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ON THE OUTLYING EIGENVALUES OF A POLYNOMIAL IN

LARGE INDEPENDENT RANDOM MATRICES

SERBAN T. BELINSCHI, HARI BERCOVICI, AND MIREILLE CAPITAINE

Abstract. Given a selfadjoint polynomial P (X,Y ) in two noncommuting self-

adjoint indeterminates, we investigate the asymptotic eigenvalue behavior of
the random matrix P (AN , BN ), where AN and BN are independent Hermit-

ian random matrices and the distribution of BN is invariant under conjugation
by unitary operators. We assume that the empirical eigenvalue distributions

of AN and BN converge almost surely to deterministic probability measures µ

and ν, respectively. In addition, the eigenvalues of AN and BN are assumed
to converge uniformly almost surely to the support of µ and ν, respectively,

except for a fixed finite number of fixed eigenvalues (spikes) of AN . It is known

that almost surely the empirical distribution of the eigenvalues of P (AN , BN )
converges to a certain deterministic probability measure η (sometimes denoted

η = P�(µ, ν)) and, when there are no spikes, the eigenvalues of P (AN , BN )

converge uniformly almost surely to the support of η. When spikes are present,

we show that the eigenvalues of P (AN , BN ) still converge uniformly to the sup-
port of η, with the possible exception of certain isolated outliers whose location

can be determined in terms of µ, ν, P , and the spikes of AN . We establish a

similar result when BN is replaced by a Wigner matrix. The relation between
outliers and spikes is described using the operator-valued subordination func-

tions of free probability theory. These results extend known facts from the

special case in which P (X,Y ) = X + Y .

1. Introduction

Let µ and ν be two Borel probability measures with bounded support on R.
Suppose given, for each positive integer N , selfadjoint N ×N independent random
matrices AN and BN , with the following properties:

(a) the distribution of BN is invariant under conjugation by unitary N × N
matrices;

(b) the empirical eigenvalue distributions of AN and BN converge almost surely
to µ and ν, respectively;

(c) the eigenvalues of AN and BN converge uniformly almost surely to the
supports of µ and ν, respectively, with the exception of a fixed number p
of spikes, that is, fixed eigenvalues of AN that lie outside the support of µ.

When spikes are absent, that is, when p = 0, it was shown in [23] that the
eigenvalues of AN + BN converge uniformly almost surely to the support of the
free additive convolution µ � ν. When p > 0, the eigenvalues of AN + BN also
converge uniformly almost surely to a compact set K ⊂ R such that supp(µ �
ν) ⊂ K and K \ supp(µ � ν) has no accumulation points in R \ supp(µ � ν).
Moreover, if t ∈ K \ supp(µ� ν), then ω(t) is one of the spikes of AN , where ω is
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a certain subordination function arising in free probability. The relative position
of the eigenvectors corresponding to spikes and outliers is also given in terms of
subordination functions. We refer to [11] for this result.

Our purpose is to show that analogous results hold when the sum AN + BN is
replaced by an arbitrary selfadjoint polynomial P (AN , BN ). Then, by a comparison
procedure to the particular case when BN is a G.U.E. (Gaussian unitary ensem-
ble), we are also able to identify the outliers of an arbitrary selfadjoint polynomial
P (AN ,

XN√
N

) when XN is a Wigner matrix independent from AN . This extends an

earlier result [22] pertaining to additive deformations of Wigner matrices. More
precisely we consider a Hermitian matrix XN = [Xij ]

N
i,j=1, where [Xij ]i≥1,j≥1 is an

infinite array of random variables such that

(X0) XN is independent from AN ,

(X1) Xii,
√

2<(Xij), i < j,
√

2=(Xij), i < j, are independent, centered with
variance 1,

(X2) there exist K,x0 > 0, n0 ∈ N, and a random variable Z with finite fourth
moment such that

1

n2

∑
1≤i,j≤n

P (|Xij | > x) ≤ KP (|Z| > x) x > x0, n > n0.

(X3) sup{E(|Xij |3) : i, j ∈ N, i < j} < +∞.

Remark 1.1. The matrixXN is called a G.U.E. if the variablesXii,
√

2<(Xij), i < j,

and
√

2=(Xij), i < j, are independent standard Gaussian. Assumptions (X2) and
(X3) obviously hold if these variables are merely independent and identically dis-
tributed with a finite fourth moment.

Our result lies in the lineage of recent, and not so recent, works [5, 7, 8, 14,
18, 19, 21, 22, 26, 27, 31, 33, 35, 39, 40, 41] studying the influence of additive or
multiplicative perturbations on the extremal eigenvalues of classical random matrix
models, the seminal paper being [7], where the so-called BBP phase transition was
observed.

We note that Shlyakhtenko [45] considered a framework which makes it possible
to understand this kind of result as a manifestation of infinitesimal freeness. In
fact, the results of [45] also allow one to detect the presence of spikes from the
behaviour of the bulk of the eigenvalues of P (AN , BN ), even when P (AN , BN ) has
no outlying eigenvalues. In a related result, Collins, Hasebe and Sakuma [24] study
the ‘purely spike’ case in which µ = ν = δ0 and the eigenvalues of AN and BN
accumulate to given sequences (ak)∞k=1 and (bk)∞k=1 of real numbers converging to
zero.

2. Notation and preliminaries on strong asymptotic freeness

We recall that a C∗-probability space is a pair (A, τ), where A is a C∗-algebra
and τ is a state on A. We always assume that τ is faithful. The elements of A are
referred to as random variables.

If (Ω,Σ, P ) is a classical probability space, then (L∞(Ω),E) is a C∗-probability
space, where E is the usual expected value. Given N ∈ N, (MN (C), trN ) is a
C∗-probability space, where trN = 1

NTrN denotes the normalized trace. More
generally, if (A, τ) is an arbitrary C∗-probability space and N ∈ N, then MN (A) =
MN (C)⊗A becomes a C∗-probability space with the state trN ⊗ τ .
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The distribution µa of a selfadjoint element a in a C∗-probability space (A, τ)
is a compactly supported probability measure on R, uniquely determined by the
requirement that

∫
R t

n dµa(t) = τ(an), n ∈ N. The spectrum of an element a ∈ A
is

σ(a) = {λ ∈ C : λ1− a is not invertible in A}.
For instance, if A ∈ MN (C) is a selfadjoint matrix, then the distribution of A

relative to trN is the measure µA = 1
N

∑N
j=1 δλj(A), where {λ1(A), . . . , λN (A)} is

the list of the eigenvalues of A, repeated according to multiplicity. As usual, the
support supp(µ) of a Borel probability measure µ on R is the smallest closed set
F ⊂ R with the property that µ(F ) = 1. It is known that if a = a∗ ∈ A and τ is
faithful, then σ(a) = supp(µa). In the following, we assume that τ is a tracial state,
that is, τ(ab) = τ(ba), a, b ∈ A.

Suppose that we are given C∗-probability spaces {(AN , τN )}∞N=0 and selfadjoint
elements aN ∈ AN , N ≥ 0. We say that {aN}∞N=1 converges in distribution to a0 if

(2.1) lim
N→∞

τN (akN ) = τ0(ak0), k ∈ N.

We say that {aN}∞N=1 converges strongly in distribution to a0 (or to µa0) if, in addi-
tion to (2.1), the sequence {supp(µaN )}∞N=1 converges to supp(µa0) in the Hausdorff
metric. This condition simply means that for every ε > 0 there exists N(ε) ∈ N
such that

supp(µaN ) ⊂ supp(µa0) + (−ε, ε)
and

supp(µa0) ⊂ supp(µaN ) + (−ε, ε)
for every N ≥ N(ε). If all the traces τN are faithful, strong convergence can be
reformulated as follows:

lim
N→∞

‖P (aN )‖ = ‖P (a0)‖,

for every polynomial P with complex coefficients. This observation allows us to
extend the concept of (strong) convergence in distribution to k-tuples of random
variables, k ∈ N. For every k ∈ N, we denote by C〈X1, . . . , Xk〉 the algebra of poly-
nomials with complex coefficients in k noncommuting indeterminates X1, . . . , Xk.
This is a ∗-algebra with the adjoint operation determined by

(αXi1Xi2 · · ·Xin)∗ = αXin · · ·Xi2Xi1 , α ∈ C, i1, i1, . . . , in ∈ {1, . . . , k}.

Suppose that {(AN , τN )}∞N=0 is a sequence of C∗-probability spaces, k ∈ N,
and {aN}∞N=0 is a sequence of k-tuples aN = (aN,1, . . . , aN,k) ∈ AkN of selfadjoint
elements. We say that {aN}∞N=1 converges in distribution to a0 if

(2.2) lim
N→∞

τN (P (aN )) = τ0(P (a0)), P ∈ C〈X1, . . . , Xk〉.

We say that {aN}∞N=1 converges strongly in distribution to a0 if, in addition to
(2.2), we have

lim
N→∞

‖P (aN )‖ = ‖P (a0)‖, P ∈ C〈X1, . . . , Xk〉.

The above concepts extend to k-tuples aN = (aN,1, . . . , aN,k) ∈ AkN which do
not necessarily consist of selfadjoint elements. The only change is that one must
use polynomials in the variables aN,j and their adjoints a∗N,j , j = 1, . . . , k.
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Remark 2.1. Suppose that all the states τN , N ∈ N, are faithful. As seen in
[23, Proposition 2.1], {aN}∞N=1 converges strongly in distribution to a0 if and only
if {P (aN )}∞N=1 converges strongly in distribution to P (a0) for every selfadjoint
polynomial P ∈ C〈X1, . . . , Xk〉. Moreover, strong convergence in distribution also
implies strong convergence at the matricial level. The following result is [36, Propo-
sition 7.3].

Proposition 2.2. Let {(AN , τN )}∞N=0 be C∗-probability spaces with faithful states
{τN}∞N=0, let k ∈ N, and let {aN}∞N=0 be a sequence of k-tuples of selfadjoint
elements aN ∈ AkN . Suppose that {aN}∞N=1 converges strongly in distribution to a0.
Then limN→∞ ‖P (aN )‖ = ‖P (a0)‖ for every n ∈ N and every matrix polynomial
P ∈Mn(C〈X1, . . . , Xk〉).

A special case of strong convergence in distribution arises from the consideration
of random matrices in MN (C). The following result follows from [23, Theorem 1.4]
and [12, Theorem 1.2].

