
HAL Id: hal-01494676
https://hal.science/hal-01494676v1

Preprint submitted on 23 Mar 2017 (v1), last revised 25 May 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differential Dynamical Programming to control a cable
driven actuator for the humanoid robot Romeo

Florent Forget, Kevin Giraud-Esclasse, Rodolphe Gelin, Nicolas Mansard,
Olivier Stasse

To cite this version:
Florent Forget, Kevin Giraud-Esclasse, Rodolphe Gelin, Nicolas Mansard, Olivier Stasse. Differential
Dynamical Programming to control a cable driven actuator for the humanoid robot Romeo . 2017.
�hal-01494676v1�

https://hal.science/hal-01494676v1
https://hal.archives-ouvertes.fr

Differential Dynamical Programming to control a cable driven actuator
for the humanoid robot Romeo.

Florent Forget1 and Kevin Giraud-Esclasse1 and Rodolphe Gelin2 and Nicolas Mansard1 and Olivier Stasse1

Abstract— Autonomous robots such as legged robots and
mobile manipulators imply new challenges in the design and
the control of their actuators. In particular, it is desirable
that the actuators are back-drivable, efficient (low friction) and
compact. In this paper, we report the complete implementation
of an advanced actuator based on screw, nut and cable. This
actuator has been chosen for the humanoid robot Romeo.
A similar model of the actuator has been used to control
the humanoid robot Valkyrie. We expose the design of this
actuator and present its Lagrangian model. The actuator being
flexible, we propose a two-layer optimal control solver based
on Differential Dynamical Programming. The actuator design,
model identification and control is validated on a full actuator
mounted in a work bench. The results show that this type
of actuation is very suitable for legged robots and is a good
candidate to replace strain wave gears.

I. INTRODUCTION

Mobile robots, such as legged robots and humanoid robots,
imply new challenges in the design of their actuation system.
In this context, it is very important that the robot is able to
feel the force that it exerts on its environment. In the same
time, the actuator must be light-weight and compact. Direct-
drive actuation is then not an option. On many electric-
powered humanoid robot, strain wave gears (e.g. Harmonic
Drive gear) are used for their compactness. However, if
back-drivable, strain wave gears have a poor transparency,
i.e. the torque exerted at the joint level (output) is poorly
correlated to the torque at the motor level (input), and the
output torque is difficult to estimate from the motor current.
If an accurate joint-torque estimation is needed, a joint torque
sensor must be added to the robot design, which increases
the total design cost and the actuation flexibility. Moreover,
strain-wave gears are sensitive to impacts, which tend to
damage the gear. Their maximum torques are also limited, in
particular when impacts have to be expected. For the design
of full-size humanoid robots (i.e. size similar to Shaft, NASA
Valkyrie, PAL Thalos), strain-wave gears are clearly one of
the main limiting factor of the design. On the other hand,
most of alternative gears are either not compact enough, or
with insufficient reduction ratio.

In this paper, we present the complete implementation
(design, modeling, identification and control) of a screw-nut-
cable compact actuator based on [1]. This actuator has been
used to design the legs of the humanoid robot Romeo (see
Fig. 1). A similar model of the actuator has been used to

1 CNRS - LAAS, Toulouse, France,
ostasse@laas.fr,florent.forget@laas.fr

2 SoftBank Robotics Europe, Paris, France,
gelin@aldebaran-robotics.com

Fig. 1. The leg of the robot Romeo are designed based on a screw-nut-cable
actuator, which are low-friction, shock-proof and low-friction, but induce a
flexibility due to the cable.

control the humanoid robot NASA R5 (Valkyrie), although
the control strategy built upon it is different from ours. In
the context of the new NASA challenge with this humanoid
robot, the work presented in this paper is very relevant.

