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Abstract: Co-clustering, that is partitioning a numerical matrix into “homogeneous” submatrices,
has many applications ranging from bioinformatics to election analysis. Many interesting variants
of co-clustering are NP-hard. We focus on the basic variant of co-clustering where the homogeneity
of a submatrix is defined in terms of minimizing the maximum distance between two entries.
In this context, we spot several NP-hard, as well as a number of relevant polynomial-time solvable
special cases, thus charting the border of tractability for this challenging data clustering problem.
For instance, we provide polynomial-time solvability when having to partition the rows and
columns into two subsets each (meaning that one obtains four submatrices). When partitioning
rows and columns into three subsets each, however, we encounter NP-hardness, even for input
matrices containing only values from {0, 1, 2}.

Keywords: bi-clustering; matrix partitioning; NP-hardness; SAT solving; fixed-parameter
tractability

1. Introduction

Co-clustering, also known as bi-clustering [1], performs a simultaneous clustering of the
rows and columns of a data matrix. Roughly speaking, the problem is, given a numerical
input matrix A, to partition the rows and columns of A into subsets minimizing a given cost
function (measuring “homogeneity”). For a given subset I of rows and a subset J of columns,
the corresponding cluster consists of all entries aij with i ∈ I and j ∈ J. The cost function
usually defines homogeneity in terms of distances (measured in some norm) between the entries
of each cluster. Note that the variant where clusters are allowed to “overlap”, meaning that some
rows and columns are contained in multiple clusters, has also been studied [1]. We focus on the
non-overlapping variant, which can be stated as follows.

CO-CLUSTERINGL
Input: A matrix A ∈ Rm×n and two positive integers k, ` ∈ N.
Task: Find a partition ofA’s rows into k subsets and a partition ofA’s columns into ` subsets,

such that a given cost function (defined with respect to some norm L) is minimized for
the corresponding clustering.

Co-clustering is a fundamental paradigm for unsupervised data analysis. Its applications
range from microarrays and bioinformatics over recommender systems to election analysis [1–4].
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Due to its enormous practical significance, there is a vast amount of literature discussing various
variants; however, due to the observed NP-hardness of “almost all interesting variants” [1], most of
the literature deals with heuristic, typically empirically-validated algorithms. Indeed, there has
been very active research on co-clustering in terms of heuristic algorithms, while there is little
substantial theoretical work for this important clustering problem. Motivated by an effort towards
a deeper theoretical analysis, as started by Anagnostopoulos et al. [2], we further refine and
strengthen the theoretical investigations on the computational complexity of a natural special case of
CO-CLUSTERINGL, namely we study the case of L being the maximum norm L∞, where the problem
comes down to minimizing the maximum distance between entries of a cluster. This cost function
might be a reasonable choice in practice due to its outlier sensitivity. In network security, for example,
there often exists a vast amount of “normal” data points, whereas there are only very few “malicious”
data points, which are outliers with respect to certain attributes. The maximum norm does not allow
one to put entries with large differences into the same cluster, which is crucial for detecting possible
attacks. The maximum norm can also be applied in a discretized setting, where input values are
grouped (for example, replaced by integer values) according to their level of deviation from the mean
of the respective attribute. It is then not allowed to put values of different ranges of the standard
deviation into the same cluster. Last, but not least, we study an even more restricted clustering
version, where the partitions of the rows and columns have to contain consecutive subsets. This
version subsumes the problem of feature discretization, which is used as a preprocessing technique
in data mining applications [5–7]. See Section 3.3 for this version.

Anagnostopoulos et al. [2] provided a thorough analysis of the polynomial-time approximability
of CO-CLUSTERINGL (with respect to Lp-norms), presenting several constant-factor approximation
algorithms. While their algorithms are almost straightforward, relying on one-dimensionally
clustering first the rows and then the columns, their main contribution lies in the sophisticated
mathematical analysis of the corresponding approximation factors. Note that Jegelka et al. [8] further
generalized this approach to higher dimensions, then called tensor clustering. In this work, we study
(efficient) exact instead of approximate solvability. To this end, by focusing on CO-CLUSTERING∞,
we investigate a scenario that is combinatorially easier to grasp. In particular, our exact and
combinatorial polynomial-time algorithms exploit structural properties of the input matrix and do
not solely depend on one-dimensional approaches.

1.1. Related Work

Our main point of reference is the work of Anagnostopoulos et al. [2]. Their focus is on
polynomial-time approximation algorithms, but they also provide computational hardness results.
In particular, they point to challenging open questions concerning the cases k = ` = 2, k = 1, or binary
input matrices. Within our more restricted setting using the maximum norm, we can resolve parts
of these questions. The survey of Madeira and Oliveira [1] (according to Google Scholar, accessed
December 2015, cited more than 1500 times) provides an excellent overview on the many variations
of CO-CLUSTERINGL, there called bi-clustering, and discusses many applications in bioinformatics
and beyond. In particular, they also discuss Hartigan’s [9] special case where the goal is to partition
into uniform clusters (that is, each cluster has only one entry value). Our studies indeed generalize
this very puristic scenario by not demanding completely uniform clusters (which would correspond
to clusters with maximum entry difference zero), but allowing some variation between maximum
and minimum cluster entries. Califano et al. [10] aim at clusterings where in each submatrix,
the distance between entries within each row and within each column is upper-bounded. Recent
work by Wulff et al. [11] considers a so-called “monochromatic” bi-clustering where the cost for each
submatrix is defined as the number of minority entries. For binary data, this clustering task coincides
with the L1-norm version of co-clustering, as defined by Anagnostopoulos et al. [2]. Wulff et al. [11]
show the NP-hardness of monochromatic bi-clustering for binary data with an additional third value
denoting missing entries (which are not considered in their cost function) and give a randomized
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polynomial-time approximation scheme (PTAS). Except for the work of Anagnostopoulos et al. [2]
and Wulff et al. [11], all other investigations mentioned above are empirical in nature.

1.2. Our Contributions

In terms of defining “cluster homogeneity”, we focus on minimizing the maximum distance
between two entries within a cluster (maximum norm). Table 1 surveys most of our results. Our main
conceptual contribution is to provide a seemingly first study on the exact complexity of a natural
special case of CO-CLUSTERINGL, thus potentially stimulating a promising field of research.

