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Matthieu Zimmer, Stephane Doncieux, Member, IEEE

Abstract—Reinforcement learning problems are hard to solve
in a robotics context as classical algorithms rely on discrete
representations of actions and states, but in robotics both are
continuous. A discrete set of actions and states can be defined, but
it requires an expertise that may not be available, in particular
in open environments. It is proposed to define a process to make
a robot build its own representation for a reinforcement learning
algorithm. The principle is to first use a direct policy search in the
sensori-motor space, i.e. with no predefined discrete sets of states
nor actions, and then extract from the corresponding learning
traces discrete actions and identify the relevant dimensions of
the state to estimate the value function. Once this is done, the
robot can apply reinforcement learning (1) to be more robust to
new domains and, if required, (2) to learn faster than a direct
policy search. This approach allows to take the best of both
worlds: first learning in a continuous space to avoid the need of
a specific representation, but at a price of a long learning process
and a poor generalization, and then learning with an adapted
representation to be faster and more robust.

Index Terms—Developmental robotics, reinforcement learning,
continuous environment, representation redescription

I. INTRODUCTION

A large number of reinforcement learning algorithms ex-
plore a set of states and actions to find the sequence of actions
maximizing a long-term reward [1]. The definition of the set
of actions and states has a critical importance. It needs to
cover all relevant behaviours, but a too large set of actions
and states will drastically decrease learning efficiency: this
is the curse of dimensionality. In a robotic context, choosing
actions and states is particularly difficult. The movements
and most of the perceptions of a robot are continuous. A
rough discretization results in too many actions and states.
The design of smaller sets of relevant actions and states
requires a deep insight on robot features and on the behaviours
expected to solve the task. An adapted representation with
appropriate approximation functions and a good exploitation
of prior knowledge are, in practice, the key to success [2].
A learning algorithm is expected to let the robot discover
its own abilities and to reduce the burden of robot behaviour
implementation. The design of appropriate actions and states is
then a strong limitation to the application of such algorithms
to a robotics context. Reinforcement learning algorithms in
continuous spaces do not require this design step, but they
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require exploring large and continuous search spaces and
typically rely on demonstrations by an expert to bootstrap,
or on non-random initial policies, or else on dedicated policy
representations [2,3,4].

The first motivation of this work is to reduce the expertise
required and to let the robot discover on its own the skills
it needs to fulfil its mission. Besides simplifying the robot
behavior design process, it should make the robot more adap-
tive to situations unknown during robot programming phase
[5]. The second motivation is to let the robot build upon its
experience in a developmental robotics perspective [6], to have
the robot acquire progressively better generalization, and to
learn faster as it acquires more experience. To satisfy these
motivations, it is proposed to use several learning algorithms
requiring different representations and different levels of a
priori knowledge about the robot and the task. The hypothesis
explored here is that a robot with adapted representations
(1) is more robust to new situations and (2) can adapt
its behaviour faster. The goal is then to allow the robot
to change the representation it uses and the corresponding
learning algorithm. The robot is provided with two learning
algorithms. A first learning algorithm is slow but task agnostic.
It relies on low-level sensori-motor values, i.e. raw sensor
and effector values. A second one (Q-learning with discrete
actions and continuous states) is expected to be faster, but
needs high level representations, typically actions and states
that are adapted to the robot task. The goal of providing both
strategies and not only the fastest one is to bootstrap the second
strategy with the knowledge extracted from the results of the
first one (Figure 1). The slow and agnostic algorithm is then
used first and followed by an analysis step that extracts from
the corresponding learning traces the information relevant
for the second learning algorithm. The proposed approach
has then three different steps: (1) slow learning with a task
agnostic algorithm, (2) analysis of the learning traces and
extraction of actions and sensors to take into account and (3)
exploitation of the representation-specific learning algorithm
when facing a new situation. The generation of the first
successful behaviours and the representation building process
are not performed simultaneously, they are separated into two
completely different processes.

The agnostic algorithm is a neuroevolution algorithm, i.e.
an evolutionary algorithm that generates both the structure
and parameters of a neural network [7,8]. Up to millions of
neural networks are explored to reach a result of interest. The
first step of the proposed approach takes time, but has the
advantage of requiring very little a priori knowledge about the
task. This algorithm generates a neural network that is well
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Fig. 1. Overview of the proposed approach.

suited for the domain used to evaluate the potential solutions
during the learning experiment. When the robot faces a new
domain, there is no guarantee that this neural network will
generate the expected behaviour — this is the generalization
problem [9]. If the neural network fails to exhibit the expected
behaviour, the robot will have to learn again from scratch.
The solutions generated on the first task nonetheless contain
information about how to solve it. It contains many examples
of the orders to send to motors in response to a particular set of
sensor values. An analysis and extraction step is then proposed
to extract relevant data so that when the robot faces a new
situation, it relies on these data and uses another reinforcement
learning algorithm to find out how to maximize the long-term
reward. The space to explore being much smaller than for
neuroevolution, the time required to learn is expected to be
much shorter. The proposed approach is tested on two different
tasks: a ball collecting task [10] and a box pushing task [11].

II. RELATED WORK

Robot positions, perceptions and actions are continuous.
Furthermore robot state estimation is prone to error because of
noise or perceptual aliasing and actions may fail. Applying a
reinforcement learning algorithm to a robot is then not straight-
forward. Some examples of discrete reinforcement learning
with predefined actions and states in a robotics context will
be briefly reviewed in this section, followed by a review of
approaches in which actions and states are built or updated
using the experience acquired previously.

A. Predefined representations

In some problems, a simple and straightforward discretiza-
tion gives satisfying results. Policies for controlling a ball
in a beam [12], a crawler robot [13] or a one degree of
freedom (DOF) ball-in-the-cup [14] have thus been learned
with a discrete reinforcement learning algorithm. It is possible

because of a limited number of actions, two for [12], four for
[13] and five for [14].

Tasks involving a higher number of possible action values
can be solved, but at the price of a more careful design of
the actions available for the reinforcement learning algorithm.
Willgoss and Iqbal solved an obstacle avoidance task with
reinforcement learning by predefining actions like ’forward’,
’forward left’, ’backward’, etc [15]. Konidaris et al. provided
navigation actions (reach a particular position among a set
of task-relevant positions) and robot arm movement actions
in navigation tasks requiring to manipulate levers and buttons
[16]. Several participants of the Robocup Soccer competition
have applied reinforcement learning. Kwok and Fox [17] have
used it for the robot to decide where to point its video camera
when kicking a ball into the opponent’s goal: the robot had
to decide what to look for at a particular moment (ball, goal,
opponents, landmarks, etc) as its limited field of view did not
allow it to have a complete view of the scene. They have
used a reinforcement learning algorithm to decide it with one
’looking at’ action for each possible point of interest. Several
works of the literature [18,19] used sets of macro actions to
apply reinforcement learning algorithms to various RoboCup
domains. Depending on the considered soccer behavior they
wanted their robot to exhibit, Riedmiller et al. provided either
a rough discretization of motor commands (resulting in 76
different actions), or a set of possible motor increase or
decrease commands for a set of five well chosen commands
for the three motors of the robot [20].

A first conclusion from the review of these examples is
that it is possible to make a robot learn with a reinforcement
learning algorithm exploiting a set of discrete actions. The
difficulty with such an approach is actually to design the
set of actions [2]. Extending the learning process to build
this representation on the fly while the system is learning or
developing would make learning algorithms much easier to
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use in a robotics context.