This actuator can offer reduction ratio up to 150 while
keeping compact design. It is not sensitive to shocks and
impacts and offers a high transparency, making it reliable to
estimate output torques from current inputs. It also induces
flexibility coming from the cable connecting the screw to the
joint output. Adding elasticity into the actuation smoothes the
contact with the environment, which prevent rebound and in
certain case sliding effects [2]. The flexible element in this
particular gear can also be exploited to directly measuring
the output torques, by equipping it with sensor able to
measure the spring deflection (e.g. angle coders attached to
either side of elasticity). We show that good measures of
torques/forces can be obtained for quasi-null additional cost.
On the other hand, the flexible element behaves like a series-
elastic actuator (SEA) [3]. It must be taken into account in
the actuator control loop to avoid instability, in particular
when accurately tracking reference position.

The contributions of the paper are as follows. We report
the implementation of the concept gear [1] in Section II
and present an original Lagrangian model of the actuator.

(4) Geared-
wheel,

(5) Ball-screw

Turn-
buckle (12)

Joint (11)

(2) Pinion,
(3) Toothed-

belt

(1) Motor

Joint
Encoder
(14)

Cable (9)

Top end
stop

(10) Ball
crimped on
the cable

Ball
sleeve (7)

Flexible
coupling (6)

Screw (5)
(hollow-
screw)(8) Fitted

shaft

Nut and
Geared-
wheel (4)

(12) Turn-
buckle

Fig. 2. Right (top) and left (bottom) views of the actuator

Motor (1)

(2) Pinion

(3) Toothed belt

(4) Geared wheel

(5) Ball screw (hollow
screw and nut)

Joint
encoder (14)

Ball sleeve (7) Fixed shaft (8)

Joint (11)

Crimped
ball (10)

Turn-buckle (12)

Cable (9)

Motor
encoder (13)

 (6) Flexible
coupling

Fig. 3. Schema of the actuator mounted on the workbench

Based on this model, we propose in Section III a model-
predictive controller (MPC) based on differential dynamic
programming (DDP) [4] able to cope with the actuator
flexibility with only few parameters left to the designer to
tune. The optimal controller can be set up to either implement
a position controller (i.e. by tracking the output position)
or a force controller (i.e. by tracking a reference spring
deflection). We implemented the proposed approach in an
actuator similar to those in the legs of Romeo but mounted
in a work-bench. We report in Section IV the identification
of the parameters of the Lagrangian model, and the results
of controlling the actuator to track joint references.

II. MODEL OF THE ACTUATOR

We recall here the main principles of the actuator [1],
present the design of the actuator used in the experiment
and propose an original Lagrangian model upon which our
controller is built.

A. Mechanical description

The original design of the actuator has been proposed
in [1]. We recall here the general mechanism of the actuator
along with the specific implementation that we used in the
result section. The actuator is composed of an electrical
motor attached to a ball screw which is guided along a fixed
axis but can freely rotate inside the nut. The output of the

screw is connected to two cables which can either pull or
push on the output joint. Our particular actuator is mounted
in a workbench used for identification and control validation.
The same actuator equips 10 degrees of freedom of the legs
of the medium-size humanoid robot Romeo. Two pictures of
the actuator with legends are shown in Fig. 2. A schema of
the actuator is shown in Fig. 3.

The motor (referenced as (#1) in Fig. 2) is fixed on the
base, a pinion (#2) is mounted on its shaft. The pinion leads
a toothed belt (#3) to a geared wheel (#4). This part is
fixed to the nut of the ball screw (#5). This one is the main
component allowing the trade-off between an high reduction
ratio (of about 100) and a high reversibility. It is composed of
two parts : firstly, guided by bearings with respect to the base,
the nut is rotating attached to the previous geared wheel (#4).
Secondly the screw is translating (#5) in the same direction
of the motor axis. This placement increases the compactness
of the system.

