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Introduction

Quantum hydrodynamic models become important and necessary to model and simulate electron transport, affected by extremely high electric fields, in ultra-small sub-micron semiconductor devices, such as resonant tunnelling diodes, where quantum effects (like particle tunnelling through potential barriers and built-up in quantum wells [START_REF] Gardner | The quantum hydrodynamic model for semiconductor devices[END_REF][START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF] take place and dominate the process. They arise in semiclassical mechanics in the study of semiconductor devices, in which case being derived from the Wigner-Boltzmann equation [START_REF] Ferry | Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling[END_REF][START_REF] Markowich | Semiconductor Equations[END_REF][START_REF] Gardner | The quantum hydrodynamic model for semiconductor devices[END_REF][START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF][START_REF] Jüngel | Quasi-hydrodynamic semiconductor equations[END_REF][START_REF] Gardner | Dispersive/Hyperbolic Hydrodynamic Models for Quantum Transport (in Semiconductor Devices)[END_REF]. Quantum hydrodynamics has engendered substantial activity in the field of theoretical chemical dynamics, where one may refer to Wyatt et. al.([36]) for a comprehensive introductory overview of the numerous recent results emerging from this blossoming field. In quantum chemistry, they arise as solutions to chemical kinetic systems, in which case they are derived from the Schrödinger equation by way of Madelung equations [START_REF] Madelung | Quantentheorie in hydrodynamischer Form[END_REF]. The basic idea emerging from quantum chemistry is to employ the time-dependent Schrödinger equation to solve dynamical properties (probability densities, "particle" velocities, etc.) of chemical systems. In the same spirit in which the de Broglie-Bohm interpretation (see [START_REF] Bohm | Quantum Theory[END_REF][START_REF] Bohm | A suggested interpretation of the quantum theory in terms of "hidden variables", i and ii[END_REF][START_REF] Brunton | Kinetic applications of electron paramagnetic resonance spectroscopy. 26. Quantum-mechnical tunneling in the isomerization of sterically hindered aryl radicals[END_REF]) of quantum mechanics may be used to recover "trajectories" of individual fluid elements along the characteristics of motion of the solution (see [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF] and [START_REF] Jüngel | Quasi-hydrodynamic semiconductor equations[END_REF] for a comprehensive overview). They are also used to describe superfluids [START_REF] Loffredo | On the creation of quantum vortex lines in rotating He II[END_REF], weakly interacting Bose gases [START_REF] Grant | Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations[END_REF]. Some other topics of interest in quantum hydrodynamics are quantum turbulence, quantized vortices, second and third sound, and quantum solvents. Later, so-called quantum hydrodynamic equations have been derived by Ferry and Zhou [START_REF] Ferry | Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling[END_REF] from the Bloch equation for the density matrix and by Gardner [START_REF] Gardner | The quantum hydrodynamic model for semiconductor devices[END_REF] from the Wigner equation by a moment method. More recently, dissipative quantum fluid models have been proposed. For instance, the moment method applied to the Wigner-Fokker-Planck equation leads to viscous quantum Euler models [START_REF] Gualdani | Analysis of the viscous quantum hydrodynamic equations for semiconductors[END_REF], and a Chapman-Enskog expansion in the Wigner equation leads under certain assumptions to quantum Navier-Stokes equations [START_REF] Brull | Derivation of viscous correction terms for the isothermal quantum Euler model[END_REF]. In this paper, we consider the Cauchy problem for Quantum Navier Stokes equations as follows:

     ∂n ∂t + ∇ • (nu) = 0, ∂nu ∂t + ∇ • (nu ⊗ u) -2ε 2 n∇ ∆ √ n √ n -2ε∇ • (nDu) + ∇p(n) = 0 (1) 
with initial conditions, n(x, 0) = n 0 , u(x, 0) = u 0 ,

on O = R 2 /L 0 Z 2 , L 0 > 0 a given real and with periodic boundary conditions and we require in addition that n 0 and u 0 are periodic functions of period L 0 where Du = ∇u + ∇u T
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, p(n) = gn 2 with g > 0 and ε > 0 is the scaled Planck constant. From [START_REF] Gualdani | Analysis of the viscous quantum hydrodynamic equations for semiconductors[END_REF][START_REF] Jüngel | Derivation of New Quantum Hydrodynamic Equations Using Entropy Minimization[END_REF], we can assume that the scaled Planck constant ε is of order 10 -2 . For the initial data n 0 , we suppose that it is a small perturbation of some positive constant n 0 > 0 . There are only few mathematical results for these viscous quantum hydrodynamic model due to difficulties coming from the third-order derivatives. The existence of classical solutions to the one-dimensional stationary model with ε = 0 and with physical boundary conditions was shown in [START_REF] Jüngel | Physical and numerical viscosity for quantum hydrodynamics[END_REF]. The transient equations are considered in [START_REF] Chen | The viscous model of quantum hydrodynamics in several dimensions[END_REF][START_REF] Chen | Viscous quantum hydrodynamics and parameter-elliptic systems[END_REF][START_REF] Dreher | The transient equations of viscous quantum hydrodynamics[END_REF], and the local-in-time existence and exponential stability of solutions were proved. Global-in-time solutions in one space dimension are obtained if the initial energy is assumed to be sufficiently small. We also mention that in the inviscid case (ε = 0) there is a recent proof of nonglobal-in-time existence for a quantum hydrodynamic equation in bounded domains with prescribed data corresponding to high boundary and initial energy [START_REF] Gamba | On the blowing up of solutions to the quantum hydrodynamic equations in a bounded domain[END_REF]. Later, Existence of global-in-time weak solutions in one space dimension without smallness conditions is proved in [START_REF] Gamba | Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations[END_REF]. Concerning the multidimensional case, local-in-time existence theorems have been obtained in [START_REF] Chen | The viscous model of quantum hydrodynamics in several dimensions[END_REF][START_REF] Dreher | The transient equations of viscous quantum hydrodynamics[END_REF]. Global-in-time existence of weak solutions in a three-dimensional torus for large data is achieved in [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF][START_REF] Dong | A note on barotropic compressible quantum navier-Stokes equations[END_REF][START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF]. This proof of existence given in [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF] relies on the reformulation of the Quantum Navier-Stokes model as a viscous quantum Euler system and vice versa by introducing a new velocity variable ,w, involving gradients of the particle density, w = u + ε∇ log n. Following the results obtained in [START_REF] Jüngel | Effective velocity in Navier-Stokes equations with third-order derivatives[END_REF], it is shown provided that the particle density n = 0, that the particle density n and the new velocity w solve a viscous Euler system and this new formulation is equivalent to the Quantum Navier-Stokes equations ( 1)- [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF]. In this paper, by using this new viscous Euler system with variables (n, m), m ≡ nw = nu + ε∇n (see [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF]), we prove existence and uniqueness of global strong solutions in C([0, +∞[; H s (O)), s > 1 of the Quantum Navier-Stokes equations for large initial data for both n 0 and u 0 . The proof comes from results obtained after introducing the variables ρ (new particle density) and v (new velocity) defined from n and m as follows ρ(x, t) = . In Proposition 4.1, under the assumption that ρ L ∞ < 1, we show that the blow-up of smooth solutions (ρ, v) to the viscous Euler equations [START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF] is controlled by the time integral of the maximum magnitude of the velocity v to the power four. More precisely, in Lemma 4.1, we show the following energy estimates in the homogeneous Sobolev space Ḣs (Ω), with

Ω def = √ gn 0 O ( def = R 2 /( √ gn 0 L 0 )Z 2 ) and s ≥ 0, (ρ(t), v(t)) Ḣs ≤ (ρ 0 , v 0 ) Ḣs e C R t 0 ( ρ(τ ) 2 L ∞ + v(τ ) 2 L ∞ + v(τ ) 4 L ∞ )dτ , (3) 
where (ρ 0 , v 0 ) are the initial data corresponding to the variables (ρ, v). Furthermore, from a BD entropy estimates and under the assumption that ρ