B. Adapting representations

In a life-long learning perspective [21], it makes sense to
extract knowledge from the acquired experience in order to
improve future problem resolution. This is the main motivation
of transfer learning, which is a widely studied field in machine
learning in general [22] and in reinforcement learning in
particular [23]. The principle of transfer learning is to rely on
the knowledge acquired while solving a source task to solve
a target task more efficiently. There are many different kinds
of transfer learning approaches in reinforcement learning, for
instance transfer of the value function [24] or through reward
shaping [25,26]. In the following, we focus on the transfer of
knowledge through policies and the way they are represented.

Options are an extension of Markov Decision Processes to
introduce sub-goals and the corresponding sequences of ac-
tions as new actions available for learning [27]. Konidaris and
Barto proposed an algorithm to discover them automatically
[28]. Furthermore, options learned in a particular setup can be
transferred to a new task or domain if they are defined in a
problem independent space [29]. Koga et al. have proposed
an approach to learn abstract policies in order to increase the
generalization ability [30,31]. Riano and McGinnity proposed
to represent sequences of actions with a finite state automaton
and to explore its structure with evolutionary algorithms [32].
The advantage of this approach lies mainly in the versatility
of evolutionary algorithms that allows both to design the
finite state automaton and to tune actions on the fly or even
create new ones. All of these approaches require providing
a set of primitive actions to bootstrap the system. Once
primitive actions are available, they can discover how to
combine them to build more abstract actions, but none of those
works addresses the question of bootstrapping the process and
discovering primitive actions.

Neumann et al. propose to learn complex motion from
simpler motion templates [33]. Starting from given motion
templates with some initial and relevant parameter values
(although not optimal), a reinforcement learning algorithm
searches for combinations of these templates together with
their parameters. This approach does not require primitive
actions, but primitive motion templates need to be defined.
It goes further than the previously mentioned approaches
with respect to bootstrapping, as a single motion template
may result in different primitive actions depending on their
parametrization, but it still requires providing significant prior
knowledge on the task, a prerequisite that this work tries to
avoid.

Mugan et al. proposed QLAP, Qualitative Learner of Action
and Perception, a complete framework to bootstrap a cognitive
system [11]. Dynamic Bayesian Networks (DBNs) are built to
predict events with an adaptive discretization whose goal is to
make models more reliable. The DBNs are then converted into
plans that are used to build actions. Exploration starts from
random motion and is then driven by a motivation inspired
from artificial curiosity [34,35]. Kompella et al. similarly
proposed CCSA, Continual Curiosity driven Skill Acquisition,

an approach to learn abstractions that consists in exploring,
collecting observations and discretizing it to augment the agent
state-space [36,37]. Both approaches can then bootstrap with
no primitive actions. It has then the same goal as the approach
proposed here. QLAP relies on an initial set of random motor
commands and tries to build the representation on the fly while
it is learning and trying to maximize the reward. CCSA starts
from at least one exploratory behaviour that is supposed to
be given. This behaviour can be considered as a primitive
action. The difference with respect to previously mentioned
approaches, is that CCSA can create other primitive actions.

All the work reviewed in this section either relies on
random actions or on dedicated primitives to generate the
data that the developmental system will use to build states
and actions. Avoiding to rely on predefined primitives is the
main motivation of this work. Furthermore, random actions
may not be enough to generate data of interest. In the case of
interaction with objects, for instance, random motor actions
leads, unsurprisingly, to very few interactions if the robot has
enough degrees-of-freedom [38], and may thus not provide
the system with relevant data to model object interaction.
This limitation has motivated the development of the approach
proposed here. Contrary to what is done in QLAP and CCSA,
in this work the representation is not built while learning, but
after having succeeded with a task-agnostic algorithm. The
task of building the representation, i.e. actions and states, is
then decomposed in three different and clearly separated steps:
(1) obtaining behaviours maximizing the reward, (2) analysing
them and building the representation and (3) learning in new
contexts while exploiting the representation. The advantages
and drawbacks of each approach together with their comple-
mentarity will be discussed in Section VIII.

III. BACKGROUND

Reinforcement learning (RL) [1,39] is a framework that
models sequential decision problems where an agent has
to learn to make better decisions by maximizing a reward
informing it about the quality of its previous actions.

The underlying formalism of RL algorithms is Markov
Decision Processes (MDP). A MDP is formally defined as
a tuple 〈S,A, T,R〉 where S is a set of states, A a set of
actions, T : S × A × S → [0, 1] are transition probabilities
between states (T (s, a, s′) = p(s′|a, s) is the probability of
reaching state s′ from state s after executing action a) and
R : S × A → R is a reward signal. A policy π : S → A is a
mapping from states to actions (the action to be taken in each
state) and encodes how the agent behaves. An optimal policy
π∗ is a policy maximizing the expected long-term reward:

π∗ = arg max
π

E
[ ∞∑
t=0

γt ×R(st, πt(st))
]
, (1)

where γ is a discount factor. In MDPs, T and R are given. An
optimal policy π∗ can be computed using dynamic program-
ming (e.g., value iteration, policy iteration) [40] for instance.

In RL, the agent does not know the transition probabilities
T and the reward function R. Model-based methods aim at
learning T and R to enable planning and model-free methods
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only estimate expected rewards. In this work, model-free
methods are considered. They can be categorized into three
approaches : (1) critic-only methods aim at learning value
functions and deduce a policy from them, (2) actor-only
methods attempt to learn directly the policy function, and
(3) actor-critic methods intend to learn both a value function
and a policy. Critic-only methods (Section III-A) are very
difficult to apply to continuous actions and rather need a
discrete set of actions, making them task-specific. They will
be used during the second learning phase, after the creation of
a set of discrete actions and the autonomous design of a state
estimator. Actor-only methods [4,41] can deal with continuous
state and action spaces, but they are slow. Such a method will
be used as a task-agnostic algorithm during the first learning
phase (Section III-B2). Actor-critic methods [42,43] can also
deal with continuous state and action spaces but not always
with a better data efficiency [44]. The actor-only method used
here is neuroevolution (see Section III-B).

A. Reinforcement learning with value functions

The function Q estimates the long-term reward to be ex-
pected when an action a is chosen in state s (Q : S×A→ R):

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]

For the choice of an action, we will consider an ε-
greedy strategy, that exploits most of the time and performs
a random exploration move with a small probability, i.e.,
π(s) = arg max

a
Q(s, a) with probability 1− ε and π(s) is

a random action uniformly drawn in A with probability ε.
RL with Q values stored in a table suffers from the lack

of generalization: what is learned in a state does not impact
the knowledge about the value of similar states. A solution to
this problem is to use an approximation function to provide a
means for both efficient computation and support for general-
ization. In these approaches, Q values are approximated by a
function:

ψθ : S ×A→ R,

parametrized by a vector θ whose values are updated
whenever reward is received (Q(s, a) ≈ ψθ(s, a)). This allows
to represent Q-values for continuous domains. Moreover, this
allows generalizing what is learned in a state to another
similar state (notice that ψθ can take many forms compatible
with supervised learning methods: neural networks, linear
regression, mixture of Gaussian, etc). In this work, we will rely
on neural networks [45,46,47], where each action is associated
to a different neural network. In this case, the inputs of the
neural network are the components of the state, the single
output is the Q value associated to this action, and finally θ
are the connection weights. In Q-learning [1], the goal is to
train the neural network to approximate:

Q(st, at) = R(st, at) + γ max
a′∈A

Q(st+1, a
′). (2)

If the temporal extensions of actions are not identical, and
the reward function depends only on the state, the algorithm

can be extended to [48]:

Q(st, a) =
( da∑
i=1

γi−1R(st+i)
)

+γda max
a′∈A

Q(st+da , a
′), (3)

where da is the duration of the action a.

