meter. The
simulation we tested uses 54 REMs placed as shown in fig-
ure 8. Each EM has a resolution of 128x128 pixels for each
of its 6 faces, with 4 bytes per pixel (3 bytes for the color
plus one for the depth), using 6x65Kb=390Kb of memory.
The total memory used to store all the reference maps is
therefore 54x390=21.6Mb without using any compression.
Texture compression gives at least a 4:1 compression ratio
while introducing very limited artifacts (compression ratio
can go up to 6:1 with nVIDIA cards). If we assume a com-
pression ratio of 4:1, we consume 5Mb of texture memory.
With a graphics board of 128Mb of memory we can apply
our technique in a city 10 to 15 times bigger.

We measured the scalability of the algorithm in relation to
the number of dynamic objects, as it is summarized in the
table shown in table 1. In a first experiment (column No
reflection), we perform the simulation using the OpenGL
Phong rendering: diffuse and specular (N.L) without any re-
flection. We compare the technique consisting of re-render

(a) (b) (c)

Figure 9: (a) Using a simple blending between REM produces ghost effects in the blend. (b) Rendering the
entire scene on the 6 faces of the EM gives a good image quality but it is difficult to achieve that in real time
for several objects. (c¢) Using geometric information and REM, our algorithm provides accurate reflections.

Without LOD With LOD
of cars # of cars dis- || No reflection || Re-rendering | MEM (Fps) Re-rendering | MEM (Fps)
played (Fps) EM (Fps) EM (Fps)
15 3-5 14 0.2-0.8 4 1.2 8
30 10 8.5 0.1 1.3 1 5-6

Table 1: Table showing the different frame rates obtained for a scene with moving vehicles. We compare our
algorithm to others using just Phong shading, or with the complete re-computation of environment maps for

each moving object.

the whole scene onto the 6 faces of the cube (column Re-
rendering) with our technique (column MFEM) in both con-
ditions with or without levels of detail.

Using our method increases greatly the visual quality and
therefore the realism. For certain cases, it might be that the
error introduced due to approximation makes the result of
the blend blurred compared to the computation of the envi-
ronment map by rendering the entire scene. In figure 9, we
compare the result of the reflection of the environment on
a sphere accessing reflection information from a surround-
ing environment EM. In (a), the EM results from a simple
blending between two REMs. In (b), we computed the EM
from scratch, rendering the whole scene onto each face of the
cube. In (c), we applied our MEM technique, interpolating
between two REMs using an adaptive mesh on the cube and
taking into account the discontinuities of the environment.
Image (a) is obviously completely wrong. Image (b) has a
very high quality. The results of our method, as shown in
image (c), are very close to image (b), but the reflection is
less sharp. However the obtained reflection is very similar
to the one obtained with environment maps, thus validating
our method. Also the case of the reflection on the sphere
is one of the worst since the object has a regular distribu-
tion of the normals. For an object as complex as a car, the
imprecisions would not be perceptible.

In term of relative performance, our technique is much more
efficient comparing to the re-rendering of the scene on a new
EM, with a factor from 6 to 8 times faster when levels of
detail is applied. A comparison between the column No re-
flection and the column With LOD shows that our technique
is only from 1.5 to 1.75 time slower than rendering vehicles

without any reflection, while our technique increases greatly
the realism. In term of absolute performance, one thing to
consider is that the frame-rate is already low for 30 cars
simulated without computing the reflections (See column
No reflection). This is due to the large number of poly-
gons (500 000) of the scene. Another thing to consider is
that Performer™ performs only view-frustum culling, and
therefore cars behind the buildings also use the multiple
environment maps technique. Using occlusion culling and
point-base rendering for trees could significantly improve the
frame rate.

In figure 10, the quality of the results is illustrated for differ-
ent configurations, showing that the algorithm works for a
wide range of geometry and not only for simple objects con-
straint on the floor. Small objects like trees are the bottle-
neck of our method, producing easily inaccurate reflections,
since the precision of the reflection is strongly dependent on
the size of the heightfield representation used for the ray
tracing. Nevertheless, quality of the results for this kind of
objects are reasonable as you can see figure 7 (a).

