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Implementation, Identification and Control
of an Efficient Electric Actuator for Humanoid Robots

Florent Forget1 and Kevin Giraud-Esclasse1 and Rodolphe Gelin2 and Nicolas Mansard1 and Olivier Stasse1

Abstract— Autonomous robots such as legged robots and
mobile manipulators imply new challenges in the design and
the control of their actuators. In particular, it is desirable
that the actuators are back-drivable, efficient (low friction) and
compact. In this paper, we report the complete implementation
of an advanced actuator based on screw, nut and cable. This
actuator has been chosen for the humanoid robot Romeo.
A similar model of the actuator has been used to control
the humanoid robot Valkyrie. We expose the design of this
actuator and present its Lagrangian model. The actuator being
flexible, we propose a two-layer optimal control solver based
on Differential Dynamical Programming. The actuator design,
model identification and control is validated on a full actuator
mounted in a work bench. The results show that this type
of actuation is very suitable for legged robots and is a good
candidate to replace strain wave gears.

I. INTRODUCTION

Mobile robots, such as legged robots and humanoid robots,
imply new challenges in the design of their actuation system.
In this context, it is very important that the robot is able to
feel the force that it exerts on its environment. In the same
time, the actuator must be light-weight and compact. Direct-
drive actuation is then not an option. On many electric-
powered humanoid robot, strain wave gears (e.g. Harmonic
Drive gear) are used for their compactness. However, if
back-drivable, strain wave gears have a poor transparency,
i.e. the torque exerted at the joint level (output) is poorly
correlated to the torque at the motor level (input), and the
output torque is difficult to estimate from the motor current.
If an accurate joint-torque estimation is needed, a joint torque
sensor must be added to the robot design, which increases
the total design cost and the actuation flexibility. Moreover,
strain-wave gears are sensitive to impacts, which tend to
damage the gear. Their maximum torques are also limited, in
particular when impacts have to be expected. For the design
of full-size humanoid robots (i.e. size similar to Shaft, NASA
Valkyrie, PAL Talos), strain-wave gears are clearly one of the
main limiting factor of the design. On the other hand, most
of alternative gears are either not compact enough, or with
insufficient reduction ratio.

The design of such kind of actuators is a widely studied
subject. Different technologies are used to address these
problems. Electric-based actuation is very desirable because
it is simple to implement, hence also more reliable for a given
integration effort. A first step is to adapt electric motors to
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Fig. 1. The leg of the robot Romeo are designed based on a screw-nut-cable
actuator, which are shock-proof and low-friction, but induce a flexibility due
to the cable.

humanoid robotics needs as it is done in [1] for quadruped
robot. By increasing the motor diametrer, the nominal speed
is lowered while the nominal torque is improved, allowing to
reduce the reduction ratio and so having a more backdrivable
system. Another route is to improve the design of the gear
box, as done in [2] where authors chose to improve strain-
wave gears technology to build a torque-controlled robot.
However, despite the improvement, strain-wave gear implies
many drawbacks: unsufficient torque limit, sensitivity to
impact, lack of efficiency and of transparence. Adding a
passive element at the gear output releases a part of the
limitations: it protects the gear from impact. It also makes
a part of the actuation transparent, while an encoder may
be used to directly (after calibration) measure the torque
applied on the joint side. However, the passive element
makes the actuation more difficult to control and intrinsically
lowers the possible control bandwidth, which is not desirable
for achieving fast-dynamics movements. Variable-stiffness
actuators as in [3] makes it possible to dynamically stiffen the
robot when high dynamics is needed, but then boiling down
to the same limits than rigid electric actuation. On a quite
different route, hydraulic technology is promising to conceive
robotics actuators allowing good power to weight ratio and
shock absorption [4], [5], although the implementation of the
complete robot becomes more challenging.

In this paper, we present the complete implementation



(design, modeling, identification and control) of a screw-
nut-cable compact actuator based on [6]. This actuator has
been used to design the legs of the humanoid robot Romeo
(see Fig. 1). A similar model of the actuator has been used
to control the humanoid robot NASA R5 (Valkyrie) [7],
although the control strategy built upon it is different from
ours. In the context of the new NASA challenge with this
humanoid robot, the work presented in this paper is very
relevant.