Table 1. Overview of results for (k, `)-CO-CLUSTERING∞ with respect to various parameter
constellations (m: number of rows; |Σ|: alphabet size; k/`: size of row/column partition; c: cost).
A ~ indicates that the corresponding value is considered as a parameter, where FPT (fixed-parameter
tractable (FPT)) means that there is an algorithm solving the problem where the super-polynomial
part in the running time is a function depending solely on the parameter. Multiple ~’s indicate a
combined parameterization. Other non-constant values may be unbounded.

m |Σ| k ` c Complexity

- - - - 0 P [Observation 1]
- 2 - - - P [Observation 1]
- - 1 - - P [Theorem 4]
- - 2 2 - P [Theorem 5]
- 3 2 - - P [Theorem 6]
- - 2 ~ 1 FPT [Corollary 2]
- ~ 2 - 1 FPT [Corollary 2]
~ - ~ ~ ~ FPT [Lemma 2]
- 3 3 3 1 NP-hard [Theorem 1]
2 - 2 - 2 NP-hard [Theorem 2]

Our main technical contributions are as follows. Concerning the computational intractability
results with respect to even strongly-restricted cases, we put much effort into finding the “right”
problems to reduce from in order to make the reductions as natural and expressive as possible,
thus making non-obvious connections to fields, such as geometric set covering. Moreover, seemingly
for the first time in the context of co-clustering, we demonstrate that the inherent NP-hardness does
not stem from the permutation combinatorics behind: the problem remains NP-hard when all clusters
must consist of consecutive rows or columns. This is a strong constraint (the search space size is
tremendously reduced, basically from km · `n to (m

k ) · (
n
`)), which directly gives a polynomial-time

algorithm for k and ` being constants. Note that in the general case, we have NP-hardness for
constant k and `. Concerning the algorithmic results, we develop a novel reduction to SAT solving
(instead of the standard reductions to integer linear programming). Notably, however, as opposed to
previous work on polynomial-time approximation algorithms [2,8], our methods seem to be tailored
for the two-dimensional case (co-clustering), and the higher dimensional case (tensor clustering)
appears to be out of reach.

2. Formal Definitions and Preliminaries

We use standard terminology for matrices. A matrix A = (aij) ∈ Rm×n consists of m rows
and n columns where aij denotes the entry in row i and column j. We define [n] := {1, 2, . . . , n}
and [i, j] := {i, i + 1, . . . , j} for n, i, j ∈ N. For simplicity, we neglect the running times of
arithmetical operations throughout this paper. Since we can assume that the input values of A are
upper-bounded polynomially in the size mn of A (Observation 2), the blow-up in the running times
is at most polynomial.
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2.1. Problem Definition

We follow the terminology of Anagnostopoulos et al. [2]. For a matrix A ∈ Rm×n,
a (k, `)-co-clustering is a pair (I ,J ) consisting of a k-partition I = {I1, . . . , Ik} of the row indices [m]

of A (that is, Ii ⊆ [m] for all 1 ≤ i ≤ k, Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ k and
⋃k

i=1 Ii = [m])
and an `-partition J = {J1, . . . , J`} of the column indices [n] of A. We call the elements of I (resp.,
J ) row blocks (column blocks, resp.). Additionally, we require I and J to not contain empty sets.
For (r, s) ∈ [k]× [`], the set Ars := {aij ∈ A | (i, j) ∈ Ir × Js} is called a cluster.

The cost of a co-clustering (under maximum norm, which is the only norm we consider
here) is defined as the maximum difference between any two entries in any cluster, formally
cost∞(I ,J ) := max(r,s)∈[k]×[`](maxArs−minArs). Herein, maxArs (minArs) denotes the maximum
(minimum, resp.) entry in Ars.

The decision variant of CO-CLUSTERINGL with maximum norm is as follows.

CO-CLUSTERING∞

Input: A matrix A ∈ Rm×n, integers k, ` ∈ N and a cost c ≥ 0.
Question: Is there a (k, `)-co-clustering (I ,J ) of A with cost∞(I ,J ) ≤ c?

See Figure 1 for an introductory example. We define Σ := {aij ∈ A | (i, j) ∈ [m] × [n]}
to be the alphabet of the input matrix A (consisting of the numerical values that occur in A).
Note that |Σ| ≤ mn. We use the abbreviation (k, `)-CO-CLUSTERING∞ to refer to CO-CLUSTERING∞

with constants k, ` ∈ N, and by (k, ∗)-CO-CLUSTERING∞, we refer to the case where only k is constant
and ` is part of the input. Clearly, CO-CLUSTERING∞ is symmetric with respect to k and ` in the sense
that any (k, `)-co-clustering of a matrix A is equivalent to an (`, k)-co-clustering of the transposed
matrix AT . Hence, we always assume that k ≤ `.

0 4 3 0
2 2 1 3
1 3 4 1

A =

0 3 0 4
2 1 3 2
1 4 1 3

J1 J2

I1

I2

J1 = {1, 3, 4}, J2 = {2}
I1 = {1}, I2 = {2, 3}

0 0 4 3
1 1 3 4
2 3 2 1

J1 J2

I1

I2

J1 = {1, 4}, J2 = {2, 3}
I1 = {2}, I2 = {1, 3}

Figure 1. The example shows two (2, 2)-co-clusterings (middle and right) of the same matrix A
(left-hand side). It demonstrates that by sorting rows and columns according to the co-clustering,
the clusters can be illustrated as submatrices of this (permuted) input matrix. The cost of
the (2, 2)-co-clustering in the middle is three (because of the two left clusters), and that of the
(2, 2)-co-clustering on the right-hand side is one.

We next collect some simple observations. First, determining whether there is a cost-zero
(perfect) co-clustering is easy. Moreover, since, for a binary alphabet, the only interesting case is a
perfect co-clustering, we get the following.

Observation 1. CO-CLUSTERING∞ is solvable in O(mn) time for cost zero and also for any size-two alphabet.

Proof. Let (A, k, `, 0) be a CO-CLUSTERING∞ input instance. For a (k, `)-co-clustering with cost zero,
it holds that all entries of a cluster are equal. This is only possible if there are at most k different rows
and at most ` different columns in A, since otherwise, there will be a cluster containing two different
entries. Thus, the case c = 0 can be solved by lexicographically sorting the rows and columns of A
in O(mn) time (e.g., using radix sort).
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We further observe that the input matrix can, without loss of generality, be assumed
to contain only integer values (by some rescaling arguments preserving the distance relations
between elements).

Observation 2. For any CO-CLUSTERING∞-instance with arbitrary alphabet Σ ⊂ R, one can find
in O(|Σ|2) time an equivalent instance with alphabet Σ′ ⊂ Z and cost value c′ ∈ N.

Proof. We show that for any instance with arbitrary alphabet Σ ⊂ R and cost c ≥ 0, there exists
an equivalent instance with Σ′ ⊂ Z and c′ ∈ N. Let σi be the i-th element of Σ with respect to
any fixed ordering. The idea is that the cost value c determines which elements of Σ are allowed to
appear together in a cluster of a cost-c co-clustering. Namely, in any cost-c co-clustering, two elements
σi 6= σj can occur in the same cluster if and only if |σi − σj| ≤ c. These constraints can be encoded
in an undirected graph Gc := (Σ, E) with E := {{σi, σj} | σi 6= σj ∈ Σ, |σi − σj| ≤ c}, where each
vertex corresponds to an element of Σ, and there is an edge between two vertices if and only if the
corresponding elements can occur in the same cluster of a cost-c co-clustering.

Now, observe that Gc is a unit interval graph, since each vertex σi can be represented by the
length-c interval [σi, σi + c], such that it holds {σi, σj} ∈ E ⇔ [σi, σi + c] ∩ [σj, σj + c] 6= ∅ (we assume
all intervals to contain real values). By properly shifting and rescaling the intervals, one can find an
embedding of Gc, where the vertices σi are represented by length-c′ intervals [σ′i , σ′i + c′] of equal
integer length c′ ∈ N with integer starting points σ′i ∈ Z, such that 0 ≤ σ′i ≤ |Σ|2, c′ ≤ |Σ|,
and |σ′i − σ′j | ≤ c′ ⇔ |σi − σj| ≤ c. Hence, replacing the elements σi by σ′i in the input matrix
yields a matrix that has a cost-c′ co-clustering if and only if the original input matrix has a cost-c
co-clustering. Thus, for any instance with alphabet Σ and cost c, there is an equivalent instance with
alphabet Σ′ ⊆ {0, . . . , |Σ|2} and cost c′ ∈ {0, . . . , |Σ|}. Consequently, we can upper-bound the values
in Σ′ by |Σ|2 ≤ (mn)2.