L ∞ ≤ 3 4 , in Lemma 4.2, we show, (ρ(t), v(t)) 2 L 2 + ε t 0 ∇ v(τ ) 1 + ρ(τ ) 2 L 2 + ∇ρ(τ ) 2 L 2 dτ (ρ 0 , v 0 ) 2 L 2 . ( 4 
)
Since these Inequalities are valid only for ρ L ∞ ≤ 3 4 , the challenge was then to find bounds for both ρ L ∞ and v L ∞ allowing to ensure that ρ L ∞ ≤ 3 4 and v L ∞ ≤ 1 as soon as n 0 is sufficiently large relative to (n 0 -n 0 , u 0 ) in some sense. It was thus important to obtain inequalities invariant in respect of any scaling. For this, thanks to Gagliardo-Nirenberg inequalities and under the assumption that ρ L ∞ ≤ 3 4 and v L ∞ ≤ 1, from (3) and (4), we show that for all s > 1,

(ρ(t), v(t)) L ∞ (ρ 0 , v 0 ) s-1 s L 2 (ρ 0 , v 0 ) 1 s Ḣs e C R t 0 ( ρ(τ ) 2 L ∞ + v(τ ) 2 L ∞ )dτ . (5) 
It remained then the difficulty to obtain a bound of

t 0 ( ρ(τ ) 2 L ∞ + v(τ ) 2 L ∞
)dτ depending only on the initial data and not on the time. We overcome this difficulty thanks to Lemma 4.3 used with σ = r, σ = -r, for 0 < r < 1, a fractional Gagliardo-Nirenberg inequality [START_REF] Chen | Viscous quantum hydrodynamics and parameter-elliptic systems[END_REF] and inequality (4), to obtain under the assumption that ρ

L ∞ ≤ 3 4 and v L ∞ ≤ 1, t 0 ( ρ(τ ) 2 L ∞ + v(τ ) 2 L ∞ )dτ (ρ 0 , v 0 ) Ḣr (ρ 0 , v 0 ) Ḣ-r e C1 (ρ0,v0) 2 L 2 .
Therefore, from (5), we obtain,

(ρ(t), v(t)) L ∞ (ρ 0 , v 0 ) s-1 s L 2 (ρ 0 , v 0 ) 1 s Ḣs e C2 (ρ0,v0) Ḣr (ρ0,v0) Ḣ-r e C 1 (ρ 0 ,v 0 ) 2 L 2 ,
and then infer the condition on the initial data ensuring that ρ L ∞ ≤ 3 4 and v L ∞ ≤ 1 as soon as n 0 is sufficiently large relative to (n 0 -n 0 , u 0 ) in some sense, thus yielding to existence and uniqueness of global strong solutions of (1)-( 2). This paper is organized as follows: In section 2, we introduce some notations. In section 3, we establish some crucial estimates for the proof of Theorem 4.1. In section 4, we give the proof of the Lemmata mentioned previously to obtain the proof of Theorem 4.1. From the latter, we deduce our main Theorem 4.2 with the condition on the initial data (n 0 -n 0 , u 0 ) ensuring existence of global strong solutions of the Quantum Navier Stokes equations ( 1)-(2).

Some notations

We denote A B, the estimate A ≤ C B where C > 0 is a absolute constant. Given a function f which is periodic with period L, and thus representable as a function on the torus R 2 /LZ 2 , we define the discrete Fourier transform f : Z 2 -→ C by the formula,

f (k) = 1 L 2 R 2 /LZ 2 e -2π L ix•k f (x) dx, when f is absolutely integrable on R 2 /LZ 2 . If f ∈ L 2 (R 2 /LZ 2 )
, then from Parseval equality, we have,

k∈Z 2 | f (k)| 2 = 1 L L 0 |f (x)| 2 dx. Let s ∈ R, we define the Sobolev norm f H s (R 2 /LZ 2 ) of a tempered distribution f : R 2 /LZ 2 -→ R by, f H s (R 2 /LZ 2 ) = k∈Z 2 1 + 2π|k| L 2 s | f (k)| 2 1 2
, and then we denote by H s (R 2 /LZ 2 ) the space of tempered distributions with finite H s (R 2 /LZ 2 ) norm. On the torus R 2 /LZ 2 , for s > -1, we also define the homogeneous Sobolev norm,

f Ḣs (R 2 /LZ 2 ) = k∈Z 2 2π|k| L 2s | f (k)| 2 1 2
, and then we denote by Ḣs (R 2 /LZ 2 ) the space of tempered distributions with finite Ḣs (R 2 /LZ 2 ) norm.

We use the Fourier transform to define the fractional Laplacian operator (-∆) α , α > -1 on R 2 /LZ 2 and we define it as follows,

(-∆) α f (k) = 2π|k| L 2α f (k).
3 Some estimates

In this section, we give a serie of Lemmata which will be used in the next section. Let Ω = R 2 \LZ 2 with L > 0 a real. We begin with the following inequality proved in [START_REF] Chemin | Perfect Incompressible Fluids[END_REF] which states that for all f, g ∈ L ∞ (Ω) ∩ Ḣs (Ω),

f g Ḣs ( f L ∞ g Ḣs + f Ḣs g L ∞ ). ( 6 
)
We have also the following inequality proved in [START_REF] Chemin | Perfect Incompressible Fluids[END_REF] for nonlinear composition which states that for s > 0, I an open subset of R with 0 ∈ I and for any real function f ∈ BC [s]+2 (I) such that f (0) = 0, we have for all u ∈ H s (Ω) such that u(x) ∈ I, f (u) ∈ H s (Ω). More precisely there exists a non decreasing continuous function C depending only on s and max

0≤k≤[s]+2 f (k) L ∞ (I) such that, f (u) H s ≤ C( u L ∞ ) u H s . (7) 
Let us mention also the following Interpolation inequality: for all (α, β) such that 0

≤ α < 1 < β and for all u ∈ H β (Ω), u L ∞ (Ω) u γ Ḣα (Ω) u δ Ḣβ (Ω) , (8) 
where γ > 0, δ > 0, γ + δ = 1 and γα + βδ = 1. Now, we give three crucial Lemmata.

Lemma 3.1 Let σ ∈ R, 0 < |σ| < 1, f, h ∈ Ḣσ (Ω) ∩ Ḣσ+1 (Ω) and g ∈ Ḣ1 (Ω). Then, we have, | f Dg, h Ḣσ | ( f Ḣσ ∇h Ḣσ + h Ḣσ ∇f Ḣσ ) ∇g L 2 ,
where D is a derivative of first order.

Proof. We set

A = -∆. Let δ ≥ 0 such that σ 2 + δ > 0, σ 2 + δ < 1 2 and σ 2 + 1 2 -δ > σ 2 that means -σ 2 < δ < min( 1 2 , 1 2 -σ 2 )
. Then, we have

| f Dg, h Ḣσ | = | A σ 2 (f Dg), A σ 2 h | = A σ 2 +δ-1 2 (f Dg), A σ 2 + 1 2 -δ h ≤ A σ 2 +δ-1 2 (f Dg) L 2 A σ 2 + 1 2 -δ h L 2 ,
where we have used Cauchy-Schwarz inequality. Since 0 < σ 2 + δ < 1 2 , we have (see [START_REF] Giga | Solutions in L r to the Navier-Stokes initial value problem[END_REF], see also (A5) in [START_REF] Kato | On the nonstationary Navier-Stokes system[END_REF], [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF]),

A σ 2 +δ-1 2 (f Dg) L 2 A σ 2 +δ f L 2 A 1 2 g L 2 .
Then, we deduce,

| f Dg, h Ḣσ | A σ 2 +δ f L 2 A σ 2 + 1 2 -δ h L 2 A 1 2 g L 2 . ( 9 
)
Thanks to the fractional Gagliardo-Nirenberg inequality given by Corollary 1.5 in [START_REF] Hajaiej | Necessary and sufficient conditions for the fractional Gargliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations[END_REF], we have for any

u ∈ H 1 (Ω) and 0 ≤ θ ≤ 1, u Ḣθ u 1-θ L 2 u θ Ḣ1 . (10) 
We use Inequality [START_REF] Dreher | The transient equations of viscous quantum hydrodynamics[END_REF] with u = A σ 2 ρ and θ = 2δ, then we get,

A σ 2 +δ f L 2 = A σ 2 f Ḣ2δ A σ 2 f 1-2δ L 2 A σ 2 f 2δ Ḣ1 = f 1-2δ Ḣσ ∇f 2δ Ḣσ . (11) 
We use Inequality [START_REF] Dreher | The transient equations of viscous quantum hydrodynamics[END_REF] with u = A σ 2 h and θ = 1 -2δ to obtain,

A σ 2 + 1 2 -δ h L 2 = A σ 2 h Ḣ1-2δ h 2δ Ḣσ ∇h 1-2δ Ḣσ . (12) 
Therefore, from (9), using [START_REF] Dong | A note on barotropic compressible quantum navier-Stokes equations[END_REF], [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] and Young inequality, we deduce,

| f Dg, h Ḣσ | ( f Ḣσ ∇h Ḣσ + h Ḣσ ∇f Ḣσ ) ∇g L 2 ,
which concludes the proof.

