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Summary

1. Occupancy estimates can inform biodiversity managers about the distribution of elusive

species, such as the Pyrenean desman Galemys pyrenaicus, a small semi-aquatic mammal that

lives along streams. Occupancy models rely on replication within a sampling site and provide

estimates of the probability of detection. However, we still do not know how occupancy and

detection estimates obtained from spatial vs. temporal replications differ or the appropriate-

ness of using one or the other when cost and logistics make one approach prohibitive.

Recently, the Markovian occupancy model has been developed to analyse adjacent spatial

replicates and to test for spatial dependence between them. This model has already been

applied to large and highly mobile mammals using trails, but never tested for any species with

linear home ranges.

2. We compared detection and occupancy estimates obtained from both temporal and spatial

sampling designs that were subsequently organized into four data configurations (sites with

both spatial and temporal replicates, adjacent spatial replicates only, temporal replicates only

at the segment and site scales). From that, five occupancy models with different assumptions

(the standard occupancy model, the standard multiscale model, the multiscale model with

Markovian process for detection, the Markovian detection model and the Markovian occu-

pancy model) were used. We also assessed which occupancy model was the most appropriate

for each data configuration to determine whether it is necessary to incorporate correlation

into models.

3. We found that the estimated detection probabilities were relatively high (≥0�58) and simi-

lar when the same model was applied to each data configuration.

4. Spatial replication weakly underestimated occupancy. But when using this design, the

Markovian occupancy model was the most supported and minimized the underestimation of

occupancy, highlighting a spatial dependence between adjacent replicates.

5. Synthesis and applications. We show that a survey based on adjacent spatial replicates for a

mammal living along linear features of the landscape is a good compromise between cost and

occupancy estimates, while using the Markovian occupancy model to estimate detection and

occupancy. Our finding may have wider applications for the monitoring of species especially
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when temporal replicates are difficult or unrealistic. Spatial design, for surveys based on sign

detection, could thus be applied for species with linear home ranges or when surveys are con-

strained by linear habitats.

Key-words: autocorrelation, detection probability, Galemys pyrenaicus, Markovian model,

multiscale model, sign survey

Introduction

Presence–absence data are widely used to determine the

habitat requirements of species or predict their distribu-

tion in unexplored areas (Guisan & Zimmermann 2000).

One widely acknowledged major issue is that false

absences are unavoidable during fieldwork (Gu & Swihart

2004; Gibson, Barrett & Burbidge 2007; Lobo, Jim�enez-

Valverde & Hortal 2010). In species distribution model-

ling, failure to take imperfect detection into account can

introduce a considerable degree of error into spatial

and temporal distribution patterns (Yoccoz, Nichols &

Boulinier 2001). For example, false conclusions can be

reached about the suitability of areas for conservation

actions (Rondinini et al. 2006). Correctly accounting for

false absences is thus important, especially for the conser-

vation of cryptic and secretive species (e.g. Gibson,

Barrett & Burbidge 2007; Durso, Willson & Winne 2011),

for which surveys often rely on recording indirect signs.

Over recent decades, many methods have been developed

to deal with detection issues and to correct the biases they

induce, for example distance sampling (Buckland et al.

2001) or capture–recapture (Pollock et al. 2002). More

recently, MacKenzie et al. (2002, 2006) developed site occu-

pancy modelling (hereafter referred to as ‘standard site

occupancy modelling’), a statistical method that models the

probability that a species occupies some sites even though it

has not been detected with any certainty. This method is

increasingly being successfully used to model the distribu-

tion of various species (e.g. K�ery, Gardner & Monnerat

2010; Olea & Mateo-Tom�as 2011; K�ery, Guillera-Arroita &

Lahoz-Monfort 2013). Site occupancy modelling requires

replication of detection–non-detection data at sampled

sites. Replications at site level are usually temporal (i.e. the

sites are monitored over several successive visits). They

may, however, also be spatial (i.e. sampling several spatial

subunits at each site during a single visit).

Standard site occupancy modelling (MacKenzie et al.

2002, 2006) relies on the assumption that there is no

change in site occupancy during the survey (Rota et al.