To avoid the screw rotation around its main axis and to
enforce its motion to be a translation, an additional part is
flexibly coupled (#6) with the screw. This part makes the link
between the screw (#5) and a ball sleeve (#7) mounted on a
fixed shaft (#8). This shaft, whose main axis is in the same
direction as the screw translation, and the ball sleeve (#7) are
not directly transmitting efforts. These parts are marked in
Fig. 2. They are leading the ball screw motion. The flexible
coupling mentioned before should allow the screw to slightly
oscillate around the two non-axial axis. This increases the
reversibility of the system by reducing the friction which
can appear due to hyperstaticity. However, the lightly not-
respected parallelism between the shaft (#8) and the cable,
appended to the not so soft flexible coupling, seems to create
constraints on the screw by preventing it to oscillate as it
should do. Moreover, contrary to [1], even thought the cable
is attached in the middle of the screw (hollow screw) with
a crimped sleeve, struts are mounted throughout the screw
to maintain the sleeve. The space around the cable is not
sufficient to let the cable contact-free with the screw. In this
condition, a minor misalignment can create efforts impeding
the slight oscillations of the screw and induce non-linear and
cyclic friction.

The forward part of the cable (#9) is linked to the joint
with a crimped ball (#10) placed in the spherical imprint
of the joint (#11). The cable then goes to the turn-buckle
(#12). The backward part of the cable is also going to the
turn-buckle by the way of a pulley. The turn-buckle is used
to fix and pre-load the cable. To keep the workbench simple
to use, a rope is attached to the joint (#11) in order to apply
some load. This choice limits the output load to only one
direction of the joint, which has no negative consequence
for our experimental protocol. On the humanoid robot, the
load is rigidly driven by the pulley and can move in both
directions.

To measure the angle positions, two absolute magnetic
encoders are mounted on the test bench. One is fixed behind
the motor on its main shaft, marked as (#13) on Fig. 3, the
other is placed on the joint (#14), after all the transmission

Motor
Gear Box

Rotational
Spring

Load

Fig. 4. System considered for the actuator modeling

chain. This layout theoretically allows to identify the ratio
and the deformation on the transmission (i.e. makes the
model parameters observable).

B. Lagrangian Model

With respect to the mechanical description given before,
we use the following hypotheses to construct the system
model:

[H1] The DC motor driving the mechanism is considered as
a perfect source of torque.

[H2] Flexibilities are concentrated into a single linear rota-
tional spring with constant stiffness.

Hypothesis [H1] sounds as we consider the torque directly
at the motor side (i.e. before any reduction device) while the
motor is current controlled (with current sensor and modern
power electronics). Hypothesis [H2] is reasonable as the
stiffness of the cable is several order of magnitude lower
than the stiffness of any other element in the transmission.

The actuator then boils down to a two-masses system
attached by a spring, as illustrated Fig. 4. The first mass is
driven by a DC motor coupled with the gearbox. The second
mass is interacting with the environment. Friction arises in
opposition to the motion of both masses.

Using Lagrangian formalism, we expose the following
model describing classical series elastic actuator. We em-
pirically decided during the identification experiments to
consider vicious friction on both motor and load side and
dry friction on motor side.

JM θ̈M = KT iM−
k

R
(
θM
R
−q)−dM θ̇M−Cfsign(θ̇M) (1a)

JLq̈ = τext + k(
θM
R
− q)− dLq̇ (1b)

where the notations are given in Tab I. In order to keep the
equations smooth (as needed for the controller), we used
a smooth version of the sign function (i.e. a hyperbolic
tangent).

III. CONTROL

As reported in previous section, the actuator behaves like
a SEA transmission. However, its stiffness is high. Even
if it is not relevant to ignore it, it is possible to handle it
directly at the joint level, while neglecting it at the level of
the robot whole body. In this section, we present the control

Symbol Physic meaning Identified value
JM motor inertia 1.38× 10−5 kg.m2

JL load inertia 8.5× 10−4 kg.m2

θM motor angular position N.A
q joint angular position N.A
k equivalent rotational spring stiffness 588Nm/rad
R transmission ratio 96.1
τM motor torque N.A
τext external torque (environment) N.A
dM vicious friction at motor level 0.003Nm/(rad/s)
dL vicious friction at load level 0.278Nm/(ras/s)
Cf dry friction at motor level 0.1Nm
KT motor current to torque ratio 60.3× 10−3 Nm/A

TABLE I
VARIABLES AND PARAMETERS USED IN THE MODEL AND

CORRESPONDING VALUES ESTIMATED ON OUR SYSTEM

solution that we implemented to track the joint reference,
specified either as reference position or as reference torque.
Our objective is then to compute the joint references from
a whole-body optimization scheme, that will be accurately
tracked by the joint controller running at high frequency.

