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In the past 5 years, RNA-Seq has become a powerful tool in transcriptome analysis even

though computational methods dedicated to the analysis of high-throughput sequencing

data are yet to be standardized. It is, however, now commonly accepted that the choice

of a normalization procedure is an important step in such a process, for example

in differential gene expression analysis. The present article highlights the similarities

between three normalization methods: TMM from edgeR R package, RLE from DESeq2

R package, and MRN. Both TMM and DESeq2 are widely used for differential gene

expression analysis. This paper introduces properties that show when these three

methods will give exactly the same results. These properties are proven mathematically

and illustrated by performing in silico calculations on a given RNA-Seq data set.

Keywords: RNA-seq data, normalization, comparison of methods, DESeq2, edgeR

1. INTRODUCTION

In the past 5 years, RNA-Seq approaches, based on high-throughput sequencing technologies,
are becoming an essential tool in transcriptomics studies (cf. Wang et al., 2009). It is now
commonly accepted that a normalization preprocessing step can significantly improve the quality
of the analysis, in particular, for the differential gene expression analysis (cf. Bullard et al., 2010).
Nevertheless, a gold standard normalization method has not yet been found.

This paper deals with two widely used and very important normalization methods and a third
method related to these. The first method is the “Trimmed Mean of M-values” normalization
(TMM) described in Robinson and Oshlack (2010) and implemented in the edgeR package (cf.
Robinson et al., 2010). The second method is the “Relative Log Expression” normalization (RLE)
implemented in the DESeq2 package (cf. Anders and Huber, 2010; Anders et al., 2013; Love et
al., 2014). The third method is the “Median Ratio Normalization” (MRN) described in Maza
et al. (2013). It has been shown that TMM and RLE give similar results both with real and
simulated data sets (cf. Dillies et al., 2013; Maza et al., 2013; Rapaport et al., 2013; Li et al., 2015;
Reddy, 2015). These two methods, as does MRN, deal efficiently with the intrinsic bias resulting
from the relative size of studied transcriptomes. Also, it has even been shown that the MRN
method performs slightly better on some simulated data sets (cf. Maza et al., 2013). Moreover,
many studies have shown that LRE and/or TMM methods outperform other particular methods
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(cf. Dillies et al., 2013; Maza et al., 2013; Reddy, 2015;
Zyprych-Walczak et al., 2015; Lin et al., 2016). Nevertheless,
a comprehensive comparison study of differential expression
analysis methods has used LRE or TMM for ten of the eleven
compared tools (cf. Soneson and Delorenzi, 2013). Finally, other
more sophisticated normalization methods have been carried out
by iterating one of LRE or TMMmethods (cf. Kadota et al., 2012;
Sun et al., 2013; Tang et al., 2015).

In this paper, all theoretical results will be illustrated by
in silico calculations carried out on a given real data set
from the tomato fruit set (see Materials and Methods). In
short, this data set consists of a matrix of counts: 34675
rows (genes) and 9 columns (samples from 3 stages and 3
biological replicates per stage). Normalization factors of these
fruit set samples, obtained by each of the TMM, RLE, and MRN
methods with default settings, are presented in Table 1. Figure 1
represents the scatter plot of obtained normalization factors and
corresponding library sizes. Moreover, Figure 1 contains, for all
three normalizationmethods, the regression lines estimated from
a simple linear regression modeling the relationship between
default normalization factors and library sizes. It is evident in
both Table 1 and Figure 1 that the three methods (with default
settings) do not give the same results. Indeed, it is known that
TMM normalization factors do not take into account library
sizes. This fact is illustrated in Figure 1 by an almost horizontal
regression line. On the contrary, RLE and MRN factors are
closer to each other, and share a positive correlation with
the library size. The estimation of the regression parameters
of regression lines above shows that the TMM slope is not
statistically significant (at 5% type I error) which is the case of
both LRE and MRN slopes (see Additional file 1).

The aim of this study is to provide a deeper understanding
as to why the three normalization methods quoted above share
a similar normalization approach. This paper also demonstrates
that, in some cases, some shared parameters (such as relative size
of transcriptomes or normalization factors) are strictly equal.