B. Evolutionary Design of Robot’s Neuro-controllers

Direct policy search methods optimize policy parameters
with respect to the reward function. If the cumulated reward
only is taken into account (i.e. intermediate rewards are
ignored), it has been shown that direct policy search is equiv-
alent to black-box optimization [49]. Evolutionary algorithms
are powerful black-box optimization tools that can be used
to optimize policies. The use of evolutionary algorithms to
design robot parts is called evolutionary robotics [50]. Neural
networks are often used to represent policies for their ability to
approximate any kind of function with an arbitrary precision
[51]. The use of evolutionary algorithms to design neural
networks is named neuroevolution [7]. These algorithms have
been used on a large range of robotic tasks [52] that can be
grouped in three main categories: locomotion, navigation and
foraging tasks. Locomotion tasks typically involve hexapod
[53,54] or biped robots [55,56]. If most work are focused
on locomotion in a straight line, recent work have defined
a control architecture including evolutionary approaches and
able to learn to walk in any direction [57], and even to adapt
to motor failures [58]. Navigation tasks are performed on a
two-wheeled robot equipped with infrared sensors and range
from avoiding obstacles [59] to finding the output of a maze
[60]. Foraging tasks are also performed on two-wheeled robot
and, besides the navigation abilities, require the robot to find
objects, pick them up and bring them to a goal location [10].

Evolutionary robotics methods require few information
about the task and do not need to define finite sets of discrete
states or actions. There is however a price to pay: they need
to explore many different policies and are thus in general very
slow.

The general principles of evolutionary algorithms are first
introduced, the specificities of their application to robotics are
then presented and this section finally describes how to use
them to generate neural networks.

1) General principles of evolutionary algorithms: Evo-
lutionary algorithms rely on the Darwinian principles of
variation and selection. They are iterative, population-based,
stochastic algorithms [61]. An initial set of candidate solutions
is randomly chosen. Each solution – called a genotype – is
evaluated from a fitness function F : G → Rno . G is the
genotype space. Depending on the needs, it may be a string
of binary digits, a vector of real values, a program or a graph,
for instance. In this work, genotypes are neural networks, i.e.
valued directed graphs. Once each solution is evaluated, a
selection process determines the genotypes that will feed the
next generation.

New genotypes are copies of their ancestors with some
random modifications called mutations. The mutation is a
stochastic operator that blindly modifies a genotype. It is the
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only search operator we will consider here.1 New genotypes
are also evaluated and selected. This process is repeated
iteratively to maximize F . Each of these loops is called a
generation.

When no > 1, the problem is said to be multi-objective.
Evolutionary algorithms, because of their population-based
feature, are easy to adapt to this kind of problems [62].
Considering separately each objective allows to optimize them
in parallel and offers the opportunity to deal with policy
learning issues through the definition of new and specific
objectives [63]. The Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [41], a state-of-the-art multi-objective
evolutionary algorithm, will be used in the following. It is
an elitist algorithm that divides the current population into
different fronts: the first front is the set of non-dominated
solutions in the population2. The second front is the set of non
dominated solutions once the first front has been removed, etc.
The highest ranked fronts survive to the next generation and
are used to generate new solutions [41].

2) Evolutionary robotics: Evolutionary robotics relies on
evolutionary algorithms to design policies [50,64].3 Evolution-
ary algorithms are black-box optimization tools, but when used
in robotics, it was shown to be interesting to take into account
some of its specificities [63].

The main specificity of evolutionary algorithms in this
context, is the evaluation step. The genotype describes a robot
policy. To evaluate it, the robot is placed in its environment in
some initial conditions. The corresponding policy determines
the orders to be sent to the motors out of robot perceptions.
This sensori-motor loop determines the robot’s behaviour for a
given time length. The fitness value associated to the genotype
is deduced from these observations. Task-oriented objectives
will evaluate to what extent the robot fulfils the given task,
but it has been shown that it was also important to take into
account the behaviour in a task-independent way. Evolutionary
algorithms include diversity keeping mechanisms that allow
to balance exploration and exploitation. They were shown
not to be sufficient in robotics applications, unless they take
into account robot behaviours. Several approaches were thus
defined to enhance exploration in the behaviour space [63].
Novelty search objectives reward individuals that have a novel
behaviour with respect to the current population and an archive
of encountered behaviours [56]. In this work, we will rely
on behavioural diversity [65]. In this approach, a behavioural
diversity objective BD(x) rewards a genotype with respect to
the difference of its behaviour with respect to the behaviour
of other individuals in the current population:

BD(x) =
1

size(P )

∑
y∈P

d(x, y),

where P is the current population, x and y are genotypes.

1Another operator exists in evolutionary algorithms literature: the crossover.
It is a stochastic operator that builds a new genotype out of several parents.
It raises difficult issues when dealing with neural networks, and is then often
not used at all in this context.

2A solution is non dominated if no solution is at least equal on all objectives
and better on at least one objective.

3It can also design robot morphology but we will focus here on policy.

d(x, y) is a distance in the behavioural space. Different def-
initions of behaviours have been tested and all revealed to
lead to better results than approaches in which no behavioural
diversity was used [65]. Behavioural diversity is optimized as
a separate objective in a multi-objective EA [65].

Several diversity measures can be used in a same run. It
avoids the need to choose a single one and also revealed to
speed up convergence [54]. The behavioural diversity objective
becomes:

BDk(x) =
1

size(P )

∑
y∈P

dk(x, y),

where several behavioural distances dk(x, y) are defined.
k is changed after a given number of generations. This ap-
proach will be used here and the definition of the behavioural
distances used in the following experiments will be described
in sections V and VI.

3) Neuroevolution: Evolutionary algorithms offer the pos-
sibility to optimize both the structure and the parameters of a
neural networks [7]. We have used this possibility here, with
an approach called DNN [65], a direct encoding inspired from
NEAT. NEAT is a direct encoding that revealed to outperform
many other encodings [66]. In NEAT, the mutation operator
directly modifies the graph of neurons and connections. A
specific mechanism is used to compare neural networks, define
a crossover operator and to protect new networks when they
appear. DNN is a simplified version of NEAT that do not
include this mechanism. It was shown that DNN was actually
more efficient than NEAT when associated with behavioural
diversity [65]. DNN consists in randomly generating neural
networks without hidden nodes. Several mutation operators
are defined. A first operator randomly modifies connection
weights using the polynomial mutation [62]. Other mutation
operators can add a connection between two randomly selected
neurons or remove connections. The last mutation operators
can add a neuron by splitting an existing connection, or remove
a randomly selected neuron with all of its connections [65].

IV. METHOD

The proposed method makes no assumption about useful
actions or sensors. It aims to extract them from prelimi-
nary experiments relying on direct policy search using raw
sensori-motor values. It is proposed to generate policies using
neuroevolution, a task-agnostic direct policy search. Neural
networks take sensor values as inputs and send their outputs
directly to robot effectors. They do not need finite set of states
nor discrete actions. The price to pay is the time required for
them to converge: up to a million policies evaluations may be
required to converge. Furthermore, there is no guarantee that a
policy maximizing the reward in a domain will still maximize
it in a new domain. When facing a new situation, the direct
policy search algorithm may need to be executed again.

It is proposed to extract from direct policy search learning
traces, states and actions to be used with a reinforcement
learning algorithm. Future learning episodes rely on it and
are expected to converge faster to a policy maximizing the
reward.
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The steps of the proposed approach are the following:
1) Learn with direct policy search in a source domain
2) Extract actions and states from the learning traces:

a) extract a finite set of actions from traces:
i) split the motor flow

ii) build linear models of actions
iii) select the most representative actions with a

clustering algorithm
b) identify relevant sensor inputs for state estimation
c) learn with Q-learning on the source domain with

the extracted action and states (updates the estima-
tor of Q-values)

3) Learn with Q-learning in the target domain.