The controller we report below is composed of a two-
stage architecture: a first stage, running on CPU at 1kHz,
computes the optimal trajectory (feedforward) and the op-
timal feedback gains in a model-predictive-control (MPC)
style. The second layer, running on the micro-controller at
higher frequency (5kHz or higher) uses the feedforward and
the feedback gains to compute the reference current sent to
the motor.

We first start by a brief overview of possible control
approaches that justifies our implementation based on DDP.

A. Brief control state of the art

Considering the implementation of a position controller
on our actuator, the major difficulty is the gain tuning. In
fact high gains on position loop are necessary for good
precision but may make the system unstable due to the
flexibility. Several control schema have been developed to
address this problem. Using an automatic control approach,
we could have analyzed the eigen modes of the actuator
models and consequently tuned a correction scheme to
achieve desired convergence, stability and precision [5].
However, the model contains non-linear terms. Moreover,
the same controller must be deployed on several variations
of the same actuator implemented on the legs of Romeo. A
more automatic method is desirable. On a second hand, H∞
synthesis methods allow to automatically conceive a efficient
controller for a given system. A method has been proposed
in [6] to control Series Elastic Actuators as variable stiffness
actuators. Finally, solving an optimal control problem makes
it possible to generate a gain scheduling over a trajectory or
a command sequence to achieve a given behavior [7], [8].
Contrary to the previous kernel of methods, optimal control
is very versatile: a first controller (e.g. position-based) can
be quickly adapted to a new version (e.g. force-based). It
would also be easy to adapt on other flexible actuators with
a different mechanical principle but where the two-stage
implementation is desirable, like on pneumatic muscles [9].

It is also quite easy to handle constraints like command
limitations or joint limits [4].

We need an optimal control solver that is lightweight and
easy to implement within the low-level control architecture
of the robot. Here, we do not need to deal with particularly
complex constraints but only with some box constraints on
the control or the state. However, the optimal-control solver
must run in a predictive (receding-horizon) way so that a
new optimal control trajectory can be recomputed at every
new sensor measurement. We decided to implement our
solver based on DDP, that we quickly recall below, before
presenting our two-stage control architecture.

B. Differential dynamic programming

DDP is an optimal control scheme with a “single shooting”
strategy, that is able to efficiently cope with the sparsity
of the underlying numerical system but has the drawbacks
of being quite unable to handle complex constraints. This
trade-off is very suitable to our problem. We recall here the
basis of DDP. This recall is needed for understanding how
we designed both layers of our control architecture. More
detailed information about this optimal control solver can be
found in [10].

Consider a generic mechanical system described by its
(discrete) dynamic equation:

xi+1 = fi(xi,ui) (2)

Where xi represents the current state of the actuator (posi-
tion, speed, torque ...) and ui is the input command (current,
torque, voltage ...). This model may or not be linear and time
varying. We expose the cost we want to minimize on a given
horizon T .

J(U|x0) =

T−1∑
i=0

ci(xi,ui) + cT (xT) (3)

with X = {x0,x1, ...,xT and U = {u0,u1, ...,uT−1}
respectively the state and control sequence over horizon T
and x0 the initial state of the system (typically estimated
from sensors). It is to be noticed that knowing x0 and U is
enough to know the state of the system at each moment of the
horizon because of the relation (2). So the optimal control
problem consists in finding the correct U minimizing the
cost for a given x0 initial state.

