
HAL Id: hal-01494623
https://hal.science/hal-01494623

Submitted on 23 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Frequent Patterns in 2D+t Grid Graphs for
Cellular Automata Analysis

Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon

To cite this version:
Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon. Mining Frequent Patterns in 2D+t
Grid Graphs for Cellular Automata Analysis. Graph-Based Representations in Pattern Recognition:
11th IAPR-TC-15 International Workshop, GbRPR 2017, May 2017, Anacapri, Italy. pp.177–186,
�10.1007/978-3-319-58961-9�. �hal-01494623�

https://hal.science/hal-01494623
https://hal.archives-ouvertes.fr

Mining Frequent Patterns in 2D+t Grid Graphs
for Cellular Automata Analysis

Romain Deville1,2, Elisa Fromont1, Baptiste Jeudy1, and Christine Solnon2

1 UJM, CNRS, LaHC UMR 5516, F-42000, Saint-Etienne, France
2 Université de Lyon, INSA-Lyon, LIRIS UMR 5205, F-69621, Villeurbanne, France

Abstract. A 2D grid is a particular geometric graph that may be used
to represent any 2D regular structure such as, for example, pixel grids,
game boards, or cellular automata. Pattern mining techniques may be
used to automatically extract interesting substructures from these grids.
2D+t grids are temporal sequences of grids which model the evolution of
grids through time. In this paper, we show how to extend a 2D grid min-
ing algorithm to 2D+t grids, thus allowing us to efficiently find frequent
patterns in 2D+t grids. We evaluate scale-up properties of this algorithm
on 2D+t grids generated by a classical cellular automaton, i.e., the game
of life, and we show that the extracted spatio-temporal patterns may be
used to analyze this kind of cellular automata.

1 Introduction

A 2D grid is a particular geometric graph that may be used to model any 2D
regular structure such as, for example, grids of pixels (i.e., images), game boards,
or cellular automata. To characterize these grids, we may mine them to extract
recurrent patterns [6]. In some applications, we use temporal sequences of grids
(i.e., 2D+t grids) to model the evolution of grids through time. This is the case,
for example, of videos, or sequences of actions in board games. In this paper, we
motivate and illustrate our work on Cellular Automata (CA) used to model the
temporal evolution of ecosystems [3,13,12]. Indeed, biodiversity of ecosystems
is increasingly recognized as an important element of global change. CA-based
models are used to understand, predict and control spatio-temporal spread of
species which is a key issue to preserve biodiversity [9]. A CA is a regular grid of
cells. Each cell has a state which evolves through time, depending on the state
of its neighbours in the grid. One of the most famous CA is the Game of Life
[5]. In this CA, the grid is in 2 dimensions (on toric grids), and each cell has
8 neighbours (horizontally, vertically, and diagonally). Initially (at time t = 0),
each cell is either alive or dead. The state at time t+ 1 of a cell depends on its
state and on the state of its 8 neighbours at time t. It is computed by applying
the following rules: 1) if the cell is alive at time t and has 2 or 3 living neighbours,
then it is alive at time t+ 1, otherwise it becomes dead; 2) if the cell is dead at
time t and has exactly 3 living neighbours, then it becomes alive at time t+ 1,
otherwise it stays dead. When executing a CA from a given initial state, one
may observe the emergence of spatio-temporal patterns, and these patterns are

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

t=2 t=3

1

2

3

4

5

6

1 2 3 4 5 6

t=1

P1

P2

1 2 3

t=5

t=5

1 2 3

1

2

6

5

4

1 2

t=6

4

5

1 2

1

2

t=6

Fig. 1: Left: First three states of a 6× 6 game of life modelled with a 2D + t grid.
Living (resp. dead) cells are displayed in black (resp. gray). (x, y) coordinates are

displayed in green and blue, respectively. Temporal edges are not displayed, but there
is a temporal edge between each pair of nodes (i, j) such that xi = xj , yi = yj , and
|ti − tj | = 1. Right: Two examples of spatio-temporal patterns (temporal edges are

not displayed). P1 is isomorphic to a subgrid of the grid on the left (with translation
T = (2, 4,−4) and rotation θ = −π/2). P2 is also isomorphic to a subgrid of the grid

on the left. P2 is not isomorphic to P1 because the angle between edges (a, b) and
(b, c) with xa = ya = yb = 2, xb = xc = 3, and yc = 1 in P1 is not preserved in P2.