A. Direct policy search and generation of learning traces

Neuroevolution relies on the principles of variation and
selection to generate policies described by neural networks.
Many policies are generated and evaluated. These evaluations
provide examples of the behaviours that policies may generate,
starting from inefficient policies and finishing with efficient
ones. A subset of all the evaluations made is selected for
actions and state extraction. It should be representative of
what a robot can experience. We propose to rely on a sample
of evaluations that contains successful individuals as well
as inefficient ones. Instead of relying on randomly selected
solutions, it is proposed to use the horizon-finite lineage of
the best-of-run policy.

In an evolutionary run, a new policy πn+1 is generated
through the mutation of another policy πn.4 πn is the par-
ent policy of πn+1. The lineage of a solution is the set
{π0, π1, . . . , πn} where πi is the parent of πi+1. π0 is a
randomly generated policy. Some evolutionary algorithms,
including NSGA-II, are elitists, which means that the best
individuals are systematically part of the next generation. A
policy can then be generated at generation 10, stay in the
population, and still generate new policies at generation 100 or
more. The parent of a policy π may then have been generated
many generations before π enters the current population.5

As evolution is a stochastic process, each evolutionary run
will generate a different best policy. This is the reason why
we use the term best-of-run policy.

The horizon-finite lineage of a best-of-run policy contains
the range of policies from the H last ancestors to the most
efficient observed ones. It has then been selected as the set
of behaviours to consider for action and state extraction with
horizon H = 500.

Learning traces are made up with the sensori-motor flow
experienced by the policies in the lineage of the best-of-run
policy. Let Oi be the set of observations (sensor values) made
by the robot while it is controlled by policy πi and let Ui
be the set of effector commands proposed by the policy in
response to those observations (len(Oi) = len(Ui) = nh, nh
being the evaluation length).

4Crossover may also contribute to the generation of new individuals, but
this operator is not used here.

5As a consequence, πn is not necessarily generated at generation n.

In the following, the learning traces saved in a direct policy
run are the set {(O0,U0), (O1,U1), . . . , (On,Un)}, where
{π0, π1, . . . , πn = π̃∗} is the horizon-finite lineage of the best-
of-run policy π̃∗.

The learning traces are generated with NSGA-II [41] as
evolutionary algorithm and DNN as neural network encoding
[65] (see section III-B).

B. Discrete actions and continuous commands
The effector commands in the learning traces are contin-

uous: Ui = (ui(0), ui(1), . . . , ui(nh)) where ui(t) ∈ Rne ,
ne being the number of effectors. It is proposed to extract
from these traces the set of discrete actions A required for
discrete RL [1]. A mapping between continuous commands
and discrete actions then needs to be defined. We have chosen
to define actions as follows:
• actions have different temporal extensions. Let us call da

the duration of action a;
• actions map to linear functions in the effector space.
Let us call Γa the mapping between an action a, time and

effector commands:

Γa : {0, 1, . . . , da − 1} → Rne .

Γa is defined as follows:

Γa(t) =


∆

(a)
1 (t)

...
∆

(a)
ne(t)

, (4)

where ∆
(a)
i (t) is the value to send to effector i at time t

for the action a. ∆ are linear models:

∆
(a)
i (t) = ui × t+ vi. (5)

The set of parameters Va describing Γa is then the follow-
ing:

Va =


 u1 v1

...
...

une
vne

 , da

 . (6)

Figure 2 shows examples of actions associated to two
effectors.

a1 a2 a3 a4 a5 a6

Fig. 2. A sequence of 6 linear actions with different temporal extensions over
r=2 effectors {m1,m2}. da1 = da2 = 30, da3 = da4 = da5 = da6 = 5.

This formalism could be seen as an SMDP [67], where the
terminal conditions of options are based on the time da and
the internal policy of one option is restricted to a linear model.

We propose to extract Va from learning traces.
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C. Extracting actions from traces

The learning traces contain the set of effector commands Ui
generated by each policy πi in the lineage of the best-of-run
and in the evaluation conditions used during the neuroevolu-
tion search process. Each Ui is a set of nh continuous value
vectors: the values that were sent to the effectors at each time
step. To extract actions from the different Ui, a 2-steps process
is defined: a heuristic splits Ui in many linear actions, then a
clustering algorithm extracts the most representative ones.

The proposed splitting heuristic considers the second deriva-
tive of effector commands. It binarizes these values: 0 if it is
below the mean second derivative, 1 otherwise. The resulting
binary sequence is then used to decide where to put splitting
points. Each ’1’ in the sequence is a potential splitting point.
In case of two following ’1’, the point that corresponds to
the lowest second-derivative value is changed to ’0’. In the
case of a sequence of ’1’ whose length is above two, only the
extreme points are kept. All the others are changed to ’0’. The
’1’ in the sequence after these modifications correspond to the
splitting points. The idea behind this strategy is to consider as
a single action the sequences of effector commands with slow
variations, but also action sequences in which there are fast
oscillations. Both sequences are replaced by linear actions.
It seems natural for the sequences with slow variations. For
the sequence with oscillating values, the linear approximation
is very far from the initial sequence. Our motivation was to
avoid actions lasting only one time step. Our assumption is that
the robot actually filters down the variations with the highest
frequencies and thus that the error in practice is lower than
what it seems. Robots are in general built with this property,
notably to avoid fast oscillations that may have a dramatic
impact on robot stability because of its inertia.

The algorithm used to determine the splitting points is
provided in a python-like pseudo-language:

1: function SPLIT POINTS(U ∈ Rne×nh )
2: U ′′ ← numerical second derivative(U)
3: M← mean over effectors(abs(U ′′

)) .M∈ Rnh

4: L← mean(M) . The limit to overcome
5: P ← map(lambda x : x > L,M) . P ∈ {0, 1}nh

6: i← 0
7: while i < nh − 1 do
8: j ← 1
9: if P [i] == 1 then

10: while (i+ j < nh) and (P [i+ j] == 1) do
11: j ← j + 1
12: end while
13: if j == 2 then . Handle (1,1) sequences.
14: k ← index min([Mi,Mi+1])
15: P [k]← 0
16: else if j > 2 then . Handle longer sequences.
17: P [i+ 1 : i+ j − 2] = [0] ∗ (j − 2)
18: end if
19: end if
20: i← i+ j
21: end while
22: return P
23: end function

Fig. 3. Example of traces with ne = 2 motors (m1,m2) and nh = 200.
The third plot is the mean of the numeric second derivative from the previous
traces. The splitting points found by the heuristic can be seen in green. Finally,
linear models are learned in red on the 2 last plot.

Once the splitting points are defined, a linear regression is
used to learn Va (da is set to the distance between the splitting
points).

Repeating this process on {U0,U1, . . . ,Un} produces a huge
number of different actions. A fuzzy c-means clustering is used
to extract Na representatives from this set of actions [68]. The
actions extracted are the centroids of the Na clusters found
by the fuzzy c-means algorithm. Na is a parameter of the
proposed approach, its impact on the performance is studied
in Section VII-C.

D. Identification of relevant inputs

Perceptual aliasing is a major problem when applying RL
to robotics as it prevents an accurate estimation of the state of
the system: identical perceptions can be associated to different
states and different actions. Consider the case of a robot that is
blocked against a wall with a uniform colour. No matter where
the robot exactly is, the perceptions are the same. Suppose
that the robot must find its way out of the room. If it is
blocked against the wall at the left of the door, then it needs
to turn right to go out and if it is at the right of the door,
then it must turn left. Instantaneous perceptions do not allow
to discriminate these two states. A simple solution consists in
taking the past into account. As soon as a previous perception
differs, the perceptual aliasing phenomenon vanishes. In our
robot navigation example, before crashing into the wall, the
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robot will probably have different perceptions: it may perceive
the door or notice that the left wall is closer or farther, for
instance.