2009). Violation of this assumption of closure leads to an

underestimation of the detection probability and an over-

estimation of the occupancy. When temporal replicates

are used, successive visits must therefore be conducted

over a relatively short period. When spatial replicates are

substituted for temporal ones, all the subunits must have

a non-negligible occupancy probability. Thus, the sam-

pling design must take into account the movement

patterns of a species to adhere to the model assumptions

(Kendall & White 2009; Guillera-Arroita 2011). Nichols

et al. (2008) also developed a multiscale occupancy model

(hereafter referred as ‘standard multiscale occupancy

model’) which can be used when both spatial and tempo-

ral replicates are available for the same sites. This model

relaxes the closure assumption by dealing with the situa-

tion in which the species is present at a site, but may be

absent from some survey subunits.

Besides the closure assumption, for the standard site

occupancy model (MacKenzie et al. 2002, 2006), the detec-

tion events of the species must be independent. In the con-

text of temporal replicates, this assumption may be

violated, for instance, if the same observer visits the same

site several times and remembers where to look for signs of

the species’ presence (observer bias hereafter). In the case of

spatial replicates, dependence could arise if the subunits are

not randomly selected (e.g. if they are spatially close

together or sequentially sampled; Hines et al. 2010;

Anderson et al. 2012) and the observer becomes more

attentive after the first detection event. In such situations,

the spatial or temporal correlation between detection events

can be explicitly modelled using a Markovian detection

model (Hines et al. 2010). When data are collected using a

spatial cluster of sampling subunits, spatial autocorrelation

can also arise between adjacent replicates with regard to

species’ presence. To deal with such situations, Hines et al.

(2010) developed a Markovian occupancy model.

To our knowledge, only one study has directly compared

the parameter estimates of occupancy and detection of tem-

poral vs. spatial replicates (Parry et al. 2013). Our work

was prompted by a field survey of a small semi-aquatic

mammal, the Pyrenean desman Galemys pyrenaicus E.

Geoffroy Saint-Hilaire, 1811. Repeated visits to stream

reaches in the Pyrenees to get temporal replicates are time-

consuming and expensive, because of being frequently diffi-

cult to access, and they have to be sampled meticulously by

wading. Spatial replicates therefore offer an appealing,

cost-effective alternative. Since sites are river transects, the

least expensive approach is to use successive portions of riv-

ers as adjacent spatial replicates. The Markovian occu-

pancy model, originally developed for large and highly

mobile mammals using trails such as tigers Panthera tigris,

may also be the most appropriate method to model data

collected along river transects (Hines et al. 2010; Karanth

et al. 2011). The goals of our study were to (i) directly

compare occupancy and detection estimates obtained from

temporal vs. spatial design, and (ii) evaluate whether the



Markovian occupancy model (with autocorrelation) is

supported when spatial adjacent replicates are used, for a

species with a small linear home range.

Materials and methods

STUDY AREA

The French Pyrenees (W1°400–E3°100, N43°080–N42°230) are a

range of mountains approximately 400 km long, covering an area

of 18 176 km² and reaching a maximum elevation of 3298 m

(Fig. 1). Climate and topography are the main factors influencing

the dynamics and flow regime of Pyrenean rivers.

BIOLOGICAL MODEL

The Pyrenean desman is a small, semi-aquatic mammal with a

range restricted to the Pyrenees (Andorra, France and Spain) and

some areas in northern and central Spain, and northern Portugal.

It lives in mountain brooks, cold and well-oxygenated water

courses, and its altitudinal range extends from 15 m (western

French Pyrenees) or 450 m (eastern French Pyrenees) to 2700 m

(N�emoz & Bertrand 2008). The Pyrenean desman has declined

substantially in its distribution, triggering several conservation

regulations (Fernandes et al. 2008). Like many secretive species,

searching for faeces is the most efficient and least cost- and time-

consuming method for surveying this species across a wide geo-

graphic extent (e.g. Kindberg, Ericsson & Swenson 2009). Being

elusive and cryptic, its ecology is still largely unknown. It is not

yet understood whether this species is territorial or why it leaves

its faeces on emergent items.