characteristic of different ecosystem outcomes. [12] distinguishes four possible
outcomes: (1) development of a homogeneous fixed pattern, (2) development of
a periodic pattern, (3) development of a chaotic pattern, and (4) development
of patterns composed of homogeneous regions and regions containing complex
localized structures.

In this paper, we present an efficient algorithm for extracting spatio-temporal
patterns in 2D+t grids. This algorithm may be used, for example, to extract
meaningful spatio-temporal patterns in CA. When CA are used to model ecosys-
tems, these patterns could be used by ecologists to better understand and control
the dynamics of the ecosystems. For example, [3] explains that we can foresee
the future of an ecosystem by identifying recurring patterns. Ecologists are also
interested in understanding how dependent the patterns and the initial state are.

Our algorithm is an extension of GriMA [6], an algorithm for mining 2D
grids which has been designed to tackle real-life applications such as image clas-
sification. This algorithm is recalled in Section 2. In Section 3, we show how to
extend it to mine 2D+t grids. In Section 4, we evaluate scale-up properties of
our new algorithm for mining game-of-life CA, and we show that the extracted
spatio-temporal patterns are relevant for classification purposes.

2 Background on 2D Grids and GriMA

Definition of 2D grids, and 2D subgrid isomorphism. A 2D grid is a special
case of graph such that each node has a 2D coordinate which is a couple of
integer values, and each edge connects nodes which are neighbours on a grid.
More formally, a grid is defined by G = (N,E,L, x, y) such that N is a set of
nodes, E ⊆ N ×N is a set of edges, L : N ∪E → N is a labeling function which

associates a label L(c) with every component (node or edge) c ∈ N ∪ E, and
x : N → Z and y : N → Z map each node u ∈ N to its 2D coordinates (xu, yu),
and ∀(u, v) ∈ E, |xu−xv|+ |yu−yv| = 1. A subgrid of a grid G = (N,E,L, x, y)
is a grid G′ = (N ′, E′, L′, x′, y′) such that N ′ ⊆ N , E′ ⊆ E∩N ′×N ′ and L′, x′,
and y′ are the restrictions of L, x, and y to N ′ ∪ E′, N ′, and N ′, respectively.

Looking for patterns in a grid amounts to searching for subgrid isomorphisms.
Patterns should be invariant to translations and rotations. More formally, the
translation of G = (N,E,L, x, y) by a vector T ∈ Z2, denoted G + T , is the
grid obtained by moving all its nodes with respect to T , i.e., ∀u ∈ N , (xu, yu)
becomes (xu, yu) + T . Let Θ = {

(
1 0
0 1

)
,
(
0 −1
1 0

)
,
(−1 0

0 −1
)
,
(

0 1
−1 0

)
} be the set of

rotation matrices of respective angles 0, π/2, π and 3π/2. The rotation of G
with respect to θ ∈ Θ, denoted θG, is the grid obtained by rotating all its nodes
with respect to θ, i.e., ∀u ∈ N, (xu, yu) becomes (xu, yu)θ. Two grids G1 and G2

are grid isomorphic if there exist a translation T ∈ Z2 and a rotation θ ∈ Θ
such that G1 = T + θG2. Finally, G1 is sub-grid-isomorphic to G2 if there
exists a subgrid of G2 which is isomorphic to G2 (see Fig. 1 for an example).