Theorem 2.3. Let (AN , τN ) denote the space (MN (C), trN), N ∈ N. Suppose
that k1, k2, k3 ∈ N are fixed, uN = (UN,1, . . . , UN,k1), xN = (XN,1, . . . , XN,k2) and
aN = (AN,1, . . . , AN,k3) are mutually independent random tuples of matrices in
some classical probability space such that:

(i) UN,1, . . . , UN,k1 are independent unitaries distributed according to the Haar
measure on the unitary group U(N), N ∈ N.

(ii) XN,1, . . . , XN,k2 are independent Hermitian matrices, each satisfying as-
sumptions (X1), (X2), and (X3) in the introduction.

(iii) aN is a vector of N×N selfadjoint matrices such that the sequence {aN}∞N=1

converges strongly almost surely in distribution to some deterministic k3-
tuple in a C∗-probability space.

Then there exist a C∗-probability space (A, τ), a free family u = (u1, . . . , uk1) ∈
Ak1 of Haar unitaries, a semicircular system x = (x1, . . . , xk2) ∈ Ak2 and a =
(a1, . . . , ak3) ∈ Ak3 , such that, u, x, and a are free and {(uN , xN , aN )}∞N=1 con-
verges strongly almost surely in distribution to (u, x, a).

We recall that a tuple (x1, . . . , xk) of elements in a C∗-probability space (A, τ)
is called a semicircular system if {x1, . . . , xk} is a free family of selfadjoint random
variables, and for every i = 1, . . . , k, µxi is the standard semicircular distribution
ν0,1 defined by

(2.3) dν0,1(t) =
1

2π

√
4− t21I[−2,2](t) dt.

An element u ∈ A is called a Haar unitary if u∗ = u−1 and τ(un) = 0 for all n ∈
Z\{0}. Note that Theorem 1.2 in [12] deals with deterministic aN but the random
case readily follows as pointed out by assertion 2 in [36, Section 3]. The point of
Theorem 2.3 is, of course, that the resulting convergence is strong. Convergence in
distribution was established earlier (see [49], [25], [3, Theorem 5.4.5]).

We also need a simple coupling result from [23, Lemma 5.1].

Lemma 2.4. Suppose given selfadjoint matrices CN , DN ∈ MN (C), N ∈ N, such
that the sequences {CN}N∈N and {DN}N∈N converge strongly in distribution. Then

there exist diagonal matrices C̃N , D̃N ∈ MN (C), N ≥ 1, such that µC̃N = µCN ,

µD̃N = µDN , and the sequence {(C̃N , D̃N )}N∈N converges strongly in distribution.
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3. Description of the models

In order to describe in detail our matrix models, we need two compactly sup-
ported probability measures µ and ν on R, a positive integer p, and a sequence of
fixed real numbers θ1 ≥ θ2 ≥ · · · ≥ θp in R \ supp(µ). The matrix AN ∈MN (C) is
random selfadjoint for all N ∈ N, N ≥ 1 and satisfies the following conditions:

(A1) almost surely, the sequence {AN}∞N=1 converges in distribution to µ,
(A2) θ1 ≥ θ2 ≥ · · · ≥ θp are p eigenvalues of AN , and
(A3) the other eigenvalues of AN , which may be random, converge uniformly

almost surely to supp(µ): almost surely, for every ε > 0 there exists N(ε) ∈
N such that

σ(AN ) \ {θ1, . . . , θp} ⊆ supp(µ) + (−ε, ε), N ≥ N(ε).

In other words, only the p eigenvalues θ1, . . . , θp prevent {AN}∞N=1 from
converging strongly in distribution to µ.

We investigate two polynomial matricial models, both involving AN . The first
model involves a sequence {BN}∞N=1 of random Hermitian matrices such that

(B0) BN is independent from AN ,
(B1) BN converges strongly in distribution to the compactly supported proba-

bility measure ν on R,
(B2) for each N , the distribution of BN is invariant under conjugation by arbi-

trary N ×N unitary matrices.

The matricial model is

(3.1) ZN = P (AN , BN )

for an arbitrary selfadjoint polynomial P ∈ C〈X1, X2〉.
The second model deals with N ×N random Hermitian Wigner matrices XN =

[Xij ]
N
i,j=1, where [Xij ]i≥1,j≥1 is an infinite array of random variables satifying con-

ditions (X0)− (X3) in the introduction. The matricial model is

(3.2) ZN = P

(
AN ,

XN√
N

)
for an arbitrary selfadjoint polynomial P ∈ C〈X1, X2〉.

In the discussion of the first model, we use results of Voiculescu [49] (see also
[54]), who showed that there exist a free pair (a, b) of selfadjoint elements in a
II1-factor (A, τ) such that, almost surely, the sequence {(AN , BN )}∞N=1 converges
in distribution to (a, b). Thus, µ = µa, ν = µb, and the sequence {P (AN , BN )}∞N=1

converges in distribution to P (a, b) (that is,

lim
N→∞

µP (AN ,BN ) = µP (a,b)

in the weak∗ topology) for every selfadjoint polynomial P ∈ C〈X1, X2〉. When
p = 0, Lemma 2.4, Theorem 2.3 and Remark 2.1, show that, almost surely, this
convergence is strong (see the proof of Corollary 2.2 in [23]).

For the second model we use [12, Proposition 2.2] and [3, Theorem 5.4.5], where
it is seen that for every selfadjoint polynomial P ∈ C〈X1, X2〉 we have

lim
N→∞

µP (AN ,XN/
√
N) = µP (a,b)

almost surely in the weak∗ topology, where a and b are freely independent self-
adjoint noncommutative random variables, µa = µ, and µb = ν0,1. As in the
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first model, Theorem 2.3 and Remark 2.1 show that, almost surely, the sequence
{P (AN , XN/

√
N)}∞N=1 converges strongly in distribution to P (a, x) provided that

p = 0.
Our main result applies, of course, to the case in which p > 0. Let YN be either

BN or XN/
√
N . The set of outliers of P (AN , YN ) is calculated from the spikes

θ1, . . . , θp using Voiculescu’s matrix subordination function [52]. When YN = BN ,
we also show that the eigenvectors associated to these outlying eigenvalues have
projections of computable size onto the eigenspaces of AN corresponding to the
spikes. The precise statements are Theorems 6.1 and 6.3. Sections 4 and 5 contain
the necessary tools from operator-valued noncommutative probability theory while
Sections 7–10 are dedicated to the proofs of the main results.

4. Linearization

As in [4, 13], we use linearization to reduce a problem about a polynomial in
freely independent, or asymptotically freely independent, random variables, to a
problem about the addition of matrices having these random variables as entries.
Suppose that P ∈ C〈X1, . . . , Xk〉. For our purposes, a linearization of P is a linear
polynomial of the form

zα⊗ 1− L,
where z is a complex variable, and

L = γ0 ⊗ 1 + γ1 ⊗X1 + · · ·+ γk ⊗Xk,

with α, γ0, . . . , γk ∈ Mn(C) for some n ∈ N, and the following property is satis-
fied: given z ∈ C and elements a1, . . . , ak in a C∗-algebra A, z − P (a1, . . . , ak)
is invertible in A if and only if zα ⊗ 1 − L(a1, . . . , ak) is invertible in Mn(A).
Usually, this is achieved by ensuring that (zα ⊗ 1 − L)−1 exists as an element of
Mn(C〈X1, . . . , Xk〉〈(z−P )−1〉) and (z−P )−1 is one of the entries of the (zα⊗ 1−
L)−1. It is known (see, for instance, [42]) that every polynomial has a linearization.
See [29] for earlier uses of linearization in free probability.

In the following we also say, more concisely, that L is a linearization of P . We
also suppress the unit of the algebra A when there is no risk of confusion. For
instance, we may write zα− L in place of zα⊗ 1− L.

We describe in some detail a linearization procedure from [4] (see also [34]) that
has several advantages. In this procedure, we always have α = e1,1, where e1,1

denotes the matrix whose only nonzero entry equals 1 and occurs in the first row
and first column. Given P ∈ C〈X1, . . . , Xk〉, we produce an integer n ∈ N and a
linear polynomial L ∈Mn(C〈X1, . . . , Xk〉) of the form

L =

[
0 u
v Q

]
,

such that u ∈ M1×(n−1)(C〈X1, . . . , Xk〉), v ∈ M(n−1)×1(C〈X1 . . . , Xk〉), Q is an
invertible matrix in Mn−1(C〈X1, . . . Xk〉) whose inverse is a polynomial of degree
less than or equal to the degree of P , and uQ−1v = −P . Moreover, if P = P ∗, the
coefficients of L can be chosen to be selfadjoint matrices in Mn(C).

The construction proceeds by induction on the number of monomials in the
given polynomial. If P is a monomial of degree 0 or 1, we set n = 1 and L = P . If
P = Xi1Xi2Xi3 · · ·Xi`−1

Xi` , where ` ≥ 2 and i1, . . . , i` ∈ {1, . . . , k}, we set n = `
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and

L = −


0 0 · · · 0 Xi1

0 0 · · · Xi2 −1
...

...
...

...
...

0 Xi`−1
· · · 0 0

Xi` −1 · · · 0 0

 .
As noted in [34], the lower right (`−1)× (`−1) corner of this matrix has an inverse
of degree ` − 2 in the algebra M`−1(C〈X1, . . . , Xk〉). (The constant term in this
inverse is a selfadjoint matrix and its spectrum is contained in {−1, 1}.) Suppose
now that p = P1 + P2, where P1, P2 ∈ C〈X1, . . . , Xk〉, and that linear polynomials

Lj =

[
0 uj
vj Qj

]
∈Mnj (C〈X1, . . . , Xk〉), j = 1, 2,

with the desired properties have been found for P1 and P2. Then we set n =
n1 + n2 − 1 and observe that the matrix

L =

 0 u1 u2

v1 Q1 0
v2 0 Q2

 =

[
0 u
v Q

]
∈Mn1+n2−1(C〈X1, . . . Xk〉).

is a linearization of P1 + P2 with the desired properties. The construction of a
linearization is now easily completed for an arbitrary polynomial. Suppose now
that P is a selfadjoint polynomial, so P = P0 + P ∗0 for some other polynomial P0.
Suppose that the matrix [

0 u0

v0 Q0

]
.

of size n0 is a linearization of P0. Then we set n = 2n0 − 1 and observe that the
selfadjoint linear polynomial 0 u0 v∗0

u∗0 0 Q∗0
v0 Q0 0

 =

[
0 u
u∗ Q

]
linearizes P . It is easy to verify inductively that this construction produces a
matrix Q such that the constant term of Q−1 has spectrum contained in {1,−1}.
These properties of Q [34], and particularly the following observation, facilitate our
analysis.