Here we assume that taking into account enough previous
sensory inputs allows to discriminate states. Considering all
past sensory information allows then for sure to determine the
robot state, but it makes model training more difficult as much
more parameters need to be tuned. There is then a trade-off
between the efficiency of the Q − value estimation and the
non-ambiguity of the state identification.

We propose to rely on a lasso linear model regression [69]
to identify relevant inputs. Identified inputs are then used to
learn a non-linear model of the Q − values with a neural
network trained with a back-propagation algorithm during the
Q-learning process.
O(j) is the set of all observations in the learning traces in

which only the j-th sensor is taken into account:

O(j) =
{
o
(j)
i (t)|i ∈ {0, . . . , n}, t ∈ {0 . . . , nh}

}
,

where o(j)i (t) is the j-th component of oi(t) and oi(t) ∈ Rns

the observations experienced by individual i at time t, ns being
the number of sensors.

The lasso method is used to build a model of the transition
function T that predicts o(j)i (t) values out of a set of selected
inputs among previous observations: Oi,µ(t−1) = (oi(t−µ−
1), oi(t−µ), . . . , oi(t− 1)). µ = 8 was empirically chosen as
higher values involved too many computations. The resulting
set of weights is W = {w(0), w(1), . . . , w(ns)}, where w(j)

are the weights to predict O(j) (w(j) is a ns × µ matrix).
What matters here is whether a value is null or not, its exact
value is not used. w(j)[k, l] = 0 means that the k-th input of
ol%nh

(l/nh) can be neglected when trying to predict the next
value of the j-th observation.

Let call w(j)
bin the set:

w
(j)
bin =

{
1 if w(j)[k, l] 6= 0, 0 otherwise

for all k ∈ {0, . . . , ns}, l ∈ {0, . . . , n ∗ nh}} ,

with n the number of individuals in the learning traces and
nh the evaluation length.

There is no reason that w(j1)
bin = w

(j2)
bin for any j1 6= j2.

We propose then to aggregate these different values using a
majority vote: the inputs that are kept are those for which
w

(j)
bin = 1 in more than half of the j values, i.e. inputs kept

are those that are considered as relevant to predict more than
half of the observations.

E. Q-learning

Q-values are computed by neural networks that takes as
inputs the observations considered as relevant by the method
presented in the previous section. Each action is associated to
a specific neural network. Each time an action is executed, the
corresponding set of observations and the reward thus obtained
are used to train the neural networks with a back-propagation
algorithm.

The choice of the action to apply is based on a ε-greedy
strategy with a gradual decrease of ε over the episodes in
order to foster exploration:

ε(t) = (εmax − εmin)ε1+tstepness + εmin.

This strategy promotes exploration in the early stages, and
then exploitation.

A second method is used to make network training more
efficient: the replay of traces of interactions already carried
out during learning [45]. To avoid the few good actions to be
overwhelmed by the great majority of wrongdoing, the best
tracks are replayed multiple times. A trajectory T of length λ
is described as < o(t), a(t), r(t+ 1), o(t+ 1) >t∈{0,...,λ−1}.
After an episode, a new trajectory is produced and stored

with its associated score
λ−1∑
t=0

γtr(t). The η best trajectories

are replayed into the network, after each episode, in a random
order. The replay of a single trajectory is done in reverse order
from λ− 1 to 0 to accelerate convergence.

F. Experimental methodology

Two tasks of the literature have been considered: a ball
collecting task [54] and a box pushing task [11]. For each
task, two different sets of domains are defined: a source set
and a target set.

The source set is used for the initial neuroevolution runs.
These runs generate the learning traces out of which the states
and relevant inputs are extracted. Once actions are extracted
and relevant inputs are identified, neural networks, estimating
the Q− values, are trained on the source set to check the Q-
learning performance and to prepare it for tests on the target
set.

The target set is used for two different goals:
• to compare the generalization ability of the neuro-

controllers and of the policy learned with Q-learning (how
do these policies perform without a new learning phase);

• to compare their learning speed (when learning occurs,
how fast is it on the new task).

Two different configurations of neuroevolution are consid-
ered when comparing the learning speeds on the target task:
(1) neuroevolution starting from randomly generated solutions
and (2) neuroevolution starting from the Pareto front generated
on the source setup (transfer of the best neuro-controllers).

V. BALL COLLECTING TASK

A. Experimental setup

In this task, a mobile robot has to move around in its
environment and collect balls before putting them into a
basket. The robot does not know where the balls and the basket
are, but it has sensors that can tell whether they are in front of
it (front left and front right) or not. The environment contains
walls that are obstacles for both robot motion and perception.
The robot needs then to explore its environment to find the
balls and the basket. A switch is present in the environment
to make new balls appear. The environment is continuous: the
robot, the balls and the basket can be at any position (except
within walls).
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1) Robot and environment: The robot has thirteen different
sensors : three wall distance sensors, two bumpers, two ball
detection sensors, two switch detection sensors, two basket
detection sensors, one “carrying ball” sensor and one “switch
pulled” sensor that tells the robot if it has already pulled the
switch or not. It has three effectors : two wheel motors, and
one crane motor to collect balls or activate the switch.

2) Neuroevolution: The same setup as Doncieux and
Mouret was used [54]. NSGA-II algorithm is used with the
following objectives:

1. number of collected balls
2. dynamic behavioural diversity (see section III-B2) with

the following behavioural similarity measures:
– adhoc: euclidean distance between the end position

of the balls;
– hamming: hamming distance between the discretized

values of the sensors and effectors experienced by the
robot;

– entropy: euclidean distance between the vectors of
entropies of sensors and effectors;

– trajectory: edit distance between the discretized tra-
jectories.

The behavioural similarity measure used to compute the
behaviour diversity is also randomly changed every 50 gener-
ations.

3) Q-learning: The reward function used is the following:

R(s) =

{
100 if a ball just dropped in the basket

0 otherwise . (7)

4) Domains: The source set is made with one environment
and two ball positions. The target set is made with two new
environments, each coming with three different robot and
object positions (see Figure 4). The source set is then made up
with two different domains and the target set with six different
domains.

In the source setup, the robot can start from two starting
positions (two different domains), and can bring back four
balls in each. Thus, the maximum number of collected balls
is eight. In the target set, there are six different domains with
four balls in each. The maximum score is then twenty four.

Fig. 4. Different environments A,B,C (wall positions) used in the ball
collecting task. There are three different positions for each object (robot,
balls, switch, basket) and for each environment. The robot has to bring back
the maximum amount of yellow balls in the green basket. He can also touch
the purple switch button to make other balls available.

B. Results
1) Neuroevolution results: 30 different runs have been

performed with a population size of 128 and for 1,000 gener-
ations. 10 runs have been done with A environment, 10 with

B and 10 with C. For one run, the time required is around 24
hours of simulation on a 2.2 GHz and 16 CPU cores computer.

The median reaches the maximum score after 287 gen-
erations, the lower quartile reaches it after 586 generations
and the upper quartile after 198 generations (each generation
corresponds to 128 evaluations of policies, i.e. 128 episodes,
see Figure 6, ER curve). Figure 5 shows an example of a
behaviour generated by neuroevolution.

Fig. 5. Example of behaviour of a best individual generated with ER. The
trajectory is plotted in red when the robot carries a ball and in blue otherwise.

2) Action and state extraction: There are on average 487
individuals in the filiation of the best individual and thus
487 elements in the learning traces. The median number
of extracted actions before clustering is 384,740 (the lower
quartile is 246,406, the upper quartile 799,439 and the mean
505,560). The clustering process extracts 17 actions out of it.
After clustering, the median temporal extension is 9 (lower
quartile 7, upper 18). To extract sensors and actions, around
3 hours is required.