Graph mining. Given a database D of graphs and a frequency threshold σ, the
goal of the graph mining problem is to output all frequent subgraphs in D, i.e.,
all graphs G such that there exist at least σ graphs in D to which G is sub-
isomorphic. This problem may be solved by gSpan [14], and all similar general
exhaustive graph mining algorithms [8]. However, as the subgraph isomorphic
problem is NP-complete, these algorithms do not scale well. On the other hand,
Plagram [11] and FreqGeo [1] are graph mining algorithms dedicated to spe-
cial cases of graphs for which subgraph isomorphism becomes polynomial, i.e.,
plane graphs for Plagram and geometric graphs for FreqGeo. These algo-
rithms have better scale-up properties. However, Plagram only mines patterns
composed of faces and the smallest possible subgraph pattern is a single face,
i.e., a cycle with 3 nodes. Using Plagram to mine grids is possible but the
problem needs to be transformed such that each grid node becomes a face in
the graph tackled by Plagram. This transformation artificially increases the
number of nodes and edges which causes a scalability problem for Plagram.
Also, grids are special cases of geometric graphs. Therefore, FreqGeo may be
used to mine grids. However, it has a higher time-complexity than GriMA, the
2D grid mining algorithm introduced in [6].

Description of GriMA. GriMA follows the same basic principle as gSpan,
Plagram, and FreqGeo to avoid generating the same pattern multiple times:
It uses codes to represent grids. This code is a list of edges encountered when
performing a traversal of the grid. A grid may have several codes but one of
them is chosen as the signature: The canonical code, which is the largest code
wrt lexicographic order. GriMA explores the search space of all canonical codes
in a depth-first recursive way. It first computes all frequent edges and then calls
an Extend function for each of these frequent extensions. Extend has one input
parameter: A pattern code P which is frequent and canonical. It outputs all
frequent canonical codes P ′ such that P is a prefix of P ′. To this aim, it first

computes the set E of all possible valid extensions of all occurrences of P in the
database D of grids: A valid extension is the code e of an edge such that P.e
occurs in D. Finally, Extend is recursively called for each extension e such that
P.e is frequent and canonical. Hence, at each recursive call, the pattern grows.

3 2D+t Grid Mining Algorithm

A 2D + t grid is defined by a tuple (N,E,L, x, y, t) such that (N,E,L, x, y) is
a 2D grid graph and t : N → Z is a function that maps nodes to temporal
coordinates, i.e., ∀u ∈ N , tu is the temporal coordinate of node u. Also, edges
are enforced to connect neighbour nodes in the grid, i.e., ∀(u, v) ∈ E, |xu−xv|+
|yu−yv|+ |tu− tv| = 1. We distinguish two different kinds of edges: spatial edges
(such that |xu−xv|+ |yu−yv| = 1) and temporal edges (such that |tu− tv| = 1).

2D grid isomorphism is defined so that isomorphism is invariant to transla-
tions and rotations. When extending this definition to 2D+t grids, we still ensure
that isomorphism is invariant to translations wrt all axis. However, as time is an
oriented dimension, we allow rotations only along the temporal axis. Hence, we

consider the set Θ = {
(1 0 0
0 1 0
0 0 1

)
,
(0 −1 0
1 0 0
0 0 1

)
,
(−1 0 0

0 −1 0
0 0 1

)
,
(0 1 0
−1 0 0
0 0 1

)
} of rotation matrices

of respective angles 0, π/2, π and 3π/2 along the temporal axis.
To extend GriMA to 2D+t grids, we have to define the canonical code of

a 2D+t grid. A code C(G) of a 2D+t grid G is a sequence of n edge codes
(C(G) = 〈ec0, ..., ecn−1〉) which is associated with a depth-first traversal of G
starting from a given initial node. During this traversal, each edge is traversed
once, and nodes are numbered: The initial node has number 0; each time a new
node is discovered, it is numbered with the smallest integer not already used in
the traversal. Each edge code corresponds to a different edge of G and the order
of edge codes in C(G) corresponds to the order edges are traversed. Hence, eck
is the code associated with the kth traversed edge. This edge code eck is the
tuple (δ, i, j, a, Li, Lj , L(i,j)) where :

– i and j are the numbers associated with the nodes of the kth traversed edge.
– δ ∈ {0, 1} is the direction of the kth traversed edge:

• δ = 0 if it is forward, i.e., j is a new node reached for the first time;
• δ = 1 if it is backward, i.e., j already appears in 〈ec0, ..., eck−1〉.