Due to Observation 2, we henceforth assume for the rest of the paper that the input matrix
contains integers.

2.2. Parameterized Algorithmics

We briefly introduce the relevant notions from parameterized algorithmics (refer to the
monographs [12–14] for a detailed introduction). A parameterized problem, where each instance
consists of the “classical” problem instance I and an integer ρ called parameter, is fixed-parameter
tractable (FPT) if there is a computable function f and an algorithm solving any instance in f (ρ) · |I|O(1)

time. The corresponding algorithm is called an FPT-algorithm.

3. Intractability Results

In the previous section, we observed that CO-CLUSTERING∞ is easy to solve for binary input
matrices (Observation 1). In contrast to this, we show in this section that its computational complexity
significantly changes as soon as the input matrix contains at least three different entries. In fact,
even for very restricted special cases, we can show NP-hardness. These special cases comprise
co-clusterings with a constant number of clusters (Section 3.1) or input matrices with only two rows
(Section 3.2). We also show the NP-hardness of finding co-clusterings where the row and column
partitions are only allowed to contain consecutive blocks (Section 3.3).

3.1. Constant Number of Clusters

We start by showing that for input matrices containing three different entries, CO-CLUSTERING∞

is NP-hard even if the co-clustering consists only of nine clusters.

Theorem 1. (3, 3)-CO-CLUSTERING∞ is NP-hard for Σ = {0, 1, 2}.
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Proof. We prove NP-hardness by reducing from the NP-complete 3-COLORING [15], where the task
is to partition the vertex set of a undirected graph into three independent sets. Let G = (V, E)
be a 3-COLORING instance with V = {v1, . . . , vn} and E = {e1, . . . , em}. We construct a
(3, 3)-CO-CLUSTERING∞ instance (A ∈ {0, 1, 2}m×n, k := 3, ` := 3, c := 1) as follows.
The columns of A correspond to the vertices V, and the rows correspond to the edges E. For an
edge ei = {vj, vj′} ∈ E with j < j′, we set aij := 0 and aij′ := 2. All other matrix entries are set to 1.
Hence, each row corresponding to an edge {vj, vj′} consists of 1-entries except for the columns j and j′,
which contain 0 and 2 (see Figure 2). Thus, every co-clustering of A with a cost at most c = 1 puts
column j and column j′ into different column blocks. We next prove that there is a (3, 3)-co-clustering
of A with a cost at most c = 1 if and only if G admits a 3-coloring.

1

2

3 4

5

6

1 2 1 1 1 0
1 1 1 2 0 1
1 2 1 0 1 1
1 1 1 0 1 2
1 2 0 1 1 1
1 1 0 1 2 1
2 1 0 1 1 1
0 1 1 1 1 2
0 1 1 1 2 1
2 6 1 4 3 5

{2, 3}
{2, 5}
{1, 2}
{1, 3}
{1, 6}
{4, 5}
{4, 6}
{3, 4}
{5, 6}

Figure 2. An illustration of the reduction from 3-COLORING. Left: An undirected graph with a
proper 3-coloring of the vertices, such that no two neighboring vertices have the same color. Right:
The corresponding matrix where the columns are labeled by vertices and the rows by edges with a
(3, 3)-co-clustering of cost one. The coloring of the vertices determines the column partition into three
columns blocks, whereas the row blocks are generated by the following simple scheme: edges where
the vertex with a smaller index is red/blue (dark)/yellow (light) are in the first/second/third row
block (e.g., the red-yellow edge {2, 5} is in the first block; the blue-red edge {1, 6} is in the second
block; and the yellow-blue edge {3, 4} is in the third block).

First, assume that V1, V2, V3 is a partition of the vertex set V into three independent sets.
We define a (3, 3)-co-clustering (I ,J ) of A as follows. The column partition J := {J1, J2, J3}
one-to-one corresponds to the three sets V1, V2, V3, that is Js := {i | vi ∈ Vs} for all s ∈ {1, 2, 3}.
By the construction above, each row has exactly two non-1-entries being 0 and 2. We define the
type of a row to be a permutation of 0, 1, 2, denoting which of the column blocks J1, J2, J3 contain the
0-entry and the 2-entry. For example, a row is of type (2, 0, 1) if it has a 2 in a column of J1 and a 0
in a column of J2. The row partition I := {I1, I2, I3} is defined as follows: All rows of type (0, 2, 1)
or (0, 1, 2) are put into I1. Rows of type (2, 0, 1) or (1, 0, 2) are contained in I2, and the remaining rows
of type (2, 1, 0) or (1, 2, 0) are contained in I3. Clearly, for (I ,J ), it holds that the non-1-entries in any
cluster are either all 0 or all 2, implying that cost∞(I ,J ) ≤ 1.

Next, assume that (I , {J1, J2, J3}) is a (3, 3)-co-clustering of A with a cost at most 1. The
vertex sets V1, V2, V3, where Vs contains the vertices corresponding to the columns in Js, form three
independent sets: if an edge connects two vertices in Vs, then the corresponding row would have the
0-entry and the 2-entry in the same column block Js, yielding a cost of 2, which is a contradiction.

Theorem 1 can even be strengthened further.

Corollary 1. CO-CLUSTERING∞ with Σ = {0, 1, 2} is NP-hard for any k ≥ 3, even when ` ≥ 3 is fixed,
and the column blocks are forced to have equal sizes |J1| = . . . = |J`|.
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Proof. Note that the reduction in Theorem 1 clearly holds for any k ≥ 3. Furthermore, `-COLORING

with balanced partition sizes is still NP-hard for ` ≥ 3 [15].

3.2. Constant Number of Rows

The reduction in the proof of Theorem 1 outputs matrices with an unbounded number of rows
and columns containing only three different values. We now show that also the “dual restriction”
is NP-hard, that is the input matrix only has a constant number of rows (two), but contains
an unbounded number of different values. Interestingly, this special case is closely related to a
two-dimensional variant of geometric set covering.

Theorem 2. CO-CLUSTERING∞ is NP-hard for k = m = 2 and unbounded alphabet size |Σ|.

Proof. We give a polynomial-time reduction from the NP-complete BOX COVER problem [16]. Given
a set P ⊆ Z2 of n points in the plane and ` ∈ N, BOX COVER is the problem to decide whether there
are ` squares S1, . . . , S`, each with side length two, covering P, that is P ⊆ ⋃

1≤s≤` Ss.
Let I = (P, `) be a BOX COVER instance. We define the instance I′ := (A, k, `′, c) as follows:

The matrix A ∈ Z2×n has the points p1, . . . , pn in P as columns. Further, we set k := 2, `′ := `, c := 2.
See Figure 3 for a small example.