Lemma 3.2 Let σ ≥ 0, 0 < γ < 1, ∈ H σ (Ω) ∩ L ∞ (Ω) such that L ∞ (Ω)
≤ γ, then there exists a constant C > 0 depending only on σ and γ such that,

1 + Ḣσ ≤ C Ḣσ .
Proof. If σ = 0, the proof holds. Let us assume that σ > 0. Let λ > 0, λ (x) = (λx) and f the function defined by

f (x) = x 1 + x then f ∈ C ∞ ([-γ, γ]
) and λ L ∞ ≤ γ therefore thanks to (7), we deduce that there exists a constant C > 0 depending only on σ, γ such that,

λ 1 + λ H σ ≤ C λ H σ . (13) 
From ( 13), we deduce that,

λ 1 + λ L 2 + λ 1 + λ Ḣσ λ L 2 + λ Ḣσ . (14) 
Then, we get, 1

λ 1 + L 2 + λ σ λ 1 + Ḣσ 1 λ L 2 + λ σ λ Ḣσ . (15) 
We multiply Inequality (15) by λ λ σ to obtain,

1 λ σ 1 + L 2 + 1 + Ḣσ 1 λ σ L 2 + Ḣσ . (16) 
Then, taking the limit as λ → ∞ in ( 16), we conclude the proof.

Lemma 3.3 Let σ ∈ R, 0 < |σ| < 1, 0 < γ < 1, f, h ∈ Ḣσ (Ω) ∩ Ḣσ+1 (Ω), g ∈ Ḣ1 (Ω) and ∈ Ḣσ (Ω) ∩ H σ+1 (Ω) ∩ L ∞ (Ω) such that L ∞ ≤ γ. Then, we have, f 1 + Dg, h Ḣσ ( f Ḣσ ∇h Ḣσ + h Ḣσ ∇f Ḣσ ) ∇g L 2 + f L ∞ ( Ḣσ ∇h Ḣσ + h Ḣσ ∇ Ḣσ ) ∇g L 2 ,
where D is a derivative of first order.

Proof. We set A = -∆. Let δ ≥ 0 such that σ 2 + δ > 0, σ 2 + δ < 1 2 and σ 2 + 1 2 -δ > σ that means -σ 2 < δ < min( 1 2 , 1 2 -σ 2 )
. Similarly as (9), we have,

f 1 + Dg, h Ḣσ A σ 2 +δ f 1 + L 2 A σ 2 + 1 2 -δ h L 2 A 1 2 g L 2 .
From ( 12), we get,

A σ 2 + 1 2 -δ h L 2 h 2δ Ḣσ ∇h 1-2δ Ḣσ .
Then, we deduce,

f 1 + Dg, h Ḣσ A σ 2 +δ f 1 + L 2 h 2δ Ḣσ ∇h 1-2δ Ḣσ ∇g L 2 . ( 17 
) Since f 1 + = f -f 1 + , then A σ 2 +δ f 1 + L 2 = f 1 + Ḣσ+2δ ≤ f Ḣσ+2δ + f 1 + Ḣσ+2δ .
Since σ + 2δ > 0, thanks to (6), we have,

f 1 + Ḣσ+2δ f Ḣσ+2δ 1 + L ∞ + f L ∞ 1 + Ḣσ+2δ ≤ f Ḣσ+2δ L ∞ 1 - L ∞ + f L ∞ 1 + Ḣσ+2δ ≤ γ 1 -γ f Ḣσ+2δ + f L ∞ 1 + Ḣσ+2δ , (18) 
where we have used the fact that L ∞ ≤ γ. Then, we deduce,

A σ 2 +δ f 1 + L 2 f Ḣσ+2δ + f L ∞ 1 + Ḣσ+2δ . ( 19 
)
Thanks to Lemma 3.2, we have,

From [START_REF] Giga | Solutions in L r to the Navier-Stokes initial value problem[END_REF], we infer,

A σ 2 +δ f 1 + L 2 f Ḣσ+2δ + f L ∞ Ḣσ+2δ . (20) 
Using the same arguments as in [START_REF] Dong | A note on barotropic compressible quantum navier-Stokes equations[END_REF], we get,

f Ḣσ+2δ f 1-2δ Ḣσ ∇f 2δ Ḣσ Ḣσ+2δ 1-2δ Ḣσ ∇ 2δ Ḣσ (21) 
From [START_REF] Gamba | Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations[END_REF], using [START_REF] Gardner | Dispersive/Hyperbolic Hydrodynamic Models for Quantum Transport (in Semiconductor Devices)[END_REF], [START_REF] Grant | Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations[END_REF] and Young inequalities, we deduce,

f 1 + Dg, h Ḣσ ( f Ḣσ ∇h Ḣσ + h Ḣσ ∇f Ḣσ ) ∇g L 2 + f L ∞ ( Ḣσ ∇h Ḣσ + h Ḣσ ∇ Ḣσ ) ∇g L 2 , (22) 
which concludes the proof.

Global regularity

This section is devoted to the proof of Theorem 4.2. We assume that n 0 > 0 and we introduce m 0 = n 0 u 0 + ε∇n 0 . We begin by noting that the system of equations ( 1) is equivalent to a system of equations of type [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF]. Indeed, thanks to Theorem 2.1 in [START_REF] Jüngel | Effective velocity in Navier-Stokes equations with third-order derivatives[END_REF], under the assumption that n > 0, if (n, u) is solution of the shallow water equations (1) for the initial data (n 0 , u 0 ) then (n, m) is solution of the system of equations ( 23) for the initial (n 0 , m 0 ), with m = nu + ε∇n. Thanks again to Theorem 2.1 in [START_REF] Jüngel | Effective velocity in Navier-Stokes equations with third-order derivatives[END_REF], under the assumption that n > 0, if (n, m) is solution of the system of equations [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF] for the initial data (n 0 , m 0 ) then (n, u) is solution of the shallow water equations [START_REF] Adams | Sobolev spaces[END_REF] for the initial data (n 0 , u 0 ) with u = m -ε∇n n . Then, we consider the following system of equations,

     ∂n ∂t + ∇ • m -ε∆n = 0, ∂m ∂t + ∇ • m n ⊗ m -ε∆m + gn∇n = 0. ( 23 
)
We introduce ñ defined by ñ ≡ n -n 0 n 0 and m ≡ m n 0 , from [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF], we obtain the following equivalent system of equations,

     ∂ ñ ∂t + ∇ • m -ε∆ñ = 0, ∂ m ∂t + ∇ • m 1 + ñ ⊗ m -ε∆ m + gn 0 ñ∇ñ + gn 0 ∇ñ = 0. ( 24 
)
For any λ ∈ R * , by using the rescaled solutions ñλ (x, t) = ñ(λx, λ 2 t) and mλ (x, t) = λ m(λx, λ 2 t), we obtain the equivalent system of equations,

     ∂ ñλ ∂t + ∇ • mλ -ε∆ñ λ = 0, ∂ mλ ∂t + ∇ • mλ 1 + ñλ ⊗ mλ -ε∆ mλ + gn 0 λ 2 ñλ ∇ñ λ + gn 0 λ 2 ∇ñ λ = 0. ( 25 
) Setting λ = 1 √ gn 0 in (25), then with ρ(x, t) = n x √ gn0 , t gn0 -n 0 n 0 and v(x, t) = 1 n 0 √ gn 0 m x √ gn 0 , t gn 0 ,
provided that ρ > -1, we deduce that the system of equations [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF] on O × [0, T 0 ] is equivalent to the following system of equations on Ω × [0, T ] with

Ω def = √ gn 0 O and T = gn 0 T 0 ,      ∂ρ ∂t + ∇ • v -ε∆ρ = 0, ∂v ∂t + ∇ • v 1 + ρ ⊗ v -ε∆v + ρ∇ρ + ∇ρ = 0. ( 26 
)
with initial conditions,

ρ(x, 0) = ρ 0 (x), v(x, 0) = v 0 (x), (27) 
where

ρ 0 (x) = n 0 x √ gn0 -n 0 n 0 (28) 
and

v 0 (x) = 1 n 0 √ gn 0 m 0 x √ gn 0 . (29) 
Then, in what follows, we study the following system of equations,

     ∂ρ ∂t + ∇ • v -ε∆ρ = 0, ∂v ∂t + ∇ • v 1 + ρ ⊗ v -ε∆v + (1 + ρ)∇ρ = 0. ( 30 
)
with initial conditions,

ρ(x, 0) = ρ 0 (x), v(x, 0) = v 0 (x). ( 31 
)
We thus establish the following energy estimate in H s for any s > 1.

