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1 Introduction

In [20], V. Strassen presented a noncommutative algorithm for multiplication of
two 2× 2 matrices using only 7 multiplications. The current upper bound 23
for 3× 3 matrix multiplication was reached by J.B. Laderman in [16]. This note
presents a geometric relationship between Strassen and Laderman algorithms.
By doing so, we retrieve a geometric formulation of results very similar to those
presented by O. Sýkora in [21].

1.1 Disclaimer: there is no improvement in this note

We do not improve any practical algorithm or prove any theoretical bound
in this short note but focus on effective manipulation of tensor associated to
matrix multiplication algorithm. To do so, we present only the minimal number
of needed definitions and thus leave many facts outside our scope. We refer
to [17] for a complete description of the field and to [1] for a state-of-the-art
presentation of theoretical complexity issues.

1.2 So, why writing (or reading) it?

We follow the geometric spirit of [12, 8, 4, 6, 5] and related papers: symmetries
could be used in practical design of matrix multiplication algorithms. Hence,
this note presents another example of this philosophy by giving a precise geo-
metric meaning to the following statement:

Laderman matrix multiplication algorithm is composed by four 2× 2
optimal matrix multiplication algorithms, a half of the classical 2× 2
matrix multiplication algorithm and a correction term.

2 Framework

To do so, we have to present a small part of the classical framework (for a
complete presentation see [13, 14, 17]) mainly because we do not take it literally
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and only use a simplified version. Let us start by some basic definitions and
notations as the following generic matrices:

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



, B =





b11 b12 b13
b21 b22 b23
b31 b32 b33



, C =





c11 c12 c13
c21 c22 c23
c31 c32 c33



, (1)

that will be used in the sequel. Furthermore, as we also consider their 2× 2
submatrices, let us introduce some associated notations.

Notations 2.1 Let n, i, j be positive integers such that i ≤ n and j ≤ n. We
denote by Idj

n×n the identity n× n matrix where the jth diagonal term is 0.

Given a n× n matrix A, we denote by Ãjk the matrix Idjn×n · A · Idkn×n. For

example, the matrix Ã33, B̃32 and C̃23 are:



a11 a12 0
a21 a22 0
0 0 0


,




b11 0 b13
b21 0 b23
0 0 0


 and




c11 c12 0
0 0 0
c31 c32 0


. (2)

Given a n× n matrix A, we sometimes consider Ãij as the (n− 1)× (n− 1)

matrix Aij where the line and column composed of 0 are removed.
At the opposite, given any (n− 1)× (n− 1) matrix A, we denote by Aij

the n× n matrix where a line and column of 0 were added to A in order to

have Aij
ij = A.

2.1 Strassen multiplication algorithm

Considered as 2× 2 matrices, the matrix product C33 = A33 · B33 could be com-
puted using Strassen algorithm (see [20]) by performing the following computa-
tions:

t1 = (a11 + a22)(b11 + b22), t2 = (a12 − a22)(b21 + b22),

t3 = (−a11 + a21)(b11 + b12), t4 = (a11 + a12)b22,

t5 = a11(b12 − b22), t6 = a22(−b11 + b21), t7 = (a21 + a22)b11,

c11 = t1 + t2 − t4 + t6, c12 = t6 + t7,

c21 = t4 + t5, c22 = t1 + t3 + t5 − t7.

(3)

In order to consider above algorithm under a geometric standpoint, it is usually
presented as a tensor.

2.2 Bilinear mappings seen as tensors and associated tri-
linear forms

Definitions 2.1 Given a tensor T and decomposable as sum of rank-one ten-
sors:

T =

r∑

i=1

Ti1 ⊗ Ti2 ⊗ Ti3, (4)

where Tij are n× n matrices,

• the integer r is the tensor rank of tensor T ;

• the unordered list [(rankMij)j=1...3]i=1...r
is called the type of tensor T

(rankA being the classical rank of the matrix A).
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2.3 Tensors’ contractions

To explicit the relationship between what is done in the sequel and the bilin-
ear mapping associated to matrix multiplication, let us consider the following
tensor’s contractions:

Definitions 2.2 Using the notation of definition 2.1 given a tensor T and
three n× n matrices A,B and C with coefficients in the algebra K:

• the (1, 2) contraction of T ⊗A⊗B defined by:

r∑

i=1

Trace(tTi1 · A)Trace(
tTi2 · B)Ti3 (5)

corresponds to a bilinear application Kn×n ×Kn×n 7→ Kn×n with indeter-
minates A and B.