Q-learning is given 5,000 episodes to learn on the source
set (Figure 6). An example of generated behaviour is shown
in Figure 7.

The median reaches the best performance after 481 episodes
(around 3 hours of simulation for one run).

3) Testing and learning on new domains: The general-
ization ability of policies trained on the source domain set
is evaluated on the target domain set. Their performance is
compared to that of Q-learning with the extracted actions
(Figure 8). Without further training, the median performance
reached by Q-learning is 10, whereas the best policies trained
with ER reach a median of 2. The actions extracted from the
learning traces provide then a significant generalization ability
with respect to the best policies of the learning traces they
were extracted from. This result aligns with our hypothesis
of the increased robustness of adapted representations to new
situations.

Figure 9 shows the learning performance of the different
approaches when tested on the target set of domains. All the
curves are averaged over 30 runs: one run with the actions
and inputs extracted from each of the 30 evolutionary runs
for the ’QL’ experiments, one run starting with the Pareto
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Fig. 6. Median and quartile of ER and Q-learning experiments on source set.
The first registered performance of ER begins at the 128th episode because it
takes the maximum of the random initial population (population that contains
128 individuals).

front of each of the 30 evolutionary runs for the ’ER+transfer’
experiments. Parameters are provided in appendix B.

For Q-learning, the median reaches the maximum score after
8,616 episodes and the upper quartile after 1,013 only. For ER,
the median reaches the maximum score after 268,160 episodes
and the lower quartile after 1,263,360 (upper 130,304). For
ER + transfer, the median reaches the maximum score after
305,152 episodes and the lower quartile after 557,440 (upper
108,160). The median reaches then the maximum performance
for Q-learning three times faster than ER approaches. For the
upper quartiles, this difference even goes up to two orders
of magnitude. This result aligns with our hypothesis of faster
learning with adapted representations.

VI. BOX PUSHING TASK

A. Experimental setup

In the second task, a robotic arm with three degrees of
freedom must successfully move a box [11]. It needs to push
the box to the left with the end effector centred on the box,
which implies to move the arm to a precise position, on the
right of the box.

1) Robot and environment: There are three different sizes
for the cube and its position is randomly generated. The start-
ing position of the arm is also random. In this environment,
the evaluation of a policy does not always produce the same
score as the arm and cube positions are random.

The 13 sensors are the same as described by Mugan and
Kuipers [11] :
• the position of hand in x,y,z directions (3 sensors);
• the distance between :

– the top of hand and bottom of block;
– the bottom of hand and top of block (in both x and

z: 2 sensors);

– the right side of hand and the left side of block;
– the left side of hand and the right side of block;
– the left edge of table and the left edge of block;
– the right edge of table and the right edge of block
– the top edge of table and the top edge of block.

• The location of hand in x,y directions relative to centre
of block (2 sensors).

2) Neuroevolution: NSGA-II algorithm is used in a similar
setup to the one used in the ball collecting task. The following
objectives are used:

1. number of contacts with the block
2. dynamic behavioural diversity (see section III-B2) with

the same behavioural similarity measures than what was
used for the ball collecting task. Here, the adhoc measure
is the euclidean distance between vectors containing the
distance travelled by the arm and by the block in each
evaluation and in each dimension. Hamming and entropy
are the same and trajectory is the edit distance between
the discretized trajectories of the end effector.

As for the ball collecting experiment, the behavioural sim-
ilarity measure is changed every 50 generations [54].

3) Q-learning: The reward function is defined as:

R(s) =

{
10 if the block just shifted to the left
0 otherwise . (8)

The reward obtained when a block is shifted to the left is
lower than that obtained when collecting a ball. This is due to
the length of the sequence to generate to get a reward, that is
longer in the collect ball experiment. This point is discussed
in section VIII.

4) Domains: The source domain set is made up with three
domains defined by objects of different sizes. The target
domain set is made up with three other domains that are also
defined by objects having different new sizes (Figure 11).

B. Results

1) Neuroevolution results: 30 different runs have been
performed with a population size of 128 and for 1,000 gen-
erations. During an episode, the robot has five tests on three
boxes of different size: the optimal score is 15 (1 for each
successful test).

The median reaches the maximum score after 390 gen-
erations, the lower quartile reaches it after 426 generations
and the upper quartile after 333 generations (each generation
corresponds to 128 evaluations, see Figure 14, ER curve). An
example of behaviour is shown in Figure 12. For one run, the
time required is around 12 hours of simulation.

2) Action and state extractions: There are 500 different
traces in the filiation of the best individual. The median fitness
of those individuals is 10, the lower quartile is 3 and the upper
13. The median number of extracted actions before clustering
is 27,998 (lower quartile 26,535, upper quartile 34,634, mean
30,739). The median temporal extension after clustering is 6
(lower quartile 4, upper 18). The Q-learning algorithm is given
5,000 episodes to learn the Q-values (Figure 14). Figure 13
shows an example of how Q-learning used extracted actions:
three different actions are used, one that puts the arm at a
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Fig. 7. Example of behaviour of a best individual generated with Q-learning with the actions and sensors extracted from the trace of ER. When the trajectory
is full, the agent is carrying a ball. Each figure displays a different action of the same trajectory (the one in red). For this figure, the number of actions is
reduced for clarity. In this specific case, the 4 actions can be (a posteriori) described as follows: 1) turn slightly right and keep the ball, 2) do not move and
drop the ball, 3) turn slightly left and keep the ball, 4) sharp turn to left and keep the ball.

Fig. 8. Generalization ability. Performance on the target domain set of policies
trained with ER or Q-learning on the source domain set (p-value : 1.084e-11).

high position and in the lower right corner of the working
space, the second action turns and starts the descent and the
last one makes a straightforward trajectory towards the box
until it pushes it to the left. Around 30 minutes is enough to
extract sensors and actions. For one Q-learning run, the time
required is around 1 hour.

3) Testing and learning on a new domain: The performance
on the target domain set of policies trained on the source
domain set are shown in Figure 15. As for the ball collecting
task, policies trained with Q-learning generalize better, even
if the difference is smaller than for the ball collecting exper-
iment. This result is aligned with our hypothesis of a best
generalization ability with adapted representations.

Figure 16 shows the learning performance of the different
approaches on the target set of domains. As for the ball
collecting experiment, all the curves are averaged over 30 runs:
one run with the actions and inputs extracted for each of the
30 evolutionary runs for the ’QL’ experiments, one run starting
with the Pareto front of each of the 30 evolutionary runs for the
’ER+transfer’ experiments. The parameters used are described
in appendix B.

Fig. 9. Medians and quartiles performances on new unknown environments
after a learning session. For the ER+transfer, the Pareto front obtained on
the previous learning session becomes the new population to optimize, on
the contrary, ER starts with a new random population. For the Q-learning
strategy, the neural networks are those obtained after the learning session on
the source task. First episodes show generalization capacities of Figure 8. ER
and ER+transfer curves start after having evaluated the initial population of
128 individuals.

For Q-learning, the median reaches the maximum score
after 2,119 episodes and the lower quartile after 5,438 (upper
1,084). For ER, the median reaches the maximum score
after 243,328 episodes and the upper quartile after 149,760
episodes. For ER + transfer, the median reaches the maxi-
mum score after 10,752 episodes and the lower quartile after
37,888 episodes (upper 7,168). These results also confirm our
hypothesis of a faster learning with an adapted representation.

VII. ANALYSIS OF THE PROPOSED METHOD

Control experiments have been designed to estimate the
contribution of specific aspects of the proposed algorithm
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Fig. 10. Continuous environment with realistic physics [70] where a robotic
arm must push boxes of different sizes by hitting them on the left.