FIELD SURVEY PROTOCOL

Thirty-four sites (i.e. river transects) were surveyed for this study

(Fig. 1). Previous sampling had reported presence of the Pyrenean

desman in all these sites, as it is more efficient to select sites where

the animal is known to be present than a random selection when

modelling detection probabilities (MacKenzie et al. 2002). Skilled

observers waded river transects to search for faeces. They meticu-

lously inspected each emergent rock, tree root or branch in the

stream. Pyrenean desman faeces were identified from their colour,

size, position and smell. Surveys were conducted during the sum-

mer, when faeces seem to persist longest (Bertrand 1994), to maxi-

mize detectability. The same observer visited five times each site,

between June 7th and October 5th 2012, to obtain temporal repli-

cation data over one season. For each site, visits were at least

1 week apart to limit observer bias. To maximize the abundance of

available signs, we avoided surveys during or after a period of fluc-

tuating water levels or heavy rainfall (Bertrand 1994).

Each site was a riverbed transect, 500 m long, which approxi-

mately matches the mean home range of the species determined by

radiotracking (523 m; SE 50�85; Melero et al. 2012). Each sam-

pling site had five subunits (i.e. segments) of equal length (100 m)

that constituted the adjacent spatial replicates. As ecological

knowledge for the Pyrenean desman is limited (N�emoz et al. 2011),

the optimum segment length was estimated. We chose a length of

100 m as the best compromise between the need to detect signs

when animals are in fact present and that of having more than

three spatial replicates, as recommended by Hines et al. (2010).

SITE OCCUPANCY ANALYSIS

The data configurations used in the analyses are shown in Fig. 2:

the first had both spatial and temporal replicates at the 34 sites

(Fig. 2a), the second had spatial replicates during a single

visit (Fig. 2b), the third had temporal replicates for a single seg-

ment (Fig. 2c), and the fourth had temporal replicates at the site

level (i.e. segments pooled; Fig. 2d). The multiscale models

(Pavlacky et al. 2012) were fitted to both spatial and temporal

replicates, that is the first data configuration. We fitted the

standard site occupancy model (MacKenzie et al. 2002), the

Markovian detection model and the Markovian occupancy model

(Hines et al. 2010) to the last three data configurations.

Standard occupancy model – w(.), p(.)

This modelling approach estimates two key parameters: p, the

probability of detecting the species if the species is in fact present

on the site (i.e. the probability of detection), and w, the probabil-

ity that a site is occupied or used by a species (i.e. the probability

of site occupancy).

Standard multiscale occupancy model – w(.), h(.), p(.)

This model has been used for presence–absence data collected at

two spatial scales (Pavlacky et al. 2012). N sample sites are

subsampled by R spatial segments (spatial replicates). All sampled

Fig. 1. Study area and location of the

sampling sites (black dots, N = 34). Grey

lines indicate the stream network.



sites (and consequently all segments) are also repeatedly visited

(temporal replicates). The parameters of the model are: p, the prob-

ability of detection on a segment at one visit if the sample site and

the segment are in fact occupied; h, the probability of occupancy

for one survey segment if the sampling site is in fact occupied; and

w, the probability of occupancy of a sampling site. The small scale

occupancy, h, is an availability parameter to account for situations

in which the species is present in the sampling site and may be pres-

ent in some survey segments but not in others.

Multiscale occupancy model with Markovian process for

detection – w(.), h(.), p0(.), p1(.)

This multiscale model takes into account the autocorrelation in

detection events between spatial or temporal occasions. Two

parameters are linked to detection: p0, the probability of detec-

tion on one occasion if the site is in fact occupied and the species

was not detected on the previous occasion, and p1, the probabil-

ity of detection on one occasion if the site is in fact occupied and

the species was detected on the previous occasion.

Markovian detection model – w(.), p0(.), p1(.)

This model is derived from the standard occupancy model

(MacKenzie et al. 2002) to account for autocorrelation in detec-

tion between occasions. Detection is modelled as an observable

Markov process, which allows the detection probability for each

occasion to depend on whether or not the species was detected

on the previous occasion. The two parameters linked to detec-

tion, p0 and p1, are similar to those presented for the multiscale

occupancy model with Markovian process for detection.