• the (1, 2, 3) (a.k.a. full) contraction of T ⊗A⊗B ⊗ C defined by:

〈T |A⊗B ⊗ C〉 =
r∑

i=1

Trace(tTi1 · A)Trace(
tTi2 · B)Trace(tTi3 · C) (6)

corresponds to a trilinear form Kn×n ×Kn×n × Kn×n 7→ K with indeter-
minates A,B and C.

Remarks 2.1 As the studied object is the tensor, its expressions as full or
incomplete contractions are equivalent. Thus, even if matrix multiplication is
a bilinear application, we are going to work in the sequel with trilinear forms
(see [10] for bibliographic references on this standpoint).

The definition in 2.2 are taken to express the full contraction as a degenerate
inner product between tensors; it is not the usual choice made in the literature
and so, we have to explicitly recall some notions used in the sequel.

Strassen multiplication algorithm (3) is equivalent to the tensor S defined by:

(

1 0
0 1

)

⊗

(

1 0
0 1

)

⊗

(

1 0
0 1

)

+

(

0 1
0 −1

)

⊗

(

0 0
1 1

)

⊗

(

1 0
0 0

)

+

(

−1 0
1 0

)

⊗

(

1 1
0 0

)

⊗

(

0 0
0 1

)

+

(

1 1
0 0

)

⊗

(

0 0
0 1

)

⊗

(

−1 0
1 0

)

+

(

1 0
0 0

)

⊗

(

0 1
0 −1

)

⊗

(

0 0
1 1

)

+

(

0 0
0 1

)

⊗

(

−1 0
1 0

)

⊗

(

1 1
0 0

)

+

(

0 0
1 1

)

⊗

(

1 0
0 0

)

⊗

(

0 1
0 −1

)

.

(7)

This tensor defines the matrix multiplication algorithm (3) and its tensor rank
is 7.

2.4 2× 2 matrix multiplication tensors induced by a 3× 3

matrix multiplication tensor

Given any 3× 3 matrix multiplication tensor, one can define 33 induced 2× 2
matrix multiplication tensors as shown in this section. First, let us introduce
the following operators that generalize to tensor the notations 2.1:
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Definitions 2.3 Using notation introduced in definition 2.1, we define:

˜A⊗B ⊗ C
ijk

= Ãij ⊗ B̃jk ⊗ C̃ki, (8a)

A⊗B ⊗ C
ijk

= Aij ⊗Bjk ⊗ Cki, (8b)

A⊗B ⊗ C
ijk

= Aij ⊗Bjk ⊗ Cki (8c)

and we extend the definitions of these operators by additivity in order to be
applied on any tensor T described in definition 2.1.

There is n3 such projections and given any matrix multiplication tensor M, the
full contraction satisfying the following trivial properties:

〈
M| ˜A⊗B ⊗ C

ijk
〉

=
〈
M̃ijk

∣∣A⊗B ⊗ C
〉
=

〈
M

ijk ∣∣A⊗B ⊗ C
ijk

〉
(9)

where the projection operator apply on an n× n matrix multiplication tensor
defines explicitly a (n− 1)× (n− 1) matrix multiplication tensor.

The following property holds:

Lemma 2.1

(n− 1)
3
〈M|A⊗B ⊗ C〉 =

∑

1≤i,j,k≤n

〈
M

∣∣∣ ˜A⊗B ⊗ C
ijk

〉
(10)

and thus, we have:

〈M|A⊗B ⊗ C〉 =

〈
1

(n− 1)
3

∑

1≤i,j,k≤n

M̃ijk
∣∣∣A⊗B ⊗ C

〉
. (11)

The obvious facts made in this section underline the relationships between
any n× n matrix multiplication tensor and the n3 induced (n− 1)× (n− 1)
algorithms.