2. MATERIALS AND METHODS

2.1. Tomato’s RNA-Seq Data Set
To investigate the tomato transcriptome dynamics of fruit set,
RNA were isolated from flower buds (Bud) and flowers at
anthesis (Ant) and post-anthesis (Pos) stages. For each stage,
cDNA libraries were generated from three biological replicates
and subjected to Illumina mRNA-Seq technology sequencing.
Then, after mapping reads to the tomato genome sequence, we
obtained a table of raw counts with 34675 rows (genes) and 9

TABLE 1 | Default normalization factors for the fruit set RNA-Seq data.

Stage Bud 1 Bud 2 Bud 3 Ant 1 Ant 2 Ant 3 Pos 1 Pos 2 Pos 3

TMM 0.98012 0.92236 0.71989 1.05807 0.98130 0.88352 1.13027 1.19388 1.24130

RLE 1.01712 0.80899 0.72660 0.86594 1.23622 0.73647 1.28172 1.27220 1.37315

MRN 0.87105 0.75416 0.91430 0.79324 1.20131 0.80461 1.33984 1.25330 1.29317

Normalization factors of tomato fruit set samples are obtained from TMM, RLE, and MRN normalization methods with default settings.

columns (3 stages and 3 replicates per stage). These technical
procedures are described in Maza et al. (2013). In this paper, for
sake of simplicity, the matrix (34675 × 9) containing raw counts
is denoted by X.

2.2. Computations with R Packages
All computations were done within R environment (cf. R
Development Core Team, 2011). All packages are available from
R or Bioconductor websites (cf. Gentleman et al., 2004).

As described above, the matrix containing raw counts is
denoted by X in all R command lines of given in silico examples.

The TMMnormalizationmethod is implemented in the edgeR
package by means of the calcNormFactors function. For
example, the default normalization factors obtained in Table 1

are obtained by the following command line:
> calcNormFactors(X)

The RLE normalization method is implemented
in the DESeq2 package by means of the function
estimateSizeFactorsForMatrix. For example, the
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FIGURE 1 | Normalization factors for the fruit set RNA-Seq data

depending on corresponding library sizes. All three studied normalization

methods are carried out with default settings. For all three methods, regression

(dashed) lines are estimated from a simple linear regression modeling the

relationship between default normalization factors and library sizes. Color key:

TMM, RLE, and MRN are respectively colored in green, blue, and red. Key to

symbols: Bud, Ant, and Pos stages are respectively drawn with circles,

squares, and triangles.
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default size factors obtained in Table 1 are obtained using the
following command line:
> estimateSizeFactorsForMatrix(X)

The MRN normalization method is implemented in a
homemade function called mrnFactors which is provided as
an additional file (see Additional Files). For example, the default
normalization factors obtained in Table 1 are obtained using the
following command line:
> mrnFactors(X, rep(1:3 each=3))$normFactors

2.3. Definitions of Some Important Terms
We define hereafter some important terms that are used in the
studied normalization methods. More detailed definitions are
given in Robinson andOshlack (2010), Anders andHuber (2010),
and Maza et al. (2013).

Both M and A-values are defined for a given gene g and
its expressions on two conditions Xg1 and Xg2. They represent
respectively the fold change and the absolute expression level of
the gene:

M = log2

(

Xg1/N1

Xg2/N2

)

and A =
1

2
log2

((

Xg1/N1

) (

Xg2/N2

))

.

A trimmedmean ofM (respectively A)-values corresponds to the
calculation of the mean after discarding a given proportion of
lower and higher values. A trimmed mean with a proportion of
50% corresponding obviously to the calculation of the median.

3. RESULTS AND DISCUSSION

In this section, the three studied normalization methods are
first described and compared. Then, three propositions are
introduced and in silico results are provided to illustrate them.
For the sake of clarity, mathematical proofs of these propositions
are left to the end of the section.

We have to underline that we focus, in this paper, on so called
“scaling normalization methods” but this is just one approach,
which can be limited to some specific experimental situations (cf.
Maza et al., 2013). Another alternative can be the use of control
genes (see, for instance, Risso et al., 2014).

We notice here that, in order to be consistent, the first
paragraph below (named “Notations and Experimental design”)
reproduces information that have been already reported in detail
in Maza et al. (2013).

