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Abstract. We propose a new methodology based on bilevel program-
ming to remove additive white Gaussian noise from images. The lower-
level problem consists of a parameterized variational model to denoise
images. The parameters are optimized in order to minimize a specific cost
function that measures the residual Gaussianity. This model is justified
using a statistical analysis. We propose an original numerical method
based on the Gauss-Newton algorithm to minimize the outer cost func-
tion. We finally perform a few experiments that show the well-foundedness
of the approach. We observe a significant improvement compared to stan-
dard TV-`2 algorithms and show that the method automatically adapts
to the signal regularity.

Keywords: Bilevel programming, image denoising, Gaussianity tests,
convex optimization.

1 Introduction

In this paper, we consider the following simple image formation model:

ub = uc + b (1)

where uc ∈ Rn denotes a clean image, b ∈ Rn is a white Gaussian noise of
variance σ2 and ub ∈ Rn is the noisy image. Our aim is to denoise ub, i.e. to
retrieve an approximation of uc knowing ub.

1.1 Variational denoising

The standard way to achieve image restoration using variational methods con-
sists in solving an optimization problem of the form

Find u∗(α) = arg min
u∈Rn

αR(u) +
1

2σ2
‖u− ub‖22, (2)

where α is a regularization parameter and R : Rn → R∪{+∞} is a regularizing
term such as total variation (TV) [11] or alternative priors. This approach can
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be justified using a Bayesian point of view, assuming that images are random
vectors with a density P(u) ∝ exp (−αR(u)) and using the fact that b is a
white Gaussian noise. This reasoning is widespread in the imaging community
since the seminal paper [4]. Despite its success in applications, it suffers from
serious drawbacks. First, it is now well known that Bayesian estimators strongly
deviate from the data and noise models [1, 10]. Second, one needs to design a
probability density function that describes the set of natural images. This task
is extremely hard and simple models (e.g. based on total variation) are very
unlikely to correctly describe the density of natural images. This problem is
studied and discussed thoroughly in [9]. As a consequence, denoising models
such as (2) are only partially satisfactory and the residuals b∗(α) = ub − u∗(α)
obtained by solving (2) are usually non-white. This is illustrated in Figure 1.

Fig. 1. An example of TV-`2 denoising. Top-left: original image. Top-mid: noisy image.
Top-right: denoising result. Bottom-mid: noise. Bottom-right: retrieved residual u∗(α)−
ub. The residual contains a lot of structure, showing the limits of this approach.

In this work, we depart from the standard setting (2). Our starting observa-
tion is that in many applications, one has a quite good knowledge of the noise
properties and only a very rough idea of the image contents. The data and reg-
ularization terms should thus play modified roles: the regularization should be
adaptive to the image contents while the data term should measure Gaussianity
in a more efficient way than the standard `2-norm. This idea is not new and led
to state-of-the-art results in wavelet thresholding based methods [7].
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1.2 The proposed framework

Instead of fixing the regularization term, we propose to use a parametric restora-
tion model and to optimize the parameters with a bilevel programming approach,
in order to make the residual “look” Gaussian. This idea is close in spirit to the
recent work [5] and very different from the simple model (2), where the regular-
ization term R is fixed and the Gaussianity measure is just the `2-norm.

We propose using a parameterized model of type:

u∗(α) = arg min
u∈Rn

p∑
i=1

αiφi(Riu) +
1

2σ2
‖u− ub‖22, (3)

where

– α = (αi)
p
i=1 is a non negative vector of regularization parameters,

– φi : Rmi → R, i ∈ {1, . . . , p} are C2 symmetric functions (typically smoothed
l1-norms),

– Ri ∈ Rmi×n are known analysis-based operators.

Model (3) thus encompasses total variation like regularization. It is however more
flexible since the vector of parameters α can be chosen differently depending on
the image contents. Since the residual b∗(α) = ub − u∗(α) plays an important
role in this paper, we use the change of variable b = ub − u and denote

Jα(b) :=

p∑
i=1

αiφi(Ri(ub − b)) +
1

2
‖b‖22.

Let G : Rn → R denote a C1 function that measures noise Gaussianity. The
proposed denoising model consists in finding α∗ ∈ Rp+ and b∗(α∗) ∈ Rn solutions
of the following bi-level programming problem:min

α≥0
g(α) := G(b∗(α))

with b∗(α) = arg min
b∈Rn

Jα(b).
(4)

The lower-level problem min
b∈Rn

Jα(b) corresponds to a denoising step with a

fixed regularization vector, while the upper-level problem corresponds to a pa-
rameter optimization.