Considering the Laderman matrix multiplication tensor, we are going to
explore further this kind of relationships. First, let us introduce this tensor.
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2.5 Laderman matrix multiplication tensor

The Laderman tensor described below by giving its full contraction:

(a11 − a21 + a12 − a22 − a32 + a13 − a33) b22 c21 +
a22 (−b11 + b21 − b31 + b12 − b22 − b23 + b33) c12 +
a13 b31 (c11 + c21 + c31 + c12 + c32 + c13 + c23) +
(a11 − a31 + a12 − a22 − a32 + a13 − a23) b23 c31 +
a32 (−b11 + b21 − b31 − b22 + b32 + b13 − b23) c13 +
a11 b11 (c11 + c21 + c31 + c12 + c22 + c13 + c33) +
(−a11 + a31 + a32) (b11 − b13 + b23) (c31 + c13 + c33) +
(a22 − a13 + a23) (b31 + b23 − b33) (c31 + c12 + c32) +
(−a11 + a21 + a22) (b11 − b12 + b22) (c21 + c12 + c22) +
(a32 − a13 + a33) (b31 + b22 − b32) (c21 + c13 + c23) +
(a21 + a22) (−b11 + b12) (c21 + c22) +
(a31 + a32) (−b11 + b13) (c31 + c33) +
(a13 − a33) (b22 − b32) (c13 + c23) +
(a11 − a21) (−b12 + b22) (c12 + c22) +
(a32 + a33) (−b31 + b32) (c21 + c23) +
(−a11 + a31) (b13 − b23) (c13 + c33) +
(a13 − a23) (b23 − b33) (c12 + c32) +
(a22 + a23) (−b31 + b33) (c31 + c32) +
a12 b21 c11 + a23 b32 c22 + a21 b13 c32 + a31 b12 c23 + a33 b33 c33

(12)

and was introduced in [16] (we do not study in this note any other inequivalent
algorithm of same tensor rank e.g. [15, 9, 19], etc). Considering the projections
introduced in definition 2.3, we notice that:

Remark 2.2 Laderman matrix multiplication tensor defines 4 optimal 2× 2
matrix multiplication tensors and 19 other such tensors of tensor rank 8.

Further computations show that:

Remark 2.3 The type of the Laderman matrix multiplication tensor is

[
(2, 2, 2)|4, ((1, 3, 1), (3, 1, 1), (1, 1, 3))|2, (1, 1, 1)|13

]
(13)

where m|n indicates that m is repeated n times.

2.6 Tensors’ isotropies

We refer to [13, 14] for a complete presentation of automorphism group operating
on varieties defined by algorithms for computation of bilinear mappings and as
a reference for the following theorem:

Theorem 2.1 The isotropy group of the n× n matrix multiplication tensor is

pgl(Cn)×3
⋊S6, (14)

where pgl stands for the projective linear group and S6 for the symmetric group
on 6 elements.

Even if we do not completely explicit the concrete action of this isotropy group
on matrix multiplication tensor, let us precise some terminologies:
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Definitions 2.4 Given a tensor defining matrix multiplication computations,
the orbit of this tensor is called the multiplication algorithm and any of the
points composing this orbit is a variant of this algorithm.

Remark 2.4 As shown in [11], matrix multiplication is characterised by its
isotropy group.

Remark 2.5 We only need the pgl(Cn)
×3

part of this group (a.k.a. sandwich-
ing) and thus focus on it in the sequel.

As our framework and notations differ slightly from the framework classically
found in the literature, we have to explicitly define several well-known notions
for the sake of clarity. Hence, let us recall the sandwiching action:

Definition 2.5 Given g = (G1 ×G2 ×G3) an element of pgl(Cn)
×3

, its ac-
tion on a tensor T is given by:

g ⋄ T =

r∑

i=1

g ⋄ (Ti1 ⊗ Ti2 ⊗ Ti3),

g ⋄ (Ti1 ⊗ Ti2 ⊗ Ti3) =
(
tG−1

1 Ti1
tG2

)
⊗

(
tG−1

2 Ti2
tG3

)
⊗

(
tG−1

3 Ti3
tG1

)
.