We introduce then the cost-to-go function to be

Ji(Ui|xi) =

T−1∑
j=i

cj(xj,uj) + cT (xT) (4)

with xj integrated from xi. The optimum cost-to-go is named
the value function V :

V (x0, i) = min
Ui

Ji(x0,Ui) (5)

We evidently have that V (x0, T) = cT (xT). The “Belman”
dynamic-programming principle teaches us that minimizing
the cost by choosing the correct control sequence can be

reduced to the backward minimization of a single control
input. This principle gives us the Bellman equation :

V (xi, i) = min
u

[ci(xi,ui) + V (f(xi,ui), i+ 1)] (6)

The DDP solver computes the optimal control sequence U
by solving equation (6) backwardly in time. For this purpose
let Q be the variation of c(x,u) +V (f(x,u), i+ 1)) around
the i− th state and command. We have :

Q(δx, δu) ≡ c(x + δx,u + δu)− c(x,u)

+ V (f(x + δx,u + δu), i+ 1))

− V (f(x,u), i+ 1))

(7)

By taking the second order approximation of (7) we obtain:

Q(δx, δu) ≈ 1

2

 1
δx
δu

T 0 QTx QTu
Qx Qxx Qxu
Qu Qux Quu

 1
δx
δu

 (8)

For readability we will use subscript notation to denote
partial derivative (e.g. fx = ∂f(x,u)

∂x). We also denote the
next state by V ′ ≡ V (i+ 1). We can now expose:

Qx = cx + fTx V
′
x (9)

Qu = cu + fTu V
′
x (10)

Qxx = cxx + fTx V
′
xxfx + V ′xfxx (11)

Quu = cuu + fTu V
′
xxfu + V ′xfuu (12)

Qux = cux + fTu V
′
xxfx + V ′xfux (13)

Where the last term of the last three equations represents the
contraction of a tensor with a vector. Minimizing (7) with

respect to δu gives us:

δu∗ = argmin
δu

Q(δx, δu) = −Q−1uu (Qu +Quxδx) (14)

Showing up two terms:
• a feedforward term: k = −Q−1uuQu
• a feedback term : K = −Q−1uuQux

Using back this result into (7), we obtain a quadratic approx-
imation of the value function at i− th instant:

∆V (i) = −1

2
QuQ

−1
uuQu (15)

Vx(i) = Qx −QuQ−1uuQux (16)
Vxx(i) = Qxx −QuxQ−1uuQux (17)

Computing all term from (9) to (17) for i = N − 1 down
to i = 0 is called the backward phase. We then need to
calculate the change induced on the state sequence by the
modification on the command sequence. This is the forward
phase, detailed below:

x̂(0) = x(0) (18)
û(i) = u(i) + k(i) +K(i)(x̂(i)− x(i)) (19)

x̂(i+ 1) = fi(x̂(i), û(i)) (20)

The solver iterates on these two phases until convergence
of the result (minimal changes on U). One can find the
algorithm detailed in a pseudo-code on algorithm 1.

In order to ensure good convergence and to add some
specificities to the algorithm, we decided also to implement
some other features:

Algorithm 1 Differential Dynamic Programming Solver
1: {initialisation :}
2: U←random command sequence
3: X←init(x0, U)
4: repeat
5: V (T)← cT (xT)
6: Vx(T)← cTx(xT)
7: Vxx(T)← cTxx(xT)
8: for i=T-1 down to 0 do
9: Qx, Qu, Qxx, Qu, Qux ← see equations (9) to (13)

10: k← −Q−1uuQu
11: K ← −Q−1uuQux
12: ∆V, Vx, Vxx ← see equations (15) to (17)
13: end for
14: x̂(0) = x(0)
15: for i=0 to T-1 do
16: û(i) = u(i) + k(i) +K(i)(x̂(i)− x(i))
17: x̂(i+ 1) = fi(x̂(i), û(i))
18: end for
19: until convergence

Line search: DDP being a type of Newton descent, line
search allows the algorithm to adapt the step length so that
convergence is faster.