Lemma 4.1. Let P ∈ C〈X1, . . . , Xk〉, and let

L =

[
0 u
v Q

]
∈Mn(C〈X1, . . . , Xk〉)

be a linearization of P as constructed above. There exist a permutation matrix
T ∈ Mn−1 and a strictly lower triangular matrix N ∈ Mn−1(C〈X1, . . . , Xk〉) such
that Q−1 = T (1n−1 +N).

Proof. We show that there exist a permutation matrix T0 ∈ Mn−1 and a strictly
lower triangular matrix permutation matrices N0 ∈ Mn−1(C〈X1, . . . , Xk〉) such

that Q = (1n−1 − N0)T0. Then we can define T = T−1
0 and N =

∑n−2
j=1 N

j
0 . The
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existence of T0 and N0 is proved by following inductively the construction of L. If
P = Xi1 · · ·Xi` , ` ≥ 2, we define

T0 =

0 · · · 1
...

...
...

1 · · · 0

 ,
and let the only nonzero entries of N0 be Xi2 , . . . , Xi` just below the main diagonal.
If P = P1 +P2, and linearizations for P1 and P2 have been found, then the desired
matrices are obtained simply by taking direct sums of the matrices corresponding
to P1 and P2. The case in which P = P0 + P ∗0 is treated similarly (different
factorizations must be used for Q0 and Q∗0). �

Lemma 4.2. Suppose that P ∈ C〈X1, . . . , Xk〉, and let

L =

[
0 u
v Q

]
∈Mn(C〈X1, . . . , Xk〉)

be a linearization of P with the properties outlined above. Then for every N ∈ N,
and for every S1, . . . , Sk ∈MN (C), we have

det(ze1,1 ⊗ IN − L(S1, . . . , Sk)) = ±det(zIn − P (S1, . . . , Sk)),

where the sign is det(Q(S1, . . . , Sk)). Moreover,

dim ker(zIn − P (S1, . . . , Sk)) = dim ker(ze1,1 ⊗ IN − L(S1, . . . , Sk)) z ∈ C.

Proof. Suppressing the variables S1, . . . , Sk, we have[
1 −uQ−1

0 1n−1

] [
z −u
−v −Q

] [
1 0

−Q−1v 1n−1

]
=

[
z − P 0

0 −Q

]
, z ∈ C.

Lemma 4.1 implies that detQ(S1, . . . , Sk) is±1 and the determinant identity follows
immediately. The dimension of the kernel of a square matrix does not change if the
matrix is multiplied by some other invertible matrices. Also, since Q is invertible,
the kernel of the matrix on the right hand side of the last equality is easily identified
with ker(z − P ). The last assertion follows from these observations. �

In the case of selfadjoint polynomials, applied to selfadjoint matrices, we can
estimate how far ze1,1 − L is from not being invertible.

Lemma 4.3. Suppose that P = P ∗ ∈ C〈X1, . . . , Xk〉, and let

L =

[
0 u∗

u Q

]
∈Mn(C〈X1, . . . , Xk〉)

be a linearization of P with the properties outlined above. There exist polynomials
T1, T2 ∈ C[X1, . . . , Xk] with nonnegative coefficients with the following property:
given arbitrary selfadjoint elements S1, . . . , Sk in a unital C∗-algebra A, and given
z0 ∈ C such that z0 − P (S) is invertible, we have∥∥(z0e1,1 − L(S))−1

∥∥ ≤ T1 (‖S1‖, . . . , ‖Sk‖)
∥∥(z0 − P (S))−1

∥∥+ T2 (‖S1‖, . . . , ‖Sk‖) .

In particular, given two real constants C, δ > 0, there exists ε > 0 such that
dist(z0, σ(P (S))) ≥ δ and ‖S1‖+· · ·+‖Sk‖ ≤ C imply dist(0, σ(z0e1,1−L(S))) ≥ ε.
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Proof. For every element a of a C∗-algebra, we have dist(0, σ(a)) ≥ 1/‖a−1‖.
Equality is achieved, for instance, if a = a∗. A matrix calculation (in which we
suppress the variables S) shows that

(z0e1,1 − L)−1 =

[
1 0

−Q−1u 1n−1

] [
(z0 − P )−1 0

0 −Q−1

] [
1 −u∗Q−1

0 1n−1

]
.

The lemma follows now because the entries of u(S), u∗(S), and Q(S)−1 are poly-
nomials in S, and

‖(z0 − P (S))−1‖ = 1/dist(z0, σ(P (S)))

because P (S) is selfadjoint. �

The dependence on L in the above lemma is given via the norms of Q−1 and of
u. Since limz→∞ ‖(ze1,1 − L(S))−1‖ 6= 0, we see that T2 6= 0.

5. Subordination

Consider a von Neumann algebra M endowed with a normal faithful tracial
state τ , let B ⊂ N ⊂ M be unital von Neumann subalgebras, and denote by
EN : M → N the unique trace-preserving conditional expectation of M onto N
(see [46, Proposition V.2.36]). Denote by H+(M) the operator upper-half plane of
M: H+(M) = {x ∈ M : =x := (x − x∗)/2i > 0}. Given two arbitrary selfadjoint
elements c, d ∈ M, we define the open set Gc,d,B,N to consist of those elements
β ∈ B such that β − (c + d) is invertible and EN ((β − (c + d))−1) is invertible as
well. Then the function

ωc,d,B,N : Gc,d,B,N →M
defined by

(5.1) ωc,d,B,N (β) = c+ [EN ((β − (c+ d))−1)]−1, β ∈ Gc,d,B,N ,

is analytic. This equation can also be written as

(5.2) EN ((β − (c+ d))−1) = (ωc,d,B,N (β)− c)−1 β ∈ Gc,d,B,N .

Properties (1), (2), and (3) in the following lemma are easy observations, while (4)
follows as in [10, Remark 2.5].

Lemma 5.1. Fix B ⊂ N ⊂M and c, d ∈M as above. Then:

(1) The set Gc,d,B,N is selfadjoint.
(2) ωc,d,B,N (β∗) = ωc,d,B,N (β)∗, β ∈ Gc,d,B,N .
(3) H+(B) ⊂ Gc,d,B,N and ωc,d,B,N (H+(B)) ⊂ H+(N ).
(4) =(ωc,d,B,N (β)) ≥ =(β), β ∈ H+(B).

There is one important case in which ωc,d,B,N takes values in B, and thus (5.2)
allows us to view ωc,d,B,N |H+(B) as a subordination function in the sense of Lit-
tlewood. Denote by G0

c,d,B,N the connected component of Gc,d,B,N that contains

H+(B). The following basic result is from [48].

Theorem 5.2. With the above notation, suppose that c and d are free over B and
N = B〈c〉 is the unital von Neumann generated by B and c. Then

ωc,d,B,N (G0
c,d,B,N ) ⊂ B.
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In our applications, the algebra B is (isomorphic to) Mn(C) for some n ∈ N.
More precisely, let M be a von Neumann algebra endowed with a normal faithful
tracial state τ , and let n ∈ N. Then Mn(C) can be identified with the subalgebra
Mn(C) ⊗ 1 of Mn(M) = Mn(C) ⊗M. Moreover, Mn(M) is endowed with the
faithful normal tracial state trn ⊗ τ = (1/n)Trn ⊗ τ , and IdMn(C) ⊗ τ is the trace-
preserving conditional expectation from Mn(M) to Mn(C). The following result is
from [37].

Proposition 5.3. LetM be a von Neumann algebra endowed with a normal faithful
tracial state τ , let c, d ∈ M be freely independent, let n be a positive integer, and
let γ1, γ2 ∈Mn(C). Then γ1 ⊗ c and γ2 ⊗ d are free over Mn(C).

We show next how the spectrum of P (c, d) relates with the functions ω defined
above. Thus, we fix P = P ∗ ∈ C〈X1, X2〉 and a linearization L = γ0⊗1+γ1⊗X1 +
γ2 ⊗X2 of P as constructed in Section 4. Thus, γ0, γ1, γ2 ∈Mn(C) are selfadjoint
matrices for some n ∈ N. (Clearly γ1 6= 0 unless P ∈ C〈X2〉.) Then we consider the
random variables γ1⊗ c and γ2⊗ d in Mn(M), the algebra B = Mn(C) ⊂Mn(M),
and N = Mn(C〈c〉); clearly B ⊂ N ⊂Mn(M). We set

G = G0
γ1⊗c,γ2⊗d,B,N

and

ω = ωγ1⊗c,γ2⊗d,B,N : G → N .
Thus,

EN
[
(β ⊗ 1− γ1 ⊗ c− γ2 ⊗ d)−1

]
= (ω(β)⊗ 1− γ1 ⊗ c)−1, β ∈ G.

The left hand side of this equation is defined if β = ze11 − γ0 for some z ∈ C \
σ(P (c, d)), so it would be desirable that ze11 − γ0 ∈ G for such values of z. This
is not true except for special cases. (One such case applies to P = X1 + X2 if d
is a semicircular variable free from c [16, 9].) The following lemma offers a partial
result.

Lemma 5.4. With the notation above, there exists k > 0 depending only on L,
‖c‖, and ‖d‖ such that ze1,1 − γ0 ∈ G if |z| > k. The analytic function u(z) =
ω(ze1,1 − γ0) satisfies the equation u(z) = u(z)∗ for |z| > k.

Proof. Define an analytic function F : C \ σ(P (c, d))→ N by

(5.3) F (z) = EN
[
((ze11 − γ0)⊗ 1− γ1 ⊗ c− γ2 ⊗ d)−1

]
, z ∈ C \ σ(P (c, d)).

We show that F (z) is invertible if |z| is sufficiently large. Suppressing the variables
c and d from the notation, it follows from the factorization used in the proof of
Lemma 4.2 that

F (z) = EN

[
(z − P )−1 −(z − P )−1u∗Q−1

−Q−1u(z − P )−1 Q−1u(z − P )−1u∗Q−1 −Q−1

]
.