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a technique that makes use of the
properties of environment maps to enable the reflections of a
complex environment onto dynamic objects. We presented a
new method, called multiple environment maps, that allows
the use of a set of pre-computed environment maps, placed
around the scene, that dynamically deduce new environment
maps associated with the dynamic objects. We thus avoid
rendering the scene six times per object at every frame. To
reconstruct the environment maps, we merge reference en-
vironment maps using geometric information to retrieve the

Wy g B g ;.; ST

CTT)

BRI,

g @

-
-

=BT BT =F D

Figure 10: (a), (b), (c) Close views on reflective moving cars in a city. (d) Sequence of animation of a virtual
car driving in a virtual city. (e), (), (g) Invasion of the city by a whale, reflective trees and animated virtual

humans.

correct texture coordinates. We control the quality and the
complexity by sampling the faces of the EMs with a resolu-
tion adapted to the geometry. Moreover, we applied levels of
detail on the environment maps to accelerate the rendering.
The visual quality of the results and the computation times
are satisfactory, and they prove that combined with other
acceleration techniques, such as occlusion culling or levels
of detail of the geometry, the technique can be extremely
powerful and used for virtual reality applications.

However, this method needs to be more automatic. First,
REMs should be automatically positioned in the environ-
ment. Second, the development of the levels of detail tech-
nique with new metrics could allow EMs to be reused for
several objects or several frames. Third, this method could
be generalized for any environment (not just cities). In-
stead of using a heightfield, a 3D grid could store the infor-
mation for allowing any kind of static geometry like arch,
balcony, etc. It would, also, be interesting to reconstruct
our EM around dynamic objects by extracting informations
from more than two REMs since common graphics hardware
allow up to eight textures simultaneously. Finally, work on
the behavior of vehicles and specially on the interaction be-
tween vehicles and crowd has to be done to increase the
global realism of the simulation.

Acknowledgement

This work has been funded by the European Union though
CREATE (contract number IST-2001-34231) which is a 3-
year RTD project funded by the 5th Framework Informa-
tion Society Technologies (IST) Programme of the Euro-
pean Union. We wish to thank Mel Slater and Hila Ritter
Widenfeld for proofreading this paper.

9. REFERENCES

[1] Daniel G. Aliaga and Anselmo Lastra. Automatic
image placement to provide a guaranteed frame rate.
SIGGRAPH 1999, Computer Graphics Proceedings,
pages 307-316, 1999.

[2] J. Amanatides and A. Woo. A fast voxel traversal
algorithm for ray tracing. In Eurographics ’87, pages
3-10, August 1987.

[3] ATI. Car paint.
http://mirror.ati.com/technology/wp/carpaint. html,
2002.

[4] J. F. Blinn and M. E. Newell. Texture and reflection
in computer generated images. Communications of the
ACM, pages 542-547, October 1976.

[6] Chris Buehler, Michael Bosse, Leonard McMillan,
Steven J. Gortler, and Michael F. Cohen.
Unstructured lumigraph rendering. In SIGGRAPH
2001, Computer Graphics Proceedings, pages 425—432,
2001.

[6] Brian Cabral, Marc Olano, and Philip Nemec.
Reflection space image based rendering. In Siggraph
1999, Computer Graphics Proceedings, pages 165—170,
1999.

[7] Eric Chen and Lance Williams. View interpolation for
image synthesis. In SIGGRAPH 1993, Computer
Graphics Proceedings, pages 279288, August 1993.

[8] Shenchang Eric Chen. Quicktime VR - an image-based
approach to virtual environment navigation. In
SIGGRAPH 1995, Computer Graphics Proceedings,
pages 29-38. ACM SIGGRAPH, August 1995.

[9] Paul E. Debevec, Camillo J. Taylor, and Jitendra
Malik. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based
approach. In SIGGRAPH 1996, Computer Graphics
Proceedings, pages 11-20, August 1996.

[10] Shachar Fleishman, Daniel Cohen-Or, and Dani
Lischinski. Automatic camera placement for
image-based modeling. Computer Graphics Forum,
June 2000.

