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We detail the procedure used to calculate the TE and TM reflection coefficients for the graphene
multilayer structures employed in the main paper to study the Casimir-Lifshitz pressure.
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I. THE S-MATRIX ALGORITHM FOR A
MULTILAYERED STRUCTURE WITH
EMBEDDED GRAPHENE

In order to calculate the multilayer reflection coefficient
R(Q,w) we use the so called S-matrix algorithm, well
know for its effectiveness and stability. We present the
algorithm for real frequencies w, but it remains valid also
at imaginary Matsubara frequencies (needed in Eq.(2) of
[1]) simply by setting w = i&,.

Let’s consider the general multilayered structure,
shown in figure 1, made of N dielectric layers and N,
graphene sheets at their interfaces (N, = N + 1). Each
layer is characterized by its width h,, by its relative di-
electric permittivity €, and its relative magnetic perme-
ability p, (in [1] we set p, = 1), while each graphene
sheet is characterized by its conductivity o,. We label
each layer by its position number in the stack p =1, ..., N
and label the lower and upper half spaces by 0 and N 41
respectively. The whole structure is invariant in the y
direction and thus one can distinguish the two cases of
polarization TE/TM according to this axis. Under the
TE polarization, the electromagnetic field is such that
E = (0,E,,0) and H = (H,,0, H,) while for the TM case
it is such that E = (E,,0, E;) and H = (0, H,,0). Thus,
for each polarization, the fields can be expressed through
their non null y component only; the other components
being deduced from this latter through Maxwell’s equa-
tions. With these notations, we express the fields in the
p" medium in terms of plane waves solutions:

va(x7 z) — eiQQj (apei(h)(z_zpfl) + apei(h)(z_zpfl)) (1)

With z_; = 0 (by convention) and where Up(z, z) stands
for E,y(x,2) (respectively Hpy(z,2)) in the TE (respec-
tively TM) polarization case. Here @ is the parallel com-
ponent of the wave-vector and ¢, = \/kje, — Q? is its
normal one, ky = w/c being the vacuum wave-number
of the incoming plane wave. For a propagating incident
wave, () can be related to the angle of incidence 6 trough
Q = koy/20sin 0.

In order to compute the outgoing amplitudes by = R
and ayy1 =T in terms of the incoming ones ag = I and
by+1 = 0, we must take into account the boundary con-
ditions at the different interfaces. These depend on the

TE and TM polarization cases, and thus will be treated
separately.

Figure 1. (color online). Graphene-based multilayers scheme.

1. TE polarization

For the T'E polarization case the boundary conditions
can be expressed for each interface z = z, as follows:

E, (z,2p) = Epi1yy(x, 2p)
VreR: Py \*vs “p (p+D)y\s <p
{ Hpi1)a (@, 2p) — Hpo (2, 2p) = 0pEpy(, 2p).
(2)
Then, using equation (1) and the Maxwell equation H, =
(—iwpop,) 10, E,, we obtain:

Ppap + ¢;1bp = Gpy1 + bpt1
q]/g+1 (ap+1 = bpt1) — q;n (¢pap - ‘z’;lbp) =
_k'077p (¢pap + ¢;1bp> s

(3)

where g, = qp/pp, ¢p = ewhe (h, = 2,11 — z, and
¢o = 1 by convention) and 7, = Zyo,, Zy being the
electromagnetic impedance of vacuum. These boundary
conditions constitute an algebraic set of 2N 4+2 equations
for the 2N +2 unknowns a,, b,. One of the most efficient
and stable ways to solve this latter system is to use the



S-matrix algorithm. By definition, the S-matrix relates
the outgoing amplitudes to the incoming ones:

(o) =570, ) @

Therefore, we can deduce its expression easily from
equations (2):

TE _ 1 %
P Qpi1 T qp + Komp

( Qfg(% - ‘1;;+1 — komp)
2¢pq1/;

B, )@
Qp+1 - qp - k077p

Then chaining the successive S-matrices leads to the
overall scattering matrix of the structure:

STE = S0 x % Sp % x S{E (6)

where the * product S = S% % S® between two S-matrices
5% and SY is

S = Sf + Sfy(1— 53,58%,) 715755,

Si2 = Sf5(1 — 57,5%,) 57, (7)
So1 = 85, (1 — 5%,50,) 7155,

Sag = 58, 4+ S8, (1 — 55,57,) 155,570

Finally, the reflection and transmission coefficients are

J

P kog + koqhyy + pdpd i

The global TM S-matrix of the structure is then obtained
by a chaining analogous to Eq. (6), and the TM reflec-
tion coefficient we need for the Casimir-Lifshitz pressure

g™ _ 1 o2 (kod;, — kodpi1 + Mppdps1)
2k0¢pq1/)

readily obtained from the global S-matrix:

(7)=(5) ®

so that the TE reflection coefficient we need for the
Casimir-Lifshitz pressure calculation is simply the (1,1)
clement of STE: RUL(Q,w) = REL(Q,w) = R/I = STE.
For completeness, the TE transmission coefficient will be
T%:)(Q,w) = Te lavnil /T = STEe—iant1l  where L is
the size of the total multilayer structure, and where the
phase factor e %~ +1Z is introduced to have the transmis-
sion coefficient defined with respect to the zy plane, as
for the reflection coefficient.

2. TM polarization

For the TM polarization case we follow the same pro-
cedure used for the TE case. We express the boundary
conditions for each interface z = z,, as follows:

E,.(z,2y) = Epprnyz (2, 2p)
VreR: e P (p+1)a®s <p
{ H(p+1)y(x,zp) — Hp, T, 2p) = —0pEpe (T, 2p).
(9)
And now, by using equation (1) and the Maxwell equa-
tion E, = (iweoe) 10, H, we obtain:

Q;;(d)pap - ¢;1bp) = q1/o+1(ap+1 - bp+1)
ko (ap+1 + bp+1) — ko (qbpap + ¢;1bp) = (10)
_77;0%/7 <¢pap - ¢;1bp) s

where ¢, = g,/¢p. The S-matrix can then be obtained:

) 2160(%5;)(]1/,4_1 y ) (11)
—koqy, + ko1 + Mpdpdpia

(

calculation is R%\)/[(Q,w) = R(Tzlz/[(Q,w) =R/I = S{M.
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