Regularization: DDP implies the inversion of Quu matrix
which in certain cases may not be invertible. Regularization
makes the matrix invertible if it was not in the first place and
it integrates this modification into the whole computation.

Control limitation: Introduced in [4], the control limited
DDP is an extension of the DDP where it is possible to add
bound constraints on the command input vector. In practice
this feature is possible by solving a box QP problem.

C. Two-stage control architecture

The outputs of the DDP solver are the optimal trajectories
in both control U and state X spaces, along with the optimal
feedback gains along this trajectory K. Our objective is to
use at best these information to feedback as frequently as
possible on the sensor measurements.

For that, we implement the DDP as a model-predictive
(receding-horizon) control scheme. At any instant, we main-
tain a valid (possibly suboptimal) control trajectory U∗. As
soon as the DDP performed one valid step of the nonlinear
search loop (line #4 of Alg. 1), the solver candidate trajectory
U is used to update U∗. The receding horizon of the
DDP is then shifted, while the initial state of this new
horizon is updated to the latest state estimation. The dynamic
system considered in our DDP (1) is low-dimension and thus
leads to short computation timings. It is easy to implement
such solver to obtain 1kHz control frequency. However, it
is difficult to implement the DDP solver directly on the
actuator micro-controller, but rather on the central robot CPU
board. The frequency is then limited by the communication
bandwidth to upload the sensor measurements and download
the control references.

SYSTEMPID

DDP

+
++

-

Fig. 5. General architecture of the proposed DDP-based MPC controller

On the other hand, the micro-controller of the actuator is
able to update the motor control at much higher frequency
(e.g. 5kHz). This higher frequency enables us to take advan-
tage of the optimal feedback gains computed by the DDP
solver. On the micro-controller, we then maintain an optimal
control (feedforward) trajectory and the corresponding op-
timal feedback gains along this trajectory. At each control
cycle of the micro-controller, the state is estimated from
previous sensor measurements. The control (reference motor
current i∗) is then computed as the sum of the feedforward
(optimal control u∗) and feedback (optimal gains K∗):

i∗(t) = u∗(t) +K∗(x∗(t)− x̂(t))

where x∗ is the latest optimal trajectory in the state space
computed by the DDP and x̂ is the estimated state.

Fig. 5 shows the general architecture of the proposed
controller. The DDP controller runs at 1kHz on CPU and
produces the feedforward control uFF . The feedback con-
troller runs at 5kHz on micro-controller, estimates the state
and produces the feedback control uFB from the optimal
gains K. The communication bus between micro-controller
and CPU board carries the estimated state at 5kHz and the
optimal feedforward and gains at 1kHz. Both feedforward
and feedback are finally summed and used to servo the motor
current.

IV. SIMULATION AND EXPERIMENTS

A. Actuator parameters estimation

Parameters estimation was done using matlab with tem-
poral measurements. Data have been collected by running
joint position control experiments with a simple PID with
stable gains. All measurements (joint position, motor po-
sition, motor current, motor supply voltage ...) are then
collected to achieve the parameters estimation. It appears
several unmodeled phenomena leading to bad results of the
estimation (see Fig. 6. These unmodeled phenomena create
non-linear and position-dependant friction which are hard to
model. Among these potential phenomena we can list:
• Ball-screw being to much constrained by the flexible

coupling
• The cable being not free enough at the mounting with

the ball-screw.
• It is possible to load the system with a mass but it acts

only in one direction which hides part of the dynamics.
• The cable is compound of two parts of different length.

Namely the elasticity of the system is function of the
sens of the efforts.