[11] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F.
Cohen. The lumigraph. In SIGGRAPH 1996,
Computer Graphics Proceedings, pages 43—54, August
1996.

[12] Ned Greene. Environment mapping and other
applications of world projections. IEEE Computer
Graphics and Applications, 6(11):21-29, 1986.

[13] Ziyad Hakura, John M. Snyder, and Jerome E.
Lengyel. Parameterized environment maps. In 2001
ACM Symposium on Interactive 8D Graphics, pages
203208, March 2001.

[14] Ziyad S. Hakura and John M. Snyder. Realistic
reflections and refractions on graphics hardware with
hybrid rendering and layered environment maps. In
Rendering Techniques 2001: 12th Eurographics
Workshop on Rendering, pages 289-300, June 2001.

[15] W. Heidrich and H.-P. Seidel. Realistic,
hardware-accelerated shading and lighting. In
SIGGRAPH 1999, Computer Graphics Proceedings,
pages 171-178, 1999.

[16] Jan Kautz and Michael D. McCool. Approximation of
glossy reflection with prefiltered environment maps. In
Proceedings of Graphics Interface 2000, pages
119-126, 2000.

[17] M. Levoy and P. Hanrahan. Light field rendering. In
SIGGRAPH 1996, Computer Graphics Proceedings,
pages 31-42, August 1996.

[18] Dani Lischinski and Ari Rappoport. Image-based
rendering for non-diffuse synthetic scenes. In
Rendering Techniques ’98, pages 301-314, 1998.

[19] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. In SIGGRAPH 1995,
Computer Graphics Proceedings, pages 39-46, August
1995.

[20] G.S. Miller and C.R. Hoffman. Illumination and
reflection maps: Simulated objects in simulated and
real environments. In SIGGRAPH '8 Advanced
Computer Graphics Animation seminar notes. July
1984.

[21] F. Kenton Musgrave. Grid tracing: Fast ray tracing
for height fields. Technical Report
YALEU/DCS/RR-639, Yale University Dept. of
Computer Science Research, 1988.

[22] NVidia. Cube environment mapping.

http://developer.nvidia.com/view. asp ?210=Cube_Mapping-Paper,

2000.

[23] University of Saarbruecken. Open rt.
http: //www.opentt.de/Publications/index. html.

[24] Paul Rademacher, Jed Lengyel, Edward Cutrell, and
Turner Whitted. Measuring the Perception of Visual
Realism in Images. Springer Wien, New York, NY,
2001.

[25] RealViz. Imagemodeler. http://www.realviz.com.

[26] W. T. Reeves, D. H. Salesin, and R. L. Cook.
Rendering antialiased shadows with depth maps. In
SIGGRAPH 1987, Computer Graphics Proceedings,
pages 283-291, July 1987.

[27] Steven M. Seitz and Charles R. Dyer. View morphing:
Synthesizing 3D metamorphoses using image
transforms. In SIGGRAPH 96 Conference
Proceedings, pages 21-30, August 1996.

[28] J. Shade, S.J. Gortler, L. He, and R. Szeliski. Layered
depth images. In SIGGRAPH 1998, Computer
Graphics Proceedings, pages 231-242, July 1998.

[29] Wolfgang Stuerzlinger. Imaging all visible surfaces. In
Proceedings of Graphics Interface 99, pages 115-122,
1999.

[30] Franco Tecchia, Céline Loscos, and Yiorgos
Chrysanthou. Imagebased crowd rendering. IEEE
computer graphics and applications, 22(2):36-43,
March/April 2002.

[31] Jay Torborg and Jim Kajiya. Talisman: Commodity
Real-time 3D graphics for the PC. In SIGGRAPH 96
Conference Proceedings, pages 353-364, August 1996.

[32] Douglas Voorhies and Jim Foran. Reflection vector
shading hardware. In Proceedings of the 21st annual
conference on Computer graphics and interactive
techniques, pages 163-166. ACM Press, 1994.

[33] T. Whitted. An improved illumination model for
shaded display. Communications of the ACM, pages
343-349, 1980.