The actuator offers reduction ratio up to 150 while keeping
compact design. It has a high tolerance to shocks and impacts
and offers a high transparency, making it reliable to estimate
output torques from motor currents. It also induces flexibility
coming from the cable connecting the screw to the joint
output. Adding elasticity into the actuation smoothes the
contact with the environment, which prevent rebound and in
certain case sliding effects [8]. The flexible element in this
particular gear can also be exploited to directly measuring the
output torques, by equipping it with sensor able to measure
the spring deflection (e.g. angle encoders attached to each
side of elasticity). We show that measures of torques/forces
can be obtained for quasi-null additional cost. The flexible
element behaves like a series-elastic actuator (SEA) [9]. It
must be taken into account in the actuator control loop
to avoid instability. However, the flexibility is an order of
magnitude smaller than on typical SEA.

The contributions of the paper are as follows. We report
the implementation of the concept gear [6] in Section II
and present an original Lagrangian model of the actuator.
Based on this model, we propose in Section III a model-
predictive controller (MPC) based on differential dynamic
programming (DDP) [10] able to cope with the actuator
flexibility with only few parameters left to the designer to
tune. The optimal controller can be set up to either implement
a position controller (i.e. by tracking the output position)
or a force controller (i.e. by tracking a reference spring
deflection). We implemented the proposed approach in one
of the actuator of Romeo mounted in a work-bench. We
report in Section IV the identification of the parameters of the
Lagrangian model, the results of controlling the real actuator
to track joint references and the study in simulation of the
torque bandwidth compared to state-of-the-art actuators with
similar ratio.

II. MODEL OF THE ACTUATOR

We recall here the main principles of the actuator [6],
present the design of the actuator used in the experiment
and propose an original Lagrangian model upon which our
controller is built.

A. Mechanical description

The original design of the actuator has been proposed
in [6]. We recall here the general mechanism of the actuator
that we used in the result section. The actuator is composed
of an electrical motor attached to a ball screw which is guided
along a fixed axis but can freely rotate inside the nut. The
output of the screw is connected to two cables which can pull
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Fig. 3. Schema of the actuator mounted on the workbench

the output joint in the two rotation directions. Our particular
actuator is mounted in a workbench used for identification
and control validation. The same actuator equips 10 degrees
of freedom of the legs of the medium-size humanoid robot
Romeo. Two pictures of the actuator with legends are shown
in Fig. 2. A schema of the actuator is shown in Fig. 3.

The motor (referenced as (#1) in Fig. 2) is fixed on the
base, a pinion (#2) is mounted on its shaft. The pinion leads
a toothed belt (#3) to a geared wheel (#4). This part is fixed
to the nut of the ball screw (#5). The screw is the main
component allowing the trade-off between an high reduction
ratio (of about 100) and a high reversibility. It also increases
the compactness of the system. To avoid the screw rotation
around its main axis and to enforce its motion to be a
translation, an additional part is flexibly coupled (#6)(#7)
between the screw and a fixed shaft (#8). Note that this part
is not introducing the elasticity we try to manage in this
paper.

The cable (#9) is the main part of the system introducing
the flexibility we deal with in this paper. The forward part
of the cable is linked to the joint with a crimped ball (#10)
placed in the spherical imprint of the joint (#11). The cable
then goes to the turn-buckle (#12). The backward part of
the cable is also going to the turn-buckle by the way of a
pulley. The turn-buckle is used to fix and pre-load the cable.
To keep the workbench simple to use, a rope is attached
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Fig. 4. System considered for the actuator modeling

to the joint (#11) in order to apply some load. This set-up
limits the output load to only one direction of the joint. This
has no negative consequence for our experimental protocol
in comparison with the real robot.

To measure the angle positions, two absolute magnetic
encoders are mounted on each side of the gear. One is fixed
behind the motor on its main shaft (#13), the other is placed
on the joint (#14), after the transmission chain. This layout
measures the ratio and the deformation on the transmission
and makes the model parameters theoretically observable.

