and only use a simplified version. Let us start by some basic definitions and notations as the following generic matrices:

A =   a11 a12 a13 a21 a22 a23 a31 a32 a33   , B =   b11 b12 b13 b21 b22 b23 b31 b32 b33   , C =   c11 c12 c13 c21 c22 c23 c31 c32 c33   , (1) 
that will be used in the sequel. Furthermore, as we also consider their 2 × 2 submatrices, let us introduce some associated notations.

Notations 2.1 Let n, i, j be positive integers such that i ≤ n and j ≤ n. We denote by Id j n×n the identity n × n matrix where the jth diagonal term is 0. Given a n × n matrix A, we denote by A jk the matrix Id j n×n • A • Id k n×n . For example, the matrix A 33 , B 32 Given a n × n matrix A, we sometimes consider A ij as the (n -1) × (n -1) matrix A ij where the line and column composed of 0 are removed.

At the opposite, given any (n -1) × (n -1) matrix A, we denote by A ij the n × n matrix where a line and column of 0 were added to A in order to have A ij ij = A.

Strassen multiplication algorithm

Considered as 2 × 2 matrices, the matrix product C 33 = A 33 • B 33 could be computed using Strassen algorithm (see [START_REF] Strassen | Gaussian elimination is not optimal[END_REF]) by performing the following computations: 

t 1 = (
c 11 = t 1 + t 2 -t 4 + t 6 , c 12 = t 6 + t 7 , c 21 = t 4 + t 5 , c 22 = t 1 + t 3 + t 5 -t 7 . (3) 
In order to consider above algorithm under a geometric standpoint, it is usually presented as a tensor.

Bilinear mappings seen as tensors and associated trilinear forms

Definitions 2.1 Given a tensor T decomposable as sum of rank-one tensors:

T = r i=1 T i1 ⊗ T i2 ⊗ T i3 , (4) 
where T ij are n × n matrices:

• the integer r is the tensor rank of tensor T ;

• the unordered list [(rank M ij ) j=1...3 ] i=1...r
is called the type of tensor T (rank A being the classical rank of the matrix A).

Tensors' contractions

To explicit the relationship between what is done in the sequel and the bilinear mapping associated to matrix multiplication, let us consider the following tensor's contractions: Definitions 2.2 Using the notation of definition 2.1 given a tensor T and three n × n matrices A, B and C with coefficients in the algebra K:

• the (1, 2) contraction of T ⊗ A ⊗ B defined by: r i=1 Trace( t T i1 • A) Trace( t T i2 • B)T i3 (5) 
corresponds to a bilinear application K n×n × K n×n → K n×n with indeterminates A and B.

• the (1, 2, 3) (a.k.a. full) contraction of T ⊗ A ⊗ B ⊗ C defined by:

T |A ⊗ B ⊗ C = r i=1 Trace( t T i1 • A) Trace( t T i2 • B) Trace( t T i3 • C) (6)
corresponds to a trilinear form K n×n × K n×n × K n×n → K with indeterminates A, B and C.

Remarks 2.1 As the studied object is the tensor, its expressions as full or incomplete contractions are equivalent. Thus, even if matrix multiplication is a bilinear application, we are going to work in the sequel with trilinear forms (see [START_REF] Dumas | Fast matrix multiplication and symbolic computation[END_REF] for bibliographic references on this standpoint). The definition in 2.2 are taken to express the full contraction as a degenerate inner product between tensors; it is not the usual choice made in the literature and so, we have to explicitly recall some notions used in the sequel.

Strassen multiplication algorithm (3) is equivalent to the tensor S defined by:

1 0 0 1 ⊗ 1 0 0 1 ⊗ 1 0 0 1 + 0 1 0 -1 ⊗ 0 0 1 1 ⊗ 1 0 0 0 + -1 0 1 0 ⊗ 1 1 0 0 ⊗ 0 0 0 1 + 1 1 0 0 ⊗ 0 0 0 1 ⊗ -1 0 1 0 + 1 0 0 0 ⊗ 0 1 0 -1 ⊗ 0 0 1 1 + 0 0 0 1 ⊗ -1 0 1 0 ⊗ 1 1 0 0 + 0 0 1 1 ⊗ 1 0 0 0 ⊗ 0 1 0 -1 . (7) 
This tensor defines the matrix multiplication algorithm (3) and its tensor rank is 7.