– a ∈ {−2,−1, 0, 1, 2, 3} is the angle value of the kth traversed edge (i, j):

• if (i, j) is a temporal edge, then a = −2 if ti = tj + 1, and a = −1 if
ti = tj − 1;

• else, (i, j) is a spatial edge.
∗ If (i, j) is the first spatial edge encountered since the beginning of

the traversal, then a = 0.
∗ Else, let (l,m) be the first spatial edge in 〈ec0, ..., eck−1〉 such that
xi = xm and yi = ym. We have a = 2A/π whereA ∈ {0, π/2, π, 3π/2}
is the angle between (l,m) and (i, j) in the x, y plane.

– Li, Lj , L(i,j) are labels of i, j, and (i, j), respectively.

x

y
t

A B C

D

F E

1 2 0

2
1 1

Code 1 Code 2 Code 3
edge δ i j a LiLjLij edge δ i j a LiLjLij edge δ i j a LiLjLij

(D,B) 0 0 1 0 2 2 0 (D,B) 0 0 1 0 2 2 0 (C,E) 0 0 1 -1 2 1 0

(B,C) 0 1 2 3 2 0 0 (B,A) 0 1 2 1 2 1 0 (E,F) 0 1 2 0 1 1 0

(C,E) 0 2 3 -1 0 1 0 (B,C) 0 1 3 3 2 0 0 (F,B) 0 2 3 -2 1 2 0

(E,F) 0 3 4 0 1 1 0 (C,E) 0 3 4 -1 0 1 0 (B,D) 0 3 4 1 2 2 0

(F,B) 1 4 1 -2 1 2 0 (E,F) 0 4 5 0 1 1 0 (B,A) 0 3 5 2 2 1 0

(B,A) 0 1 5 1 2 1 0 (F,B) 1 5 1 -2 1 2 0 (B,C) 1 3 0 3 2 0 0

Fig. 2: Left: A 2D+t grid (temporal edges are displayed in red, node labels are
displayed next to nodes, and all edges have the same label 0). Right: 3 codes

for this grid (other codes may be built by changing the traversal).

For example, let us consider code 1 in Fig. 2. Let us explain how the code of
the fourth traversed edge (E,F) is built. δ = 0 because (E,F) is a forward edge
(F has not been reached before). (E,F) is a spatial edge, and the first spatial
edge (l,m) such that m has the same spatial coordinates as E is (B,C). The
angle between (E,F) and (B,C) is 0. So, a = 0. For the fifth edge of code 1,
(F,B), δ = 1 because B has already been reached before (backward edge). As
(F,B) is a temporal edge, a = −2.

Given a code, we can reconstruct the corresponding grid since edges are
listed in the code together with angles and labels. However, there exist different
possible codes for a given grid, as illustrated in Fig. 2: Each code corresponds
to a different traversal (starting from a different initial node and choosing edges
in a different order). As we did for GriMA, we define a total order on the set
of all possible codes that may be associated with a given grid by considering
a lexicographic order (all code components have integer values). Among all the
possible codes for a grid, the largest one according to this order is the canonical
code of this grid and it is unique. For example, in Fig. 2, code 1 is canonical: It
is greater than codes 2 and 3, and it is also greater than all other possible codes
for this grid (not shown here).