3.1. Notations and Experimental Design
Let Xgkr be the observed number of reads (or count) of gene g ∈
{1, . . . ,G} in condition k ∈ {1, . . . ,K} for biological replicate
r ∈ {1, . . . ,R}. For the sake of simplicity, we deal with the same
number of replicates for each given condition, but the following
propositions are not altered by a more general design. Let µgk be
the expectation of the true and unknown number of transcripts
of a given cell for gene g in condition k; Lg the length of gene g;
and Nkr the total number of reads in condition k for replicate r

(or library size). As described in Robinson and Oshlack (2010),
we can model the expected value of Xgkr as

E
(

Xgkr

)

=
µgkLg

Sk
Nkr

where Sk is the size of studied transcriptome in condition k, that is

Sk =
G
∑

g=1

µgkLg .

Then, for each gene g, an approximation of the expected value of
the ratio between two conditions, say 1 and 2, is given by

E

(

Xg2r

Xg1r

)

≈
µg2

µg1

S1

S2

N2r

N1r
.

We can easily see in the equation above that the ratio of interest,
in a differential analysis point of view, i.e.,

µg2

µg1
, is not directly

measured by ratios of raw counts because of library sizes and
relative sizes of transcriptomes. As described in Maza et al.
(2013), the three methods studied here aim at removing such
biases.

3.2. Description of the Three Methods
Table 2 gives us the description of these three normalization
methods. Both TMM and RLE are respectively implemented
in edgeR and DESeq2 packages (see Materials and Methods).
Differences and commonalities of these three methods are
described here, step by step.

Step I Both TMM and MRN methods have a step of pre-
normalization of counts by library sizes. The RLEmethod does
not and works directly on raw counts.
Step II The three methods have a reference sample. For
TMM, the reference sample has been chosen here arbitrarily
with k = 1 and r = 1. The default for the edgeR
package consists in choosing the library whose upper quartile
is closest to the mean upper quartile for all the libraries.
For MRN, the condition k = 1 is also arbitrarily
chosen, as in Maza et al. (2013). Moreover, for MRN,
by definition, all replicates of the chosen condition are
used. For RLE, a geometric mean of all sample values is
performed.
Step III For all three methods, relative sizes of transcriptomes
and the reference sample are based on ratios of counts (or
pre-normalized counts for TMM andMRN) and the reference
sample. For TMM, the set G∗

kr
represents the set of not

trimmed genes with valid M and A-values (cf. Robinson and
Oshlack, 2010). By default, with the calcNormFactors
function of the edgeR package, percentages of trimmed M
and A-values are respectively of 30 and 5% (see Materials
and Methods). In order to simplify, but still staying in
the same vein, the relative scaling factor calculations are
here described with an unweighted trimmed mean instead
of the weighted one which is proposed by default on
edgeR.
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TABLE 2 | Description of the three normalization methods.

Step Description TMM (edgeR) RLE (DESeq2) MRN

I Pre-normalization by library size Ygkr =
Xgkr
Nkr

Ygkr =
Xgkr
Nkr

II Reference sample, or pseudo-reference

sample (DESeq2)

YTMM
g = Yg11 YRLE

g = KR

√

K
∏

k= 1

R
∏

r= 1
Xgkr YMRN

g = 1
R

R
∑

r= 1
Yg1r

III Relative sizes of transcriptomes and

reference sample, or relative scaling

factors (edgeR), or size factors

(DESeq2)

τTMM
kr

= 1
#G∗

kr

∑

g∈G∗
kr

Ygkr

YTMM
g

whereG∗
kr

represents the set of

not trimmed genes

τRLE
kr

= median
g

(

Xgkr

YLREg

)

τMRN
k

= median
g

(

Ȳgk

YMRN
g

)

where Ȳgk = 1
R

R
∑

r=1
Ygkr

IV Relative scaling factors adjusted to

multiply to 1 (edgeR)