2 × 2 matrix multiplication tensors induced by a 3 × 3 matrix multiplication tensor

Given any 3 × 3 matrix multiplication tensor, one can define 3 3 induced 2 × 2 matrix multiplication tensors as shown in this section. First, let us introduce the following operators that generalize to tensor the notations 2.1:

Definitions 2.
3 Using notations introduced in definition 2.1, we define:

A ⊗ B ⊗ C ijk = A ij ⊗ B jk ⊗ C ki , (8a) 
A ⊗ B ⊗ C ijk = A ij ⊗ B jk ⊗ C ki , (8b) A ⊗ B ⊗ C ijk = A ij ⊗ B jk ⊗ C ki (8c)
and we extend the definitions of these operators by additivity in order to be applied on any tensor T described in definition 2.1.

There is n 3 such projections and given any matrix multiplication tensor M, the full contraction satisfying the following trivial properties:

M A ⊗ B ⊗ C ijk = M ijk A ⊗ B ⊗ C = M ijk A ⊗ B ⊗ C ijk (9) 
(where the projection operator apply on an n × n matrix multiplication tensor); it defines explicitly a (n -1) × (n -1) matrix multiplication tensor.

The following property holds:

Lemma 2.1 (n -1) 3 M|A ⊗ B ⊗ C = 1≤i,j,k≤n M A ⊗ B ⊗ C ijk (10) 
and thus, we have:

M|A ⊗ B ⊗ C = 1 (n -1) 3 1≤i,j,k≤n M ijk A ⊗ B ⊗ C . ( 11 
)
The obvious facts made in this section underline the relationships between any n × n matrix multiplication tensor and the n 3 induced (n -1) × (n -1) algorithms.

Considering the Laderman matrix multiplication tensor, we are going to explore further this kind of relationships. First, let us introduce this tensor.

Laderman matrix multiplication tensor

The Laderman tensor L described below by giving its full contraction: [START_REF] Grochow | Matrix multiplication algorithms from group orbits[END_REF] and was introduced in [START_REF] Laderman | A noncommutative algorithm for multiplying 3 × 3 matrices using 23 multiplications[END_REF] (we do not study in this note any other inequivalent algorithm of same tensor rank e.g. [START_REF] Johnson | Noncommutative bilinear algorithms for 3 × 3 matrix multiplication[END_REF][START_REF] Courtois | A new general-purpose method to multiply 3 × 3 matrices using only 23 multiplications[END_REF][START_REF] Oh | On the inequivalence of bilinear algorithms for 3 × 3 matrix multiplication[END_REF][START_REF] Smirnov | The bilinear complexity and practical algorithms for matrix multiplication[END_REF], etc). Considering the projections introduced in definition 2.3, we notice that: 

where m|n indicates that m is repeated n times.

Tensors' isotropies

We refer to [START_REF] Groot | On varieties of optimal algorithms for the computation of bilinear mappings I. The isotropy group of a bilinear mapping[END_REF][START_REF] Groot | On varieties of optimal algorithms for the computation of bilinear mappings II. Optimal algorithms for 2 × 2-matrix multiplication[END_REF] for a complete presentation of automorphism group operating on varieties defined by algorithms for computation of bilinear mappings and as a reference for the following theorem:

Theorem 2.1 The isotropy group of the n × n matrix multiplication tensor is

pgl(C n ) ×3 ⋊ S 3 , (14) 
where pgl stands for the projective linear group and S 3 for the symmetric group on 3 elements.

Even if we do not completely explicit the concrete action of this isotropy group on matrix multiplication tensor, let us precise some terminologies:

Definitions 2.4 Given a tensor defining matrix multiplication computations, the orbit of this tensor is called the multiplication algorithm and any of the points composing this orbit is a variant of this algorithm.

Remark 2.4 As shown in [START_REF] Gesmundo | Geometric aspect of iterated matrix multiplication[END_REF], matrix multiplication is characterised by its isotropy group.

Remark 2.5 In this note, we only need the pgl(C n ) ×3 part of this group (a.k.a. sandwiching) and thus focus on it in the sequel.