Note that it is not necessary to exhaustively build all codes when computing
a canonical code. We use heuristics to first build large codes (by first choosing
spatial edges with 3π/2 angles, such as for (D,B) and (B,C), for example).
Also, when building a code, we stop the traversal as soon as the corresponding
code becomes smaller than the largest current code.

This canonical code for 2D+t allows us to extend GriMA to mine 2D+t grids
in a straightforward way, and we can show that the resulting mining algorithm,
called GriMA2D+t, is both correct (it only outputs frequent subgrids) and
complete (it cannot miss any frequent subgrid). The proof (not detailed due to
lack of space) basically shows that every prefix of a canonical code is canonical.

GriMA2D+t enumerates all frequent patterns in O(kn2.|P |2) = O(kn4)
time per pattern P , where k is the number of grids in the set D of input grids,
n the size of the largest grid Gi ∈ D (in number of edges) and |P | the number
of edges in a pattern P .

Node-induced GriMA2D+t. In our application, the mined grids are complete
and have no label on edges. Thus, we designed a variant of GriMA2D+t, called
node-induced-GriMA2D+t, which computes node-induced grids, i.e. grids in-
duced by their node sets. This corresponds to a “node-induced” closure operator
on graphs where, given a pattern P , we add all possible edges to P without
adding new nodes. We have shown in [6] that this optimization decreases the
number of extracted patterns and the extraction time.

Limitation on edge extension. Moreover, to avoid mining patterns that only
contain dead cells, we also limit the extension procedure of our mining process.
In the Extend function, we forbid extension with edges linking two dead cells.
As a consequence, every edge (i, j) in a mined pattern is such that either i, or
j, or both i and j correspond to living cells.

4 Experiments

We study the scale-up properties of GriMA2D + t and assess the relevance
of the mined patterns on a classification task related to the behavior of a CA,
i.e., the Game of Life described in Section 1. More precisely, given the k first
cell states, with k ∈ {1, 2, 5, 10, 20}, the goal is to forecast the outcome at time
t = 1000, where we only consider two possible outcomes: dead (if all cells are
dead at time t = 1000), or alive (if at least one cell is alive at time t = 1000).

Dataset. We consider four sizes of grids n×n, with n ∈ {20, 30, 40, 50}. For each
size n, we randomly choose the initial state (dead or alive) of each n × n cell
wrt to a cell probability p. We have chosen p in such a way that the outcome
at time t = 1000 is dead or alive with equal probabilities. This way, we ensure
during our dataset generation process that there is no bias towards one of the
two classes. This imposes a cell probability p of 74%, 78%, 80%, and 81% for
n = 20, 30, 40, and 50, respectively. Besides, to avoid trivial predictions of the
class dead, due to the fact that all cells may be dead before the kth iteration,
we only select initial states such that there is at least one cell alive at the 50th

iteration. For each size n ∈ {20, 30, 40, 50}, we generate a set Sn of 2000 initial
states such that the outcome at time t = 1000 is dead for half of them (Sd

n), and
alive for the other half (Sa

n). We split each set Sd
n and Sa

n into two equal parts
for learning (Ld

n and La
n) and training (T d

n and T a
n).

2D+t grids. For each state si ∈ Sn (with n ∈ {20, 30, 40, 50}), and for each
temporal horizon k ∈ {1, 2, 5, 10, 20}, we build a 2D+t grid G(si, k) which is a
temporal sequence of k 2D grids: The first one corresponds to the state si, and
the next k − 1 ones correspond to states obtained by iteratively applying the
game-of-life rules starting from si. Each node is labeled with either 0 (dead cell)
or 1 (cell alive), and all edges have the same label.