Fig. 11. The objects of the source domain set are in the top row, the objects
of the target domain set are in the bottom row.

to the results. Action extraction and input selection are the
main parts of the proposed knowledge extraction process.
We compare the knowledge they have extracted to randomly
generated knowledge or to human designed knowledge. Other
experiments have been defined to evaluate the sensitivity of
the results to the number of chosen actions.

A. Action extraction

How do extracted actions compare to randomly generated
or human designed actions?

Q-learning experiments have been performed on the source
domain set, in which the only difference between the setups are
the used actions. The set of sensors on which state estimation
relies has been chosen by a human expert. It is the same for
all setups.

The actions chosen by the human expert for the collect
ball environment are the following : 16 actions to move at
a different angle while picking and one action to drop the
ball. It is pretty smart as the robot will never need to perform
an action for “taking a ball when I am near one”. It only has
to use the moving actions to catch a ball automatically.

In the robotic arm environment, there are 7 human designed
actions: one neutral (don’t apply any force) and 2 for each
degree of freedom in order to be able to reach every possible

Fig. 12. Example of a best behaviour from ER. (x,y,z) is the position of the
end effector. The green point is the starting point position and the red is the
box position. The green box represents the end effector size (the dashed box
shows the last position of the effector).

Fig. 13. Example of a converged behaviour from Q-learning. (x,y,z) is the
position of the end effector. The green point is the starting position and the
red point is the box position.

position. All these actions were designed before looking at the
actions extracted by the proposed approach.

For comparisons to be fair, the number of extracted actions
Nr and of random actions is the same: 17 for the collect ball
experiment and 7 for the box pushing.
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Fig. 14. Median and quartile of ER and Q-learning experiments on source set.
The first registered performance of ER begins at the 128th episode because it
takes the maximum of the initial random population (population that contains
128 individuals).

Fig. 15. Generalization ability. Performance on the target domain set of
policies trained with ER or Q-learning on the source domain set (t-test p-
value=0.04804).

The temporal extension of human designed actions is fixed
for each actions (da = 15 for ball collecting and da = 9
for robotic arm). For the random action set, each action has
a different temporal extension (drawn uniformly from [5; 25]
for ball collecting and from [2; 20] for robotic arm).6

Figure 17 shows the learning speed of the different alter-
natives. The median is made over 30 runs with 30 different
evolution traces (10 for A, 10 for B and 10 for C).

On the ball collecting task, extracted actions have a per-
formance that is similar to human designed actions. Both
setups clearly outperform the random actions setup that seldom
converges (see p-values in Appendix A-A).

6These intervals lead to the best results.

Fig. 16. Medians and quartiles performances on new unknown block size
after a learning session. For the ER+transfer, the Pareto front obtained on
the previous learning session becomes the new population to optimize, on
the contrary, ER starts with a new random population. For the Q-learning
strategy, the neural networks are those obtained after the learning session on
the source task. First episodes show generalization capacities of Figure 15.
ER and ER+transfer curves start after having evaluated the initial population
of 128 individuals.

On the box pushing task, all setups require a small number
of episodes to maximize the reward, but within an episode,
the setup with extracted actions needs less steps to reach this
result than the human designed one. Both require less steps
to maximize the reward than the random actions setup. The
variance of human designed actions is low because it is always
the same action set over the 30 runs.

The performance of the extracted actions are clearly better
than random actions and are competitive with human designed
actions.

B. Choice of sensors used for state estimation

What is the influence of the algorithm used to choose the
sensors? To answer this question, we have built a set of
dedicated Q-learning experiments:
• instant: sensors in oi(t) are all taken into account. Sensors

of previous time steps are ignored;
• human: sensors chosen by an expert in the set Oi,µ(t)
• automatic selection (AS): sensors automatically selected

with the proposed lasso approach in the set Oi,µ(t)
• random: sensors randomly chosen
• rand +: sensors randomly chosen, but their number

correspond to what the AS setup has found.
For the random setup, the number of sensors is first drawn

from a uniform distribution in the range [1; 156] (156 = 13×
12, i.e. 12 times steps of the 13 sensors) and the sensors are
then randomly chosen.
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Fig. 17. Median and quartile of performance in the collecting ball environment during Q-learning learning with 3 different set of actions : human designed,
extracted from evolution learning traces and randomly designed.

In these experiments the actions are fixed: these are the
human designed actions described in the previous section.
The performance after 10,000 learning episodes on the ball
collecting task and 5,000 on the box pushing task, have been
plotted on Figure 18. The number of inputs taken into account
is plotted under the performance.

The ’instant’ setup leads to the poorest performance on the
ball collecting task, thus demonstrating the perceptual aliasing
problem in this task. Its performance is maximal for the box
pushing task, what suggests, unsurprisingly, the absence of
perceptual aliasing in this task. The number of sensors used
is minimal for this setup.

The number of input neurons selected by the AS strategy
is two times lower with the box pushing than with the collect
ball. This shows that the proposed strategy has automatically
adapted the number of inputs to take into account the level of
perceptual aliasing in the environment.

There is no significant difference between the AS and the
rand + approach. This suggests that the number of inputs to
take into account is an important parameter (that AS finds
automatically), but once it is chosen, the sensors to take into
account are of lesser importance. As there are perceptual
aliasing in the environment, it is clearly important to take
into account past sensor values to disambiguate the state
estimation. These results suggest that most sensors can actually
do it and thus that their choice is not a critical issue.

C. Influence of the number of actions

What is the influence of the number of actions? To inves-
tigate this question, we have designed experiments in which
the sensors taken into account are the human chosen ones
and in which the number of actions changes. Results obtained

after 5,000 Q-learning episodes are plotted on Figure 19.
For a high number of actions, it is expected to reach the
same asymptotic performance but loosing learning speed as
the space to explore is bigger. The final performance is
constant with respect to the number of actions on both tasks.
On the ball collecting task, the standard deviation of the
average performance decreases rapidly when the number of
actions increases, but its average remains constant. On the
box pushing, the average performance slightly decreases. It
suggests that the proposed approach is not sensitive to this
parameter.

VIII. DISCUSSION AND FUTURE WORK

A. Sequential versus iterative developmental process

In the approach introduced here, three different and sepa-
rated steps are responsible for (1) generating data, (2) analyz-
ing it to build actions and states and (3) exploiting it. It implies
that the actions and states that are built during the second step
do not influence the exploration part. The development is then
sequential. In other approaches, exploration and representa-
tion building are iterative processes in which the knowledge
currently acquired influences future exploration [11,36].

Many different intrinsic motivations have been proposed to
take into account current knowledge, and how it changes, to
choose the next actions to perform [71,72]. These approaches
are very powerful as the system can, for instance, focus on
actions that maximizes its learning progress [34,35]. However,
they may have troubles at the very beginning of the approach,
when no action has been built. Two different approaches are
used in the literature for this bootstrap, either relying on
random actions or using dedicated primitive actions. Providing
primitive actions requires an expertise about the robot and its



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. X, NO. Y, JANUARY 2016 15

Fig. 18. Performance and number of input neurons after convergence : 5000 episodes in box pushing environment and 10000 episodes in collect ball
environment. There is 5 different strategies : keeping only the sensors at the current time (instant), human selected sensors, automatic selection from traces
of evolution with the presented method, totally random selected (both in number and which) and with the same number of neurons as the AS strategy but
randomly selected (rand+).