As our framework and notations differ slightly from the framework classically found in the literature, we have to explicitly define several well-known notions for the sake of clarity. Hence, let us recall the sandwiching action:

Definition 2.5 Given g = (G 1 × G 2 × G 3 ) an element of pgl(C n )
×3 , its action on a tensor T is given by:

g ⋄ T = r i=1 g ⋄ i1 ⊗ T i2 ⊗ T i3 ), g ⋄ (T i1 ⊗ T i2 ⊗ T i3 ) = t G -1 1 T i1 t G 2 ⊗ t G -1 2 T i2 t G 3 ⊗ t G -1 3 T i3 t G 1 . (15) 
Example 2.1 Let us consider the action of the following isotropy

0 1/λ -1 0 × 1/λ -1/λ 0 1 × -1/λ 0 1 -1 (16) 
on the Strassen variant of the Strassen algorithm. The resulting tensor W is:

7 i=1 wi = -1 λ -1 λ 0 ⊗ 1 -λ 1 λ 0 ⊗ 1 -λ 1 λ 0 + -1 l -1 λ 1 ⊗ 0 0 1 0 ⊗ 0 1 0 0 + 1 0 1 λ 0 ⊗ 1 0 1 λ 0 ⊗ 1 0 1 λ 0 + 0 0 0 1 ⊗ 0 0 0 1 ⊗ 0 0 0 1 + 0 0 1 0 ⊗ 0 1 0 0 ⊗ -1 λ -1 λ 1 + 1 -λ 0 0 ⊗ 1 -λ 0 0 ⊗ 1 -λ 0 0 + 0 1 0 0 ⊗ -1 λ -1 λ 1 ⊗ 0 0 1 0 (17)
that is the well-known Winograd variant of Strassen algorithm.

Remarks 2.6

We keep the parameter λ useless in our presentation as a tribute to the construction made in [START_REF] Chatelin | On transformations of algorithms to multiply 2 × 2 matrices[END_REF] that gives an elegant and elementary (i.e. based on matrix eigenvalues) construction of Winograd variant of Strassen matrix multiplication algorithm. This variant is remarkable in its own as shown in [START_REF] Bshouty | On the additive complexity of 2 × 2 matrix multiplication[END_REF] because it is optimal w.r.t. multiplicative and additive complexity.

Remark 2.7 Tensor's type is an invariant of isotropy's action. Hence, two tensors in the same orbit share the same type. Or equivalently, two tensors with the same type are two variants that represent the same matrix multiplication algorithm.

This remark will allow us in Section 3.4 to recognise the tensor constructed below as a variant of the Laderman matrix multiplication algorithm.

A tensor's construction

Let us now present the construction of a variant of Laderman matrix multiplication algorithm based on Winograd variant of Strassen matrix multiplication algorithm.

First, let us give the full contraction of the tensor W 111 ⊗ A ⊗ B ⊗ C:

- 

A Klein four-group of isotropies

Let us introduce now the following notations:

Id 3×3 =   1 0 0 0 1 0 0 0 1   and P (12) =   0 1 0 1 0 0 0 0 1   (19) 
used to defined the following group of isotropies:

K = g 1 = Id 3×3 ×3 , g 2 = Id 3×3 × P (12) × P (12) , g 3 = P (12) × P (12) × Id 3×3 , g 4 = P (12) × Id 3×3 × P (12) (20) 
that is isomorphic to the Klein four-group.

Its action on Winograd variant of Strassen algorithm

In the sequel, we are interested in the action of Klein four-group (20) on our Winograd variant of Strassen algorithm:

K ⋄ W 111 = g∈K g ⋄ W 111 = g∈K 7 i=1 g ⋄ w i 111 (21) 
As we have for any isotropy g:

g ⋄ W 111 |A ⊗ B ⊗ C = W 111 |g ⋄ (A ⊗ B ⊗ C) , (22) 
the action of isotropies g i is just a permutation of our generic matrix coefficients. Hence, we have the full contraction of the tensor (g 2 ⋄ W 111 ) ⊗ A ⊗ B ⊗ C:

- 

There is several noteworthy points in theses expressions:

Remarks 3.1

• the term (18g) is a fixed point of K's action;

• the trilinear terms (18d) and (23d), (18e) and (24e), (18f) and (25f), (23e) and (25e), (23f) and (24f), (24d) and (25d) could be added in order to obtain new rank-on tensors without changing the tensor rank. For example (18d)+(23d) is equal to:

a 23 -b 22 - b 32 λ + λb 23 + 2b 33 -b 11 - b 31 λ + λb 13 c 32 . (26) 
The tensor rank of the tensor

K ⋄ W 111 = g∈K g ⋄ W 111 is 1 + 3 • 4 + 6 = 19.
Unfortunately, this tensor does not define a matrix multiplication algorithm (otherwise according to the lower bound presented in [START_REF] Bläser | On the complexity of the multiplication of matrices of small formats[END_REF], it would be optimal and this note would have another title and impact).

In the next section, after studying the action of isotropy group K on the classical matrix multiplication algorithm, we are going to show how the tensor constructed above take place in construction of matrix multiplication tensor.

How far are we from a multiplication tensor?

Let us consider the classical 3 × 3 matrix multiplication algorithm

M = 1≤i,j,k≤3 e i j ⊗ e j k ⊗ e k i ( 27 
)
where e i j denotes the matrix with a single non-zero coefficient 1 at the intersection of line i and column j. By considering the trilinear monomial:

a ij b jk c ki = e i j ⊗ e j k ⊗ e k i A ⊗ B ⊗ C , (28) 
we describe below the action of an isotropy g on this tensor by the induced action:

g ⋄ a ij b jk c ki = g ⋄ (e i j ⊗ e j k ⊗ e k i ) A ⊗ B ⊗ C , = e i j ⊗ e j k ⊗ e k i g ⋄ (A ⊗ B ⊗ C) .

(29) Remark 3.2 The isotropies in K act as a permutation on rank-one composant of the tensor M: we say that the group K is a stabilizer of M. More precisely, we have the following 9 orbits represented by the trilinear monomial sums:

Concluding remarks

All the observations presented in this short note came from an experimental mathematical approach using the computer algebra system Maple [START_REF] Monagan | Maple 11 Introductory programming guide[END_REF]. While implementing effectively (if not efficiently) several tools needed to manipulate matrix multiplication tensor-tensors, their isotropies and contractions, etc.-in order to understand the theory, the relationship between the Laderman matrix multiplication algorithm and the Strassen algorithm became clear by simple computations that will be tedious or impossible by hand.

As already shown in [START_REF] Sykora | A fast non-commutative algorithm for matrix multiplication[END_REF], this kind of geometric configuration could be found and used with other matrix size.

The main opinion supported by this work is that symmetries play a central role in effective computation for matrix multiplication algorithm and that only a geometrical interpretation may brings further improvement.

  and C 23 are:

a 11 +

 11 a 22 )(b 11 + b 22 ), t 2 = (a 12 -a 22 )(b 21 + b 22 ), t 3 = (-a 11 + a 21 )(b 11 + b 12 ), t 4 = (a 11 + a 12 )b 22 , t 5 = a 11 (b 12 -b 22 ), t 6 = a 22 (-b 11 + b 21 ), t 7 = (a 21 + a 22 )b 11 ,