Mining process. For each size n ∈ {20, 30, 40, 50} and each temporal horizon k ∈
{1, 2, 5, 10, 20}, we mine frequent patterns in the learning sets. This is done for
each class separately: We compute the set F d

n,k (resp. F a
n,k) of frequent patterns

in all G(si, k) with si ∈ Sd
n (resp. si ∈ Sa

n). We consider two different frequency
threshold σ ∈ {50%, 100%}: When σ = 50% (resp. σ = 100%), a pattern is
frequent if it is present in half of the grids (resp. all the grids). Note that, the
higher the frequency, the lower the number of mined patterns and the more
efficient the mining process. Each mining process has been limited to 12 hours
of CPU time: If the mining process is not completed after 12 hours, we stop it
and consider the subset of patterns that have been extracted within this time
limit.

Classification process. For each size n ∈ {20, 30, 40, 50} and each temporal hori-
zon k ∈ {1, 2, 5, 10, 20}, we build the set Fn,k = F a

n,k ∪ F d
n,k that contains all

frequent patterns (in the two classes). Then, for each state si ∈ Ld
n ∪ La

n, we
count the number of occurrences of each pattern of Fn,k in G(si, k), and build a
frequency vector that gives the frequency of each pattern. Hence, each state is
represented by a histogram of frequent substructures.

We report two sets of experiments: One with histograms created using all
the patterns mined on both classes (which can be very sparse) and one with
a selected subset of 100 patterns. This post-processing selection is performed
using the relevance score and the greedy selection algorithm presented in [7].
To fasten the preprocessing step, we delete at each of the 100 iterations of the
greedy algorithm, the patterns with the 10% lowest scores.

Frequency vectors (of length |Fn,k| or 100) are used to train a binary Support
Vector Machine (SVM) to discriminate between the two classes. We use the
Libsvm [4] library with the intersection kernel presented in [10] (known to be
good on histograms).

Finally, we use the trained model to forecast the class of each state in our
training set: For each state si ∈ T d

n ∪ T a
n , we count the number of occurrences

of each pattern of Fn,k (or the 100 selected patterns of Fn,k) in G(si, k), and
build a frequency vector which is used by the SVM model to forecast an outcome
(dead or alive) which is compared to the true outcome (dead for states coming
from T d

n and alive for states coming from T a
n). We report accuracy results, i.e.,

the percentage of states for which the forecasted outcome is equal to the true
outcome.

Accuracy results. We report accuracy results in Table 1. When increasing the
temporal horizon k (i.e., the temporal size of the mined grids), accuracy results
are improved. This shows the relevance of the GriMA2D+t algorithm compared
to GriMA. However, when increasing k, the mining process needs more time
and we often had to stop the mining process after 12 hours (red cells) for the
largest values of k. In this case, we only explored part of the substructure search
space.

Also, the larger the grid size n, the better the results. It is well known that,
for the game of life, large grids have higher probabilities of containing stable

k 1 2 5 10 20

n σ 50% 100% 50% 100% 50% 100% 50% 100% 50% 100%

20
|Fn,k| 673 22 23589 64 824616 2478 707743 96762 417724 213861

All Pat 72.40 70.70 77.30 72.50 83.40 85.20 85.00 88.70 88.30 91.30
100 Pat 72.70 75.80 83.80 83.50 84.10 87.80 85.60 89.50

30
|Fn,k| 662 18 28795 68 783701 2472 688546 99827 355381 252891

All Pat 77.00 68.40 81.60 76.60 84.80 87.80 88.00 89.10 92.70 92.80
100 Pat 74.10 79.90 84.40 86.90 88.40 89.40 91.80 92.20

40
|Fn,k| 667 27 38103 77 786619 4620 634501 178710 403411 246885

All Pat 79.10 70.90 86.50 82.10 89.90 92.50 91.60 93.10 95.50 96.00
100 Pat 77.10 84.40 86.80 90.10 89.40 93.60 94.30 96.80

50
|Fn,k| 740 26 46235 79 906209 4171 720779 206508 373600 282003

All Pat 78.60 72.70 82.80 79.70 89.30 90.90 91.80 93.20 96.40 95.80
100 Pat 77.90 84.20 88.50 89.40 89.90 92.90 91.90 96.40