Markovian occupancy model – w(.), h0(.), h1(.), p(.)

This model was developed for adjacent spatially autocorrelated

selected replicates (i.e. segments; Hines et al. 2010). This model

assumes spatial closure (i.e. occupancy of one spatial replicate

assumes that the other spatial replicates are similarly occupied;

Hines et al. 2010). That is why this model design was specifically

developed for highly mobile species, and the spatial scale of the

sampling sites must be the same as the home range of the species

(or as close to it as possible). In addition to the occupancy prob-

ability measured at the site level (w) and the detection probability

measured at the segment level (p), two probabilities are estimated:

h0, the probability that a species is present on a segment if the

site is actually occupied and the species was absent on the previ-

ous segment, and h1, the probability that a species is present on

the segment if the site is occupied and the species was present on

the previous segment. This model could also be useful in occu-

pancy studies that use temporal replication to test for the tempo-

ral pattern of local occupancy (Hines et al. 2010).

MODEL COMPARISON AND EVALUATION

We used Akaike information criterion (AIC) to assess the relative

fit of the models within each candidate data configuration.

0-1 0-1 0-1 0-1 0-1

One segment

Temporal replicates

0-1 0-1 0-1 0-1 0-1

0-1 0-1 0-1 0-1 0-1

0-1 0-1 0-1 0-1 0-1

0-1 0-1 0-1 0-1 0-1

0-1 0-1 0-1 0-1 0-1

Spatial replicates

Temporal replicates

One segment

0-1

0-1

0-1

0-1

0-1

Spatial replicates

One segment

0-1

0-1

0-1

0-1

0-1

Temporal replicates

One site

(b)(a)

(d)(c)

Fig. 2. Four different data configurations used in the analysis for one sampling site: (a) spatial and temporal replicates; (b) spatial repli-

cates (i.e. only one sampling visit is studied, here the third one); (c) temporal replicates for segments (i.e. only one segment is studied,

here the first one); and (d) temporal replicates for the site (i.e. data of the five segments are pooled). Data collected are detection (1) or

non-detection (0) of faeces of the Pyrenean desman.
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Models were ranked, with the lowest AIC value indicating the

best fit to the data. We did not evaluate the value of the AIC per

se, but the difference between the value for the model of interest

and that for the best-supported model (Di; Burnham & Anderson

2002). A fitted model with a Di value of less than two has more

substantial support for the data than the other models. The rela-

tive differences in AIC values for the fitted models can be used to

calculate the weight (Wi) of evidence of each model in the model

set. We fitted all the models using the freeware PRESENCE v.

5.5 (Hines 2006).

Results

For spatial replicates and temporal replicates, we applied

analyses successively to the five visits and segments,

respectively. Given that the trends were similar, we only

give here the results for the third visit (spatial replicates)

and the first segment (temporal replicates) (see Tables

S1–S3, Supporting Information for the other visits and

segments).

MODEL SELECTION

In all cases, the standard occupancy model was the least-

supported model according to the AIC, with a DAIC

greater than 10 relative to the best model and with a null

AIC weight (Table 1). The multiscale model, which took

spatial dependence of detection into account, was the

most-supported model (i.e. spatial and temporal repli-

cates; W = 1; Table 1). For temporal replicates at both

spatial levels (site and segment), comparison of AIC

values indicated that the best-supported model was the

Markovian detection model (W = 0�88 and W = 0�84 for

site and segment, respectively), followed by the Markov-

ian occupancy model (W = 0�12 and W = 0�15 for site

and segment, respectively; Table 1).

This result suggests a possible observer bias between

detection events, with p0 (SE, standard error) = 0�55 (SE

0�06) and p1 = 0�82 (SE 0�04) and p0 = 0�38 (SE 0�08) and
p1 = 0�73 (SE 0�06) at the site and segment level, respec-

tively (Table 1). For spatial replicates, the Markovian

occupancy model was more highly supported than other

models (W = 0�60; Table 1), suggesting that spatial auto-

correlation existed in the presence of desman faeces

between segments and that this should be modelled, with

h0 = 0�24 (SE 0�19) and h1 = 0�85 (SE 0�09; Table 1).