0 1 2 3 4 5

time (s)
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

jo
in

ta
ng

le
(r

ad
)

Estimation
Measurements

Fig. 6. Comparison between model and real system response to a same
control input (motor current)

1 1.2 1.4 1.6 1.8 2 2.2

joint angular position (rad)

0

0.5

1

1.5

2

to
rq

ue
 (

N
m

)

Fig. 7. Torque estimation based on angular position measurements for
different external torque applied

All these specificities are more detailled in Part II.
As it was introduced in Part I, SEA are suitable for external

torque estimation when equipped with angular sensor on
both sides of elasticity. We present on Fig. 7 an experiment
to show this particularity. For this experiment, we attached
a mass to the output of the actuator as a known external
torque. We take measurements points for different joint
position in a static state with different masses. We then
reconstruct this torque by computing the spring deflection
given by the angular sensor measurements. As shown in Fig 7
these measurements allow us to have an approximation of
the external torque. This experiment exposes a cyclic non-
linearity on the torque estimation depending on the joint
position. It is due to the same phenomena as above and more
detailed in Part II.

B. Experiments - position control

1) Simulation: Experiments were first conducted on sim-
ulation using Romeo’s actuator model. It was decided to
compute the response of the system with noisy parameters
in order to observe the solver robustness. To make the model
biased, we added a random error with a maximum of 50%

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

time (s)
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

jo
in

ta
ng

le
(r

ad
)

simulation (ideal)
feedforward only (biased)
feedback only (biased)
feedforward + feedback (biased)

Fig. 8. Control of Romeo Actuator in simulation for ideal (black) and
biased model with Feedforward only (blue) feedback only (green) and both
feedforward and feedback term (red) (red and blue curve are approximately
the same)

of its value to each parameter. For convenience we only plot
results for a single biased model which represents one of
the worth case we have seen. We also wanted to observe the
effect of each term in the control. For this purpose, plot are
showing system evolution for architecture depicted in Fig. 5,
for a feedback-free, a feedforward-free and finally the full
architecture.
Results are shown in Fig. 8. One can observe the robustness
of the control to errors on parameters estimation. It can also
be noticed that the feedback term has an effect on the system
response time.

2) Romeo Actuator: The same experiments have been
made on the real system (see Fig. 9). As the parameters
estimation wasn’t very precise, the observed behavior is dif-
ferent from what we expected with the model. Nevertheless,
our architecture succeed in controlling the system with good
stability and response time. Fig. 10 shows the input command
generated by the DDP solver. One can notice that around
0.8s and 1.5s the control input (motor current) is limited to
(-5A, 5A) thanks to Control Limited Differential Dynamic
Programming approach [4].

3) Trajectory tracking: We decided to test our approach
on the tracking of a joint trajectory (see Fig. 11). For this
purpose, we choose the joint trajectory of the knee of HRP2
humanoid robot during a stairs climbing. We compared the
tracking in simulation for both ideal and biased system and
then on the real workbench. Due to the likeliness of the
curves (1% error), we decided to plot for each case the
difference between the reference and the considered curve.

C. Experiments - torque control

We also adapted our architecture to control the actuator
joint torque. Results of the simulation are shown in Fig. 12.
We can see that with the biased model, the solver is not
able to reach the desired torque. This is because, contrary to
the position, torque estimation relies directly on parameters
value (especially on the spring stiffness, transmission ratio

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

time (s)
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

jo
in

ta
ng

le
(r

ad
)

reference position
feedforward + feedback
feedforward only

Fig. 9. Joint angle during experiment on real system with feedforward
only (green) and feedforward+feedback term (red)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

time (s)
−6

−4

−2

0

2

4

6

cu
rr

en
t(

A
)

Motor current command

Fig. 10. Command (motor current) during experiment on real system

and load vicious friction factor). Practically, an error on one
of these parameters generates directly an error on the torque
estimation.

V. CONCLUSION

In this paper, we have presented the complete implementa-
tion of a new compact and transparent actuator, very suitable
for mobile robots, in particular in the context of locomotion.
We have presented the Lagrangian model of the actuator
and build atop of it a two-stage optimal controller able to
accurately track either output position or torque references.
The optimal controller is lightweight, easy to implement, and
can compute a feedback at 5kHz on a micro-controller board.
We have shown in the experiment results that both layers are
needed to efficiently control the actuator: either feedforward
or feedback alone are not able to perform as efficiently.
Moreover, we experimentally showed the capabilities of
the actuator in term of transparency (i.e. estimating output
torques from motor current), and the adequacy of the model
to capture the complexity of the actuator.