0
0

1

1

2

2

3

3

4

4

5

5

3 1 2 4 5 0 2
0 1 2 3 5 4 5

Figure 3. Example of a BOX COVER instance with seven points (left) and the corresponding
CO-CLUSTERING∞ matrix containing the coordinates of the points as columns (right). Indicated is
a (2, 3)-co-clustering of cost two where the column blocks are colored according to the three squares
(of side length two) that cover all points.

The correctness can be seen as follows: Assume that I is a yes-instance, that is
there are ` squares S1, . . . , S` covering all points in P. We define J1 := {j | pj ∈ P ∩ S1} and
Js := {j | pj ∈ P ∩ Ss \ (

⋃
1≤l<s Sl)} for all 2 ≤ s ≤ `. Note that (I := {{1}, {2}},J := {J1, . . . , J`})

is a (2, `)-co-clustering of A. Moreover, since all points with indices in Js lie inside a square with
side length two, it holds that each pair of entries in A1s, as well as in A2s has a distance at most two,
implying cost∞(I ,J ) ≤ 2.

Conversely, if I′ is a yes-instance, then let ({{1}, {2}},J ) be the (2, `)-co-clustering of a cost at
most two. For any Js ∈ J , it holds that all points corresponding to the columns in Js have a pairwise
distance at most two in both coordinates. Thus, there exists a square of side length two covering all
of them.

3.3. Clustering into Consecutive Clusters

One is tempted to assume that the hardness of the previous special cases of CO-CLUSTERING∞

is rooted in the fact that we are allowed to choose arbitrary subsets for the corresponding row and
column partitions since the problem remains hard even for a constant number of clusters and also
with equal cluster sizes. Hence, in this section, we consider a restricted version of CO-CLUSTERING∞,
where the row and the column partition has to consist of consecutive blocks. Formally, for row indices
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R = {r1, . . . , rk−1} with 1 < r1 < . . . < rk−1 ≤ m and column indices C = {c1, . . . , c`−1} with
1 < c1 < . . . < c`−1 ≤ n, the corresponding consecutive (k, `)-co-clustering (IR,JC) is defined as:

IR := {{1, . . . , r1 − 1}, {r1, . . . , r2 − 1}, . . . , {rk−1, . . . , m}}
JC := {{1, . . . , c1 − 1}, {c1, . . . , c2 − 1}, . . . , {c`−1, . . . , n}}

The CONSECUTIVE CO-CLUSTERING∞ problem now is to find a consecutive (k, `)-co-clustering
of a given input matrix with a given cost. Again, also this restriction is not sufficient to overcome
the inherent intractability of co-clustering, that is we prove it to be NP-hard. Similarly to Section 3.2,
we encounter a close relation of consecutive co-clustering to a geometric problem, namely to find an
optimal discretization of the plane; a preprocessing problem with applications in data mining [5–7].
The NP-hard OPTIMAL DISCRETIZATION problem [6] is the following: Given a set S = B ∪W of
points in the plane, where each point is either colored black (B) or white (W), and integers k, ` ∈ N,
decide whether there is a consistent set of k horizontal and ` vertical (axis-parallel) lines. That is, the
vertical and horizontal lines partition the plane into rectangular regions, such that no region contains
two points of different colors (see Figure 4 for an example). Here, a vertical (horizontal) line is a
simple number denoting its x- (y-) coordinate.

0 1 0 1 1 1 1 1
1 1 1 1 2 1 1 0
0 1 1 1 1 0 1 1
1 2 1 1 1 1 2 1
0 1 2 1 1 0 1 1

Figure 4. Example instance of OPTIMAL DISCRETIZATION (left) and the corresponding instance
of CONSECUTIVE CO-CLUSTERING∞ (right). The point set consists of white (circles) and black
(diamonds) points. A solution for the corresponding CONSECUTIVE CO-CLUSTERING∞ instance
(shaded clusters) naturally translates into a consistent set of lines.

Theorem 3. CONSECUTIVE CO-CLUSTERING∞ is NP-hard for Σ = {0, 1, 2}.

Proof. We give a polynomial-time reduction from OPTIMAL DISCRETIZATION. Let (S, k, `) be an
OPTIMAL DISCRETIZATION instance; let X := {x∗1 , . . . , x∗n} be the set of different x-coordinates; and
let Y := {y∗1 , . . . , y∗m} be the set of different y-coordinates of the points in S. Note that n and m can
be smaller than |S|, since two points can have the same x- or y-coordinate. Furthermore, assume that
x∗1 < . . . < x∗n and y∗1 < . . . < y∗m. We now define the CONSECUTIVE CO-CLUSTERING∞

instance (A, k + 1, ` + 1, c) as follows: The matrix A ∈ {0, 1, 2}m×n has columns labeled with
x∗1 , . . . , x∗n and rows labeled with y∗1 , . . . , y∗m. For (x, y) ∈ X × Y, the entry axy is defined as zero if
(x, y) ∈ W, two if (x, y) ∈ B and otherwise one. The cost is set to c := 1. Clearly, this instance can be
constructed in polynomial time.

To verify the correctness of the reduction, assume first that I is a yes-instance, that is there is a
set H = {x1, . . . , xk} of k horizontal lines and a set V = {y1, . . . , y`} of ` vertical lines partitioning
the plane consistently. We define row indices R := {r1, . . . , rk}, ri := max{x∗ ∈ X | x∗ ≤ xi}
and column indices C := {c1, . . . , c`}, cj := max{y∗ ∈ Y | y∗ ≤ yj}. For the corresponding
(k + 1, `+ 1)-co-clustering (IR,JC), it holds that no cluster contains both values zero and two, since
otherwise the corresponding partition of the plane defined by H and V contains a region with two
points of different colors, which contradicts consistency. Thus, we have cost∞(IR,JC) ≤ 1, implying
that I′ is a yes-instance.

Conversely, if I′ is a yes-instance, then there exists a (k+ 1, `+ 1)-co-clustering (IR,JC) with cost
at most one, that is no cluster contains both values zero and two. Clearly, then, the k horizontal lines
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xi := min Ii+1, i = 1, . . . , k, and the ` vertical lines yj := min Jj+1, j = 1, . . . , ` are consistent. Hence,
I is a yes-instance.

Note that even though CONSECUTIVE CO-CLUSTERING∞ is NP-hard, there still is some
difference in its computational complexity compared to the general version. In contrast to
CO-CLUSTERING∞, the consecutive version is polynomial-time solvable for constants k and ` by
simply trying out all O(mkn`) consecutive partitions of the rows and columns.

4. Tractability Results

In Section 3, we showed that CO-CLUSTERING∞ is NP-hard for k = ` = 3 and also for k = 2
in the case of unbounded ` and |Σ|. In contrast to these hardness results, we now investigate
which parameter combinations yield tractable cases. It turns out (Section 4.2) that the problem is
polynomial-time solvable for k = ` = 2 and for k = 1. We can even solve the case k = 2 and ` ≥ 3
for |Σ| = 3 in polynomial time by showing that this case is in fact equivalent to the case k = ` = 2.
Note that these tractability results nicely complement the hardness results from Section 3. We further
show fixed-parameter tractability for the parameters size of the alphabet |Σ| and the number of
column blocks ` (Section 4.3).