(a 11 -

 11 a 21 + a 12 -a 22 -a 32 + a 13 -a 33 ) b 22 c 21 + a 22 (-b 11 + b 21 -b 31 + b 12 -b 22 -b 23 + b 33 ) c 12 + a 13 b 31 (c 11 + c 21 + c 31 + c 12 + c 32 + c 13 + c 23 ) + (a 11 -a 31 + a 12 -a 22 -a 32 + a 13 -a 23 ) b 23 c 31 + a 32 (-b 11 + b 21 -b 31 -b 22 + b 32 + b 13 -b 23 ) c 13 + a 11 b 11 (c 11 + c 21 + c 31 + c 12 + c 22 + c 13 + c 33 ) + (-a 11 + a 31 + a 32 ) (b 11 -b 13 + b 23 ) (c 31 + c 13 + c 33 ) + (a 22 -a 13 + a 23 ) (b 31 + b 23 -b 33 ) (c 31 + c 12 + c 32 ) + (-a 11 + a 21 + a 22 ) (b 11 -b 12 + b 22 ) (c 21 + c 12 + c 22 ) + (a 32 -a 13 + a 33 ) (b 31 + b 22 -b 32 ) (c 21 + c 13 + c 23 ) + (a 21 + a 22 ) (-b 11 + b 12 ) (c 21 + c 22 ) + (a 31 + a 32 ) (-b 11 + b 13 ) (c 31 + c 33 ) + (a 13 -a 33 ) (b 22 -b 32 ) (c 13 + c 23 ) + (a 11 -a 21 ) (-b 12 + b 22 ) (c 12 + c 22 ) + (a 32 + a 33 ) (-b 31 + b 32 ) (c 21 + c 23 ) + (-a 11 + a 31 ) (b 13 -b 23 ) (c 13 + c 33 ) + (a 13 -a 23 ) (b 23 -b 33 ) (c 12 + c 32 ) + (a 22 + a 23 ) (-b 31 + b 33 ) (c 31 + c 32 ) + a 12 b 21 c 11 + a 23 b 32 c 22 + a 21 b 13 c 32 + a 31 b 12 c 23 + a 33 b 33 c 33

Remark 2 . 2 Remark 2 . 3

 2223 Considering definitions introduced in Section 2.4, we notice that Laderman matrix multiplication tensor defines 4 optimal 2 × 2 matrix multiplication tensors L ijk with (i, j, k) in {(2, 1, 3), (2, 3, 2), (3, 1, 2), (3, 3, 3)} and 23 other with tensor rank 8. Further computations show that: The type of the Laderman matrix multiplication tensor is (2, 2, 2)|4, ((1, 3, 1), (3, 1, 1), (1, 1, 3))|2, (1, 1, 1)|13

Acknowledgment. The author would like to thank Alin Bostan for providing information on the work [22].

Hence, the action of K decomposes the classical matrix multiplication tensor M as a transversal action of K on the implicit projection M 111 , its action on the rank-one tensor e 1 1 ⊗ e 1 1 ⊗ e 1 1 and a correction term also related to orbits under K:

(31)

Resulting matrix multiplication algorithm

The term M 111 is a 2 × 2 matrix multiplication algorithm that could be replaced by any other one. Choosing W 111 , we have the following properties:

• the tensor rank of K ⋄ W 111 is 19;

• its addition with the correction term R does not change its tensor rank.

Hence, we obtain a matrix multiplication tensor with rank 23(= 19 + 4). Furthermore, the resulting tensor have the same type than the Laderman matrix multiplication tensor, and thus it is a variant of the same algorithm. We conclude that the Laderman matrix multiplication algorithm can be constructed using the orbit of an optimal 2 × 2 matrix multiplication algorithm under the action of a given group leaving invariant classical 3 × 3 matrix multiplication variant/algorithm and with a transversal action on one of its projections.

A A cyclic isotropy group of order 4 leading to same resulting tensor

Instead of Klein-four group K presented in Section 3.1, one can also use another cyclic group C of order 4 that is a stabilizer of L but such that its generator f 12 is not a sandwiching. We do not give any further details here to avoid supplementary definitions but nevertheless, we present an example of the resulting 8 orbits, again represented by trilinear monomial sums: 

Hence, the action of C decomposes the classical matrix multiplication tensor M as a transversal action of C on the implicit projection M 111 , its action on the rank-one tensor e 1 1 ⊗ e 1 1 ⊗ e 1 1 and a correction term also related to orbits under C:

Even if the groups K and C are different, the resulting actions on the coefficients of matrices A, B and C define the same orbit (in fact, the following identity holds: (32f)=(30f)+(30g), (32d)+(32e)=(30d)+(30e) and the other orbits are identical). Hence, the conclusions done in Section 3.4 remain the same.

B Stabilizer group of isotropies

It is shown in [START_REF] Burichenko | Symmetries of matrix multiplications algorithms[END_REF] that the stabilizer group of Laderman matrix multiplication algorithm is isomorphic to S 4 . This group is also a stabilizer of classical 3 × 3 matrix multiplication algorithm M. Mutatis mutandis, we have with our notations and in the coordinates used in this note: (35)