τ̃TMM
kr

= τTMM
kr

τ̃TMM where

τ̃TMM = KR

√

K
∏

k= 1

R
∏

r= 1
τTMM
kr

V Taking into account both the relative

size and the library size, or effective

library size (edgeR)

eTMM
kr

= τ̃TMM
kr

Nkr eMRN
kr

= τMRN
k

Nkr

VI Normalization factors, or relative

normalization factors (edgeR), or size

factors (DESeq2)

fTMM
kr

= τ̃TMM
kr

fRLE
kr

= τRLE
kr

fMRN
kr

= eMRN
kr

ẽMRN where

ẽMRN = KR

√

K
∏

k= 1

R
∏

r= 1
eMRN
kr

VII Normalization of counts, or

counts-per-million (edgeR)

ZTMM
gkr

= Xgkr

eTMM
kr

106 ZRLE
gkr

= Xgkr

fRLE
kr

ZMRN
gkr

= Xgkr

fMRN
kr

Step IV In this step, only the TMM method performs an
adjustment of its relative scaling factors to multiply to 1.
Step V Only TMM and MRN methods take explicitly into
account both relative scaling factors and library sizes.
Step VI In this step, it is clear that TMM normalization
factors (as produced by the calcNormFactors function)
do not take into account the library sizes but only the relative
scaling factors. That explains the absence of correlation
between normalization factors and library sizes in Figure 1

(see Introduction). In edgeR, these normalization factors
are used as offset parameters in the statistical model for
differential gene expression analysis. Once again, we underline
here that values obtained in Table 1 are not estimations of the
same theoretical parameters, and thus, these values can not be
used in the same way, for instance, to normalize counts.
Step VII For normalization of counts, all three normalization
methods take into account both relative sizes of
transcriptomes and library sizes. Only the TMM method
gives counts-per-million (CPM). Obviously, CPM values can
easily be obtained for RLE and MRN methods by multiplying
normalized counts by 106.

3.3. Properties of the Three Methods
After the above detailed descriptions of our three methods, we
introduce below three properties showing particular cases where
all three methods give the same result.

Proposition 1 (concerning TMM and MRN). Let’s assume that
the following assumptions hold for the calculus of the TMM
normalization method:

• The reference sample is (arbitrarily) the first one (k = 1 and
r = 1).

• Trimming parameters of M and A-values are respectively equal
to 50 and 0%.

• Calculation of the trimmed mean is done without computing
weights (unweighted mean).

Moreover, let R = 1 (no replicates). Then, the relative scaling
factors of TMM and MRN methods are equal:

τ TMM
k1 = τMRN

k .

An example illustrating Proposition 1 is given in Table 3.
Calculations are carried out by means of R functions
calNormFactors (from the edgeR package) for the TMM
method and mrnFactors (see Materials and Methods) for the
MRN method, as follows:

> calcNormFactors(X, refColumn=1,

logratioTrim=0.499, sumTrim=0,

doWeighting=FALSE)

> mrnFactors(X, 1:9)$medianRatios

We can clearly see in Table 3 that, with function arguments
corresponding to the assumptions of Proposition 1, the adjusted
relative scaling factors produced by TMM and MRN methods
are equal up to the third or fourth decimal place for
almost all of the values (only one of the values has just
two decimal places equal). This slight difference is due to
the logratioTrim argument that cannot be strictly equal
to 50%.
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TABLE 3 | Normalization factors of tomato fruit set samples, obtained from TMM and MRN normalization methods with parameters of Proposition 1.

Stage Bud 1 Bud 2 Bud 3 Ant 1 Ant 2 Ant 3 Pos 1 Pos 2 Pos 3

TMM 0.97654 0.92966 0.72054 1.06259 0.97360 0.87363 1.14166 1.19541 1.23937

MRN 0.97658 0.92957 0.72079 1.06280 0.97361 0.87361 1.14189 1.19599 1.23792

Proposition 2 (concerning RLE and MRN). Let K = 2
conditions and no replicates (R = 1). Then, the size factors
calculated from the RLE and MRN methods are equal:

f RLEk1 = fMRN
k1 .