Moreover, because of the matrix structure of N , this matrix can be obtained by
applying EC〈c〉 entrywise. According to the Schur complement formula, a matrix[
A B
C D

]
is invertible if both A and D−BA−1C are invertible. For our matrix, we

have A = A(z) = EC〈c〉((z − P )−1). The fact that ‖zA(z)− 1‖ < 1 for |z| > 2‖P‖
implies that A(z) is invertible. Next, we see that ‖(z − P )−1‖ and ‖A(z)−1‖ are
comparable to 1/|z| and |z|, respectively. Using these estimates, one sees also that
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lim|z|→∞ ‖B(z)A(z)−1C(z)‖ = 0, so the invertibility of F (z) would follow from the
invertibility of D(z) for large |z|. Since

lim
|z|→∞

‖D(z) + EMn−1(C〈c〉)(Q
−1)‖ = 0,

we only need to verify that EMn−1(C〈c〉)(Q
−1) is invertible. Write Q−1 = T (1n−1 +

N) as in Lemma 4.1. We have

EMn−1(C〈c〉)(Q
−1) = T (1n−1 + EMn−1(C〈c〉)(N)),

and EMn−1(C〈c〉)(N) is strictly lower triangular. The invertibility of EMn−1(C〈c〉)(Q
−1)

follows. The quantities ‖D(z) + EMn−1(C〈c〉)(Q
−1)‖ and ‖Q−1‖ can be estimated

using only L, ‖c‖, and ‖d‖, and this shows that k can be chosen as a function of
these objects. The last assertion of the lemma is immediate. �

The estimates in the preceding proof apply, by virtue of continuity, to nearby
points in Mn(C). We record the result for later use.

Corollary 5.5. Let c, d and k be as in Lemma 5.4 and let z ∈ C \ [−k, k]. Then
there exist a constant k′ > 0 and a neighborhood W of ze1,1 − γ0, depending only
on ‖c‖, ‖d‖, and L, such that V ⊂ G and ‖ω(β)‖ ≤ k′ for β ∈W .

In some cases of interest, the analytic function u extends to the entire upper
and lower half-planes. We recall that a function v defined in a domain G ⊂ C with
values in a Banach space X is said to be meromorphic if, for every z0 ∈ G, the
function (z − z0)nv(z) is analytic in a neighborhood of z0 for sufficiently large n.
For instance, if X is a finite dimensional Banach algebra and h : G → X is an
analytic function such that h(z) is invertible for some z ∈ G, then the function
v(z) = h(z)−1 is meromorphic in G. This fact follows easily once we identify X
with an algebra of matrices, so the inverse can be calculated using determinants.

Lemma 5.6. The function u defined in Lemma 5.4 is meromorphic in C\σ(P (c, d)).

Proof. The lemma follow immediately from the observation preceding the statement
applied to the function F defined in (5.3) which is analytic in C\σ(P (c, d)) since, by
hypothesis and by Theorem 5.2, u takes values in a finite dimensional algebra. �

The conclusion of the preceding lemma applies, for instance, when M = MN ⊗
L∞(Ω) with the usual trace trN ⊗ E. This situation arises in the study of random
matrices. The function u is also meromorphic provided that c and d are free random
variables and N = Mn(C)〈γ1 ⊗ c〉. Since γ1 6= 0, we have N = Mn(C〈c〉).

Lemma 5.7. If c and d are free and N = Mn(C)〈γ1 ⊗ c〉, then the function
u defined in Lemma 5.4 is meromorphic in C \ σ(P (c, d)) with values in Mn(C).
Moreover, given an arbitrary λ ∈ σ(c), the function (u−λγ1)−1 extends analytically
to C \ σ(P (c, d)).

Proof. Theorem 5.2 shows that ω takes values in Mn(C). We have established that
the domain G of ω contains z⊗e11−γ0 for sufficiently large |z|. Fix a character χ of
the commutative C∗-algebra C〈c〉 and denote by χn : Mn(C)〈γ1⊗ c〉 →Mn(C) the
algebra homomorphism obtained by applying χ to each entry. Using the notation
(5.3), we have

(ω(z ⊗ e11 − γ0)− γ1 ⊗ χ(c))χn(F (z)) = In
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for sufficiently large |z|. It follows immediately that the function

u1(z) = γ1 ⊗ χ(c) + [χn(F (z))]−1

is a meromorphic continuation of u to C \ σ(P (c, d)). Moreover, the equation

(5.4) (u1(z)− γ1 ⊗ c)F (z) = In

holds for large values |z| and hence it holds on the entire domain of analyticity of
u1. It follows that G contains z⊗ e11− γ0 whenever z ∈ C \σ(P (c, d)) is not a pole
of u1, and ω(z⊗ e11− γ0) = u1(z) for such values of z. To verify the last assertion,
choose χ such that χ(c) = λ and apply χn to (5.4) to obtain

(u1(z)− λγ1)χn(F (z)) = In.

Thus χn ◦ F is an analytic extension of (u− λγ1)−1 to C \ σ(P (c, d)). �

6. Main results and example

Fix a polynomial P = P ∗ ∈ C〈X1, X2〉 and choose, as in Section 4, a linearization
of P of the form ze1,1−L, where L = γ0⊗1+γ1⊗X1 +γ2⊗X2 ∈Mn(C〈X1, X2〉).
In particular, γ0, γ1, γ2 ∈Mn(C) are selfadjoint matrices.

Suppose that {AN}N∈N and {BN}N∈N are two sequences of selfadjoint random
matrices satisfying the hypotheses (A1)–(A3) and (B0)–(B2) of Section 3. As noted
earlier, the pairs (AN , BN ) in MN (C) converge almost surely in distribution to a
pair (a, b) of freely independent selfadjoint random variables in a C∗-probability
space (A, τ) such that µa = µ and µb = ν. By Theorem 5.2, there exists a selfadjoint
open set G ⊂Mn(C), and an analytic function ω : G →Mn(C) such that

(ω(β)⊗ 1− γ1 ⊗ a)−1 = EMn(C〈a〉)
[
(β ⊗ 1− (γ1 ⊗ a+ γ2 ⊗ b))−1

]
, β ∈ G.

As shown in Lemma 5.7, the map

u(z) = ω(z ⊗ e1,1 − γ0)

is meromorphic on C \ σ(P (a, b)). Define a new function

u0(z) = (u(ze1,1 − γ0) + iIn)−1.

It follows from Lemma 5.1 that u0 continues analytically to a neighbourhood of
R \ σ(P (a, b)). (Indeed, u0 is bounded near every pole of u.) Define

Hj(z) = det[(θjγ1 + i)u0(z)− In], j = 1, . . . , p

and denote by mj(t) the order of t as a zero of Hj(z) at z = t. Also set m(t) =
m1(t)+ · · ·+mp(t) for t ∈ R\σ(P (a, b)), and note that {t : m(t) 6= 0} is an isolated
set in R \ σ(P (a, b)). With this notation, we are ready to state our first main
result. The notation EAN indicates the spectral measure of the matrix AN , that
is, EAN (S) is the orthogonal projection onto the linear span of the eigenvectors of
A corresponding to eigenvalues in the Borel set S.

Theorem 6.1. (1) Suppose that t ∈ R \ σ(P (a, b)). Then there exists δ0 > 0 such
that for every δ ∈ (0, δ0), almost surely for large N , the random matrix P (AN , BN )
has exactly m(t) eigenvalues in the interval (t− δ, t+ δ), counting multiplicity.

(2) Suppose in addition that the spikes of AN are distinct and detHi0(t) = 0.
Then, for ε small enough, almost surely
(6.1)

lim
N→∞

∥∥EAN ({θi})
[
EP (AN ,BN )((t− ε, t+ ε))− δi,i0Ci(t)IN

]
EAN ({θi})

∥∥ = 0,
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where Ci(t) = limz→t(z − t)
[
(u(z)− θiγ1)−1

]
1,1

is the residue of the meromorphic

function
[
(u(z)− θiγ1)−1

]
1,1

at z = t.

Remark 6.2. If we know in addition that ω is analytic at the point β = te1,1−γ0,
then the function Hj(z) can be replaced by z 7→ det[θjγ1−u(z)]. In that case, m(t)
is equal to the multiplicity of t as a zero of

z 7→
p∏
j=1

det[θjγ1 − u(z)].

This situation arises, for instance, when b is a semicircular variable and it is relevant
when BN is replaced by a Wigner matrix XN/

√
N . Under the hypotheses (X0)−

(X3) of Section 3, we obtain the following result. Note that the subordination
function ω has the more explicit form

ω(β) = β − γ2(IdMn(C) ⊗ τ)
[
(β ⊗ 1A − γ1 ⊗ a− γ2 ⊗ b)−1

]
γ2, β ∈ G.

Theorem 6.3. Let a and b be free selfadjoint elements in a C∗-probability space
(A, τ) with distribution µ and ν0,1 respectively (see (2.3)), t ∈ R\σ(P (a, b)), and let
m(t) be defined as in Remark 6.2. Then, for sufficiently small ε, almost surely for

large N , there are exactly m(t) eigenvalues of P (AN , XN/
√
N) in an ε-neighborhood

of t.

Remark 6.4. The subordination function can be calculated more explicitly if µ =
δ0 (and hence a = 0). In this case,

ω(β) =
{

(IdMn(C) ⊗ τ)
[
(w ⊗ 1− γ2 ⊗ b)−1

]}−1
.

As an illustration, consider the random matrix

M = AN
XN√
N

+
XN√
N
AN +

X2
N

N
,

where XN is a standard G.U.E. matrix of size N (thus, each entry of XN has unit
norm in L2(Ω)) and

AN = Diag(θ, 0, . . . , 0), θ ∈ R \ {0}.

In this case, AN has rank one, and thus µ = δ0. It follows that the limit spectral
measure ρ of M is the same as the limit spectral measure of X2

N/N . Thus, η is the
Marchenko-Pastur distribution ρ with parameter 1:

dη(x) =

√
(4− x)x

2πx
1(0,4)(x) dx.

The polynomial P is P (X1, X2) = X1X2 + X2X1 + X2
2 , µ = δ0, and ν is the

standard semi-circular distribution. An economical linearization of P is provided
by L = γ0 ⊗ 1 + γ1 ⊗X1 + γ2 ⊗X2, where

γ0 =

0 0 0
0 0 −1
0 −1 0

 , γ1 =

0 0 1
0 0 0
1 0 0

 , γ2 =

0 1 1
2

1 0 0
1
2 0 0

 .
Denote by

Gη(z) =

∫ 4

0

1

z − t
dη(t) =

z −
√
z2 − 4z

2z
, z ∈ C \ [0, 4]
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the Cauchy transform of the measure η. (The branch of the square root is cho-

sen so
√
z2 − 4z > 0 for z > 4.) This function satisfies the quadratic equa-

tion zGη(z)2 − zGη(z) + 1 = 0. Suppose now that x /∈ [0, 4]. Denoting by
E = IdM3(C) ⊗ τ : M3(A) → M3(C) the usual expectation and using Remark 6.4,
we have

ω(xe1,1 − γ0) = E
[
(xe1,1 − γ0 − γ2 ⊗ b)−1

]−1
, x ∈ R \ [0, 4].