We start (Section 4.1) by describing a reduction of CO-CLUSTERING∞ to CNF-SAT
(the satisfiability problem for Boolean formulas in conjunctive normal form). Later on, it will be
used in some special cases (see Theorems 5 and 7), because there, the corresponding formula, or an
equivalent formula, only consists of clauses containing two literals, thus being a polynomial-time
solvable 2-SAT instance.

4.1. Reduction to CNF-SAT Solving

In this section, we describe two approaches to solve CO-CLUSTERING∞ via CNF-SAT. The first
approach is based on a straightforward reduction of a CO-CLUSTERING∞ instance to one CNF-SAT
instance with clauses of size at least four. Note that this does not yield any theoretical improvements
in general. Hence, we develop a second approach, which requires solving O(|Σ|k`) many CNF-SAT
instances with clauses of size at most max{k, `, 2}. The theoretical advantage of this approach is
that if k and ` are constants, then there are only polynomially many CNF-SAT instances to solve.
Moreover, the formulas contain smaller clauses (for k ≤ ` ≤ 2, we even obtain polynomial-time
solvable 2-SAT instances). While the second approach leads to (theoretically) tractable special cases,
it is not clear that it also performs better in practice. This is why we conducted some experiments for
empirical comparison of the two approaches (in fact, it turns out that the straightforward approach
allows one to solve larger instances). In the following, we describe the reductions in detail and briefly
discuss the experimental results.

We start with the straightforward polynomial-time reduction from CO-CLUSTERING∞ to
CNF-SAT. We simply introduce a variable xi,r (yj,s) for each pair of row index i ∈ [m] and row block
index r ∈ [k] (respectively, column index j ∈ [n] and column block index s ∈ [`]) denoting whether
the respective row (column) may be put into the respective row (column) block. For each row i,
we enforce that it is put into at least one row block with the clause (xi,1 ∨ . . . ∨ xi,k) (analogously for
the columns). We encode the cost constraints by introducing k` clauses (¬xi,r ∨¬xi′ ,r ∨¬yj,s ∨¬yj′ ,s),
(r, s) ∈ [k]× [`] for each pair of entries aij, ai′ j′ ∈ A with |aij − ai′ j′ | > c. These clauses simply ensure
that aij and ai′ j′ are not put into the same cluster. Note that this reduction yields a CNF-SAT instance
with km + `n variables and O((mn)2k`) clauses of size up to max{k, `, 4}.

Based on experiments (using the PicoSAT Solver of Biere [17]), which we conducted on randomly
generated synthetic data (of size up to m = n = 1000), as well as on a real-world dataset (animals
with attributes dataset [18] with m = 50 and n = 85), we found that we can solve instances up
to k = ` = 11 using the above CNF-SAT approach. In our experiments, we first computed an
upper and a lower bound on the optimal cost value c and then created the CNF-SAT instances for
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decreasing values for c, starting from the upper bound. The upper and the lower bound have been
obtained as follows: Given a (k, `)-CO-CLUSTERING∞ instance on A, solve (k, n)-CO-CLUSTERING∞

and (m, `)-CO-CLUSTERING∞ separately for input matrix A. Let (I1,J1) and (I2,J2) denote
the (k, n)- and (m, `)-co-clustering, respectively, and let their costs be c1 := cost(I1,J1) and
c2 := cost(I2,J2). We take max{c1, c2} as a lower bound and c1 + c2 as an upper bound on
the optimal cost value for an optimal (k, `)-co-clustering of A. It is straightforward to argue the
correctness of the lower bound, and we next show that c1 + c2 is an upper bound. Consider any
pair (i, j), (i′, j′) ∈ [m] × [n], such that i and i′ are in the same row block of I1, and j and j′

are in the same column block of J2 (that is, aij and ai′ j′ are in the same cluster). Then, it holds
|aij − ai′ j′ | ≤ |aij − ai′ j|+ |ai′ j − ai′ j′ | ≤ c1 + c2. Hence, just taking the row partitions from (I1,J1) and
the column partitions from (I2,J2) gives a combined (k, `)-co-clustering of cost at most c1 + c2.

From a theoretical perspective, the above naive approach of solving CO-CLUSTERING∞ via
CNF-SAT does not yield any improvement in terms of polynomial-time solvability. Therefore,
we now describe a different approach, which leads to some polynomial-time solvable special cases.
To this end, we introduce the concept of cluster boundaries, which are basically lower and upper
bounds for the values in a cluster of a co-clustering. Formally, given two integers k, `, an alphabet Σ
and a cost c, we define a cluster boundary to be a matrix U = (urs) ∈ Σk×`. We say that a
(k, `)-co-clustering of A satisfies a cluster boundary U if Ars ⊆ [urs, urs + c] for all (r, s) ∈ [k] × [`].
It can easily be seen that a given (k, `)-co-clustering has cost at most c if and only if it satisfies at least
one cluster boundary (urs), namely the one with urs = minArs.

The following “subtask” of CO-CLUSTERING∞ can be reduced to a certain CNF-SAT instance:
Given a cluster boundary U and a CO-CLUSTERING∞ instance I, find a co-clustering for I that
satisfies U . The polynomial-time reduction provided by the following lemma can be used to
obtain exact CO-CLUSTERING∞ solutions with the help of SAT solvers, and we use it in our
subsequent algorithms.

Lemma 1. Given a CO-CLUSTERING∞-instance (A, k, `, c) and a cluster boundary U , one can construct
in polynomial time a CNF-SAT instance φ with at most max{k, `, 2} variables per clause, such that φ is
satisfiable if and only if there is a (k, `)-co-clustering of A, which satisfies U .

Proof. Given an instance (A, k, l, c) of CO-CLUSTERING∞ and a cluster boundary U = (urs) ∈ Σk×`,
we define the following Boolean variables: For each (i, r) ∈ [m]× [k], the variable xi,r represents the
expression “row i could be put into row block Ir”. Similarly, for each (j, s) ∈ [n]× [`], the variable yj,s
represents that “column j could be put into column block Js”.

We now define a Boolean CNF formula φA,U containing the following clauses: a clause
Ri := (xi,1 ∨ xi,2 ∨ . . . ∨ xi,k) for each row i ∈ [m] and a clause Cj := (yj,1 ∨ yj,2 ∨ . . . ∨ yj,`) for
each column j ∈ [n]. Additionally, for each (i, j) ∈ [m] × [n] and each (r, s) ∈ [k] × [`], such that
element aij does not fit into the cluster boundary at coordinate (r, s), that is aij /∈ [urs, urs + c], there is
a clause Bijrs := (¬xi,r ∨¬yj,s). Note that the clauses Ri and Cj ensure that row i and column j are put
into some row and some column block, respectively. The clause Bijrs expresses that it is impossible
to have both row i in block Ir and column j in block Js if aij does not satisfy urs ≤ aij ≤ urs + c.
Clearly, φA,U is satisfiable if and only if there exists a (k, `)-co-clustering of A satisfying the cluster
boundary U . Note that φA,U consists of km + `n variables and O(mnk`) clauses.