PROBABIL ITY ESTIMATES

Site occupancy

The na€ıve site occupancy (i.e. the proportion of sampling

sites with at least one detection event during the survey)

was a priori known to be equal to one; hence, the site

occupancy probability (w) estimated by all models applied

to temporal replicates and to temporal and spatial repli-

cates was, not surprisingly, equal to one. For the spatial

replicates only, na€ıve occupancy was equal to 0�74,

because some sites had no detection event during this

sampling visit (the third one). Hence, estimated values of

w were lower for all models applied to spatial replicates

(Table 1). w was highest when fitted using the Markovian

occupancy model (w = 0�85; SE 0�18). However, large

standard error estimates made it impossible to make

strong inferences.

Segment occupancy

On the local scale, estimates of segment occupancy (h or

w) were roughly similar between all analyses and models,

with w or h ranging from 0�72 (SE 0�03) to 0�83 (SE 0�11;
Table 1). For spatial and temporal replicates, the most-

supported multiscale model which accounts for spatial

correlation in detection events estimated a h value of 0�76
(SE 0�04). For temporal replicates, w was higher when cor-

relation for detection [w(.), p0(.), p1(.)] or presence [w(.),
h0(.), h1(.), p(.)] was accounted for, with w = 0�81 (SE 0�10)
and 0�83 (SE 0�11), for each model, respectively (Table 1).

Detectability at the site level

For temporal replicates, the Markovian occupancy model

gave an estimate of detection probability equal to one

(Table 1). The standard model, which was the least-

supported model according to the AIC, estimated a detec-

tion probability that was 29% lower (p = 0�71; SE 0�03).

Detectability at the segment level

The Markovian occupancy model applied to different

data configurations (spatial vs. temporal replicates) gave

roughly similar estimates. With this model, p ranged from

0�93 (SE 0�11) to 1�00, whereas the standard occupancy

model gave estimates ranging from 0�58 (SE 0�05) to 0�64
(SE 0�04; Table 1) depending on data configurations.

These estimates were comparable to those at the site level.

Models that took into account the autocorrelation

between detection events suggested that the detection

probability was lower when there was no detection on the

previous occasion than when the species had been

detected on the previous occasion (Table 1). For example,

for the Markovian detection model applied to spatial rep-

licates, p0 = 0�45 (SE 0�08) and p1 = 0�79 (SE 0�05).

Discussion

OCCUPANCY AND DETECTABIL ITY ESTIMATES

When the same occupancy model was fitted to several dif-

ferent data configurations, we found that the estimated

detection probabilities were relatively similar, whatever

the replication design (i.e. spatial or temporal) and the

scale (i.e. site or segment) used. This indicates that the

detectability of the Pyrenean desman in this data set

appears to be fairly constant when a single segment of



100 m was surveyed on five successive occasions, when a

site of 500 m was surveyed on five successive occasions or

when five adjacent 100-m segments were surveyed on

one occasion. The most parsimonious model was the

Markovian detection model with temporal replication,

while the Markovian occupancy model was the most sup-

ported with only spatial replicates. Detection probabilities

were high using the Markovian occupancy model (0�91–
1), which is likely to be more accurate than the standard

occupancy model (0�58–0�71). These results are consistent

with those of Hines et al. (2010) showing that species

detectability is underestimated in the presence of depen-

dence between sampling occasions with the standard

occupancy model.

The probabilities of detection estimated for the Pyre-

nean desman were relatively high (P ≥ 0�58), but their

precision and inferences are limited by the small size of

the samples collected during this study (34 sites). The

Pyrenean desman seems to have moderate to high detect-

ability when its faeces are present on emergent rocks,

roots or branches in the stream. In comparison, the prob-

ability of detecting the Eurasian otter Lutra lutra on the

basis of spatial replicates (600-m stream transects for sites

and 50-m segments for subunits) has been estimated to be

0�26 on the Gower peninsula (UK; Parry et al. 2013).

Given that the lowest estimated probability of detection

for the Pyrenean desman equals 0�58, only five sampling

occasions will be sufficient to get an almost perfect proba-

bility of detection (P = 1�(1�0�58)5 = 0�99) when Pyre-

nean desman signs are in fact present on the sampled site.