The inverse of (xe1,1− γ0)⊗ 1− γ2⊗ b is then calculated explicitly and application
of the expected value to its entries yields eventually

ω(xe11 − γ0) =


1

Gη(x) 0 0

0 1
xGη(x) − 1 1

2xGη(x) + 1
2

0 1
2xGη(x) + 1

2
1

4xGη(x) −
1
4

 .
After calculation, the equation det[γ1θ − ω(xe11 − γ0)] = 0 reduces to

(6.2) θ2Gη(x)2 − (1−Gη(x)) = 0.

This equation has two solutions, namely

2θ4

−(3θ2 + 1)±
√

4θ2 + 1(θ2 + 1)
,

one of which is negative. The positive solution belongs to [4,+∞) precisely when

|θ| >
√

2. Thus, the matrix MN exhibits one (negative) outlier when 0 < |θ| ≤
√

2

and two outliers (one negative and one > 4) when |θ| >
√

2. The second situation
is illustrated by the simulation presented in Figure 1.

7. Outline of the proofs

We consider first the matricial model (3.1), that is, ZN = P (AN , BN ), where
AN and BN are independent and the distribution of BN is invariant under unitary
conjugation. As seen in [23, Proposition 6.1], BN can be written asBN = UNDNU

∗
N

almost surely, where UN is distributed according to the Haar measure on the unitary
group U(N), DN is a diagonal random matrix, and UN is independent from DN .
As pointed out in [36, Section 3, Assertion 2], it suffices to prove Theorem 6.1
under the assumption that AN and DN are constant selfadjoint matrices that can
be taken to be diagonal in the standard basis. Thus, we work with

AN = Diag(λ1(AN ), . . . , λN (AN ))

and

BN = UNDNU
∗
N , DN = Diag(λ1(DN ), . . . , λN (DN ))

where λj(AN ) = θj , 1 ≤ j ≤ p, and UN is uniformly distributed in U(N).

Similarly, the proof for the second model ZN = P (AN , XN/
√
N) reduces to the

special case in which AN is a constant matrix.
Choose a linearization L of P as in Section 4. In the spirit of [14], the first

step in the proofs of Theorems 6.1 and 6.3 consists of reducing the problem to the
convergence of random matrix function FN of fixed size np, involving the generalized
resolvent of the linearization applied to ZN . For the first model, this convergence
is established in Section 8 by extending the arguments of [11] and making use of
the properties of the operator-valued subordination function described in Section
5. For the second model, the convergence of FN is obtained in Section 10 via a



OUTLYING EIGENVALUES OF A POLYNOMIAL IN LARGE RANDOM MATRICES 15

Eigenvalue Distribution, Theta = 10, Dim = 1000
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Figure 1. One sample from the model described in remark 6.4
corresponding to θ = 10, with matrix size N = 1000.

comparison with the G.U.E. case. The case in which XN is a G.U.E. is, of course,
a particular case of the unitarily invariant model.

8. Expectations of matrix-valued random analytic maps

As seen earlier in this paper, it suffices to prove Theorem 6.1 in the special case in
which the matrix AN is constant and BN is a random unitary conjugate of another
constant matrix. In this section, we establish some useful ingredients specific to this
situation. We fix sequences {CN}N∈N and {DN}N∈N, where CN , DN ∈ MN (C),
and a sequence {UN}N∈N of random matrices such that UN is uniformly distributed
in the unitary group U(N). We also fix a selfadjoint polynomial P ∈ C〈X1, X2〉
and a selfadjoint linearization

L = γ0 ⊗ 1 + γ1 ⊗X1 + γ2 ⊗X2 ∈Mn(C〈X1, X2〉)
of P as in Section 4. The random variables cN = CN ⊗ 1Ω and dN = UNDNU

∗
N

are viewed as elements of the noncommutative probability space (MN , τN ), where
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MN = MN (C) ⊗ L∞(Ω) and τN = trN ⊗ E. For every N ∈ N we consider the
elements γ1⊗cN , γ2⊗dN ∈Mn(C)⊗MN , and the algebras BN = Mn(C)⊗IN and
NN = Mn(C) ⊗MN (C), both identified with subalgebras of Mn(C) ⊗MN . The
conditional expectation ENN : Mn(C) ⊗MN → NN is simply the expected value
and it is accordingly denoted E. We use the notation

GN = Gγ1⊗cN ,γ2⊗dN ,BN ,NN , ωN = ωγ1⊗cN ,γ2⊗dN ,BN ,NN .

Recall that GN consists of those matrices β ∈ Mn(C) with the property that β −
γ1 ⊗ cN − γ2 ⊗ dN is invertible in Mn(C)⊗MN and E((β − γ1 ⊗ cN − γ2 ⊗ dN )−1)
is invertible in NN . In particular, if β ∈ GN then the matrix β − γ1 ⊗ CN − γ2 ⊗
V DNV

∗ is invertible for every V ∈ U(N). The set GN is open and it contains
H+(Mn(C)). According to Lemma 5.6 and the remarks following it, the function
uN (z) = ωN (ze1,1 − γ0) is meromorphic in C \ σ(P (cN , dN )).

For simplicity of notation, we write

(8.1) RN (β) = (β − γ1 ⊗ cN − γ2 ⊗ dN )−1, β ∈ GN ,

and observe that RN (β) is an element of Mn(C) ⊗ MN (C) ⊗ L∞(Ω), that is, a
random matrix of size nN . We also write

(8.2) RN (V, β) = (β − γ1 ⊗ CN − γ2 ⊗ V DNV
∗)−1, β ∈ GN , V ∈ U(N),

for sample values of this random variable. The function ωN is given by

(8.3) ωN (β) = γ1 ⊗ CN + (E(RN (β)))−1, β ∈ GN .

We start by showing that the matrix ωN (β) has a block diagonal form, thus
extending [11, Lemma 4.7]. We recall that the commutant and double commutant
of a set S ⊂ Mm(C) are denoted by S′ and S′′, respectively. We use the fact that
Mn(C) ⊗ S′′ = (In ⊗ S′)′. If S = {CN} then {CN}′′ is the linear span of the

matrices {IN , CN , . . . , CN−1
N }. In particular, every eigenvector of CN is a common

eigenvector for the elements of {CN}′′.
For each N ∈ N, we select an eigenbasis {f (1)

N , . . . , f
(N)
N } for the operator CN

and denote by λ
(j)
N the corresponding eigenvalues, that is, CNf

(j)
N = λ

(j)
N f

(j)
N . We

write P
(j)
N = f

(j)
N ⊗ f (j)∗

N ∈ MN (C) for the orthogonal projection onto the space

generated by f
(j)
N , j = 1, . . . , N . Thus, the double commutant {CN}′′ is contained

in the linear span of {P (j)
N : j = 1, . . . , n}.

We write [x, y] = xy−yx for the commutator of two elements x, y in an algebra.

Lemma 8.1. For every β ∈ GN we have:

(1) E(RN (β)) ∈ Mn(C)⊗ {CN}′′. In particular, there exist analytic functions

ω
(j)
N : GN →Mn(C), j = 1, . . . , N , such that

ωN (β) =

N∑
j=1

ω
(j)
N (β)⊗ P (j)

N , β ∈ GN .

(2) For every Z ∈MN (C),

[E(RN (β)), In ⊗ Z] = E(RN (β)[γ1 ⊗ CN , In ⊗ Z]RN (β)).

Proof. The first assertion in (1) follows from an application of (2) to an arbitrary
matrix Z ∈ {CN}′ and from the fact that Mn(C) ⊗ {CN}′′ = (In ⊗ {CN}′)′. The
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second assertion follows because we also have γ1⊗CN ∈Mn(C)⊗{CN}′′. To prove
(2), observe that the analytic map

H(W ) = E
(
(β ⊗ IN − (γ1 ⊗ cN + γ2 ⊗ eiW dNe−iW ))−1

)
is defined for W in an open neighbourhood of the set of selfadjoint matrices in
MN (C). The unitary invariance of dN implies that H(W ) = E(R(β)) if W is self-
adjoint. Since the selfadjoint matrices form a uniqueness set for analytic functions,
we conclude that H is constant on an open subset of MN (C) containing the self-
adjoint matrices. Given an arbitrary Z ∈ MN (C), we conclude that the function
ε 7→ H(εZ) is defined and constant for ε ∈ C with |ε| sufficiently small. Differentiate
with respect to ε and set ε = 0, we obtain

E(RN (β)[In ⊗ Z, (γ2 ⊗ dN )]RN (β)) = 0.

The equality

RN (β)(γ2 ⊗ dN ) = RN (β)(β ⊗ IN − γ1 ⊗ CN )− In ⊗ IN ,

applied in the relation above, yields (2). �

The following result is simply a reformulation of Lemma 8.1 that emphasizes

the fact that the functions β 7→ (ω
(j)
N (β)−λ(j)

N γ1)−1 extend holomorphically to the
open set {β ∈MN (C) : β − γ1 ⊗ cN − γ2 ⊗ dN is invertible}.

Corollary 8.2. We have

(In ⊗ P (j)
N )E(RN (β))(In ⊗ P (j)

N ) = (ω
(j)
N (β)− λ(j)

N γ1)−1 ⊗ P (j)
N , j = 1, . . . , N,

for every β ∈ GN such that ωN (j)(β)− λ(j)
N γ1 is invertible.

It is useful to rewrite assertion (2) of Lemma 8.1 as follows:

[ωN (β), In ⊗ Z] = (E(RN (β)))−1E
(

(RN (β)− E(RN (β)))

× (γ1 ⊗ [Z,CN ])(RN (β)− E(RN (β)))
)

(E(RN (β)))−1.(8.4)

This is analogous to [11, (4.10)] and the derivation is practically identical. Relation

(8.4) allows us to estimate the differences between the matrices ω
(j)
N (β) once we con-

trol the differences RN (β)−E(RN (β)). For this purpose, we use the concentration
of measure result in [3, Corollary 4.4.28]. This requires estimating the Lipschitz
constant of the map V 7→ RN (V, β) (see (8.2)) in the Hilbert-Schmidt norm. We
use the notation ‖T‖2 = Trm(T ∗T ) for the Hilbert-Schmidt norm of an arbitrary
matrix T ∈Mm(C).