Fig. 19. Impact of the number of actions on the performance. The final performance is computed after the learning algorithm converged, whereas the average
performance also takes in account episodes where the algorithm didn’t already converge. The final performance represents the asymptotic performance where
the average performance represents the learning speed.

environment. It goes against our first motivation. Furthermore,
these primitive actions have a direct and significant impact on
the very first acquired data. It may then have a strong influence
on the actions and states that will be built and may bias the
developmental trajectory of the system. Random actions may
also create potential problems. Using them requires making an
assumption about their potential for generating data of interest,
i.e. data that contain the actions or states that make sense with
respect to the robot mission. In an environment with objects
and for a robot that has many degrees-of-freedom, for instance,
very few arm movements actually lead to interactions with
objects [38]. If none are observed, the system will hardly
bootstrap and will remain in a local optimum in which it
perfectly learns to predict and reproduce useless actions but
does not go further. The approach proposed here considers the
process responsible for the generation of interesting behaviors
as a separate process. It corresponds to defining a babbling
process in a behavioural space. It can focus on the coverage
of robot abilities in the generated data while not caring about
how to do it with the representations under construction. Fur-
thermore, from a practical point of view, it allows to separate

each step (data generation, data analysis and exploitation of
the representation) and study each of them in isolation, what
is easier, both from a scientific and technical point of view.

B. Task-specific knowledge

Our main motivation is to reduce the expertise on a task
when using a learning algorithm in robotics. To what extent
did we satisfy it with the proposed approach?

Most parameters are not specific to the task (see Appendix
B). For the neuroevolution step, the only task specific pa-
rameters are the kind of used neural networks (recurrent or
feed-forward) and the maximum number of steps allowed
during evaluation. Most behavioural similarity measures are
not specific to a particular task, only the adhoc one is. The
corresponding knowledge does not require deep insight on the
task, just the knowledge of the important dimensions. For RL,
γ and α are to be set, as well as the number of neurons on
the hidden layer of the network estimating the Q-values.

Recurrent neural networks can exhibit oscillating behaviours
or generate memory-like structures. Recurrent neural networks
can thus generate richer behaviours than feed-forward ones.
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Generating the structure and parameters of a feed-forward
neural network with neuroevolution is in any case simpler
and generally faster. Recurrent neural networks can thus be
a default choice when little is known about the task and the
feed forward structure can be chosen if it is known that the
task does not require oscillations or memories.

The number of steps used for evaluation during neuroevo-
lution and γ are both related to the time required to solve
the task. An arbitrary long number of steps for evaluation
can be used, but it will make neuroevolution runs longer as
the main factor influencing neuroevolution run duration is the
number of evaluations. A high value of γ in RL will give more
weights to future rewards (see Equation 2) and thus encourage
the robot to take it into account. A low value will give more
weight to immediate rewards and will thus favour immediate
small rewards to the detriment of delayed high rewards. The
time to get a satisfying reward is then an important parameter
for both neuroevolution and reinforcement learning. A meta-
learning algorithm can regulate this parameter for RL [73,74],
as well as for evolution [75]. Tuning these parameters does not
require a deep understanding of the tasks, notably it does not
require knowing how the robot should solve the task, whereas
providing primitive actions implies to have a clear idea about
it.

C. Action extraction and second phase learning

This article proposed to use state-of-the-art neuroevolution
approaches to generate data out of which action could be
extracted and state could be estimated. The very simple
heuristics proposed in Section IV resulted in a significant
increase of generalization and learning speed. More principled
algorithms like Beta Process Autoregressive Hidden Markov
Model [76] could achieve a better extraction of actions. To
identify relevant dimensions, it is also possible to rely on the
importance of weights of the model St → At (predicting the
behavior) [77] instead of relying on St → St+1 (predicting
the next state).

Many alternatives to the Q-learning algorithm, used during
the second learning phase, could have been considered : (1)
Neural Fitted Q Iteration [78] which aims at learning a single
neural network to represent the Q-values in an offline and
data efficient manner, (2) NEAT+Q [79] which combines
neuro-evolutionary policy search with value-function based
reinforcement learning in a continuing manner, or (3) any
others data efficient reinforcement learning algorithms that
relies on a finite set of actions. Future work should compare
the different alternatives to identify the most relevant algorithm
for each phase.

IX. CONCLUSION

In this work, an approach has been proposed to extract
representations dedicated to discrete RL from learning traces
generated by a neuroevolution approach. The goal is to boot-
strap a fast RL with a slow, but task agnostic neurevolution
approach.

The extracted representations consists in discrete actions
with different temporal extensions and in a selection of sensors

to take into account for state estimation. The RL algorithm was
a Q-learning algorithm in which the Q-values were estimated
with a neural network receiving as inputs the selected sensors
and trained with back-propagation.

The extracted knowledge associated with the RL algorithm
revealed to generalize better to new domains and to allow
a faster learning on two simulated robotics tasks from the
literature.
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APPENDIX A
STATISTICAL TESTS

The following tables contain the p − values of Mann-Whitney
statistical tests. Near 0 means the 2 distributions are different.

• HD : Human designed
• R : Random
• E : Extracted from trace
• AS : Automatic Selection
• I : Instant sensors only
• R+ : Random with the number of sensors selected by the

automatic selection

A. Actions extraction

50
00

HD E

R 0.0000 0.0000
HD 0.2018

15
00

0

HD E

R 0.0000 0.0000
HD 0.0004

30
00

0

HD E

R 0.0000 0.0000
HD 0.0081

Ball collecting

30
00

HD E

R 0.0000 0.0000
HD 0.0000

60
00

HD E

R 0.0000 0.0003
HD 0.0000

10
00

0

HD E

R 0.0000 0.0006
HD 0.0000

Box pushing

B. Sensors extraction
HD AS R R+

I 0 8.34 · 10−29 8.56 · 10−10 8.34 · 10−29

HD 1.51 · 10−12 2.32 · 10−2 1.51 · 10−12

AS 0.14
R 0.14

Collecting ball number input neurons

7http://www.robotsthatdream.eu/
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HD AS R R+

I 1.39 · 10−5 1.17 · 10−6 0.14 6.3 · 10−5

HD 2.77 · 10−2 4.96 · 10−3 0.37
AS 9.19 · 10−4 6.9 · 10−2

R 1.61 · 10−2

Collecting ball performance
HD AS R R+

I 0 2.7 · 10−13 1.54 · 10−10 2.7 · 10−13

HD 8.17 · 10−5 1.17 · 10−7 8.17 · 10−5

AS 2.45 · 10−5

R 2.45 · 10−5

Box pushing number input neurons
HD AS R R+

I 0.29 0.35 0.81 0.61
HD 3.94 · 10−3 6.53 · 10−2 1.58 · 10−2

AS 9.34 · 10−2 2.46 · 10−2

R 0.74

Box pushing performance

APPENDIX B
PARAMETERS AND NOTATION

Shared parameters of evolution
mutation probability 0.1
cross-rate probability 0
minimal weight of a connection -5
maximal weight of a connection 5
maximum number of neuron 20
maximum number of connections 75
probability to modify a weight of a neuron 0.2
probability to add a connection 0.133
probability to add a new neuron 0.088
probability to remove a connection 0.147
probability to remove a neuron 0.098
number of input neurons 13
number of output neurons 3
population size 128
entropy discretization 9
change period of behaviour diversity 50

Unshared parameters of evolution
topology feed-forward — ball collecting no
topology feed-forward — box pushing yes
maximal number of step — ball collecting 10000
maximal number of step — box pushing 300

Shared parameters of trace extraction
τ 2
µ 8

Shared parameters of RL
εstart 0.15
εend 0.01
εstepness 0.99
η 3

Unshared parameters of RL
γ — ball collecting 0.9991
γ — box pushing 0.99
α — ball collecting 0.001
α — box pushing 0.1
number of hidden neurons — ball collecting 125
number of hidden neurons — box pushing 35
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