However, we acknowledge that the sites sampled in this

study may contain a high abundance of signs of the

Pyrenean desman since they were already known to be

occupied prior to sampling. If sign abundance positively

influences sign detectability, the latter may be overesti-

mated in this study (McCarthy et al. 2012).

Our results show that temporal replication at site level

is more accurate than spatial replication for estimating

occupancy which is not surprising as all sites (but not all

segments) have at least one detection event among the five

visits. This is not necessarily the case when using spatial

replication because some sites may have no detection

event during the selected sampling visit (the third one here

but see Tables S2–S3, Supporting Information). When

using temporal replication at site level, all occupancy

models (i.e. Markovian occupancy model, Markovian

detection model and standard occupancy model) do not

appear to underestimate occupancy (equalling 1), while

temporal sampling restricted to a 100-m segment underes-

timates occupancy (0�81 for the Markovian detection

model which is the most-supported model). Estimates of

occupancy with spatial adjacent replicates are also

underestimated in a magnitude comparable to those

estimated when successively sampling a 100-m segment

(0�77 for the Markovian detection model). However, when

using adjacent spatial replicates, the Markovian occu-

pancy model is the most appropriate and minimizes the

underestimation of occupancy (0�85) which becomes even

higher than temporal replicates at the segment level. Thus,

there appears to be a trade-off between spending more

time sampling with temporal replication to achieve a more

accurate estimate of occupancy, or sampling with adjacent

spatial replicates which is more cost-effective but with a

slight underestimation of site occupancy.

For local occupancy (i.e. segment level), when signs of

the Pyrenean desman are present at a site, they occur, on

average, in 75% of the segments. The h0 and h1 estimates

suggest that spatial autocorrelation between segments is

very high. Indeed, when no species signs have been

detected on a given segment, the next segment has only a

probability of 0�24 signs being present. In contrast, the

probability of occupancy of a given segment is 0�85 when

signs of presence have been detected on the previous

segment. It is still not understood why the Pyrenean

desman leaves its faeces on emergent items and how it

uses its home range. This finding suggests that signs of

the Pyrenean desman are clustered within sites, with some

adjacent segments more marked with faeces than others in

a single 500-m transect. The choice of a segment length of

100 m seems to be appropriate for the Pyrenean desman

when using the Markovian occupancy model, as it is long

enough to detect signs when the animals are present and

short enough to exhibit dependence in occupancy between

adjacent segments.

Nevertheless, some caution is called for with regard to

the closure assumption. In the temporal replicates design,

we do not know the extent to which the Pyrenean desman

shifts its home range. We kept the duration of the survey

as short as possible (i.e. 4 months) to best meet this

assumption (Rota et al. 2009). In the spatial replicates

design, the sampling site was 500 m in length, which

corresponds to the reported mean home range size for the

Pyrenean desman (Melero et al. 2012). We cannot fully

address how likely it is that we met the closure assump-

tion. Preliminary findings have suggested that the Pyre-

nean desman is highly mobile within its home range

(Y. Melero, pers. comm.).

The detectability of a species is rarely constant across

space and time and often depends on factors such as envi-

ronment or species biology (MacKenzie et al. 2002).

Although the spatial variation of detectability is increas-

ingly acknowledged (e.g. Royle & Nichols 2003; Royle

2006), little is known about the influence of unmodelled

variation between sites on parameter estimates (MacKenzie

et al. 2006). The difficultly in accessing and surveying our

sampling sites mean that cost and time considerations have

constrained the selection of these sites and limited their

number. Adding covariates in occupancy models to a small

data set might cause them to fail to converge, especially

the Markovian occupancy model, which estimates five

parameters even without any covariate (Hines et al. 2010).

However, since the aim of this study was not to identify

the environmental factors that influence the detectability of

the Pyrenean desman, the model parameters were kept



constant. With a larger number of sites sampled at the

scale of the Pyrenees range, for example, adding environ-

mental covariates to the Markovian occupancy model

(Hines et al. 2010) would help to identify important factors

that influence both the detectability and occupancy of the

Pyrenean desman.