Lemma 4.1 Let 0 < δ < 1, ω 0 ≡ (ρ 0 , v 0 ) ∈ H s (Ω) 3 , s ≥ 0. If ω ≡ (ρ, v) ∈ C([0, T ]; H s (Ω) 3 ) ∩ C(]0, T ]; H s+1 (Ω) 3 ) with ρ L ∞ (Ω×[0,T ])
≤ δ is a solution of the system of Equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF], then there exists a constant c 1 > 0 depending only on δ, s such that for all τ ∈ [0, T ],

ω(τ ) 2 Ḣs + ε 2 τ 0 ω(σ) 2 Ḣs+1 dσ ≤ ω 0 2 Ḣs e c 1 ε R τ 0 a(σ)dσ ,
where

a(σ) = ω(σ) 2 L ∞ (1 + v(σ) 2 L ∞ ).
Proof. We take the inner product in Ḣs (Ω) of the first equation of ( 30) with ρ, use integrations by parts to obtain, 1 2

d dt ρ 2 Ḣs + ε ∇ρ 2 Ḣs = v, ∇ρ Ḣs . (32) 
Now, we take the inner product in Ḣs (Ω) 2 of the second equation of ( 30) with v, use integrations by parts to obtain, 1 2

d dt v 2 Ḣs + ε ∇v 2 Ḣs = v 1 + ρ ⊗ v, ∇v Ḣs + ρ 2 2 , ∇ • v Ḣs -∇ρ, v Ḣs . ( 33 
)
Thanks to Cauchy-Schwarz inequality and Young inequality, we have,

v 1 + ρ ⊗ v, ∇v Ḣs ≤ v 1 + ρ ⊗ v Ḣs ∇v Ḣs ≤ 1 2ε v 1 + ρ ⊗ v 2 Ḣs + ε 2 ∇v 2 Ḣs and ρ 2 2 , ∇ • v Ḣs ≤ ρ 2 Ḣs ∇ • v Ḣs 2 ≤ 1 2ε ρ 2 2 Ḣs + ε 8 ∇ • v 2 Ḣs ≤ 1 2ε ρ 2 2 Ḣs + ε 4 ∇v 2 Ḣs .
Then, we deduce, 1 2

d dt v 2 Ḣs + ε 4 ∇v 2 Ḣs ≤ 1 2ε v 1 + ρ ⊗ v 2 Ḣs + 1 2ε ρ 2 2 Ḣs -∇ρ, v Ḣs . ( 34 
)
We sum Equations ( 32) and [START_REF] Markowich | Semiconductor Equations[END_REF], to obtain,

1 2 d dt ( ρ 2 Ḣs + v 2 Ḣs ) + ε ∇ρ 2 Ḣs + ε 4 ∇v 2 Ḣs ≤ 1 2ε v 1 + ρ ⊗ v 2 Ḣs + 1 2ε ρ 2 2 Ḣs . (35) 
Thanks to (6), we get,

ρ 2 Ḣs ρ L ∞ ρ Ḣs (36) 
and also

v 1 + ρ ⊗ v Ḣs v 1 + ρ Ḣs v L ∞ + v 1 + ρ L ∞ v Ḣs . (37) 
Furthermore, we have,

v 1 + ρ Ḣs ≤ v Ḣs + vρ 1 + ρ Ḣs . ( 38 
)
Thanks to (6), we have also,

vρ 1 + ρ Ḣs v L ∞ ρ 1 + ρ Ḣs + v Ḣs ρ 1 + ρ L ∞ . ( 39 
)
Then with (38) and (39), we deduce,

v 1 + ρ Ḣs v Ḣs 1 + ρ 1 + ρ L ∞ + v L ∞ ρ 1 + ρ Ḣs . (40) 
Therefore, using (40) and (37), we get,

v 1 + ρ ⊗ v Ḣs 1 + ρ 1 + ρ L ∞ v Ḣs v L ∞ + v 2 L ∞ ρ 1 + ρ Ḣs + v 1 + ρ L ∞ v Ḣs ≤ 2 1 -δ v Ḣs v L ∞ + ρ 1 + ρ Ḣs v 2 L ∞ , (41) 
where we have used the fact that ρ L ∞ ≤ δ < 1. Then, using (41) and [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF], from [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], we deduce,

1 2 d dt ( ρ 2 Ḣs + v 2 Ḣs ) + ε ∇ρ 2 Ḣs + ε 4 ∇v 2 Ḣs 1 ε v 2 Ḣs v 2 L ∞ + 1 ε ρ 1 + ρ 2 Ḣs v 4 L ∞ + 1 2ε ρ 2 L ∞ ρ 2 Ḣs . (42) 
Thanks to Lemma 3.2, from (42), we deduce that for all t ∈]0, T ],

1 2 d dt ( ρ(t) 2 Ḣs + v(t) 2 Ḣs ) + ε ∇ρ(t) 2 Ḣs + ε 4 ∇v(t) 2 Ḣs 1 ε v(t) 2 Ḣs v(t) 2 L ∞ + 1 ε ρ(t) 2 Ḣs v(t) 4 L ∞ + 1 2ε ρ(t) 2 L ∞ ρ(t) 2 Ḣs 
(43) which implies,

1 2 d dτ ( ρ(τ ) 2 Ḣs + v(τ ) 2 Ḣs ) +ε ∇ρ(τ ) 2 Ḣs + ε 4 ∇v(τ ) 2 Ḣs 1 ε ( v(τ ) 2 L ∞ + v(τ ) 4 L ∞ + ρ(τ ) 2 L ∞ )( ρ(τ ) 2 Ḣs + v(τ ) 2 Ḣs ). (44) 
Using Gronwall inequality, from (44), we deduce that there exists a constant C > 0 depending only on δ, s such that for all τ ∈ [0, T ],

ρ(τ ) 2 Ḣs + v(τ ) 2 Ḣs + τ 0 2ε ∇ρ(σ) 2 Ḣs + ε 2 ∇v(σ) 2 Ḣs dσ ≤ ( ρ 0 2 Ḣs + v 0 2 Ḣs )e C R τ 0 a(σ)dσ , where a(σ) = 1 ε ( v(σ) 2 L ∞ + v(σ) 4 L ∞ + ρ(σ) 2 L ∞ ).
Thanks to Plancherel Theorem, we have ∇ρ(τ ) Ḣs = ρ(τ ) Ḣs+1 and also ∇v(τ ) Ḣs = v(τ ) Ḣs+1 , then we conclude the proof.

In the following Proposition, we prove existence and uniqueness of local strong solutions of [START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF].

Proposition 4.1 Let ω 0 ≡ (ρ 0 , v 0 ) ∈ Ḣ-r (Ω) 3 ∩ H s (Ω) 3 with 0 ≤ r < 1 < s, ρ 0 L ∞ < 1.
Then there exists a maximal time of existence T * > 0 such that there exists a unique strong solution

ω ≡ (ρ, v) ∈ C([0, T * [; H -r (Ω) 3 ∩ H s (Ω) 3 ) ∩ C 1 (]0, T * [; H s-1 (Ω) 3 ) ∩ C(]0, T * [; H s+1 (Ω)
3 ) of the system of Equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]. Moreover if T * < ∞, then either ρ L ∞ (Ω×[0,T * ]) ≥ 1 or either

T * 0 v(τ ) 4 L ∞ dτ = ∞. (45) 
Proof.