Even though the flexible coupling should increase the
transparency of the system, it seems to create constraints on
the screw by preventing it to oscillate normally. Moreover,
contrary to [6], the space around the cable (attached in the
middle of the hollow screw with a crimped sleeve) is not
sufficient to let avoid the cable to slide on the screw. Any
minor misalignment the creates efforts impeding the slight
oscillations of the screw and introduce non-linear and cyclic
friction (as detailed in Section IV-A).

B. Lagrangian Model

With respect to the mechanical description given before,
we use the following assumptions to construct the system
model:

[A1] The DC motor driving the mechanism is considered
as a perfect source of torque.

[A2] Flexibilities are concentrated into a single linear
rotational spring with constant stiffness.

Assumption [A1] is advisable as we consider the torque
directly at the motor side (i.e. before any reduction device)
while the motor is current controlled (with current sensor and
modern power electronics). Assumption [A2] is reasonable as
the stiffness of the cable is several order of magnitude lower
than the stiffness of any other element in the transmission.

The actuator then boils down to a two-masses system
attached by a spring, as illustrated in Fig. 4. The first mass is
driven by a DC motor coupled with the gearbox. The second
mass is interacting with the environment. Friction arises in
opposition to the motion of both masses.

Using Lagrangian formalism, we expose the following
model describing classical series elastic actuator. We em-
pirically decided during the identification experiments to
consider vicious friction on both motor and load side and

Symbol Physic meaning Identified value
JM motor inertia 1.38× 10−5 kg.m2

JL load inertia 8.5× 10−4 kg.m2

θM motor angular position N.A
q joint angular position N.A
k equivalent rotational spring stiffness 588Nm/rad
R transmission ratio 96.1
τM motor torque N.A
τext external torque (environment) N.A
dM vicious friction at motor level 0.003Nm/(rad/s)
dL vicious friction at load level 0.278Nm/(ras/s)
Cf dry friction at motor level 0.1Nm
KT motor current to torque ratio 60.3× 10−3 Nm/A
µ motor efficiency 0.78

TABLE I
VARIABLES AND PARAMETERS USED IN THE MODEL AND

CORRESPONDING VALUES ESTIMATED ON OUR SYSTEM

dry friction on motor side.

JM θ̈M = µKT iM −
k

R
(
θM
R
− q)− dM θ̇M − Cfsign(θ̇M )

(1a)

JLq̈ = τext + k(
θM
R
− q)− dLq̇ (1b)

where the notations are given in Tab I. In order to keep the
equations smooth (as needed for the controller), we used
a smooth version of the sign function (i.e. a hyperbolic
tangent).

Because several mechanical phenomena were difficult to
model (see Section IV-A), we make the choice to keep a
simple model. In practice, the good transparency of the gear
makes it possible to properly estimate the forces applied
on the actuator. We can then rely on feedback more than
on feedforward, being given that the control law (hence the
model) is sufficiently fast to be evaluated. The rational is the
higher the control frequency, the lower error between the
real system state and its estimation and the more accurate
the control.

III. CONTROL

As reported in previous section, the actuator behaves like
a SEA transmission, with higher stiffness than typical SEA
implementation. It is not relevant to ignore it, however it
is possible to handle it directly at the joint level, while
neglecting it at the level of the robot whole body. In this
section, we present the control solution that we implemented
to track the joint reference, specified either as reference
position or as reference torque. Our objective is then to
compute the joint references from a whole-body optimization
scheme, that will be accurately tracked by the joint controller
running at high frequency.

The controller we report below is composed of a two-
stage architecture: a first stage, running on CPU at 1kHz,
computes the optimal trajectory (feedforward) and the op-
timal feedback gains in a model-predictive-control (MPC)
style. The second layer, running on the micro-controller at
higher frequency (5kHz or higher) uses the feedforward
and the feedback gains to compute the reference current



sent to the motor. We start by a brief overview of possible
control approaches that justifies our implementation based
on differential dynamic programming (DDP).