Lemma 8.3. Suppose that N ∈ N and β ∈ GN . Then

‖RN (V, β)−RN (W,β)‖2 ≤ 2r2‖γ2‖2‖DN‖‖V −W‖2, V,W ∈ U(N),

where r = ‖RN (β)‖Mn(C)⊗MN
.

Proof. A simple calculation shows that

RN (V, β)−RN (W,β) = RN (V, β)[γ2 ⊗ (WDNW
∗ − V DNV

∗)]RN (W,β).

Next we see that

WDNW
∗ − V DNV

∗ = (W − V )DNW
∗ + V DN (W ∗ − V ∗),
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and thus

‖WDNW
∗ − V DNV

∗‖2 ≤ 2‖DN‖‖W − V ‖2.

Use now the equality ‖T ⊗ S‖2 = ‖T‖2‖S‖2 to deduce that

‖RN (V, β)−RN (W,β)‖2
≤ ‖RN (V, β)‖‖γ2‖2‖WDNW

∗ − V DNV
∗‖2‖RN (W,β)‖

≤ 2‖γ2‖2‖DN‖‖RN (V, β)‖‖RN (W,β)‖‖V −W‖2.

The lemma follows from this estimate. �

Proposition 8.4. Suppose that sup{‖DN‖ : N ∈ N} < +∞, β ∈
⋂
N∈N GN , and

moreover,

r = sup{‖RN (β)‖Mn(C)⊗MN
: N ∈ N} < +∞.

Let XN , YN ∈ Mn ⊗MN be matrices of norm one and rank uniformly bounded by
m ∈ N. Then:

(1) Almost surely,

(8.5) lim
N→∞

‖XN (RN (β)− E(RN (β)))YN‖ = 0.

(2) There exists k > 0 such that

(8.6) E(‖XN (RN (β)− E(RN (β)))YN‖2) ≤ k

N
r4, N ∈ N.

In particular, there exists a dense countable subset Λ ⊂
⋂
N∈N GN such that almost

surely, (8.5) holds for any β ∈ Λ.

Proof. An arbitrary operator of rank m can be written as a sum of m operators of
rank one (with the same or smaller norm). Thus we may, and do, restrict ourselves
to the case in which the operators XN and YN are projections of rank 1. In this
case, XNRN (V, β)YN is a scalar multiple of a fixed operator of rank one and Lemma
8.3 shows that this function satisfies a Lipschitz estimate. This estimate, combined
with [3, Corollary 4.4.28], shows that

P(‖XN (RN (β)− E(RN (β)))YN‖ > ε) ≤ 2 exp
( −Nε2

8r4‖γ2‖2‖DN‖2
)

for every ε > 0 and every α ∈ (0, 1/2). The hypothesis implies that the last
denominator has a bound independent of N . Part (1) of the lemma follows from

this inequality, while (2) follows from the formula E(|Z|) =
∫ +∞

0
P(|Z| > t) dt, valid

for arbitrary random variables Z. �

Remark 8.5. While Proposition 8.4 was formulated for β ∈
⋂
N∈N GN , the hy-

pothesis r < +∞ (and therefore the conclusion of the proposition) is also satisfied
in the following cases:

(1) =β > 0 with r ≤ ‖(=β)−1‖;
(2) β = ze1,1 − γ0 with z ∈ C+ ∪ C−, by an estimate provided by Lemma 4.3;
(3) β = xe1,1 − γ0 with x ∈ R, by the same estimate provided that

|x| > sup{‖P (cN , dN )‖Mn(C)⊗MN
: N ∈ N}.
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Corollary 8.6. Under the assumptions of Proposition 8.4 suppose that we also
have sup{‖CN‖ : N ∈ N} < +∞, and set

t = sup{‖P (cN , dN )‖Mn(C)⊗MN
: N ∈ N}.

Let K ⊂ C \ [−t, t] be a compact set. Then, almost surely, the functions

z 7→ ‖XN (RN (ze1,1 − γ0)− E(RN (ze1,1 − γ0)))YN‖
converge to zero uniformly on K as N → +∞.

Proof. According to Proposition 8.4 and Remark 8.5(2) and (3), almost surely, for
every z ∈ C \ [−t, t] such that =z ∈ Q and <z ∈ Q, we have pointwise convergence
to zero. A second application of Remark 8.5 yields uniform bounds on K for all
of these functions, and this implies uniform convergence because the resolvents
involved are analytic in z. �

We apply the concentration results just proved to operators XN and YN , of the

form In⊗P (j)
N , where {P (j)

N : j = 1, . . . , N} are the projections used in Lemma 8.1.

The rank of In ⊗ P (j)
N is equal to n.

Proposition 8.7. Suppose that sup{‖CN‖ + ‖DN‖ : N ∈ N} < +∞, and let
β ∈

⋂
N∈N GN be such that

r = sup{‖RN (β)‖Mn(C)⊗MN
: N ∈ N} < +∞

and
r′ = sup{‖(E(RN (β)))−1‖ : N ∈ N} < +∞.

Then supN∈NN‖ωN (β)− ω(1)
N (β)⊗ IN‖ < +∞.

Proof. The conclusion of the propostion is equivalent to

max
j∈{2,...,N}

‖ω(j)
N (β)− ω(1)

N (β)‖ = O(1/N)

as N → +∞. Fix j ∈ {2, . . . , N} and set ZN = fj ⊗ f∗1 ∈ MN (CN ). Thus, ZN is
an operator of rank one such that ZNh = 〈h, f1〉fj for every h ∈ CN . We have

[ωN (β), In ⊗ ZN ] = (ω
(j)
N (β)− ω(1)

N (β))⊗ ZN
= (In ⊗ P (j)

N )((ω
(j)
N (β)− ω(1)

N (β))⊗ ZN )(In ⊗ P (1)
N )

and, similarly,

[CN , ZN ] = (λ
(j)
N − λ

(1)
N )ZN = P

(j)
N (λ

(j)
N − λ

(1)
N )ZNP

(1)
N .

Next, we apply (8.4) and use the fact that I ⊗P (j)
N commutes with E(RN (UN , β)).

Setting XN = In ⊗ P (k)
N , YN = In ⊗ P (1)

N , we obtain

(ω
(j)
N (β)− ω(1)

N (β))⊗ ZN = (λ
(j)
N − λ

(1)
N )(E(RN (β)))−1

× E(XN (RN (β)− E(RN (β)))XN (γ1 ⊗ ZN )YN (RN (β)− E(RN (β)))YN )

× (E(RN (β)))−1.

Since ‖ZN‖ = 1, an application of the Cauchy-Schwarz inequality leads to the
following estimate:

‖ω(j)
N (β)− ω(1)

N (β)‖ ≤ |λ(j)
N − λ

(1)
N |‖(E(RN (β)))−1‖2‖γ1‖

× E(‖XN (RN − E(RN (β)))XN‖2)1/2E(‖YN (RN − E(RN (β)))YN‖2)1/2.
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We have |λ(j)
N − λ

(1)
N | ≤ 2‖CN‖ and the product of the last two factors above is

estimated via (8.6) by kr4/N with k independent of N . Thus,

‖ω(j)
N (β)− ω(1)

N (β)‖ ≤ 2k‖CN‖r′2‖γ1‖r4/N ≤ k′/N,
with k′ independent of j and N . The lemma follows. �

In the probability model we consider, the sequences {CN}N∈N and {DN}N∈N
are uniformly bounded in norm and, in addition, the sequences {µCN }N∈N and
{µDN }N∈N converge weakly to µ and ν, respectively. We denote by (a, b) a pair of
free random variables in some C∗-probability space (M, τ) such that the sequence
{(cN , dN )}N∈N converges in distribution to (a, b). We also set

G = Gγ1⊗a,γ2⊗b,Mn(C),Mn(C〈a〉), ω = ωγ1⊗a,γ2⊗b,Mn(C),Mn(C〈a〉).

In other words, ω is the usual matrix subordination function associated to the pair
(γ1 ⊗ a, γ2 ⊗ b).

Proposition 8.8. Suppose that sup{‖CN‖ + ‖DN‖ : N ∈ N} < +∞ and that the
sequence {(cN , dN )}N∈N converges to (a, b) in distribution. Let D ⊂ G∩

⋂
n∈N GN be

a connected open set containing H+(Mn(C)) and such that the sequence of functions
{‖ωN‖}N∈N is locally uniformly bounded on D. Then

lim
N→∞

‖ωN (β)− ω(β)⊗ IN‖ = 0, β ∈ D.

Proof. By hypothesis, the analytic functions {ω(1)
N }N∈N form a normal family on

D. By Proposition 8.7, it suffices to prove that every subsequential limit of this

sequence equals ω. Suppose that {ω(1)
Nk
}k∈N converges on D to a function ω̃. Fix

β ∈ H+(Mn(C)) such that =β > sup{‖CN‖+ ‖DN‖ : N ∈ N}. Then

E(RN (β)) = (ω
(1)
N (β)⊗ IN − γ1 ⊗ CN +O(1/N))−1

= (ω
(1)
N (β)⊗ IN − γ1 ⊗ CN )−1 +O(1/N)

=

∞∑
m=0

(ω
(1)
N (β)−1)(γ1ω

(1)
N (β)−1)m ⊗ CmN +O(1/N),

and thus

(IdMn(C)⊗ trN )(E(RN (β))) =

∞∑
m=0

(ω
(1)
N (β)−1)(γ1ω

(1)
N (β)−1)m · trN (CmN ) +O(1/N).

Setting N = Nk, letting k → +∞, and observing that the series on the right is
uniformly dominated, we conclude that

lim
k→∞

(IdMn(C) ⊗ trNk)(E(RNk(β))) =

∞∑
m=0

(ω̃(β)−1)(γ1ω̃(β)−1)m · τ(am)

= (IdMn(C) ⊗ τ)((ω̃(β)− γ1 ⊗ a)−1).