Let a = 3 + ρ 0 L ∞ 2(1 + ρ 0 L ∞ ) > 1 and δ = 1 2 (1 + ρ 0 L ∞ ) < 1.
We introduce χ(λ) a smooth bump function with values in the interval [0, 1], identically equal to one for -1 ≤ λ ≤ 1 and identically equal to zero for |λ| ≥ a.

We notice for all λ δ ≥ a, 1 + λχ λ δ = 1, and for all λ δ < a,

1 + λχ λ δ ≥ 1 -|λ| ≥ 1 -δa = 1 4 (1 -ρ 0 L ∞ ) > 0.
Then, we get for all λ ∈ R,

1 + λχ λ δ ≥ 1 4 (1 -ρ 0 L ∞ ) > 0. ( 46 
)
For the proof, we use some results which deal with existence, uniqueness, regularity of solutions ω = (ρ, v) for nonlinear evolution equations of the form

∂ t ω = Aω + f (ω), (47) 
with initial conditions ω(0) = ω 0 .

More precisely, we use Proposition 2.1 in [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF] with X = H s-1 (Ω) 3 , A = ε∆ for our generator of holomorphic semigroup T (t) = e -tA of bounded linear operators on X and f our locally Lipschitz continuous function on

X α = H s (Ω) 3 , α = 1 2 defined by f (ω) = (f 1 (ω), f 2 (ω)) with f 1 (ω) = -∇ • v and f 2 (ω) = -∇ • v 1 + ρχ( ρ δ ) ⊗ v -ρ∇ρ -∇ρ. (49) 
Indeed, f is locally Lipschitz continuous on H s (Ω) 3 , since for all ω 1 = (ρ 1 , v 1 ) ∈ H s (Ω) 3 and ω 2 = (ρ 2 , v 2 ) ∈ H s (Ω) 3 , we have,

∇ • v 1 -∇ • v 2 H s-1 ≤ v 1 -v 2 H s ∇ρ 1 -∇ρ 2 H s-1 ≤ ρ 1 -ρ 2 H s ρ 1 ∇ρ 1 -ρ 2 ∇ρ 2 H s-1 = 1 2 ∇((ρ 1 -ρ 2 )(ρ 1 + ρ 2 )) H s-1 ≤ 1 2 (ρ 1 -ρ 2 )(ρ 1 + ρ 2 ) H s ρ 1 -ρ 2 H s ( ρ 1 H s + ρ 2 H s ), (50) 
where we have used the fact that for all h 1 ∈ H s (Ω), h 2 ∈ H s (Ω) with s > 1 (see [START_REF] Chemin | Perfect Incompressible Fluids[END_REF]),

h 1 h 2 H s h 1 H s h 2 H s , (51) 
We introduce the function g ∈ C ∞ defined by g(λ

) = 1 1 + λχ( λ δ )
, thanks to (46) we notice that for all k ∈ N, there exists a real C k > 0 depending only on δ such that

g (k) L ∞ ≤ C k . (52) 
Then, we get,

∇ • (g(ρ 1 )v 1 ⊗ v 1 ) -∇ • (g(ρ 2 )v 2 ⊗ v 2 ) H s-1 ≤ g(ρ 1 )v 1 ⊗ v 1 -g(ρ 2 )v 2 ⊗ v 2 H s ≤ (g(ρ 1 )v 1 -g(ρ 2 )v 2 ) ⊗ v 1 H s + g(ρ 2 )v 2 ⊗ (v 1 -v 2 ) H s ≤ (v 1 -v 2 ) ⊗ v 1 g(ρ 1 ) H s + v 2 ⊗ v 1 (g(ρ 1 ) -g(ρ 2 )) H s + g(ρ 2 )v 2 ⊗ (v 1 -v 2 ) H s . (53) 
Using (51), we estimate each term on the right hand side of Inequality (53),

(v 1 -v 2 ) ⊗ v 1 g(ρ 1 ) H s v 1 -v 2 H s v 1 H s (1 + g(ρ 1 ) -1 H s ) v 2 ⊗ v 1 (g(ρ 1 ) -g(ρ 2 )) H s v 1 H s v 2 H s g(ρ 1 ) -g(ρ 2 ) H s g(ρ 2 )v 2 ⊗ (v 1 -v 2 ) H s v 1 -v 2 H s v 2 H s (1 + g(ρ 2 ) -1 H s ). ( 54 
)
Thanks to ( 7) and (52), we deduce that there exists a non-decreasing function C > 0 depending only on s and δ such that,

g(ρ 1 ) -1 H s C( ρ 1 L ∞ ) ρ 1 H s g(ρ 2 ) -1 H s C( ρ 2 L ∞ ) ρ 2 H s .
Furthermore, using Taylor formula at order 1, we get g(ρ 2 ) -g(ρ 1 ) = (ρ 2 -ρ 1 )

1 0 g ((1 -σ)ρ 1 + σρ 2 )dσ, then we deduce, g(ρ 1 ) -g(ρ 2 ) H s ρ 1 -ρ 2 H s 1 0 g ((1 -σ)ρ 1 + σρ 2 ) H s dσ ρ 1 -ρ 2 H s 1 0 C 1 ( (1 -σ)ρ 1 + σρ 2 L ∞ ) (1 -σ)ρ 1 + σρ 2 ) H s dσ,
where we have used ( 7) and C 1 > 0 is a non-decreasing function depending only on s and δ. Therefore, we get,

g(ρ 1 ) -g(ρ 2 ) H s ρ 1 -ρ 2 H s C 1 ( ρ 1 L ∞ + ρ 2 L ∞ )( ρ 1 H s + σρ 2 ) H s ).
Thanks to (54) and the Sobolev embedding H s (Ω) → L ∞ (Ω) since s > 1, from (53), we deduce therefore,

∇ • (g(ρ 1 )v 1 ⊗ v 1 ) -∇ • (g(ρ 2 )v 2 ⊗ v 2 ) H s C 2 ( ρ 1 H s , ρ 2 H s , v 1 H s , v 2 H s )( v 1 -v 2 H s + ρ 1 -ρ 2 H s ), ( 55 
)
where C 2 > 0 is a continuous function on R 4 . Using (50) and (55), we get that for all ω 1 ∈ H s (Ω) 3 ,

ω 2 ∈ H s (Ω) 3 , f (ω 1 ) -f (ω 2 ) H s-1 C 3 ( ω 1 H s , ω 2 H s ) ω 1 -ω 2 H s , (56) 
where C 3 > 0 is a continuous function on Ω, which proves that f is well locally Lipschitz continuous on H s (Ω) 3 . Then, we deduce thanks to Proposition 2.1 combined with Theorem 3.1 in [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF], that there exists a maximal time T > 0 such that there exists an unique solution ω

= (ρ, v) ∈ C([0, T [; H s (Ω) 3 ) ∩ C 1 (]0, T [; H s-1 (Ω) 3 ) of the system of Equations (47)-(48). Moreover if T < ∞ then lim t→T * ω(t) H s = ∞. From (56), we get that for all w ∈ H s (Ω) 3 , f (w) H s-1 C 3 ( w H s , 0) w H s , then we deduce from (47) that ω ∈ C(]0, T [; H s+1 (Ω)).
Then, we write ω under its integral form,

ω(t) = e -εt∆ ω 0 + t 0 e -ε(t-σ)∆ f (ω(σ))dσ. ( 57 
)
Since s > 1 -r > 0, then by Interpolation inequality, we have H s (Ω) → Ḣ1-r (Ω), then using the same arguments as for (56), we get that for all w ∈ Ḣ-r ∩ H s , f (w) Ḣ-r C 3 ( w H s , 0) w H s . Since ω 0 ∈ H -r (Ω), therefore, from (57), we deduce also that ω ∈ C([0, T [;

H -r (Ω)). Since ρ 0 L ∞ < 1 then ρ 0 L ∞ < δ, moreover ρ ∈ C([0, T [; L ∞ (Ω)) due to the Sobolev embedding H s (Ω) → L ∞ (Ω)
, hence we deduce that there exists a time 0 < T < T such that ρ L ∞ (Ω×[0,T ]) ≤ δ. Since ρ L ∞ (Ω×[0,T ]) ≤ δ then we get χ( ρ δ ) = 1 on [0, T ] and from (49), we deduce in fact that ω is the unique solution of ( 30)-( 31) on [0, T ]. Then we deduce that there exists a maximal time of existence 0 < T * < ∞ such that there exists an unique solution ω

= (ρ , v ) ∈ C([0, T * [; H -r ∩ H s (Ω)) ∩ C 1 (]0, T * [; H s-1 (Ω)) ∩ C(]0, T * [; H s+1 (Ω)
) of the system of equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]. We get that if T * < ∞, then either ρ L ∞ (Ω×[0,T * ]) ≥ 1 or either lim t→T * ω (t) H s = ∞ (by using the same arguments as ω) and in this case thanks to Lemma 4.1 and the fact that for any 0 < T < T * ,

T 0 v(τ ) 2 L ∞ dτ ≤ √ T T 0 v(τ ) 4 L ∞ dτ 1 2
, we get

T * 0 v(τ ) 4 L ∞ dτ = ∞
, then, we conclude the proof.