Using Lemma 1, we can solve CO-CLUSTERING∞ by solving O(|Σ|k`) many CNF-SAT instances
(one for each possible cluster boundary) with km + `n variables and O(mnk`) clauses of size at
most max{k, `, 2}. We also implemented this approach for comparison with the straightforward
reduction to CNF-SAT above. The bottleneck of this approach, however, is the number of possible
cluster boundaries, which grows extremely quickly. While a single CNF-SAT instance can be solved
quickly, generating all possible cluster boundaries together with the corresponding CNF formulas
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becomes quite expensive, such that we could only solve instances with very small values of |Σ| ≤ 4
and k ≤ ` ≤ 5.

4.2. Polynomial-Time Solvability

We first present a simple and efficient algorithm for (1, ∗)-CO-CLUSTERING∞, that is the variant
where all rows belong to one row block.

Theorem 4. (1, ∗)-CO-CLUSTERING∞ is solvable in O(n(m + log n)) time.

Proof. We show that Algorithm 1 solves (1, ∗)-CO-CLUSTERING∞. In fact, it even computes the
minimum `′, such that A has a (1, `′)-co-clustering of cost c. The overall idea is that with only one
row block all entries of a column j are contained in a cluster in any solution, and thus, it suffices to
consider only the minimum αj and the maximum β j value in column j. More precisely, for a column
block J ⊆ [n] of a solution, it follows that max{β j | j ∈ J} −min{αj | j ∈ J} ≤ c. The algorithm
starts with the column j1 that contains the overall minimum value αj1 of the input matrix, that is
αj1 = min{αj | j ∈ [n]}. Clearly, j1 has to be contained in some column block, say J1. The algorithm
then adds all other columns j to J1 where β j ≤ αj1 + c, removes the columns J1 from the matrix
and recursively proceeds with the column containing the minimum value of the remaining matrix.
We continue with the correctness of the described procedure.

Algorithm 1: Algorithm for (1, ∗)-CO-CLUSTERING∞.

Input: A ∈ Rm×n, ` ≥ 1, c ≥ 0.
Output: A partition of [n] into at most ` blocks yielding a cost of at most c, or no if no such

partition exists.
1 for j← 1 to n do
2 αj ← min{aij | 1 ≤ i ≤ m};
3 β j ← max{aij | 1 ≤ i ≤ m};
4 if β j − αj > c then
5 return no ;

6 N ← [n];
7 for s← 1 to ` do
8 Let js ∈ N be the index such that αjs is minimal;
9 Js ← {j ∈ N | β j − αjs ≤ c};

10 N ← N \ Js;
11 if N = ∅ then
12 return (J1, . . . , Js);

13 return no ;

If Algorithm 1 returns (J1, . . . , J`′) at Line 12, then this is a column partition into `′ ≤ ` blocks
satisfying the cost constraint. First, it is a partition by construction: the sets Js are successively
removed from N until it is empty. Now, let s ∈ [`′]. Then, for all j ∈ Js, it holds αj ≥ αjs
(by definition of js) and β j ≤ αjs + c (by definition of Js). Thus,A1s ⊆ [αjs , αjs + c] holds for all s ∈ [`′],
which yields cost∞({[m]}, {J1, . . . , J`′}) ≤ c.

Otherwise, if Algorithm 1 returns no in Line 5, then it is clearly a no-instance, since the difference
between the maximum and the minimum value in a column is larger than c. If no is returned in
Line 13, then the algorithm has computed column indices js and column blocks Js for each s ∈ [`],
and there still exists at least one index j`+1 in N when the algorithm terminates. We claim that
the columns j1, . . . , j`+1 all have to be in different blocks in any solution. To see this, consider any
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s, s′ ∈ [`+ 1] with s < s′. By construction, js′ /∈ Js. Therefore, β js′ > αjs + c holds, and columns js
and js′ contain elements with distance more than c. Thus, in any co-clustering with cost at most c,
columns j1, . . . , j`+1 must be in different blocks, which is impossible with only ` blocks. Hence,
we indeed have a no-instance.

The time complexity is seen as follows. The first loop examines in O(mn) time all elements of
the matrix. The second loop can be performed in O(n) time if the αj and the β j are sorted beforehand,
requiring O(n log n) time. Overall, the running time is in O(n(m + log n)).

From now on, we focus on the k = 2 case, that is we need to partition the rows into two blocks.
We first consider the simplest case, where also ` = 2.

Theorem 5. (2, 2)-CO-CLUSTERING∞ is solvable in O(|Σ|2mn) time.

Proof. We use the reduction to CNF-SAT provided by Lemma 1. First, note that a cluster boundary
U ∈ Σ2×2 can only be satisfied if it contains the elements min Σ and min{a ∈ Σ | a ≥ max Σ− c}. The
algorithm enumerates all O(|Σ|2) of these cluster boundaries. For a fixed U , we construct the Boolean
formula φA,U . Observe that this formula is in two-CNF form: The formula consists of k-clauses,
`-clauses and 2-clauses, and we have k = ` = 2. Hence, we can determine whether it is satisfiable in
linear time [19] (note that the size of the formula is in O(mn)). Overall, the input is a yes-instance if
and only if φA,U is satisfiable for some cluster boundary U .

Finally, we show that it is possible to extend the above result to any number of column blocks
for size-three alphabets.

Theorem 6. (2, ∗)-CO-CLUSTERING∞ is O(mn)-time solvable for |Σ| = 3.

Proof. Let I = (A ∈ {α, β, γ}m×n, k = 2, `, c) be a (2, ∗)-CO-CLUSTERING∞ instance. We assume
without loss of generality that α < β < γ. The case ` ≤ 2 is solvable in O(mn) time by Theorem 5.
Hence, it remains to consider the case ` ≥ 3. As |Σ| = 3, there are four potential values for
a minimum-cost (2, `)-co-clustering. Namely, cost zero (all cluster entries are equal), cost β − α,
cost γ − β and cost γ − α. Since any (2, `)-co-clustering is of cost at most γ − α and because it
can be checked in O(mn) time whether there is a (2, `)-co-clustering of cost zero (Observation 1),
it remains to check whether there is a (2, `)-co-clustering between these two extreme cases, that is
for c ∈ {β− α, γ− β}.

Avoiding a pair (x, y) ∈ {α, β, γ}2 means to find a co-clustering without a cluster containing x
and y. If c = max{β − α, γ − β} (Case 1), then the problem comes down to finding a
(2, `)-co-clustering avoiding the pair (α, γ). Otherwise (Case 2), the problem is to find a
(2, `)-co-clustering avoiding the pair (α, γ) and, additionally, either (α, β) or (β, γ).

Case 1. Finding a (2, `)-co-clustering avoiding (α, γ):

In this case, we substitute α := 0, β := 1 and γ := 2. We describe an algorithm for finding a
(2, `)-co-clustering of cost one (avoiding (0, 2)). We assume that there is no (2, `− 1)-co-clustering of
cost one (iterating over all values from two to `). Consider a (2, `)-co-clustering (I ,J = {J1, . . . , J`})
of cost one, that is for all (r, s) ∈ [2] × [`], it holds Ars ⊆ {0, 1} or Ars ⊆ {1, 2}. For s 6= t ∈ [`],
let (I ,Jst := J \ {Js, Jt} ∪ {Js ∪ Jt}) denote the (2, ` − 1)-co-clustering where the column blocks Js

and Jt are merged. By assumption, for all s 6= t ∈ [`], it holds that cost∞(I ,Jst) > 1, since
otherwise, we have found a (2, ` − 1)-co-clustering of cost one. It follows that {0, 2} ⊆ A1s ∪ A1t
or {0, 2} ⊆ A2s ∪A2t holds for all s 6= t ∈ [`]. This can only be true for |J | = 2.