(15)

Example 2.1 Let us consider the action of the following isotropy
(

0 1/λ
−1 0

)
×

(
1/λ −1/λ
0 1

)
×

(
−1/λ 0
1 −1

)
(16)

on the Strassen variant of the Strassen algorithm. The resulting tensor W is:

7
∑

i=1

wi =

(

−1 λ

− 1

λ
0

)

⊗

(

1 −λ
1

λ
0

)

⊗

(

1 −λ
1

λ
0

)

+

(

−1 l

− 1

λ
1

)

⊗

(

0 0
1 0

)

⊗

(

0 1
0 0

)

+

(

1 0
1

λ
0

)

⊗

(

1 0
1

λ
0

)

⊗

(

1 0
1

λ
0

)

+

(

0 0
0 1

)

⊗

(

0 0
0 1

)

⊗

(

0 0
0 1

)

+

(

0 0
1 0

)

⊗

(

0 1
0 0

)

⊗

(

−1 λ

− 1

λ
1

)

+

(

1 −λ

0 0

)

⊗

(

1 −λ

0 0

)

⊗

(

1 −λ

0 0

)

+

(

0 1
0 0

)

⊗

(

−1 λ

− 1

λ
1

)

⊗

(

0 0
1 0

)

(17)

that is the well-known Winograd variant of Strassen algorithm.

Remarks 2.6 We keep the parameter λ useless in our presentation as a tribute
to the construction made in [7] that gives an elegant and elementary (i.e. based
on matrix eigenvalues) construction of Winograd variant of Strassen matrix
multiplication algorithm.

This variant is remarkable in its own as shown in [3] because it is optimal
w.r.t. multiplicative and additive complexity.

Remark 2.7 Tensor’s type is an invariant of isotropy’s action. Hence, two
tensors in the same orbit share the same type. Or equivalently, two tensors with
the same type are two variants that represent the same matrix multiplication
algorithm.

This remark will allow us in Section 3.4 to recognize the tensor constructed
below as a variant of the Laderman matrix multiplication algorithm.
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3 A tensor’s construction

Let us now present the construction of a variant of Laderman matrix multipli-
cation algorithm based on Winograd variant of Strassen matrix multiplication
algorithm.

First, let us give the full contraction of the tensor W111 ⊗A⊗B ⊗ C:

(
−a22 −

a32
λ

+ λa23

)(
b22 +

b32
λ

− λb23

)(
c22 +

c32
λ

− λc23

)
+ (18a)

(a22 − λa23) (b22 − λb23) (c22 − λc23)+ (18b)
(
a22 +

a32
λ

)(
b22 +

b32
λ

)(
c22 +

c32
λ

)
+ (18c)

a23

(
−b22 −

b32
λ

+ λb23 + b33

)
c32+ (18d)

(
−a22 −

a32
λ

+ λa23 + a33

)
b32 c23+ (18e)

a32 b23

(
−c22 −

c32
λ

+ λc23 + c33

)
+ (18f)

a33 b33 c33 (18g)

3.1 A Klein four-group of isotropies

Let us introduce now the following notations:

Id3×3 =




1 0 0
0 1 0
0 0 1


, P(12) =




0 1 0
1 0 0
0 0 1


 (19)

used to defined the following group of isotropies:

K =

{
g1 = Id3×3

×3, g2 =
(
Id3×3 × P(12) × P(12)

)
,

g3 =
(
P(12) × P(12) × Id3×3

)
, g4 =

(
P(12) × Id3×3 × P(12)

)
}

(20)

that is isomorphic to the Klein four-group.