We derive now a Bresch-Desjardin Entropy type, as in [START_REF] Jüngel | Effective velocity in Navier-Stokes equations with third-order derivatives[END_REF].

Lemma 4.2 Let ω 0 ≡ (ρ 0 , v 0 ) ∈ L 2 (Ω) 3 with ρ 0 ∈ L ∞ (Ω) such that ρ 0 L ∞ ≤ 3 4 . If ω ≡ (ρ, v) ∈ C([0, T ]; L 2 (Ω)) 3 ∩ C 1 (]0, T ]; L 2 (Ω) 3 ) with ρ ∈ L ∞ (Ω × [0, T ]) such that ρ L ∞ (Ω×[0,T ]) ≤ 3
4 is a solution of the system of Equations ( 30)-( 31), then we have for all t ∈ [0, T ],

1 4 ω(t) 2 L 2 + ε t 0 1 4 ∇ v(τ ) 1 + ρ(τ ) 2 L 2 + ∇ρ(τ ) 2 L 2 dτ ≤ 2 ω 0 2 L 2 .
Proof. We can write the system of equations ( 30) as follows,

     ∂η ∂t + ∇ • (ηw) -ε∆η = 0, ∂(ηw) ∂t + ∇ • (ηw ⊗ w) -ε∆(ηw) + ∇p(η) = 0, (58) 
where

w = v 1 + ρ , η = 1 + ρ and p(η) = η 2 2
. By using the enthalpy h(η) = η -1, we notice ηh (η) = p (η), then from Equation ( 15) of [START_REF] Jüngel | Effective velocity in Navier-Stokes equations with third-order derivatives[END_REF], we obtain,

d dt Ω 1 2 η|w| 2 + H(η) + Ω (εη|∇w| 2 + |∇η| 2 ) = 0,
where H(η) = η 1 h(τ )dτ , which yields to,

d dt Ω |v| 2 2(1 + ρ) + ρ 2 2 + ε Ω (1 + ρ) ∇ v 1 + ρ 2 + |∇ρ| 2 = 0.
We integrate Equation just above on [0, t] to obtain, for all t ∈ [0, T ],

1 2 v(t) 1 + ρ(t) 2 L 2 + 1 2 ρ(t) 2 L 2 + ε t 0 1 + ρ(τ )∇ v(τ ) 1 + ρ(τ ) 2 L 2 + ∇ρ(τ ) 2 L 2 dτ = 1 2 v 0 √ 1 + ρ 0 2 L 2 + 1 2 ρ 0 2 L 2 . Since ρ L ∞ (Ω×[0,T ]) ≤ 3 4 and ρ 0 L ∞ ≤ 3 4 , then we deduce that for all t ∈ [0, T ], 1 4 v(t) 2 L 2 + 1 2 ρ(t) 2 L 2 + ε t 0 1 4 ∇ v(τ ) 1 + ρ(τ ) 2 L 2 + ∇ρ(τ ) 2 L 2 dτ ≤ 2 v 0 2 L 2 + 1 2 ρ 0 2 L 2 ,
which concludes the proof.

The following Lemma will help us to express

t 0 (ρ, v)(σ) 2 L ∞ dσ in terms of t 0 ( ∇ρ(τ ) 2 L 2 + ∇ v(τ ) 1+ρ(τ ) 2 L 2
)dτ . 3 is a solution of the system of Equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF] with ω L ∞ (Ω×[0,T ]) 3 ≤ 3 4 and such that T 0 a(τ )dτ < ∞, then there exists a constant C > 0 such that for all s ∈ [0, T ],

Lemma 4.3 Let ω 0 ≡ (ρ 0 , v 0 ) ∈ Ḣσ (Ω) 3 ∩ L 2 (Ω) 3 , σ ∈ R, 0 < |σ| < 1. If ω ≡ (ρ, v) ∈ C([0, T ]; Ḣσ (Ω) 3 ) ∩ C(]0, T ]; H 1+σ (Ω) 3 ) ∩ L ∞ (Ω × [0, T ])
ω(s) 2 Ḣσ + ε s 0 ω(τ ) 2 Ḣσ+1 dτ ≤ ω 0 2 Ḣσ e C R t 0 a(τ )dτ ,
where a(τ

) = ∇ρ(τ ) 2 L 2 + ∇ v(τ ) 1+ρ(τ ) 2 L 2 ε .
Proof.

We take the inner product in Ḣσ (Ω) of the first equation of ( 30) with ρ, use integrations by parts to obtain, 1 2

d dt ρ 2 Ḣσ + ε ∇ρ 2 Ḣσ = v, ∇ρ Ḣσ . (59) 
Now, we take the inner product in Ḣσ (Ω) of the second equation of ( 30) with v, to obtain, 1 2

d dt v 2 Ḣσ + ε ∇v 2 Ḣσ = -∇ • v 1 + ρ ⊗ v , v Ḣσ -ρ∇ρ, v Ḣσ -∇ρ, v Ḣσ . (60) 
We sum Equations ( 59) and (60), to obtain,

1 2 d dt ( ρ 2 Ḣσ + v 2 Ḣσ ) + ε ∇ρ 2 Ḣσ + ε ∇v 2 Ḣσ = -∇ • v 1 + ρ ⊗ v , v Ḣσ -ρ∇ρ, v Ḣσ . (61) 
Thanks to Lemma 3.1, we get,

-ρ∇ρ, v Ḣσ ( ρ Ḣσ ∇v Ḣσ + v Ḣσ ∇ρ Ḣσ ) ∇ρ L 2 . ( 62 
)
We estimate now the first term at the right hand side of Equation (61). We notice

∇ • v 1+ρ ⊗ v = v 1+ρ • ∇ v + ∇ • v 1+ρ v, then we deduce, -∇ • v 1 + ρ ⊗ v , v Ḣσ = - v 1 + ρ • ∇ v, v Ḣσ -∇ • v 1 + ρ v, v Ḣσ .
Thanks to Lemma 3.1, we get,

-∇ • v 1 + ρ v, v Ḣσ v Ḣσ ∇v Ḣσ ∇ v 1 + ρ L 2 . (63) 
Thanks to Lemma 3.3, we have,

- v 1 + ρ • ∇ v, v Ḣσ v Ḣσ ∇v Ḣσ ∇v L 2 + v L ∞ ( ρ Ḣσ ∇v Ḣσ + v Ḣσ ∇ρ Ḣσ ) ∇v L 2 . ( 64 
)
Using inequalities (62)-(64) and Young inequalities, from (61), we deduce that for all t ∈ [0, T ],

1 2 d dt ( ρ(t) 2 Ḣσ + v(t) 2 Ḣσ ) + ε 2 ∇ρ(t) 2 Ḣσ + ε 2 ∇v(t) 2 Ḣσ 1 ε ρ(t) 2 Ḣσ ∇ρ(t) 2 L 2 + 1 ε v(t) 2 Ḣσ ∇ρ(t) 2 L 2 + 1 ε v(t) 2 Ḣσ ∇v(t) 2 L 2 + ∇ v(t) 1 + ρ(t) 2 L 2 + 1 ε v(t) 2 L ∞ ρ(t) 2 Ḣσ ∇v(t) 2 L 2 + v(t) 2 L ∞ ε v(t) 2 Ḣσ ∇v(t) 2 L 2 . ( 65 
)
Using the fact that v L ∞ (Ω×[0,T ]) 2 ≤ 3 4 , from (65), we infer that there exists a constant C > 0 depending only on σ such that,