This proves that there is a (2, `)-co-clustering of cost one if and only if there is a (2, 2)-co-clustering
of cost one. Hence, Theorem 5 shows that this case is O(mn)-time solvable.
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Case 2. Finding a (2, `)-co-clustering avoiding (α, γ) and (α, β) (or (β, γ)):

In this case, we substitute α := 0, γ := 1 and β := 1 if (α, β) has to be avoided, or β := 0 if
(β, γ) has to be avoided. It remains to determine whether there is a (2, `)-co-clustering with cost zero,
which can be done in O(mn) time due to Observation 1.

4.3. Fixed-Parameter Tractability

We develop an algorithm solving (2, ∗)-CO-CLUSTERING∞ for c = 1 based on our reduction to
CNF-SAT (see Lemma 1). The main idea is, given matrix A and cluster boundary U , to simplify
the Boolean formula φA,U into a 2-SAT formula, which can be solved efficiently. This is made
possible by the constraint on the cost, which imposes a very specific structure on the cluster boundary.
This approach requires to enumerate all (exponentially many) possible cluster boundaries, but yields
fixed-parameter tractability for the combined parameter (`, |Σ|).

Theorem 7. (2, ∗)-CO-CLUSTERING∞ is O(|Σ|3`n2m2)-time solvable for c = 1.

In the following, we prove Theorem 7 in several steps.
A first sub-result for the proof of Theorem 7 is the following lemma, which we use to solve the

case where the number 2m of possible row partitions is less than |Σ|`.

Lemma 2. For a fixed row partition I , one can solve CO-CLUSTERING∞ in O(|Σ|k`mn`) time. Moreover,
CO-CLUSTERING∞ is fixed-parameter tractable with respect to the combined parameter (m, k, `, c).

Proof. Given a fixed row partition I , the algorithm enumerates all |Σ|k` different cluster
boundaries U = (urs). We say that a given column j fits in column block Js if, for each r ∈ [k] and
i ∈ Ir, we have aij ∈ [urs, urs + c] (this can be decided in O(m) time for any pair (j, s)). The input is a
yes-instance if and only if for some cluster boundary U , every column fits in at least one column block.

Fixed-parameter tractability with respect to (m, k, `, c) is obtained from two simple further
observations. First, all possible row partitions can be enumerated in O(km) time. Second, since each
of the k` clusters contains at most c + 1 different values, the alphabet size |Σ| for yes-instances is
upper-bounded by (c + 1)k`.

The following lemma, also used for the proof of Theorem 7, yields that even for the most difficult
instances, there is no need to consider more than two column clusters to which any column can
be assigned.

Lemma 3. Let I = (A ∈ Σm×n, k = 2, `, c = 1) be an instance of (2, ∗)-CO-CLUSTERING∞, h1 be an
integer, 0 < h1 < m, and U = (urs) be a cluster boundary with pairwise different columns, such that
|u1s − u2s| = 1 for all s ∈ [`].

Then, for any column j ∈ [n], two indices sj,1 and sj,2 can be computed in time O(mn), such that if I has
a solution ({I1, I2}, {J1, . . . , J`}) satisfying U with |I1| = h1, then it has one where each column j is assigned
to either Jsj,1 or Jsj,2 .

Proof. We write h2 = m− h1 (h2 = |I2| > 0 for any solution with h1 = |I1|). Given a column j ∈ [n]
and any element a ∈ Σ, we write ]a

j for the number of entries with value a in column j.
Consider a column block Js ⊆ [n], s ∈ [`]. Write α, β, γ for the three values, such that

U1s \U2s = {α}, U1s ∩ U2s = {β} and U2s \ U1s = {γ}. Note that {α, β, γ} = {β − 1, β, β + 1}.
We say that column j fits into column block Js if the following three conditions hold:

1. ]x
j = 0 for any x /∈ {α, β, γ},

2. ]α
j ≤ h1 and

3. ]γ
j ≤ h2.
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Note that if Condition (1) is violated, then the column contains an element that is neither in U1s
nor in U2s. If Condition (2) (respectively Condition (3)) is violated, then there are more than h1

(respectively h2) rows that have to be in row block I1 (respectively I2). Thus, if j does not fit into
a column block Js, then there is no solution where j ∈ Js. We now need to find out, for each column,
to which fitting column blocks it should be assigned.

Intuitively, we now prove that in most cases, a column has at most two fitting column blocks
and, in the remaining cases, at most two pairs of “equivalent” column blocks.

Consider a given column j ∈ [n]. Write a = min{aij | i ∈ [m]} and b = max{aij | i ∈ [m]}.
If b ≥ a + 3, then Condition (1) is always violated: j does not fit into any column block, and the
instance is a no-instance. If b = a + 2, then, again, by Condition (1), j can only fit into a column block
where {u1s, u2s} = {a, a + 1}. There are at most two such column blocks: we write sj,1 and sj,2
for their indices (sj,1 = sj,2 if a single column block fits). The other easy case is when b = a,
i.e., all values in column j are equal to a. If j fits into column block Js, then, with Conditions (2)
and (3), a ∈ U1s ∩U2s, and Js is one of the at most two column blocks having β = a: again, we write
sj,1 and sj,2 for their indices.

Finally, consider a column j with b = a + 1, and let s ∈ [`] be such that j fits into Js. Then,
by Condition (1), the “middle-value” for column block Js is β ∈ {a, b}. The pair (u1s, u2s) must be
from {(a− 1, a), (a, a− 1), (a, b), (b, a)}. We write Js1 , . . . , Js4 for the four column blocks (if they exist)
corresponding to these four cases. We define sj,1 = s1 if j fits into Js1 , and sj,1 = s3 otherwise. Similarly,
we define sj,2 = s2 if j fits into Js2 , and sj,2 = s4 otherwise.

Consider a solution assigning j to s∗ ∈ {s1, s3}, with s∗ 6= sj,1. Since j must fit into Js∗ , the only
possibility is that s∗ = s3 and sj,1 = s1. Thus, j fits into both Js1 and Js3 , so Conditions (2) and (3)
imply ]a

j ≤ h1 and ]b
j ≤ h2. Since ]a

j + ]b
j = h1 + h2 = m, we have ]a

j = h1 and ]b
j = h2. Thus, placing j

in either column block yields the same row partition, namely I1 = {i | aij = a} and I2 = {i | aij = b}.
Hence, the solution assigning j to Js3 , can assign it to Js1 = Jsj,1 , instead, without any further need
for modification.

Similarly, with s2 and s4, any solution assigning j to Js2 or Js4 can assign it to Jsj,2 without any
other modification. Thus, since any solution must assign j to one of {Js1 , . . . , Js4}, it can assign it to
one of {Jsj,1 , Jsj,2} instead.

We now give the proof of Theorem 7.