The fact that the pairs (CN , DN ) converge to (a, b) implies that

lim
k→∞

(IdMn(C) ⊗ trNk)(E(RNk(β))) = (IdMn(C) ⊗ τ)((β − γ1 ⊗ a− γ2 ⊗ b)−1)

= (IdMn(C) ⊗ τ)((ω(β)− γ1 ⊗ a)−1)

Thus, we obtain the equality

(IdMn(C) ⊗ τ)((ω(β)− γ1 ⊗ a)−1) = (IdMn(C) ⊗ τ)((ω̃(β)− γ1 ⊗ a)−1),
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and this easily yields ω̃(β) = ω(β). Since D is connected, we must have ω̃ = ω,
thus concluding the proof. �

Corollary 5.5 implies the following result.

Corollary 8.9. Suppose that s := sup{‖CN‖ + ‖DN‖ : N ∈ N} < +∞ and the
sequence {(cN , dN )}N∈N converges to (a, b) in distribution. Let k = max{k, s},
where k is the constant provided by Lemma 5.4. Then, for every z ∈ C \ [−k, k], we
have ze1,1 − γ0 ∈ G ∩

⋂
N∈N GN and

lim
N→∞

‖ωN (ze1,1 − γ0)− ω(ze1,1 − γ0)⊗ IN‖ = 0.

The preceding results combine to yield convergence results for sample resolvents.
For the following statement, it is useful to identify Cm with a subspace of CN if
m < N and to denote by {f1, . . . , fN} the standard basis in CN . Thus, we have
fj ∈ Cm provided that j ≤ m.

Proposition 8.10. Suppose that sup{‖CN‖ + ‖DN‖ : N ∈ N} < +∞ and that
the sequence {(cN , dN )}N∈N converges to (a, b) in distribution. Suppose also that

CN is diagonal in the standard basis, that is, CNfj = λ
(j)
N fj, j = 1, . . . N , and that

p ∈ N is such that the limits λ(j) = limN→∞ λ
(j)
N exist for j = 1, . . . , p. Denote by

PN : CN → Cp the orthogonal projection onto Cp, N ≥ p. Let D ⊂ G∩
⋂
N∈N GN be

a connected open set containing H+(Mn(C)) and such that the sequence of functions
{‖ωN‖}N∈N is locally uniformly bounded on D. Then almost surely

lim
N→∞

(In ⊗ PN )RN (β)(In ⊗ PN ) = (ω(β)⊗ Ip − γ1 ⊗ diag(λ(1), . . . , λ(p)))−1

in the norm topology for every β ∈ D.

Proof. By Proposition 8.4, it suffices to show that the conclusion holds with E(RN (β))
in place of RN (β). We observe that

(In ⊗ PN )E(RN (β))(In ⊗ PN ) =

p∑
j=1

(ω
(j)
N (β)− λ(j)

N γ1)−1 ⊗ P (j)
N ,

so the desired conclusion follows from Proposition 8.8. �

We observe for use in the following result that there exists a domain D as in the
above statement such that ze1,1 − γ0 ∈ D for every z ∈ C+.

When the convergence of (CN , UNDNU
∗
N ) to (a, b) is strong, the preceding result

extends beyond H+(Mn(C)). In this case, σ(P (CN , UNDNU
∗
N )) converges almost

surely to σ(P (a, b)) and thus the sample resolvent RN (UN , ze1,1 − γ0) is defined
almost surely for large N even for z ∈ R \ σ(P (a, b)). We also recall that the
function

(ω(ze1,1 − γ0)− λγ1)−1

extends analytically to C \ σ(P (a, b)) if λ ∈ σ(a). These analytic extensions are
used in the following statement.

Proposition 8.11. Under the hypothesis of Proposition 8.10, suppose that the pairs
{(CN , UNDNU

∗
N )}N∈N converge strongly to (a, b). Then almost surely

lim
N→∞

(In ⊗ PN )RN (β)(In ⊗ PN ) = (ω(β)⊗ Ip − γ1 ⊗ diag(λ(1), . . . , λ(p)))−1

for β = ze1,1 − γ0, z ∈ C \ σ(a, b). The convergence is uniform on compact subsets
of C \ σ(P (a, b)).



22 SERBAN T. BELINSCHI, HARI BERCOVICI, AND MIREILLE CAPITAINE

Proof. Strong convergence implies that λ(j) ∈ σ(a) for j = 1, . . . , p, so the functions
(ω(ze1,1−γ0)−λ(j)γ1)−1 extend analytically to R\σ(P (a, b)). LetO ⊂ C\σ(P (a, b))
be a connected open set containing {z}∪C+ which is at a strictly positive distance
from C \ σ(P (a, b)). We prove that the conclusion of the proposition holds for
UN (ξ) provided that ξ ∈ Ω is such that the conclusion of Corollary 8.6 holds and
σ(P (CN , V DNV

∗)) ⊂ R\O for V = UN (ξ) and sufficiently large N . By hypothesis,
the collection of such points ξ ∈ Ω has probability 1. Lemma 4.3 shows that the
family of functions ‖RN (UN (ξ), ze1,1 − γ0)‖ is locally uniformly bounded on O
for large N . By Montel’s theorem, we can conclude the proof by verifying the
conclusions of the proposition for β = ze1,1 − γ0 with z ∈ C+. For such values of
z, the result follows from Proposition 8.10. �

9. The unitarily invariant model

In this section we prove Theorem 6.1 under the additional condition that AN
is a constant matrix and BN is a random unitary conjugate of another constant
matrix. We may, and do, assume that for N ≥ p, AN is diagonal in the standard

basis {f1, . . . , fN} with eigenvalues θ1, . . . , θp, λ
(p+1)
N , . . . λ

(N)
N and, as before, BN =

UNDNU
∗
N . Then the random matrices aN = AN ⊗ 1Ω and dN = UNDNU

∗
N are

viewed as elements of the noncommutative probability space MN (C)⊗L∞(Ω). We
fix free selfadjoint random variables (a, b) in some tracial W ∗-probability space
such that the pairs (aN , dN ) converge in distribution to (a, b) as N → ∞. This
convergence is not strong because of the spikes θ1, . . . , θp. As in [11], we consider
closely related pairs (cN , dN ) that do converge strongly to (a, b). Namely, we set
cN = CN ⊗ 1Ω, where CN is diagonal in the standard basis of CN with eigenvalues

λ
(1)
N , . . . , λ

(N)
N that coincide with those of AN except that λ

(1)
N = · · · = λ

(p)
N = s is

an arbitrary (but fixed for the remainder of this section) element of supp(µ). For
N ≥ p, the difference ∆N = AN − CN can then be written as ∆N = P ∗NTPN ,
where T ∈ Mp(C) is the diagonal matrix with eigenvalues θ1 − s . . . , θp − s and
PN : CN → Cp is the orthogonal projection.

According to Lemma 4.2, ker(tIN−P (AN , BN )) and ker(te1,1⊗IN−L(AN , BN )))
have the same dimension for every t ∈ R. Setting β = ze1,1−γ0, strong convergence
of the pairs cN , dN implies that almost surely the sample resolvent RN (UN , β) is
defined for sufficiently large N if z ∈ C\σ(P (c, d)). (We continue using the notation
introduced in (8.1), (8.2), and (8.3).) We need to consider the matrix

β ⊗ IN − γ1⊗AN − γ2 ⊗BN = β ⊗ IN − γ1 ⊗ CN − γ2 ⊗BN − γ1 ⊗∆N

= (In ⊗ IN − (γ1 ⊗∆N )RN (UN , β))(β ⊗ IN − γ1 ⊗ CN − γ2 ⊗BN ),

since the order of t ∈ R as a zero of its determinant equals dim ker(tIN−P (AN , BN )),
and hence the number of eigenvalues of P (AN , BN ) in a neighborhood V of a given
t ∈ R \ σ(P (a, b)) is the number of zeros of this determinant in V . Thus, we need
to consider the zeros in V of

det(In ⊗ IN − (γ1 ⊗∆N )RN (UN , β)).

Using Sylvester’s identity (det(Ir −XY ) = det(Ip − Y X) if X is an r × p matrix
and Y is a p× r matrix) and the fact that ∆N = P ∗NTPN , this determinant can be
rewritten as

FN (UN , β) = det(In ⊗ Ip − (γ1 ⊗ T )(In ⊗ PN )RN (UN , β)(In ⊗ P ∗N )).



OUTLYING EIGENVALUES OF A POLYNOMIAL IN LARGE RANDOM MATRICES 23

At this point, we observe that the hypothesis of Proposition 8.11 are satisfied with
λ(1) = · · · = λ(p) = s. We conclude that almost surely

lim
n→∞

FN (UN , β) = F (β), β = ze1,1 − γ0, z /∈ σ(P (a, b)),

where

F (β) = det(In ⊗ Ip − (γ1(ω(β)− sγ1)−1)⊗ T ),

and the convergence is uniform on compact sets. The limit F (ze1,1 − γ0) is a
(deterministic) analytic function on C \ σ(P (a, b)). An application of Hurwitz’s
theorem on zeros of analytic functions (see [1, Theorem 5.2]) yields the following
result.

Proposition 9.1. Suppose that t1, t2 ∈ R, t1 < t2, [t1, t2] ⊂ R \ σ(P (a, b)),
F (tje1,1− γ0) 6= 0 for j = 1, 2, and the function F (ze1,1− γ0) has at most one zero
t in the interval (t1, t2). Then, almost surely for large N , the matrix P (AN , BN )
has exactly m eigenvalues in the interval [t1, t2], where m is the order of t as a zero
of F (ze1,1 − γ0) and m = 0 if this function does not vanish on [t1, t2].

Part(1) of Theorem 6.1 is a reformulation of Proposition 9.1. To see that this is
the case, we observe that T is a diagonal matrix and thus the matrix

In ⊗ Ip − (γ1(ω(ze1,1 − γ0)− sγ1)−1)⊗ T

is block diagonal with diagonal blocks

Gj,s(z) = In − (θjγ1 − sγ1)(ω(ze1,1 − γ0)− sγ1)−1, j = 1, . . . , p.

If det(Gj,s(z)) has a zero of order mj at t then the number m in the statement is
m1 + · · ·+ mp. We recall that Gj,s is analytic on C \ σ(P (a, b)) but ω(ze1,1 − γ0)
is only meromorphic. It is not immediately apparent that the number mj does not
depend on s but this is a consequence of the following result.

Lemma 9.2. Suppose that α1, α2 ∈ Mn(C) are such that (ω(ze1,1 − γ0) − αk)−1

extends analytically to t for k = 1, 2. Then the order of t as a zero of

det(In − (θjγ1 − αk)(ω(ze1,1 − γ0)− αk)−1)

does not depend on k.