We illustrate Proposition 2 by calculating the size
factors for some pairs of samples (see Table 4).
Calculations are carried out by means of R functions
estimateSizeFactorsForMatrix (from the DESeq2
package) for the RLE method and mrnFactors (see Materials
and Methods) for the MRN method, as follows:
> estimateSizeFactorsForMatrix(X[ , c(1,

2)])

> mrnFactors(X[ , c(1, 2)], c(1,

2))$normFactors

> estimateSizeFactorsForMatrix(X[ , c(3,

5)])

> mrnFactors(X[ , c(3, 5)], c(1,

2))$normFactors

> estimateSizeFactorsForMatrix(X[ , c(4,

7)])

> mrnFactors(X[ , c(4, 7)], c(1,

2))$normFactors

We can see in Table 4 that, as introduced in Proposition 2,
normalization results from both methods are equal.

We must note here that, with K > 2, Proposition 2 does
not hold: with more than two samples, the reference sample of
the RLE method takes into account all raw counts and this is
obviously not the case for the MRNmethod. This can be checked
by straightforward calculations with more than two samples.

Proposition 3 (concerning RLE, TMM, and MRN). Let’s assume
that the assumptions of both Proposition 1 and Proposition 2 are
satisfied. Then, normalized counts of the RLE and MRN methods,
and counts-per-million of the TMMmethod (up to a constant) are
equal:

ZTMM
gk1 ×

√
N11N21

106
= ZRLE

gk1 = ZMRN
gk1 .

3.4. Calculation of RLE Normalization
Factors with edgeR
We note here that the calcNormFactors function contains
an argument called “method” that can also be used to
calculate RLE normalization factors (cf. the description of
the calcNormFactors function in the edgeR package).
The user should however be careful! Indeed, as calculated
below, calcNormFactors with method="RLE" and
estimateSizeFactorsForMatrix functions do not give
the same results. What happens is that the calcNormFactors

TABLE 4 | Normalization factors of some pairs of tomato fruit set samples,

obtained from RLE and MRN normalization methods with parameters of

Proposition 2.

Stage Bud 1 Bud 2 Bud 3 Ant 2 Ant 1 Pos 1

RLE 1.1015522 0.9078099 0.7870385 1.2705859 0.8248517 1.2123391

MRN 1.1015522 0.9078099 0.7870385 1.2705859 0.8248517 1.2123391

function does not work with raw counts but with pre-normalized
ones (see Step I of Table 2). Moreover, the calcNormFactors
function proceeds to an adjustment of values (see Step IV of
Table 2). In order to find the same values with both functions,
we have to proceed as follows:
> calcNormFactors(X, method="RLE")

> estimateSizeFactorsForMatrix(X)

> f=estimateSizeFactorsForMatrix(X%*%diag

(1/colSums(X)))

> f/prod(f)ˆ(1/length(f))

3.5. Proofs of Propositions
Proof of Proposition 1. We first note that, with R = 1,
i.e., with no biological replicates, the reference
samples of both TMM and MRN methods are
equal:

YTMM
g = YMRN

g .

Moreover, if we assume that (i) the trimmed mean of the
TMM method is done with an unweighted mean as described
in the Step III of the edgeR method in Table 2, and that (ii)
the trimming values are equal to 50% of genes with upper M-
values and 50% of genes with lower M-values, then we obtain
that

τ TMM
k1 =

1

#G∗
k1

∑

g∈G∗
k1

Ygk1

YTMM
g

= median
g

(

Ygk1

YTMM
g

)

.

Then

τ TMM
k1 = median

g

(

Ygk1

YMRN
g

)

= τMRN
k .

Proof of Proposition 2. Let’s first describe the RLE method
calculations by following steps of Table 2. For K = 2
and R = 1, the pseudo-reference sample is the
following:

YRLE
g =

√

Xg11Xg21.

Then, we directly have that
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f RLE11 = τ RLE
11 = median

g

(√

Xg11

Xg21

)

and

f RLE21 = τ RLE
21 = median

g

(√

Xg21

Xg11

)

.

Let’s then describe calculations for the MRN method. For K = 2
and R = 1, the reference sample is simply the first sample:

YMRN
g = Yg11.

Then, the relative sizes are the following:

τMRN
1 = 1 and τMRN

2 = median
g

(

Yg21

Yg11

)

= median
g

(

Xg21

Xg11

)

N11

N21
.

That leads to

eMRN
11 = N11 and eMRN

21 = median
g

(

Xg21

Xg11

)

N11.