3.2 Its action on Winograd variant of Strassen algorithm

In the sequel, we are interested in the action of Klein four-group (20) on our
Winograd variant of Strassen algorithm:

K ⋄W111 =
∑

g∈K

g ⋄W111 =
∑

g∈K

7∑

i=1

gi ⋄ wi111
(21)

As we have for any isotropy g:

〈g ⋄W111|A⊗B ⊗ C〉 = 〈W111|g ⋄ (A⊗B ⊗ C)〉 , (22)
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the action of isotropies gi is just a permutation of our generic matrix coefficients.
Hence, we have the full contraction of the tensor (g2 ⋄W111)⊗A⊗B ⊗ C:

(
−a21 −

a31
λ

+ λa23

)(
b11 +

b31
λ

− λb13

)(
c12 +

c32
λ

− λc13

)
+ (23a)

(a21 − λa23) (b11 − λb13) (c12 − λc13)+ (23b)
(
a21 +

a31
λ

)(
b11 +

b31
λ

)(
c12 +

c32
λ

)
+ (23c)

a23

(
−b11 −

b31
λ

+ λb13 + b33

)
c32+ (23d)

(
−a21 −

a31
λ

+ λa23 + a33

)
b31 c13+ (23e)

a31 b13

(
−c12 −

c32
λ

+ λc13 + c33

)
+ (23f)

a33 b33 c33, (23g)

the full contraction of the tensor (g3 ⋄W111)⊗A⊗B ⊗ C:

(
−a11 −

a31
λ

+ λa13

)(
b12 +

b32
λ

− λb13

)(
c21 +

c31
λ

− λc23

)
+ (24a)

(a11 − λa13) (b12 − λb13) (c21 − λc23)+ (24b)
(
a11 +

a31
λ

)(
b12 +

b32
λ

)(
c21 +

c31
λ

)
+ (24c)

a13

(
−b12 −

b32
λ

+ λb13 + b33

)
c31+ (24d)

(
−a11 −

a31
λ

+ λa13 + a33

)
b32 c23+ (24e)

a31 b13

(
−c21 −

c31
λ

+ λc23 + c33

)
+ (24f)

a33 b33 c33 (24g)

and the full contraction of the tensor (g4 ⋄W111)⊗A⊗B ⊗ C:

(
−a12 −

a32
λ

+ λa13

)(
b21 +

b31
λ

− λb23

)(
c11 +

c31
λ

− λc13

)
+ (25a)

(a12 − λa13) (b21 − λb23) (c11 − λc13)+ (25b)
(
a12 +

a32
λ

)(
b21 +

b31
λ

)(
c11 +

c31
λ

)
+ (25c)

a13

(
−b21 −

b31
λ

+ λb23 + b33

)
c31+ (25d)

(
−a12 −

a32
λ

+ λa13 + a33

)
b31 c13+ (25e)

a32 b23

(
−c11 −

c31
λ

+ λc13 + c33

)
+ (25f)

a33 b33 c33. (25g)

There is several noteworthy points in theses expressions:

Remarks 3.1 • the term (18g) is a fixed point of K’s action;
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• the trilinear terms (18d) and (23d), (18e) and (24e), (18f) and (25f),
(23e) and (25e), (23f) and (24f), (24d) and (25d) could be added in or-
der to obtain new rank-on tensors without changing the tensor rank. For
example (18d)+(23d) is equal to:

a23

(
−b22 −

b32
λ

+ λb23 + 2b33 − b11 −
b31
λ

+ λb13

)
c32. (26)

The tensor rank of the tensor K ⋄W111 =
∑4

i=1 gi ⋄W111 is 1 + 3 · 4 + 6 = 19.
Unfortunately, this tensor does not define a matrix multiplication algorithm
(otherwise according to the lower bound presented in [2], it would be optimal
and this note would have another title and impact).

In the next section, after studying the action of isotropy group K on the
classical matrix multiplication algorithm, we are going to show how the tensor
constructed above take place in construction of matrix multiplication tensor.