IMPL ICATIONS FOR THE CONSERVATION OF THE

PYRENEAN DESMAN

The cryptic behaviour of the Pyrenean desman and its

habitat heterogeneity clearly result in its detectability

being variable in space and time, as well as being imper-

fect. Although it is much easier to detect the Pyrenean

desman by looking for its faeces, many factors, such as

the skills of the observer (e.g. Barber-Meyer et al. 2013),

the configuration of the river, the fluctuations in water

levels (natural and human-induced), the period when sam-

pling is conducted or the meteorological conditions (e.g.

Aing et al. 2011), may have a considerable impact on the

chance of finding faeces. For example, it may be less easy

to detect faeces of the Pyrenean desman in areas with

higher annual rainfall or in rivers influenced by hydroelec-

tric activities, as these factors may reduce the persistence

of faeces or accelerate the process of deterioration. In this

study, all the sampled stream segments had emergent

items which must be present if Pyrenean desman signs are

to be detected. However, the density of emergent items

along the river varied between segments, and we assume

that the presence and/or detectability of signs may be

influenced by the proportion of the surface area covered

with emergent items. A possible covariate describing, for

instance, the density of emergent items along streams

deserves to be further explored. It is indeed critical to

understand how these different factors affect the probabil-

ity of detecting the species for the design of efficient moni-

toring strategies in the future (Field, Tyre & Possingham

2005). This study provides further insights into possible

survey design and ways of monitoring this endangered

and elusive species. The results of a survey conducted at a

larger scale (i.e. the whole Pyrenees) will enable to

increase our knowledge about the geographical range of

this species in order to identify any discontinuities within

this range. This in turn should allow biodiversity manag-

ers and government organizations to make informed deci-

sions regarding the conservation of the Pyrenean desman

and its habitats in Andorra, Spain and France.

IMPL ICATIONS FOR SURVEYS OF OTHER SPECIES

Survey areas sometimes present difficult field conditions

(e.g. topography, climate) that hinder access and sign-

based searches. On a large spatial scale and with a large

number of sampling sites, temporal replicates could be

very time- and money-consuming and consequently pro-

hibitive. Moreover, for monitoring to be useful, it needs

to be sustainable in the long term. Spatial replication

seems more effective and straightforward to implement

than temporal replication (Hines et al. 2010). Once

observers have reached a site, the cost of performing addi-

tional survey replicates is low (Mackenzie & Royle 2005).

This is supported by our results, suggesting that sampling

with spatial replicates only slightly underestimates site

occupancy compared to temporal replicates. Hence, adja-

cent spatial replication appears to be a good trade-off

between costs of sampling (money and time) and accuracy

of occupancy estimates. However, the choice between spa-

tial vs. temporal design for the survey of other species will

depend on the attention turned to each of these two

aspects. Some general precautions should also be kept in

mind when using the Markovian occupancy models to

avoid violating the model assumptions and biasing the

estimates of detection and occupancy. For instance, spe-

cies behaviour, mainly in relation to the size of its home

range and use (e.g. the distribution of signs within home

range), must be considered when deciding the appropriate

length of sampling sites and subunits. In this study, we

showed that surveys based on adjacent spatial replicates

along streams and the Markovian occupancy model

parameter settings were adequate for a species with a

small and linear home range. This approach may also be

useful for a wider range of species which can be more eas-

ily detected by sign (e.g. burrows, tree scratches, dung,

galleries, nests and exuviae) or use trails to move such as

many large mammals (Karanth et al. 2011; Thorn et al.

2011; Barber-Meyer et al. 2013) or flightless birds (e.g.

cassowaries). It may also be appropriate to restrict sur-

veys to roads or trails, for the sake of improving sign

detection, particularly for species living in remote habi-

tats, such as mountains (e.g. bears) or tropical forests

(e.g. orang-utangs). Additionally, it would be interesting

to test the Markovian occupancy model on other species

using linear home ranges, for which traditional resource

selection analyses are often inappropriate (e.g. Slaght

et al. 2013), such as species living along rivers (e.g. bea-

vers, dippers, dragonflies), restricted to ecotones (e.g.

edges, reeds, coastlines, continental slope) or living along

hedges, cliffs or canyons.
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