Finally, the calculation of the geometric mean of these values, i.e.,

ẽMRN = median
g

(√

Xg21

Xg11

)

N11

implies that

fMRN
11 = median

g

(√

Xg11

Xg21

)

and

fMRN
21 = median

g

(√

Xg21

Xg11

)

.

It follows that

fMRN
k1 = f RLEk1 .

Proof of Proposition 3. We have already proven that, assuming
the assumptions of Proposition 2, i.e., K = 2 and R = 1,
the RLE and MRN methods produce the same normalization
factors. Then, obviously, normalized counts are equal. Let’s then
prove that TMM and MRN normalized counts are equal up to a
constant.

For the TMM method, assuming the assumptions of
Proposition 1, the relative scaling factors are the following:

τ TMM
11 = τMRN

1 = 1

and

τ TMM
21 = τMRN

2 = median
g

(

Xg21

Xg11

)

N11

N21
.

Then, with the following geometric mean of these values:

τ̃ TMM =
√

τ TMM
11 τ TMM

21 = median
g

(√

Xg21

Xg11

)
√

N11

N21

the adjusted relative scaling factors are the following:

τ̃ TMM
11 = median

g

(√

Xg11

Xg21

)
√

N21

N11

and

τ̃ TMM
21 = median

g

(√

Xg21

Xg11

)
√

N11

N21
.

We can then calculate the effective library sizes:

eTMM
11 = τ̃ TMM

11 N11 = median
g

(√

Xg11

Xg21

)

√

N11N21

and

eTMM
21 = τ̃ TMM

21 N21 = median
g

(√

Xg21

Xg11

)

√

N11N21.

Hence, these effective library sizes are equal (up to a constant)
to the normalization factors obtained from RLE (and MRN)
methods:

eTMM
11 = f RLE11

√

N11N21

and

eTMM
21 = f RLE21

√

N11N21.

And the proposition is proved.

4. CONCLUSIONS AND FURTHER WORK

This paper focus on two widely used normalization methods for
RNA-Seq data and a third method related to these, that seem to
give similar results and outperformmany other classical methods
if we consider all references given in the Introduction. Better
understanding these methods is then an important issue dealt by
this paper.

We highlight in this paper that the three considered
normalization methods deal with similar underlying
ideas. Moreover, we prove that these methods give
exactly the same result in some simple experimental
designs. For instance, Proposition 3 shows that for two
given samples, normalized counts are (up to a constant)
equal.

It has also been shown in this paper that the user should
carefully use and not mix these normalization methods
and R packages as all concepts are not equal. For instance,
the so called “normalization factors” from edgeR and
“size factors” from DESeq2 are not the same theoretical
parameters.
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Nevertheless, it has been shown in Maza et al. (2013) that the
MRN method performs slightly better on some simulated data
sets with a standard experimental design of two conditions with
replicates. The present paper does not explain why it performs
better but attempts to give some hypotheses, inspired by the
proved propositions, by focusing on what differ between the
three normalization methods. We give hereafter some of these
hypotheses. (i) For instance, the reference sample of the MRN
method, as a mean of all replicates of a given condition, is a
more robust estimation of mean counts in a given condition
(more robust than the TMM method). (ii) Also, for the TMM
method, the trimming parameter ofM-values should perhaps (by
default) be chosen around 50% in order to have a more robust
estimation of the relative size of transcriptomes. (iii) Moreover,
in the same way, for the MRN method, the relative sizes of
transcriptomes are not sample-specific but condition-specific.
Indeed, for the MRN method, these relative sizes are the same
for all replicates of a condition. This should perhaps give a more
robust estimation than for TMM and RLE relative sizes. All these
hypotheses, among others, should be explored in forthcoming
work.

Finally, we conclude here that for a very simple experimental
design, i.e., about two conditions and no replicates, users can
use any of the three studied normalization methods with no
impact on results. But, for a more complex experimental design,
the results described in Maza et al. (2013) tend to indicate
that the MRN method could be adopted. However, obviously,
this last hypothesis should be proved rigorously in further
work.
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Function
The second additional file contains the R code for the
mrnFactors function (see Materials and Methods). As the
additional file above, this file can be executed on R directly and
can be opened with a simple text viewer. This file is called by
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