3.3 How far are we from a multiplication tensor?

Let us consider the classical 3× 3 matrix multiplication algorithm

M =
∑

1≤i,j,k≤3

eij ⊗ ejk ⊗ eki (27)

where eij denotes the matrix with a single non-zero coefficient 1 at the intersec-
tion of line i and column j. By considering the trilinear monomial:

aijbjkcki =
〈
eij ⊗ ejk ⊗ eki

∣∣A⊗B ⊗ C
〉
, (28)

we describe below the action of an isotropy g on this tensor by the induced
action:

g ⋄ aijbjkcki =
〈
g ⋄ (eij ⊗ ejk ⊗ eki )

∣∣A⊗B ⊗ C
〉
,

=
〈
eij ⊗ ejk ⊗ eki

∣∣ g ⋄ (A⊗B ⊗ C)
〉
.

(29)

Remark 3.2 The isotropies in K act as a permutation on rank-one composant
of the tensor M: we say that the group K is a stabilizer of M. More precisely,
we have the following 9 orbits represented by the trilinear monomial sums:
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4
∑

i=1

gi ⋄ a11 b11 c11 = a11 b11 c11 + a12 b22 c21 + a22 b21 c12 + a21 b12 c22, (30a)

4
∑

i=1

gi ⋄ a22 b22 c22 = a22 b22 c22 + a21 b11 c12 + a11 b12 c21 + a12 b21 c11, (30b)

4
∑

i=1

gi ⋄ a23 b32 c22 = a23 b32 c22 + a23 b31 c12 + a13 b32 c21 + a13 b31 c11, (30c)

4
∑

i=1

gi ⋄ a22 b23 c32 = a22 b23 c32 + a21 b13 c32 + a11 b13 c31 + a12 b23 c31, (30d)

4
∑

i=1

gi ⋄ a32 b22 c23 = a32 b22 c23 + a31 b11 c13 + a31 b12 c23 + a32 b21 c13, (30e)

1

2

4
∑

i=1

gi ⋄ a23 b33 c32 = a23 b33 c32 + a13 b33 c31, (30f)

1

2

4
∑

i=1

gi ⋄ a33 b32 c23 = a33 b32 c23 + a33 b31 c13, (30g)

1

2

4
∑

i=1

gi ⋄ a32 b23 c33 = a32 b23 c33 + a31 b13 c33, (30h)

1

4

4
∑

i=1

gi ⋄ a33 b33 c33 = a33 b33 c33. (30i)

Hence, the action of K decomposes the classical matrix multiplication tensor M
as a transversal action of K on the implicit projection M̃111, its action on the
rank-one tensor e11 ⊗ e11 ⊗ e11 and a correction term also related to orbits under K:

M = K ⋄
(
e11 ⊗ e11 ⊗ e11

)
+ K ⋄ M̃111 −R,

R = (1/2)K ⋄
(
e23 ⊗ e33 ⊗ e32

)
+ (1/2)K ⋄

(
e33 ⊗ e32 ⊗ e23

)

+ (1/2)K ⋄
(
e32 ⊗ e23 ⊗ e33

)
+ 3K ⋄

(
e33 ⊗ e33 ⊗ e33

)
.

(31)

3.4 Resulting matrix multiplication algorithm

The term M̃111 is a 2× 2 matrix multiplication algorithm that could be replaced
by any other one. Choosing W111, we have the following properties:

• the tensor rank of K ⋄W111 is 19;

• its addition with the correction term R does not change its tensor rank.

Hence, we obtain a matrix multiplication tensor with rank 23 = 19 + 4. Fur-
thermore, the resulting tensor have the same type than the Laderman matrix
multiplication tensor, and thus it is a variant of the same algorithm.

We conclude that the Laderman matrix multiplication algorithm can be
constructed using the orbit of an optimal 2× 2 matrix multiplication algorithm
under the action of a given group leaving invariant classical 3× 3 matrix mul-
tiplication variant/algorithm and with a transversal action on one of its projec-
tions.
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4 Concluding remarks

All the observations presented in this short note came from an experimental
mathematical approach using the computer algebra system Maple [18]. While
implementing effectively (if not efficiently) several tools needed to manipulate
matrix multiplication tensor—tensors, their isotropies and contractions, etc.—in
order to understand the theory, the relationship between the Laderman matrix
multiplication algorithm and the Strassen algorithm became clear by simple
computations that will be tedious or impossible by hand.