A. Brief control state of the art

We are interesting in setting up a controller either of the
output joint position (position controller), or of the relative
position of input and output (spring deflection, i.e. force
controller). In both cases, the major difficulty is the tuning of
the control gains: high gains on position loop are necessary
for good precision but may make the system unstable due to
the flexibility. Several control schema have been developed
to address this problem. The analysis of the Eigen modes of
the actuator models to achieve desired convergence, stability
and precision [7], [11] is difficult due to the model non-linear
terms. Moreover, the same controller must be deployed on
several variations of the same actuator implemented on the
legs of Romeo. A more automatic method is desirable.

A method has been proposed in [12] to control SEA
using H∞. It relies on automatic controller tuning from
identification data. However the results that the controller
is quite sensitive to identification errors, which makes it
difficult to generalize. Alternatively, optimal control is very
versatile (i.e. the controller can be quickly adapted to track
either position or force references) and is quite resilient
in practice to errors in the model [13], [14]. It is also
straightforward to generalize it to other SEA/VSA mecha-
nisms, like pneumatic muscles [15]. Optimal controller can
also handle constraints like torque or position limits [10].
Optimal control has been used to control both joint position
and stiffness of an approximate linear model (LQR) [13].
Dedicated approximations using polynomials have then been
used to fit the computation capabilities of the control board.

We rather propose here a two-stage approach to combine
the versatility of the nonlinear optimal control problem with
the efficiency needed to solve it on the control board. The
nonlinear problem is solved at medium frequency by the
central CPU. The optimal control, along the corresponding
Ricatti gains are then sent to the control board where the
optimal control is updated from sensor measurements at
high frequency. To keep the nonlinear solver simple while
enforcing joint constraints, we implemented a box-DDP [10],
running at 1kHz. The control board then applies a PID
corrector (using Ricatti gains extracted from the DDP) at
5kHz.

B. Differential dynamic programming

DDP is an optimal control scheme with a “single shooting”
strategy, that is able to efficiently cope with the sparsity
of the underlying numerical system but has the drawbacks
of being quite unable to handle complex constraints. This
trade-off is very suitable to our problem. We recall here the
basis of DDP. This recall is needed for understanding how
we designed both layers of our control architecture. More
detailed information about this optimal control solver can be
found in [16].

Consider a generic mechanical system described by its
(discrete) dynamic equation:

xi+1 = fi(xi,ui) (2)

Where xi represents the current state of the actuator (posi-
tion, speed, torque ...) and ui is the input command (current,
torque, voltage ...). This model may or not be linear and time
varying. We expose the cost we want to minimize on a given
horizon T .

J(U|x0) =

T−1∑
i=0

ci(xi,ui) + cT (xT) (3)

with X = {x0,x1, ...,xT} and U = {u0,u1, ...,uT−1}
respectively the state and control sequence over horizon T
and x0 the initial state of the system (typically estimated
from sensors). It is to be noticed that knowing x0 and U is
enough to know the state of the system at each moment of the
horizon because of the relation (2). So the optimal control
problem consists in finding the correct U minimizing the
cost for a given x0 initial state.

We introduce then the cost-to-go function to be

Ji(Ui|xi) =

T−1∑
j=i

cj(xj,uj) + cT (xT) (4)

with xj integrated from xi. The optimum cost-to-go is named
the value function V :

V (x0, i) = min
Ui

Ji(x0,Ui) (5)

We obviously have that V (x0, T ) = cT (xT). The “Belman”
dynamic-programming principle teaches us that minimizing
the cost by choosing the correct control sequence can be
reduced to the backward minimization of a single control
input. This principle gives us the Bellman equation :

V (xi, i) = min
u

[ci(xi,ui) + V (f(xi,ui), i+ 1)] (6)

The DDP solver computes the optimal control sequence U
by solving equation (6) backwardly in time. For this purpose
let Q be the variation of c(x,u) + V (f(x,u), i+ 1) around
the i− th state and command. We have :

Q(δx, δu) ≡ c(x + δx,u + δu)− c(x,u)

+ V (f(x + δx,u + δu), i+ 1))