1 2 d ds ( ρ(s) 2 Ḣσ + v(s) 2 Ḣσ ) + ε 2 ∇ρ(s) 2 Ḣσ + ε 2 ∇v(s) 2 Ḣσ ≤ C ∇ρ(s) 2 L 2 + ∇ v(s) 1+ρ(s) 2 L 2 + ∇v(s) 2 L 2 ε ( ρ(s) 2 Ḣσ + v(s) 2 Ḣσ ), ( 66 
) which implies, 1 2 d ds ( ρ(s) 2 Ḣσ + v(s) 2 Ḣσ ) ≤ C ∇ρ(s) 2 L 2 + ∇ v(s) 1+ρ(s) 2 L 2 + ∇v(s) 2 L 2 ε ( ρ(s) 2 Ḣσ + v(s) 2 Ḣσ ).
(67) Then, using Gronwall Inequality, from (67), we deduce for all s ∈ [0, T ],

ρ(s) 2 Ḣσ + v(s) 2 Ḣσ ≤ ( ρ 0 2 Ḣσ + v 0 2 Ḣσ )e 2C R t 0 b(τ )dτ , (68) 
where b(τ

) = ∇ρ(τ ) 2 L 2 + ∇ v(τ ) 1+ρ(τ ) 2 L 2 + ∇v(τ ) 2 L 2
ε . After integrating (66) and using (68), we deduce that for all s ∈ [0, T ],

ρ(s) 2 Ḣσ + v(s) 2 Ḣσ + s 0 ε ∇ρ(τ ) 2 Ḣσ + ε ∇v(τ ) 2 Ḣσ dτ ≤ ( ρ 0 2 Ḣσ + v 0 2 Ḣσ )e 2C R t 0 b(τ )dτ . (69) 
We notice that ∇v(τ Then, gathering the previous results, we prove our Theorem 4.1 which deals with existence and uniqueness of global strong solutions of [START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF].

) = ∇ v(τ ) 1 + ρ(τ ) (1 + ρ(τ )) = ∇ v(τ ) 1 + ρ(τ ) (1 + ρ(τ )) + v(τ ) 1 + ρ(τ ) ⊗ ∇ρ(τ ), then we get, |∇v(τ )| ≤ ∇ v(τ ) 1 + ρ(τ ) (1 + |ρ(τ )|) + |v(τ )| 1 -|ρ(τ )| |∇ρ(τ )|.
Theorem 4.1 Let ω 0 ≡ (ρ 0 , v 0 ) ∈ Ḣ-r (Ω) 3 ∩ H s (Ω) 3 with 0 < r < 1 < s and ω 0 L ∞ ≤ 1 2 .
Then there exists a real α 1 > 0 depending only on r, s, v 0 , ρ 0 such if α 1 ≤ 1 2 , then there exists a unique global strong

solution ω ≡ (ρ, v) ∈ C([0, ∞[; Ḣ-r (Ω) 3 ∩ H s (Ω) 3 ) ∩ C 1 (]0, ∞[; H s-1 (Ω) 3 ) ∩ C(]0, ∞[; H s+1 (Ω)
3 ) of the system of Equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF] with 3 and the real α 1 is given by,

ω L ∞ (Ω×[0,+∞[) 3 ≤ 1 2 . Furthermore, ω ∈ C ∞ (Ω×]0, ∞[)
α 1 = C 1 ω 0 s-1 s L 2 ω 0 1 s Ḣs e c 1 ε α0 ,
where,

α 0 = ω 0 Ḣr ω 0 Ḣ-r e C ε 2 ω0 2 L 2 ,
with c 1 > 0, C > 0 and C 1 > 0 constants depending only on r, s. Moreoever, for all t ≥ 0,

t 0 ω(τ ) 2 L ∞ (Ω) dτ ≤ c 1 α 0 .
Proof.

Thanks to Proposition 4.1, there exists a maximal time of existence T * > 0 such that there exists a unique strong solution ω

≡ (ρ, v) ∈ C([0, T * [; Ḣ-r (Ω) 3 ∩ H s (Ω) 3 ) ∩ C 1 (]0, T * [; H s-1 (Ω) 3 ) ∩ C(]0, T * [; H s+1 (Ω) 3 )
of the system of Equations ( 30)- [START_REF] Kato | Commutator Estimates and the Euler and Navier-Stokes Equations[END_REF]. Moreover if T * < ∞, then either ρ L ∞ (Ω×[0,T * ]) ≥ 1 or either

T * 0 v(τ ) 4 L ∞ = ∞. (70) 
Let us assume that T * < ∞.

Since s > 1, we get the Sobolev embedding H s (Ω) → L ∞ (Ω) and then ω ∈ C([0, T * [; L ∞ (Ω) 3 ). Furthermore, since ω 0 L ∞ < 3 4 , then we deduce that there exists a maximal time 0 < T ≤ T * such that for all t ∈ [0, T [, ω(t) L ∞ < 3 4 . Let us show that T = T * . Indeed if T < T * , then we get,

ω(T ) L ∞ = 3 4 . ( 71 
)
Thanks to Lemma 4.1 and the fact that v L ∞ (Ω×[0,T ]) ≤ 1 , there exists a constant c 1 > 0 depending only on s such that for all t ∈ [0, T ],

ω(t) 2 Ḣs + ε 2 t 0 ω(τ ) 2 Ḣs+1 dτ ≤ ω 0 2 Ḣs e c 1 ε R t 0 ω(τ ) 2 L ∞ dτ , (72) 
Thanks to (8), we have for a.e t ∈ [0, T ],

ω(t) L ∞ ω(t) 1 2
Ḣ1+r ω(t)

1 2
Ḣ1-r .

Thanks to Cauchy-Schwarz inequality, we infer,

t 0 ω(τ ) 2 L ∞ dτ t 0 ω(τ ) 2 Ḣ1+r dτ 1 2 t 0 ω(τ ) 2 Ḣ1-r (Ω) dτ 1 2 
.

Thanks to Lemma 4.3 used first with σ = r and after with σ = -r, we deduce,

t 0 ω(τ ) 2 L ∞ dτ ω 0 Ḣr ω 0 Ḣ-r e C R t 0 b(τ )dτ , (73) 
where C > 0 is a constant and b(τ

) = ∇ρ(τ ) 2 L 2 + ∇ v(τ ) 1+ρ(τ ) 2 L 2 ε
. Thanks to (73) and Lemma 4.2, we get that there exists a constant c 2 > 0 depending only on r, s such that for all t ∈ [0, T ],

t 0 ω(τ ) 2 L ∞ dτ ≤ c 2 α 0 ,
where,

α 0 = ω 0 Ḣr ω 0 Ḣ-r e 4C ε 2 ω0 2 L 2 .
Then, from (72), we deduce that for all t ∈ [0, T ],

ω(t) Ḣs ≤ ω 0 Ḣs e c 1 ε c2α0 . (74) 
Thanks again to Lemma 4.2, we have for all t ∈ [0, T ],

ω(t) L 2 ω 0 L 2 . ( 75 
)
Thanks to (8), we have for all t ∈ [0, T ],

ω(t) L ∞ ω(t) s-1 s L 2 ω(t) 1 s
Ḣs .