While the proposed control architecture is very suitable
for the screw-nut-cable actuator, it is also appropriate for

0 1 2 3 4 5 6 7

time (s)
1.4

1.6

1.8

2.0

2.2

jo
in

ta
ng

le
(r

ad
)

joint angular position (workbench)
reference position

0 1 2 3 4 5 6 7

time (s)

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

jo
in

ta
ng

le
er

ro
r(

ra
d)

tracking error on real system
tracking error on simulation for ideal system
tracking error on simulation for biased system

Fig. 11. Position trajectory tracking in a scenario of climbing stairs for knee
joint. First plot shows the reference position trajectory, then the different
errors with respect to this reference

0.0 0.5 1.0 1.5 2.0

time (s)
−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

jo
in

tt
or

qu
e(

N
m

)

ideal model
biased model

Fig. 12. Torque control of the actuator in simulation for both ideal (red)
and biased (green) model

other kind of flexible actuators such as SEA at large, variable
stiffness actuators [8], [7] or Mckibben pneumatic actuators
[9], [11]. The MPC scheme can be easily adapted to another
dynamic model or another cost function. Our objective is
now to adapt the controller to the whole body of the robot
and to use it to control complex humanoid movements.

ACKNOWLEDGMENT

This work was partially supported by the PSPC project
Romeo 2.

REFERENCES

[1] P. Garrec, “Design of an anthropomorphic upper limb exoskeleton
actuated by ball-screws and cables,” Bulletin of the Academy of
Sciences of the Ussr-Physical Series, vol. 72, no. 2, p. 23, 2010.

[2] J. Lee, W. Choi, D. Kanoulas, R. Subburaman, D. G. Caldwell, and
N. G. Tsagarakis, “An active compliant impact protection system for
humanoids: Application to walk-man hands,” in IEEE/RAS Int. Conf.
on Humanoid Robotics (ICHR), 2016, pp. 778–785.

[3] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 1,
1995, pp. 399–406.

[4] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in IEEE/RAS Int. Conf. on Robotics and
Automation (ICRA), 2014, pp. 1168–1175.

[5] J. S. Mehling, “Impedance control approaches for series elastic actu-
ators,” Ph.D. dissertation, Rice University, 2015.

[6] N. Abroug and E. Laroche, “Transforming series elastic actuators
into variable stiffness actuators thanks to structured h inf control,”
in European Control Conference (ECC), 2015, pp. 734–740.

[7] I. Sardellitti, G. A. Medrano-Cerda, N. Tsagarakis, A. Jafari, and D. G.
Caldwell, “Gain scheduling control for a class of variable stiffness
actuators based on lever mechanisms,” IEEE Transactions on Robotics,
vol. 29, no. 3, pp. 791–798, 2013.

[8] P. Geoffroy, O. Bordron, N. Mansard, M. Raison, O. Stasse, and
T. Bretl, “A two-stage suboptimal approximation for variable com-
pliance and torque control,” in Control Conference (ECC), 2014
European, 2014, pp. 1151–1157.

[9] G. K. H. S. L. Das, B. Tondu, F. Forget, J. Manhes, O. Stasse,
and P. Soueres, “Controlling a multi-joint arm actuated by pneumatic
muscles with quasi-ddp optimal control,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016, pp. 521–528.

[10] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential dy-
namic programming,” in Advances in Neural Information Processing
Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, Eds.,
2008, pp. 1465–1472.

[11] G. K. H. S. L. Das, B. Tondu, F. Forget, J. Manhes, O. Stasse, and
P. Soueres, “Performing explosive motions using a multi-joint arm
actuated by pneumatic muscles with quasi-ddp optimal control,” in
Control Applications (CCA), 2016 IEEE Conference on, 2016, pp.
1104–1110.