Proof. Let I = (A ∈ Σm×n, k = 2, `, c = 1) be a (2, ∗)-CO-CLUSTERING∞ instance. The proof is by
induction on `. For ` = 1, the problem is solvable in O(n(m + log n)) time (Theorem 4). We now
consider general values of `. Note that if ` is large compared to m (that is, 2m < |Σ|`), then one can
directly guess the row partition and run the algorithm of Lemma 2. Thus, for the running time bound,
we now assume that ` < m. By Observation 2, we can assume that Σ ⊂ Z.

Given a (2, `)-co-clustering (I = {{1}, {2}},J ), a cluster boundary U = (urs) satisfied
by (I ,J ), and Urs = [urs, urs + c], each column block Js ∈ J is said to be:

• with equal bounds if U1s = U2s,
• with non-overlapping bounds if U1s ∩U2s = ∅,
• with properly overlapping bounds otherwise.

We first show that instances implying a solution containing at least one column block with equal
or non-overlapping bounds can easily be dealt with.

Claim 1. If the solution contains a column-block with equal bounds, then it can be computed in
O(|Σ|2`n2m2) time.

Proof. Assume, without loss of generality, that the last column block, J`, has equal bounds. We try
all possible values of u = u1`. Note that column block J` imposes no restrictions on the row
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partition. Hence, it can be determined independently of the rest of the co-clustering. More precisely,
any column with all values in U1` = U2` = [u, u + c] can be put into this block, and all other columns
have to end up in the ` − 1 other blocks, thus forming an instance of (2, ` − 1)-CO-CLUSTERING∞.
By induction, each of these cases can be tested in O(|Σ|2(`−1)n2m(` − 1)) time. Since we test
all values of u, this procedure finds a solution with a column block having equal bounds in
O(|Σ| · |Σ|2(`−1)n2m(`− 1)) = O(|Σ|2`n2m2) time.

Claim 2. If the solution contains a (non-empty) column-block with non-overlapping bounds, then it can be
computed in O(|Σ|2`n2m2) time.

Proof. Write s for the index of the column block Js with non-overlapping bounds, and assume that,
without loss of generality, u1s + c < u2s. We try all possible values of u = u2s, and we examine each
column j ∈ [n]. We remark that the row partition is entirely determined by column j if it belongs to
column block Js. That is, if j ∈ Js, then I1 = {i | aij < u} and I2 = {i | aij ≥ u}. Using the algorithm
described in Lemma 2, we deduce the column partition in O(|Σ|2`−1nm`) time, which is bounded
by O(|Σ|2`n2m2).

We can now safely assume that the solution contains only column blocks with properly
overlapping bounds. In a first step, we guess the values of the cluster boundary U = (urs). Note that,
for each s ∈ [`], we only need to consider the cases where 0 < |u1s − u2s| ≤ c, that is, for c = 1,
we have u2s = u1s± 1. Note also that, for any two distinct column blocks Js and Js′ , we have u1s 6= u1,s′

or u2s 6= u2,s′ . We then enumerate all possible values of h1 = |I1| > 0 (the height of the first row block),
and we write h2 = m− h1 = |I2| > 0. Overall, there are at most (2|Σ|)`m cases to consider.

Using Lemma 3, we compute integers sj,1, sj,2 for each column j, such that any solution satisfying
the above conditions (cluster boundary U and |I1| = h1) can be assumed to assign each column j to
one of Jsj,1 or Jsj,2 .

We now introduce a 2-SAT formula allowing us to simultaneously assign the rows and columns
to the possible blocks. Let φA,U be the formula as provided by Lemma 1. Create a formula φ′

from φA,U where, for each column j ∈ [n], the column clause Cj is replaced by the smaller clause
C′j := (yj,sj,1 ∨ yj,sj,2). Note that φ′ is a 2-SAT formula, since all other clauses Ri or Bijrs already contain
at most two literals.

If φ′ is satisfiable, then φA,U is satisfiable, and A admits a (2, `)-co-clustering satisfying U .
Conversely, if A admits a (2, `)-co-clustering satisfying U with |I1| = h1, then, by the discussion
above, there exists a co-clustering where each column j is in one of the column blocks Jsj,1 or Jsj,2 .
In the corresponding Boolean assignment, each clause of φA,U is satisfied and each new column
clause of φ′ is also satisfied. Hence, φ′ is satisfiable. Overall, for each cluster boundary U and each h1,
we construct and solve the formula φ′ defined above. The matrix A admits a (2, `)-co-clustering of
cost one if and only if φ′ is satisfiable for some U and h1.

The running time for constructing and solving the formula φ′, for any fixed cluster boundary U
and any height h1 ∈ [m], is in O(nm), which gives a running time of O((2|Σ|)`nm2) for this last part.
Overall, the running time is thus O(|Σ|2`n2m2 + |Σ|2`n2m2 + (2|Σ|)`nm2) = O(|Σ|2`n2m2).

Finally, we obtain the following simple corollary.

Corollary 2. (2, ∗)-CO-CLUSTERING∞ with c = 1 is fixed-parameter tractable with respect to parameter |Σ|
and with respect to parameter `.

Proof. Theorem 7 presents an FPT-algorithm with respect to the combined parameter (|Σ|, `).
For (2, ∗)-CO-CLUSTERING∞ with c = 1, both parameters can be polynomially upper-bounded
within each other. Indeed, ` < |Σ|2 (otherwise, there are two column blocks with identical cluster
boundaries, which could be merged) and |Σ| < 2(c + 1)` = 4` (each column block may contain two
intervals, each covering at most c + 1 elements).



Algorithms 2016, 9, 17 16 of 17

5. Conclusions

Contrasting previous theoretical work on polynomial-time approximation algorithms [2,8],
we started to closely investigate the time complexity of exactly solving the NP-hard
CO-CLUSTERING∞ problem, contributing a detailed view of its computational complexity landscape.
Refer to Table 1 for an overview on most of our results.

Several open questions derive from our work. Perhaps the most pressing open question
is whether the case k = 2 and ` ≥ 3 is polynomial-time solvable or NP-hard in general.
So far, we only know that (2, ∗)-CO-CLUSTERING∞ is polynomial-time solvable for ternary matrices
(Theorem 6). Another open question is the computational complexity of higher-dimensional
co-clustering versions, e.g., on three-dimensional tensors as input (the most basic case here
corresponds to (2,2,2)-CO-CLUSTERING∞, that is partitioning each dimension into two subsets).
Indeed, other than the techniques for deriving approximation algorithms [2,8], our exact methods
do not seem to generalize to higher dimensions. Last, but not least, we do not know whether
CONSECUTIVE CO-CLUSTERING∞ is fixed-parameter tractable or W[1]-hard with respect to the
combined parameter (k, `).

We conclude with the following more abstract vision on future research: Note that for the
maximum norm, the cost value c defines a “conflict relation” on the values occurring in the input
matrix. That is, for any two numbers σ, σ′ ∈ Σ with |σ − σ′| > c, we know that they must end up
in different clusters. These conflict pairs completely determine all constraints of a solution, since all
other pairs can be grouped arbitrarily. This observation can be generalized to a graph model. Given a
“conflict relation” R ⊆ (Σ

2) determining which pairs are not allowed to be put together into a cluster,
we can define the “conflict graph” (Σ, R). Studying co-clusterings in the context of such conflict
graphs and their structural properties could be a promising and fruitful direction for future research.
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