1.3 Contributions of the paper

The first contribution of this paper is the variational formulation (4) with a new
cost function g(α) (derived in Section 2). This function is motivated by a statisti-
cal analysis of white Gaussian noise properties. The bilevel problem (4) shares a
connection with [5] and was actually motivated by this paper. In [5], the authors
propose to learn the parameters using an image database, while our method
simply uses the noisy image, making the parameter estimation self-contained.
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Moreover, the proposed methodology makes our algorithm auto-adaptive to the
image contents, meaning that the denoising model adapts to the type of image
to denoise.

The second contribution of this paper is the design of an optimization method
based on Gauss-Newton’s algorithm in Section 3. The preliminary numerical
experiments we performed suggest that it is very efficient, while being simpler
to implement than the semi-smooth Newton based method proposed in [5].

Finally, we present preliminary denoising experiments in Section 4, showing
the well-foundedness of the proposed approach.

2 Measuring Residual Gaussianity

In this section, we propose a function g that measures the residuals Gaussianity
and whiteness and allows identifying the vector α ∈ Rp.

2.1 The case p = 1

In this paper, we assume that the discrete image domain Ω satisfies |Ω| = n. To
expose our ideas, let us begin with the simple case where only one regularizer
is used, i.e. p = 1. A basic idea to select the regularization parameter is to find
α such that ‖b∗(α)‖22 ' σ2n, since E(‖b‖22) = σ2n. One could thus set g(α) =
1
2

(
‖b∗(α)‖22 − σ2n

)2
. This idea is similar to Morozov’s discrepancy principle [8].

This simple method is however unlikely to provide satisfactory results with
more than 1 regularizer (i.e. p > 1), since many vectors α ∈ Rp+ may lead to
‖b∗(α)‖22 = σ2n. Said differently, the function g here does not allow identifying
a unique α since there are two many degrees of freedom in the model. Moreover,
the accurate knowledge of the noise distribution b is boiled down to a simple
scalar corresponding to the mean of the `2-norm. Our aim below is therefore to
construct measures of Gaussianity allowing to identify the parameters and to
better characterize the noise distribution.

2.2 The case p > 1

The idea proposed in the case of a single parameter can be generalized by defining
a set of q Euclidean semi-norms (‖ · ‖2Mi

)qi=1. These semi-norms are defined by

‖x‖2Mi
:= ‖Mix‖22,

where Mi ∈ Rmi×n. Let b ∼ N (0, σ2Id) be white Gaussian noise with µi =
E(‖b‖2Mi

) and vi = Var(‖b‖2Mi
). A natural idea to extend the principle presented

in Subsection 2.1 consists in setting

g(α) :=
1

2

q∑
i=1

(‖b∗(α)‖2Mi
− µi)2

vi
. (5)
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This choice can be justified using a maximum likelihood approach. In cases where
n is large enough and where the singular values of Mi are sufficiently spread
out, the distribution of ‖b‖2Mi

is well approximated by a normal distribution
N (µi, vi). The probability density function of ‖b‖2Mi

approximately satisfies

fMi
(b) ∝ exp

(
−
(
‖b‖2Mi

− µi
)2

2vi

)
.

The random variables (‖b‖2Mi
)qi=1 are not independent in general. However, if

the matrices Mi are chosen in such a way that they measure different noise
properties (e.g. different frequencies components), the likelihood of the random
vector (‖b‖2Mi

)qi=1 is approximately equal to

f(b) ∝
q

Π
i=1

fMi(b). (6)

Using a maximum likelihood approach to set the parameter α leads to min-
imizing − log(f(b∗(α))), i.e. to set g as in equation (5).

2.3 The choice of Mi

In this paper, we propose to analyse residuals using Fourier decompositions:
we construct a partition Ω = ∪qi=1Ωi of the discrete Fourier domain and set
Mi = Fdiag(1Ωi)F

∗, where F denotes the discrete Fourier transform and 1Ωi

denotes a vector equal to 1 on Ωi and 0 elsewhere. In other words the matrices
Mi correspond to discrete convolutions with filters ϕi = F1Ωi

. For this specific
choice, it is quite easy to show that

µi = nσ2‖ϕi‖2

and that

vi = nσ4‖ϕi‖4.