As already shown in [21], this kind of geometric configuration could be found
and used with other matrix size.

The main opinion supported by this work is that symmetries play a central
role in effective computation for matrix multiplication algorithm and that only
a geometrical interpretation may brings further improvement.

Acknowledgment. The author would like to thank Alin Bostan for providing
information on the work [21].
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Sept. 5–9 1977), J. Gruska, Ed., vol. 53 of Lecture Notes in Computer
Science, Springer, pp. 504–512.

A A cyclic isotropy group of order 4 leading to

same resulting tensor

Instead of Klein-four group K presented in Section 3.1, one can also use another
cyclic group C of order 4 that is a stabilizer of L but such that its generator f
is not a sandwiching. We do not give any further details here to avoid supple-
mentary definitions but nevertheless, we present an example of the resulting 8
orbits, again represented by trilinear monomial sums:
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4
∑

i=1

fi ⋄ a11 b11 c11 = a11 b11 c11 + a12 b22 c21 + a22 b21 c12 + a21 b12 c22, (32a)

4
∑

i=1

fi ⋄ a22 b22 c22 = a22 b22 c22 + a21 b11 c12 + a11 b12 c21 + a12 b21 c11, (32b)

4
∑

i=1

fi ⋄ a32 b22 c23 = a32 b22 c23 + a31 b12 c23 + a23 b31 c12 + a13 b31 c11, (32c)

4
∑

i=1

fi ⋄ a22 b23 c32 = a22 b23 c32 + a21 b13 c32 + a11 b13 c31 + a12 b23 c31, (32d)

4
∑

i=1

fi ⋄ a23 b32 c22 = a23 b32 c22 + a31 b11 c13 + a13 b32 c21 + a32 b21 c13, (32e)

4
∑

i=1

fi ⋄ a32 b23 c33 = a32 b23 c33 + a31 b13 c33 + a23 b33 c32 + a13 b33 c31, (32f)

1

2

4
∑

i=1

fi ⋄ a33 b32 c23 = a33 b32 c23 + a33 b31 c13, (32g)

1

4

4
∑

i=1

fi ⋄ a33 b33 c33 = a33 b33 c33. (32h)

Hence, the action of C decomposes the classical matrix multiplication tensor M
as a transversal action of C on the implicit projection M̃111, its action on the
rank-one tensor e11 ⊗ e11 ⊗ e11 and a correction term also related to orbits under C:

M = C ⋄
(
e11 ⊗ e11 ⊗ e11

)
+ C ⋄ M̃111 −R,

R = (1/2)C ⋄
(
e33 ⊗ e32 ⊗ e23

)
+ 3C ⋄

(
e33 ⊗ e33 ⊗ e33

)

+ C ⋄
(
e32 ⊗ e23 ⊗ e33

)
.

(33)

The conclusions done in Section 3.4 remain obviously the same.

B Stabilizer group of isotropies

It is shown in [6] that the stabilizer group of Laderman matrix multiplication
algorithm is isomorphic to S4. This group is also a stabilizer of classical 3× 3
matrix multiplication algorithm M. Mutatis mutandis, we have with our nota-
tions and in the coordinates used in this note:

6M = S4 ⋄
(
e11 ⊗ e11 ⊗ e11

)
+S4 ⋄ M̃

111 −R,

R = (6/4)S4 ⋄
(
e33 ⊗ e32 ⊗ e23

)
+ 18S4 ⋄

(
e33 ⊗ e33 ⊗ e33

)
.

(34)

This kind of relations holds for any nontrivial subgroup of S4; for example with
its dihedral subgroup D4, we have:

2M = D4 ⋄
(
e11 ⊗ e11 ⊗ e11

)
+ D4 ⋄ M̃

111 −R,

R = D4 ⋄
(
e23 ⊗ e33 ⊗ e32

)
+ (1/2)D4 ⋄

(
e33 ⊗ e32 ⊗ e23

)

+ 6D4 ⋄
(
e33 ⊗ e33 ⊗ e33

)
.

(35)
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