− V (f(x,u), i+ 1))

(7)

By taking the second order approximation of (7) we obtain:

Q(δx, δu) ≈ 1

2

 1
δx
δu

T  0 QTx QTu
Qx Qxx Qxu
Qu Qux Quu

 1
δx
δu

 (8)

For readability we will use subscript notation to denote
partial derivative (e.g. fx = ∂f(x,u)

∂x ). We also denote the



Algorithm 1 Differential Dynamic Programming Solver
1: {initialisation :}
2: U←random command sequence
3: X←init(x0, U)
4: repeat
5: V (T )← cT (xT)
6: Vx(T )← cTx(xT)
7: Vxx(T )← cTxx(xT)
8: for i=T-1 down to 0 do
9: Qx, Qu, Qxx, Qu, Qux ← see equations (9) to (13)

10: k← −Q−1uuQu
11: K ← −Q−1uuQux
12: ∆V, Vx, Vxx ← see equations (15) to (17)
13: end for
14: x̂(0) = x(0)
15: for i=0 to T-1 do
16: û(i) = u(i) + k(i) +K(i)(x̂(i)− x(i))
17: x̂(i+ 1) = fi(x̂(i), û(i))
18: end for
19: until convergence

next state by V ′ ≡ V (i+ 1). We can now expose:

Qx = cx + fTx V
′
x (9)

Qu = cu + fTu V
′
x (10)

Qxx = cxx + fTx V
′
xxfx + V ′xfxx (11)

Quu = cuu + fTu V
′
xxfu + V ′xfuu (12)

Qux = cux + fTu V
′
xxfx + V ′xfux (13)

Where the last term of the last three equations represents the
contraction of a tensor with a vector. Minimizing (7) with

respect to δu gives us:

δu∗ = argmin
δu

Q(δx, δu) = −Q−1uu (Qu +Quxδx) (14)

Showing up two terms:
• a feedforward term: k = −Q−1uuQu
• a feedback term : K = −Q−1uuQux

Using back this result into (7), we obtain a quadratic approx-
imation of the value function at i− th instant:

∆V (i) = −1

2
QuQ

−1
uuQu (15)

Vx(i) = Qx −QuQ−1uuQux (16)
Vxx(i) = Qxx −QuxQ−1uuQux (17)

Computing all term from (9) to (17) for i = N − 1 down
to i = 0 is called the backward phase. We then need to
calculate the change induced on the state sequence by the
modification on the command sequence.

This is the forward phase, detailed below:

x̂(0) = x(0) (18)
û(i) = u(i) + k(i) +K(i)(x̂(i)− x(i)) (19)

x̂(i+ 1) = fi(x̂(i), û(i)) (20)

SYSTEMPID

DDP

+
++

-

Fig. 5. General architecture of the proposed DDP-based MPC controller.
The DDP running of CPU computes the optimal (feedforward) control uFF

and the Ricatti gains K at 1Khz. The control board (PID) then adds a
feedback term uFB at 5Khz.

The solver iterates on these two phases until convergence
of the result (minimal changes on U). One can find the
algorithm detailed in a pseudo-code on algorithm 1.

In order to ensure good convergence and to add some
specificities to the algorithm, we decided also to implement
some other features:

Line search: DDP being a type of Newton descent, line
search allows the algorithm to adapt the step length so that
convergence is faster.

Regularization: DDP implies the inversion of Quu matrix
which in certain cases may not be invertible. Regularization
makes the matrix invertible if it was not in the first place and
it integrates this modification into the whole computation.

Control limitation: Introduced in [10], the control limited
DDP is an extension of the DDP where it is possible to add
bound constraints on the command input vector. In practice
this feature is possible by solving a box QP problem.

C. Two-stage control architecture

The outputs of the DDP solver are the optimal trajectories
in both control U and state X spaces, along with the optimal
feedback gains along this trajectory K. Our objective is to
use at best these information to feedback as frequently as
possible on the sensor measurements.