Moreover, the random variables ‖b‖2Mi
are independent. Therefore, the likelihood

(6) is a good approximation of the random vector (‖b‖2Mi
)qi=1 as soon as the

cardinals |Ωi| are sufficiently large, due to the central limit theorem.
The rationale behind a partition of the Fourier domain is that residuals

containing image structures usually exhibit anormal structured spectra. This
phenomenon is illustrated in Figure 2. The Fourier transform of white Gaussian
noise is still white Gaussian noise. Therefore, if the residual was “correct”, its
Fourier transforms should “look” white. The spectrum of a residual obtained
using a TV-`2 minimization (Figure 2, middle) is clearly not white. In particular,
the modulus of its Fourier transform is too low in the center of the frequency
domain. On the contrary, it is too large on directions orthogonal to the main
components of the image: the vertical stripes and the diagonal elements of Lena’s
hat.
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In this paper, we propose to define the sets Ωi similarly to frequency tilings of
curvelet or shearlet transforms [2, 6]. This is illustrated in Figure 2, right. Each
set Ωi corresponds to the union of a trapezoid and its symmetric with respect
to the origin. Its size and angular resolution increases in a dyadic way with the
frequencies.

Fig. 2. Analysis of residuals in the Fourier domain. Left: residual of a TV-`2 minimiza-
tion. Middle: discrete Fourier transform modulus of the residual. This modulus should
be an i.i.d. sequence with constant mean. It exhibits a lot of structure, especially in
the low frequencies. Right: frequency tiling proposed to analyse the spectrum.

In order to assess whether a residual is likely to correspond to white Gaussian
noise, we will make use of the standard score (or z-score) defined by

zi =
‖b‖2Mi

− µi√
vi

.

This score measures the (signed) number of standard deviations ‖b‖2Mi
is above

the mean. For sufficiently large n (which is typical for contemporary pictures),
‖b‖2Mi

can be assimilated to a Gaussian random variable and therefore P(|zi| ≥
k) ' 1 − erf

(
k√
2

)
. The values are displayed in Table 1. As can be seen in this

table, it is extremely unlikely that |zi| be larger than 3. Using the frequency
tiling proposed in Figure 2, composed of 45 tiles, we get a maximum z-score

max
i∈{1,··· ,q}

|zi| = 30.3 and a mean z-score of 6.0. By looking at Table 1, it is clear

that such a residual is extremely unlikely to correspond to white Gaussian noise.

k 0 1 2 3 4 5 6 7

P (|zi| ≥ k) 1 3.2 · 10−1 4.6 · 10−2 2.7 · 10−3 6.3 · 10−5 5.7 · 10−7 2.0 · 10−9 2.6 · 10−12

Table 1. Probability that a standard normally distributed random variable deviates
from its mean more than k times its standard deviation.
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3 A Bilevel Programming Approach Based on a
Gauss-Newton Algorithm

In this section, we describe a numerical method based on the Gauss-Newton
algorithm to solve problem (4) with

g(α) =

q∑
i=1

(
‖ϕi ? b∗(α)‖2 − µi

)2
2vi

.

The solution of bilevel programs of type (4) is a well studied problem with
many different solution algorithms, see, e.g., the monograph [3]. Bilevel prob-
lems are usually NP-hard so that only local minima can be expected. Similarly to
standard optimization, there exists multiple algorithms which should be chosen
depending on the context (problem dimension, lower and upper-level problem
regularity, convexity,...). In this paper, we suggest using the following combina-
tion:

– Handle the positivity constraint αi ≥ 0 by writing α = exp(β), allowing to
have an unconstrained minimization problem with parameter β.

– Use the implicit function theorem to estimate the Jacobian Jacb∗(α) (i.e. the
first order variations of b∗ w.r.t. α).

– Use this information to design a Gauss-Newton algorithm.

The advantage of the Gauss-Newton algorithm is that it usually converges much
faster than gradient descent methods since the metric adapts to the local func-
tion curvatures. It is also much simpler to use than the semi-smooth approach
suggested in [5] while still showing a very good performance.

The change of variable α = exp(β) ensures that α > 0 without bringing
any extra difficulty in the design of the numerical algorithm since the chain rule
allows a straightforward modification. More precisely we aim at minimizing

h(β) = g(exp(β)),

and we use the following identity:

Dh(β) = Dg(exp(β))Σ,

where Σ is the diagonal matrix with entries exp(βi). Next, remark that function
h can be rewritten as

h(β) =
1

2
‖f(β)‖22 =

1

2
‖F (b∗(exp(β)))‖22 (7)

with

F (b) :=

F1(b)
...