Table 1: Accuracy results for the classification of states in T d
n ∪ T a

n . For each
size n ∈ {20, 30, 40, 50}, the first line reports the number of frequent patterns
|Fn,k|, and the cell is colored in red if the 12 hour time-out has been reached
and green otherwise; the second and third line report accuracy results with

vectors of size |Fn,k| and 100, respectively (if |Fn,k| < 100, results are not given
for vectors of size 100). Each line gives results for k = 1, 2, 5, 10, and 20, and

with σ = 50% and 100% .

patterns that may characterize alive outcomes. However, as with k, we often
had to stop the mining process after 12 hours for the largest grids. This shows
the necessity of efficient algorithms to tackle real-life problems.

The number of mined patterns |Fn,k|, is smaller when the frequency threshold
σ = 100% than when it is 50%. For small temporal horizons k ∈ {1, 2}, the
number of mined patterns is not large enough (smaller than 27 for k = 1 and than
79 for k = 2). In this case, the results obtained with σ = 100% are worse than
those obtained with σ = 50%. However, for larger time horizons k ∈ {5, 10, 20},
the number of mined patterns becomes large enough for σ = 100% while it
becomes so large for σ = 50% that the mining process is never completed. As
we only have a subset of the frequent patterns in this case, it may be possible
that some relevant patterns have not be found. We observe that in this case the
results are worse with σ = 50% than with σ = 100%.

Finally, let us compare the results obtained when all patterns of Fn,k are used
for the classification (All Pat) with the results obtained when we only use the 100
first patterns selected by the post-processing process (100 Pat): The difference is
usually rather small, and in some cases it improves results (e.g., k = 20, n = 40)
whereas in some other cases it degrades them (e.g., k = 20, n = 20). However,
the post-processing improves the efficiency of the counting step: The process of
counting all occurrences of all patterns of Fn,k (to create histograms used as
inputs for the SVMs) takes on average 0.002 seconds when k = 1 and up to
45 seconds when k = 20, whereas it takes 0.0005 seconds when k = 1 and up

k 1 2 5 10 20

n All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat All Pat 100 Pat

20
Depth 0(0) 0(0) 0.9(1) 0.9(1) 2.1(4) 2.0(4) 5.3(9) 4.5(9) 11.7(19) 9.0(19)

NbCell 6.4(11) 6.6(10) 7.9(15) 7.2(11) 11.3(25) 11.8(20) 14.8(28) 15.3(24) 18.3(32) 14.7(25)

30
Depth 0(0) 0(0) 0.9(1) 0.9(1) 2.3(4) 2.4(4) 6.4(9) 6.0(9) 14.5(19) 11.1(19)

NbCell 6.4(11) 6.4(9) 8.4(17) 7.7(12) 11.7(23) 11.0(18) 16.8(35) 15.3(29) 21.5(32) 16.6(25)

40
Depth 0(0) 0(0) 0.9(1) 0.9(1) 2.3(4) 2.2(4) 6.8(9) 6.4(9) 16.2(19) 14.1(19)

NbCell 6.4(12) 6.3(9) 9.0(18) 7.6(13) 12.1(24) 11.1(17) 20.2(39) 21.3(35) 23.4(34) 19.6(27)

50
Depth 0(0) 0(0) 1.0(1) 0.9(1) 2.3(4) 2.3(4) 6.7(9) 6.5(9) 16.5(19) 15.6(19)

NbCell 6.5(12) 6.7(11) 9.2(19) 7.5(13) 13.2(27) 12.3(21) 19.4(39) 20.5(33) 24.1(34) 21.8(30)

Table 2: Average and Maximum (in parenthesis) depth and number of cells for
all patterns of Fn,k or only those selected with post processing.

to 0.008 seconds when k = 20 if we only count occurrences of the 100 patterns
selected by post-processing.