For that, we implement the DDP as a model-predictive
(receding-horizon) control scheme. At any instant, we main-
tain a valid (possibly suboptimal) control trajectory U∗. As
soon as the DDP performed one valid step of the nonlinear
search loop (line #4 of Alg. 1), the solver candidate trajectory
U is used to update U∗. The receding horizon of the
DDP is then shifted, while the initial state of this new
horizon is updated to the latest state estimation. The dynamic
system considered in our DDP (1) is low-dimension and thus
leads to short computation timings. It is easy to implement
such solver to obtain 1kHz control frequency. However, it
is difficult to implement the DDP solver directly on the
actuator micro-controller, but rather on the central robot CPU
board. The frequency is then limited by the communication
bandwidth to upload the sensor measurements and download
the control references.

On the other hand, the micro-controller of the actuator is
able to update the motor control at much higher frequency
(e.g. 5kHz). This higher frequency enables us to take advan-
tage of the optimal feedback gains computed by the DDP
solver. On the micro-controller, we then maintain an optimal
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Fig. 6. Comparison between model and real system response to a same
control input (motor current)

control (feedforward) trajectory and the corresponding op-
timal feedback gains along this trajectory. At each control
cycle of the micro-controller, the state is estimated from
previous sensor measurements. The control (reference motor
current i∗) is then computed as the sum of the feedforward
(optimal control u∗) and feedback (optimal gains K∗):

i∗(t) = u∗(t) +K∗(x∗(t)− x̂(t))

where x∗ is the latest optimal trajectory in the state space
computed by the DDP and x̂ is the estimated state.

Fig. 5 shows the general architecture of the proposed
controller. The DDP controller runs at 1kHz on CPU and
produces the feedforward control uFF . The feedback con-
troller runs at 5kHz on micro-controller, estimates the state
and produces the feedback control uFB from the optimal
gains K. The communication bus between micro-controller
and CPU board carries the estimated state at 5kHz and the
optimal feedforward and gains at 1kHz. Both feedforward
and feedback are finally summed and used to servo the motor
current.

IV. SIMULATION AND EXPERIMENTS

A. Actuator parameters estimation

Off-line estimation: All measurements (joint position,
motor position, motor current, motor supply voltage ...)
are collected while controlling the actuator with a simple
controller (PID with low gains). The estimation of the model
parameters is done using MATLAB R©. The result is shown
in Fig. 6, by comparing simulated and hardware response
to a same open-loop control. Thanks to the transparency of
the actuator, the model is easily identified. The prediction in
simulation properly fits with the real trajectory. Although
the parameters are better estimated than on other types
of transmission, the identification is not perfect. From the
captured data, we identified that this comes from several
defects in the implementation of the actuator (ball-screw
being to much constrained by the flexible coupling, cable
being not free enough at the mounting with the ball-screw,
elasticity being different in the two directions due to the
inequal length of the two cables). It would be possible to
model these effects, hence to obtain a better prediction.

Fig. 7. Output joint torque estimation: (left) using only the two joint
encoders measuring the spring deflection (right) using the current measures
and the full actuator model. The estimation from encoders is biased by the
friction in the hardware. The current measure leads to a quite good torque
estimation although noisy. Both measures are satisfactory given the absence
of a direct torque sensor, and are complementary.

However, it would also make the controller more complex
and more costly. We rather believe that it would be easier to
correct this effect by a more careful implementation of the
actuator.

On-line estimation: The actuator is not equipped with
direct torque sensor. However, two indirect measurements
are available. We have two encoders on each side of the
flexibility, and can then use the model to estimate the output
torque. Thanks to the actuator transparency, we can also use
the measured motor current to estimate the output torque. To
validate both measurements, we took measurements points
for different joint positions in a static state with different
known masses attached to the actuator output. The mass
being static, the output torque is known and can be compared
to the estimation using either the encoders or the current
sensor. The result is displayed in Fig. 7. Both estimations
are accurate. They also are complementary: the estimation
from the encoders is biased by friction; the estimation
from current is more noisy. Merging both estimations in a
proper estimator would lead to an accurate estimation able
to compete with a direct torque measurement (without the
price, implementation issue and fragility of an actual torque
sensor).