Fq(b)

 , f(β) :=

f1(exp(β))
...

fq(exp(β))

 ,
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fi(α) := Fi(b
∗(α)) and Fi(b) :=

‖ϕi ? b‖22 − µi√
2vi

. (8)

Then the k-th iteration of the Gauss-Newton algorithm adapted to functions of
type (7) reads as follows:

1. Set
dk = arg min

d∈Rp

‖f(βk) + Jacf (βk)d‖22 (9)

2. Set
βk+1 = βk + dk (10)

The descent direction dk computed in (9) satisfies

Jacf (βk)T Jacf (βk)dk = −Jacf (βk)T f(βk).

The lower-level problem in (4) is solved using an accelerated proximal gradi-
ent descent algorithm on the dual of (3), see, e.g., [12]. We do not detail further
this algorithm for lack of space.

4 Numerical results

4.1 A test example

To begin with, we perform a simple denoising experiment to validate the overall
principle and the numerical algorithm. We consider the following simple denois-
ing model:

min
u∈Rn

α1φ(∂xu) + α2φ(∂yu) +
1

2
‖u− ub‖22, (11)

where φ(x) :=
√
x2 + ε2 is an approximation of the `1-norm, ∂x and ∂y are first

order difference operators in the x and y directions, respectively. We use the
smooth 64×64 images which are constant along the x or y axes in Figure 3. The
algorithm is initialized with α = (1, 1). After 20 iterations of our Gauss-Newton
algorithm, the regularization parameters become α = (186.3, 0.03) for the image
constant in the x-direction and α = (0.03, 155.11) for the image constant in the y-
direction. This choice basically corresponds to a very strong regularization in the
direction of the level lines of the image: the method is capable of automatically
detecting the smoothness directions.

We compare the output of our algorithm with a TV-`2 model, where the
regularization coefficient is chosen in order to maximize the mean square error
(hence the choice of this optimal coefficient requires the knowledge of the ground
truth image).

Compared to the TV-`2 model, the denoising results are significantly better.
In particular, no structure can be found in the residual of the proposed method,
while a lot of structure is apparent in the residual of the TV-`2 model. The
maximum z-score is 88.2 for the TV-`2 algorithm and 1.8 for the bilevel approach.

Regarding the numerical behavior, even though we performed 20 iterations,
a satisfactory and stable solution is found after just 6 iterations of our Gauss-
Newton algorithm. The cost function with respect to the iteration number is
displayed in Figure 4.
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Fig. 3. Denoising results for a toy example. First and third rows, from left to right:
original image, noisy image (PSNR=14.7dB), denoised with TV (PSNR=27.9dB), de-
noised with the bilevel approach (PSNR=34.9dB). Second and fourth rows: residuals
associated to the top images.

4.2 A real-world denoising experiment

We now turn to a real denoising example of Lena. Similarly to [5], the transforms
Ri are set as convolution products with the 25 elements of the discrete cosine
transform basis on 5×5 windows. The number of elements of the Fourier domain
partition is 50. The results are presented in Figure 5. The bilevel denoising result
is significantly better (1.5dB) than the standard TV result. The z-test indicates
that the TV residual is extremely unlikely to correspond to white Gaussian
noise. It also indicates that the bilevel residual is unlikely. This result suggests
that much better denoising results could be expected by considering different
parameterized denoising models.
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Fig. 4. Function g(αk) with respect to k. Left: standard scale. Right: log10 scale. The
cost function reaches a plateau after 6 iterations.

5 Conclusion & Outlook

In this work, we explored the use of bilevel programming to choose an optimal pa-
rameterized denoising model by measuring the Gaussianity of the residuals. The
results are encouraging and provide significantly better results than standard
variational models. They are probably not comparable to state-of-the-art meth-
ods based on nonlocal means or BM3D for instance both in terms of restoratin
quality and computing times.

We still believe that this approach has a great potential in applications since
i) the method can be adapted to arbitrary inverse problems and ii) the method is
capable of automatically finding the class of regularity of the considered signals.
This is a very nice feature that is absent in most current approaches.

Finally, let us mention that the considered parameterized denoising models
can probably be improved significantly by considering not only adapting to the
global regularity of signals, but also to the local regularity. To achieve this, the
operators Ri should be localized in space. We plan to investigate this issue in
our forthcoming work.
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Fig. 5. Denoising results for a true example. First row, from left to right: original
image, noisy image (SNR=15.4dB), denoised with TV and a regularization parameter
maximizing the SNR (SNR=23.1dB, worst z-score: 69.9), denoised with the bilevel
approach (SNR=24.5dB, worst z-score: 7.7). Second row: residuals associated to the
top images. (same scale for the gray-level).