Overall, those results show that taking into account the structural infor-
mation along the spatio-temporal grids can be used for the prediction of the
outcome of cellular automata and the extension to temporal dimension of our
grid mining algorithm can be used to tackle spatio-temporal problems.

Patterns statistics. Table 2 reports some statistics about the mined patterns
(all patterns in Fn,k, or the 100 ones selected by post-processing). We report
the average and maximum (in parenthesis) number of nodes of each pattern as
well as their depth, i.e., the number of temporal steps on which the patterns are
present (spatial patterns have a depth of 0). The average number of nodes and
the depth of the patterns selected by post-processing are usually less important
than the same statistics for all the mined patterns. This may come from the fact
that deep patterns are not diverse enough to be selected by the post-processing
step which in turn suggests that, when the timeout is reached, the diversity of the
mined pattern is not high enough. To further increase this diversity, stochastic
search methods such as Monte-Carlo Tree Search [2] could be integrated in our
algorithm.

5 Conclusion and future work

We have presented GriMA2D+t, an algorithm to mine temporal sequences of
2D regular structures called grids. We have shown on experiments on a classical
cellular automaton, the game of life, that GriMA2D+t can effectively extract
spatio-temporal patterns in temporal grids. We have also shown that those pat-
terns can be used as new features for classification algorithms and, in particular,
to successfully predict the outcomes of cellular automata. This opens interest-
ing new paths in the automatic analysis of the evolution of ecosystems and, in
particular, to predict and control spatio-temporal spread of species in order to
preserve biodiversity.

To further increase the efficiency of the classification process and scale to
larger problems, we proposed to use a post-processing step that allows us to
select a good subset of the mined patterns. In future work, we planned to di-
rectly mined a relevant subset of the possible patterns by using Monte-Carlo tree
search methods. We also plan to apply this algorithm to analyze other temporal
structures such as videos.

Acknowledgements

This work has been supported by the ANR project SoLStiCe (ANR-13-BS02-
0002-01)

References

1. H. Arimura, T. Uno, and S. Shimozono. Time and space efficient discovery of
maximal geometric graphs. In Int. Conf. on Discovery Science, pages 42–55, 2007.

2. G. Bosc, C. Räıssi, J.-F. Boulicaut, and M. Kaytoue. Any-time diverse subgroup
discovery with monte carlo tree search. CoRR, 2016.

3. Broder Breckling, Guy Pe’er, and Yiannis G. Matsinos. Cellular Automata in
Ecological Modelling, pages 105–117. Springer Berlin Heidelberg, 2011.

4. C.-C Chang and C.-Jen Lin. LIBSVM: A library for support vector machines.
ACM-TIST, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

5. J. Conway. The game of life. Scientific American, 223(4):4, 1970.
6. R. Deville, É. Fromont, B. Jeudy, and C. Solnon. Grima: a grid mining algorithm

for bag-of-grid-based classification. In S+SSPR, pages 132–142, 2016.
7. B. Fernando, É. Fromont, and T. Tuytelaars. Mining mid-level features for image

classification. IJCV, 108(3):186–203, 2014.
8. C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algo-

rithms. KER, 28:75–105, 2013.
9. Diana E Marco, Sergio A Páez, and Sergio A Cannas. Species invasiveness in bio-

logical invasions: a modelling approach. Biological Invasions, 4(1):193–205, 2002.
10. F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image

matching. IEEE-TIP, 14(2):169–180, 2005.
11. A. Prado, B. Jeudy, É. Fromont, and F. Diot. Mining spatiotemporal patterns in

dynamic plane graphs. IDA, 17:71–92, 2013.
12. Stephen Wolfram. Cellular automata as models of complexity. Nature,

311(5985):419–424, 1984.
13. J Timothy Wootton. Local interactions predict large-scale pattern in empirically

derived cellular automata. Nature, 413(6858):841–844, 2001.
14. X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In ICDM,

pages 721–724, 2002.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Mining Frequent Patterns in 2D+t Grid Graphs for Cellular Automata Analysis