Then, using (75) and (74), from (76), we deduce that there exists two constant C 1 > 0 and C 2 > 0 depending only on r, s such that for all t ∈ [0, T ],

ω(t) L ∞ ≤ C 1 ω 0 s-1 s L 2 ω 0 1 s Ḣs e C 2 ε α0 . (77) 
We assume in what follows that,

C 1 ω 0 s-1 s L 2 ω 0 1 s Ḣs e C 2 ε α0 ≤ 1 2 . ( 78 
)
Then thanks to (77) and ( 78), we obtain a contradiction with (71), therefore T = T * . Owing to (78), this means for all t ∈ [0, T * [,

ω(t) L ∞ ≤ 1 2 , (79) 
which leads to a contradiction with (70) and then T * = ∞. Therefore, under the assumption (78), we deduce that there exists a unique global strong solution ω

≡ (ρ, v) ∈ C([0, ∞[; Ḣ-r (Ω) 3 ∩ H s (Ω) 3 ) ∩ C 1 (]0, ∞[; H s-1 (Ω) 3 ) ∩ C(]0, ∞[; H s+1 (Ω)
3 ) of the system of Equations ( 30) for the initial data

ω 0 ≡ (ρ 0 , v 0 ) ∈ Ḣ-r (Ω) 3 ∩ H s (Ω) 3 , moreover ω L ∞ (Ω×[0,+∞[) ≤ 1 2 . It remains to prove that ω ∈ C ∞ (Ω×]0, ∞[) 3 . Let > 0, k ∈ N and k = (1 -2 -k ), notice k+1 > k .
By considering for each k ∈ N, the system of equations [START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF] for the initial data ω( k ), then using a recurrence argument combined with Proposition 4.1 and uniqueness of the solution ω, we infer

ω ∈ C([ k , ∞[; Ḣ-r (Ω) 3 ∩ H s+k (Ω) 3 ) ∩ C 1 (] k , ∞[; H s+k-1 (Ω) 3 ) ∩ C(] k , ∞[; H s+k+1 (Ω) 3 ) for any k ∈ N. Since for all k ∈ N, k < , then we get ω ∈ C([ , ∞[; Ḣ-r (Ω) 3 ∩ H s+k (Ω) 3 ) ∩ C 1 ([ , ∞[; H s+k-1 (Ω) 3 ) ∩ C([ , ∞[; H s+k+1 (Ω) 3
) for all k ∈ N. Then, thanks to Sobolev embedding and the system of equations [START_REF] Klusdahl | Self-consistent study of the resonanttunneling diode[END_REF], we deduce that ω ∈ C ∞ (Ω×]0, ∞[) 3 , which allows us to conclude the proof.

Let us compute the real α 1 given in Theorem 4.1 with ω 0 ≡ (ρ 0 , v 0 ) given by ( 28) and [START_REF] Kato | On the nonstationary Navier-Stokes system[END_REF].

Let ñ0 = n 0 -n 0 n 0 and m0 = m 0 n 0 . We recall that m 0 = n 0 u 0 + ε∇n 0 . Then, we get, m0 = (1 + ñ0 )u 0 + ε∇ñ 0 . We recall that Ω def = √ gn 0 O. Then, we notice, for all x ∈ Ω,

ρ 0 (x) = ñ0 x √ gn 0 and v 0 (x) = 1 √ gn 0 m0 x √ gn 0 . By introducing, ω0 def = ñ0 gn 0 , m0 , (80) 
we deduce that for all x ∈ Ω,

ω 0 (x) = 1 √ gn 0 ω0 x √ gn 0 .
Then, we get α 1 = α1 √ gn 0 , with, Then, an immediate consequence of Theorem 4.1 with initial data ω 0 ∈ Ḣ-r (Ω) 3 ∩ H s (Ω) 3 with 0 < r < 1 < s is the result which follows. (O) 2 with 0 < r < 1 < s and we assume also that there exists a constant C > 0,

α1 def = C 1 ω0 s-1 s L 2
n 0 -n 0 H s+1 + n 0 -n 0 W 1, 2 1+r ≤ C min(n 0 , √ n 0 ). ( 82 
)
We recall that α1 is given by, 

α1 = C 1 ω0 s-1 s L 2
where C 1 > 0 and c 1 > 0 are constant.

Since n 0 u 0 n 0 = u 0 + n 0 -n 0 n 0 u 0 and s > 1, we get,

n 0 u 0 n 0 H s u 0 H s 1 + n 0 -n 0 n 0 H s u 0 H s .
Then, we have, .

ω0 H s ≤ n 0 -n 0 √ n 0 H s √ g + n 0 u 0 n 0 H s + ε n 0 ∇n 0 H s C( √ g + ε) + u 0 H s . ( 84 
Then, we get, ω0 Ḣ-r ω0 L 2 1+r

≤ n 0 -n 0 √ n 0 L 2 1+r √ g + n 0 u 0 n 0 L 2 1+r + ε n 0 ∇n 0 L 2 1+r C( √ g + ε) + (1 + C) u 0 L 2 1+r , (85) 
where we have used the fact that

n 0 n 0 L ∞ ≤ 1 + n 0 -n 0 n 0 L ∞ 1 + n 0 -n 0 n 0 H s ≤ 1 + C.
Under the assumption (82), thanks to (84) and (85), from (83) we deduce that there exists a real C 2 > 0 depending only on r, s, g, ε, u 0 H s , u 0 L 

  Since ρ L ∞ (Ω×[0,T ]) ≤3 4 and v L ∞ (Ω×[0,T ]) 2 ≤ 3 4 , then we deduce for a.e τ ∈ [0, T ],|∇v(τ )| ≤ 7 4 ∇ v(τ ) 1 + ρ(τ )+ 3|∇ρ(τ )|. Therefore, we deduce that b(τ ) Theorem, we have ∇ρ(τ ) Ḣσ = ρ(τ ) Ḣσ+1 , ∇v(τ ) Ḣσ = v(τ ) Ḣσ+1 , then from (69), we conclude the proof.

4C ε 2 ω0 2 L 2 .
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Corollary 4 . 1 2 √ 2 √ 3 . 2 √

 412232 Let (n 0 -n 0 , m 0 ) ∈ Ḣ-r (O)3 ∩H s (O)3 with 0 < r < 1 < s. If ω0 L ∞ ≤ 1 gn 0 (ω 0 given by (80)) and if α1 ≤ 1 gn 0 (α 1 given by (81)), then there exists a unique global strong solution (n, m) of the system of Equations (23) for the initial data(n 0 , m 0 ) such that (n -n 0 , m) ∈ C([0, ∞[; Ḣ-r (O) 3 ∩ H s (O) 3 ) ∩ C 1 (]0, ∞[; H s-1 (O) 3 ) ∩ C(]0, ∞[; H s+1 (O) 3 ) and n -n 0 L ∞ (O×[0,+∞[) ≤ n 0 2 . Furthermore, (n -n 0 , m) ∈ C ∞ (O×]0, ∞[)Let us give a sufficient condition ensuring that α1 ≤ 1 gn 0 .For this, we assume n0 -n 0 ∈ H s+1 (O) ∩ W 1, 2 1+r (O), u 0 ∈ H s (O) 2 ∩ L 2 1+r

  n 0 u 0 + ε∇n 0 n 0 ,

) 2 1ϕ

 2 For any f ∈ Ḣ-r (O), we can write f Ḣ-r (O) as follows f Ḣ-r (O) = supϕ∈C ∞ 0 (O)∩ Ḣr (O), ϕ Ḣr (O) =1 | f, ϕ |.Since for all ϕ ∈ L -r (O) ∩ Ḣr (O), we have ϕ Ḣr (see[START_REF] Adams | Sobolev spaces[END_REF]), then we deduce that for allf ∈ L 2 1+r (O), f ∈ Ḣ-r (O) and f Ḣ-r (O) f

2 1+r such that α1 ≤ C 2 . 2 .

 222 We get also ω0L ∞ ω0 H s ≤ C( √ g + ε) + u 0 H s .By using Corollary 4.1 and the first equation of[START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF] to obtain again more regularity on h, we deduce our main Theorem,Theorem 4.2 Let n 0 -n 0 ∈ W 1, 2 1+r (O) ∩ H s+1 (O), u 0 ∈ L 2 1+r (O) 2 ∩ H s (O) 2 with 0 < r < 1 < s. If n 0 -n 0 H s+1 + n 0 -n 0 W 1, 21+r ≤ C 0 min(n 0 , √ n 0 ) with C 0 > 0 a constant, then there exists a real C > 0 depending only on C 0 , r, s, g, ε, u 0 H s , u 0 L 2 1+r such that if n 0 ≥ C then there exists a unique global strong solution (n, u) of the system of Equations (1) for the initial data (n 0 , u 0 ) such that(n -n 0 , u) ∈ C([0, ∞[; Ḣ-r (O) 3 ∩ H s (O) 3 ) ∩ C 1 (]0, ∞[; H s-1 (O) 3 ) and n -n 0 L ∞ (O×[0,+∞[) ≤ n 0Moreover, (n -n 0 , u) ∈ C ∞ (O×]0, ∞[)3 .