In conclusion, the transparency of the actuator leads to
accurate model estimation, both for (off-line) calibration and
(on-line) torque estimation.

B. Experiments - position control

Simulation: We validate first the position controller in
simulation, using the model and the two-stage MPC pre-
sented above. The MPC uses the true (identified) model
for prediction, while the simulation is integrated using a
biased model (parameters randomly modified of 50% – for
convenience we only plot results for a single biased model).
Control frequencies are the same than on the real system.
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Fig. 8. Simulation for ideal and biased model with feedforward and/or
feedback (similar trajectories are obtained when a single term is active).
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Fig. 9. Hardware experiment: position tracking with and without feedfor-
ward (feedback must be alsways active on hardware).

Fig. 8 displays the effect of the feedback and feedforward
terms for a step input. The reference is accurately tracked.
The steady state is quickly reached because the actuator is
quite stiff. By mixing feedback and feedfoward, the MPC
offers a good robustness to modeling errors.

Hardware experiments: The same experiments have been
made on the real system. Results are displayed on Fig. 9
and 10. The reference is properly tracked, with the steady
state being reached with a time similar to the ideal case. As in
simulation, mixing feedforward and feedback helps to obtain
a better behavior. On the hardware, the modeling errors
are more significant than with the simulated models (due
to nonmodeled effects as already mentioned, like periodic
friction, etc). The box-DDP is useful in this case to prevent
current overshoot in the motor (e.g. between 0.8s and 1.5s).
Finally, we show in Fig. 11 the results of tracking a realistic
trajectory, taken from a walking movement generated with
a pattern generator (trajectory of the knee of robot HRP-2
during 15cm stair climbing). The trajectory is very dynamic.
It results in less than 1% of error.
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Fig. 10. Hardware experiment: motor current when tracking a step position.
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Fig. 12. Torque control of the actuator in simulation for ideal and biased
models with several levels of bias

C. Experiments - torque control

We also validate the torque controller, in simulation only.
Results are shown in Fig. 12. We again observe the response
of the controller to a step input. As before, the analysis is
achieved while disturbing the parameters of the model used
in simulation while keeping the same MPC model. With a
perfect model, the steady state is perfectly reached. The time
to steady state is shorter than with the position controller, as
expected. When bias is added, we keep a similar behavior
but the reference is not perfectly reached any more. As we
do not have a direct (nonbiased) estimation of output torque,
this would not be possible. However, we also see that the
behavior remains good despite the bias and that improving
the estimation of the model parameters (in particular the
stiffness) on-line based on any external measurement of the
output torque would be quite easy.

V. CONCLUSION

In this paper, we have presented the complete implemen-
tation of a new compact, high-gear and transparent actuator,
very suitable for mobile robots, in particular in the context
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Fig. 11. Tracking a dynamic position trajectory. (left) Reference and actual trajectories (right) Tracking error. Less than 1% error in average was observed.

of locomotion, with identification and an original two-stage
control scheme. The optimal controller is lightweight, easy
to implement, and can compute a feedback at 5kHz on a
micro-controller board. We have shown in the experiment
results that both layers are needed to efficiently control the
actuator: either feedforward or feedback alone are not able to
perform as efficiently. Moreover, we experimentally showed
the capabilities of the actuator in term of transparency
(i.e. estimating output torques from motor current), and the
adequacy of the model to capture the complexity of the
actuator.

The main result of this study is that the actuator with our
control scheme offers very good property, which makes it
very suitable to replace strain-wave gears in electric actuation
of humanoid robots. In particular, it offers full backdrivability
(hence more efficiency, less dangerousness and more chock
resistance) and accurate estimation of the output joint torque
without direct measurement (i.e. no force sensor needed).

While the proposed control architecture is very suitable
for the screw-nut-cable actuator, it is also appropriate for
other kind of flexible actuators such as SEA at large, variable
stiffness actuators [13] or Mckibben pneumatic actuators
[15]. The MPC scheme can be easily adapted to another
dynamic model or another cost function. Our objective is
now to adapt the controller to the whole body of the robot
and to use it to control complex humanoid movements.
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