Proof. An easy calculation shows that

In−(θjγ1−αk)(ω(ze1,1−γ0)−αk)−1 = (ω(ze1,1−γ0)−sγ1)(ω(ze1,1−γ0)−αk)−1.

The desired conclusion follows if we prove that the function

H(z) = (ω(ze1,1 − γ0)− α1)(ω(ze1,1 − γ0)− α2)−1

is analytic and invertible at z = t. We have

H(z) = In + (α2 − α1)(ω(ze1,1 − γ0)− α2)−1

and

H(z)−1 = In + (α1 − α2)(ω(ze1,1 − γ0)− α1)−1,

so the analyticity and invertibility of H follow from the hypothesis. �
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We proceed now to Part(2) of Theorem 6.1. Thus, assumptions (A1–A3) and
(B0–B2) are in force and, in addition, the spikes θ1, . . . , θp are distinct. In partic-
ular, sup{‖CN‖+ ‖DN‖ : N ∈ N} < +∞.

If S ⊂ R is a Borel set and A ∈ MN (C) is a selfadjoint operator, then EA(S)
denotes the orthogonal projection onto the linear span of the eigenvectors of A
corresponding to eigenvalues in S. For instance, under the hypotheses of Part(2) of
Theorem 6.1, EAN ({θj}) is a projection of rank one for j = 1, . . . , p. If h : R→ C is a
continuous function, then h(A) denotes the usual functional calculus for selfadjoint
matrices. Thus, if Ax = tx for some t ∈ R and x ∈ CN , then h(A)x = h(t)x.

Fix t ∈ R \ σ(P (a, b)) and ε > 0 small enough. We need to show that, almost
surely,

(9.1) lim
N→∞

TrN
[
EAN ({θi})EP (AN ,BN )((t− ε, t+ ε))

]
= δi,i0Ci(t).

Choose δ > 0 and N0 ∈ N such that [θj − δ, θj + δ] ∩ σ(AN ) = {θj}, for N ≥ N0

and j = 1, . . . , p. Pick infinitely differentiable functions fj : R→ [0, 1] supported in
[θj−δ, θj+δ] such that fj(θj) = 1, j = 1, . . . , p. Also pick an infinitely differentiable
function h : R → [0, 1] supported in (t − ε, t + ε) such that h is identically 1 on
[t−ε/2, t+ε/2]. Then part (1) of Theorem 6.1 implies that, almost surely for large
N , we have

EAN ({θj})EP (AN ,BN )((t− ε, t+ ε)) = fj(AN )h(P (AN , BN )).

In anticipation of a concentration inequality, we prove a Lipschitz estimate for
the functions gN,j : U(N)→MN (C) defined by

gN,j(V ) = TrN (fj(AN )h(P (AN , V DNV
∗))), V ∈ U(N), j = 1, . . . , p.

Lemma 9.3. There exists k > 0, independent of N , such that

|gN,j(V )− gN,j(W )| ≤ k‖V −W‖2, V,W ∈ U(N), j = 1, . . . , p.

Proof. Given a Lipschitz function u : U(N) → MN (C), we denote by Lip(u) the
smallest constant c such that

‖u(V )− u(W )‖2 ≤ c‖V −W‖2, V,W ∈ U(N),

and we set ‖u‖∞ = sup{‖u(V )‖ : v ∈ U(N)}. If u1, u2 : U(N) → MN (C) are two
Lipschitz functions, then Lip(u1 + u2) ≤ Lip(u2) + Lip(u1) and

Lip(u1u2) ≤ ‖u1‖∞Lip(u2) + Lip(u1)‖u2‖∞.

Since the functions V 7→ V and V 7→ V ∗ are Lipschitz with constant 1, we de-
duce immediately that the map V 7→ P (AN , V DNV

∗) is Lipschitz with constant
bounded independently of N . It is well-known that a Lipschitz function f : R→ R
is also Lipschitz, with the same constant, when viewed as a map on the selfadjoint
matrices with the Hilbert-Schmidt norm (see for instance, [18, Lemma A.2]). The
function h is infinitely differentiable with compact support, hence Lipschitz. We
deduce that the map V 7→ h(P (AN , V DNV

∗)) is Lipschitz with constant bounded
independently of N . Finally, we have

|gN,j(V )− gN,j(W )| ≤ ‖fj(AN )‖2‖h(P (AN , V DNV
∗))− h(P (AN ,WDNW

∗))‖2,

and the lemma follows because ‖fj(AN )‖2 = 1. �
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An application of [3, Corollary 4.4.28] yields

P (|gN,j(UN )− E(gN,j(UN ))| > η) ≤ 2 exp

(
−η

2N

4k2

)
, η > 0, j = 1, . . . , p,

and the Borel-Cantelli lemma shows that, almost surely,

(9.2) lim
N→∞

(gN,j(UN )− E(gN,j(UN ))) = 0, j = 1, . . . , p.

The expected value in (9.2) is estimated using [18, Lemma 6.3] and the fact that
fj(AN ) is the projection onto the jth coordinate. If we set rN (z) = (zIN −
P (AN , BN ))−1 and R̃N (ze1,1 − γ0) = ((ze1,1 − γ0)⊗ IN − L(AN , BN ))−1, z ∈ C+,
then

E(gN,j(UN )) = − lim
y↓0

1

π
=
∫
R
E(TrN (fj(AN )rN (ξ + iy))h(ξ) dξ

= − lim
y↓0

1

π
=
∫
R
E(rN (ξ + iy)j,j)h(ξ) dξ.(9.3)

The construction of the linearization L (Section 4) is such that the matrix R̃N (ze1,1−
γ0), viewed as an n × n block matrix, has rN (z) as its (1, 1) entry. By Proposi-
tions 8.4(1) and 8.10 (with AN in place of CN ) and the unitary invariance of the
distribution of BN , for z ∈ C+ the matrices

(In ⊗ PN )E(R̃N (ze1,1 − γ0))(In ⊗ PN )∗

converge as N →∞ to the block diagonal matrix with diagonal entries

(ω(ze1,1 − γ0)− θjγ1)−1.

It follows that

lim
N→∞

E((rN (z))j,j) = ((ω(ze1,1 − γ0)− θjγ1)−1)1,1.(9.4)

We intend to let N →∞ in (9.3) using (9.4), so we consider the differences

∆j,N (z) = ((ω(ze1,1 − γ0)− θjγ1)−1)1,1 − E(rN (z)j,j).

By Corollary 5.5, these functions are defined on C\[−k, k] for some k > 0 and satisfy

∆j,N (z) = ∆j,N (z). We claim that there exists a sequence {vN}N∈N ⊂ (0,+∞)
such that limN→∞ vN = 0 and

(9.5) |∆j,N (z)| ≤ vN
(

1 +
1

(=z)2

)
, z ∈ C+.

To verify this claim, we observe first [2] that the function E(rN (z)j,j) is the Cauchy-
Stieltjes transform of a Borel probability measure σN,j on R. Since

sup{‖P (AN , BN )‖ : N ∈ N} <∞,

the measures {σN,j}N∈N have uniformly bounded supports. Now, (9.4) shows that
the Cauchy-Stieltjes transform of any accumulation point of this sequence of mea-
sures is equal to ((ω(ze1,1 − β0) − θjβ1)−1)1,1. It follows that this sequence has
a weak limit σj that is a Borel probability measure with compact support. The
existence of the sequence {vN}N∈N follows from [11, Lemma 4.1] applied to the
signed measures ρN = σN,i − σi.
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We use (9.5), (9.3), and the Lemma from [20, Appendix] to obtain

lim
N→∞

E(gN,j(UN )) = − lim
N→∞

lim
y↓0

1

π
=
∫
R
E(rN (ξ + iy)j,j)h(ξ) dξ

= lim
N→∞

lim
y↓0

1

π
=
∫
R

∆j,N (ξ + iy)h(ξ) dξ

− lim
y↓0

1

π
=
∫
R
((ω((ξ + iy)e1,1 − γ0)− θjγ1)−1)1,1h(ξ) dξ

= − lim
y↓0

1

π
=
∫
R

((ω((ξ + iy)e1,1 − γ0)− θjγ1)−1)1,1h(ξ) dξ.(9.6)

The choice of h, and the fact that

u(z) = ((ω(ze1,1 − γ0)− θjγ1)−1)1,1

is analytic and real-valued on the intervals [t− ε, t− ε/2] and [t+ ε/2, t+ ε], imply
that the last line in (9.6) can be rewritten as

lim
y↓0

1

π

∫ t− ε2

t−ε
=(u(ξ + iy))h(ξ) dξ + lim

y↓0

1

π

∫ t+ε

t+ ε
2

=(u(ξ + iy))h(ξ) dξ

− lim
y↓0

1

π

∫ t+ ε
2

t− ε2
=(u(ξ + iy)) dξ

= lim
y↓0

1

2πi

∫ t+ ε
2

t− ε2
u(ξ + iy) dξ − lim

y↓0

1

2πi

∫ t+ ε
2

t− ε2
u(ξ − iy) dξ.(9.7)

Recall (see, for instance, [1, Chapter 4]) that if f is an analytic function on a simply
connected domain D, except for an isolated singularity a, then 1

2πi

∫
γ
f(z) dz =

n(γ, a)Resz=af(z). Here γ is a closed Jordan path in D not containing a, n(γ, a) is
the winding number of γ with respect to a, and Resz=af(z) is that number R which
satisfies the condition that f(z) − R

z−a has vanishing period (called the residue of

f at a). Denote by Γy the rectangle with corners t ± (ε/2) ± iy and let γy be the
boundary of Γy oriented counterclockwise. The expression in (9.7) represents the
integral of u on the horizontal segments in γy. It is clear that the integral of u on
the vertical segments is O(y), and thus (9.6) implies the equality

lim
N→∞

E(gN,j(UN )) = lim
y↓0

1

2πi

∫
γy

u(z) dz = Resz=tu(z).

The alternative formula in Theorem 6.1 follows from the fact that u has a simple
pole at t because u maps C+ to C−.

10. The Wigner model

We proceed now to the proof of Theorem 6.3. The matrices AN are subject to
the hypotheses (A1–A3), while XN/

√
N and XN satisfies conditions (X0–X3). By

[36, Section 3, Assertion 2], it suffices to proceed under the additional hypothesis
that each AN is a constant matrix. The free variables a and b are such that b has
standard semicircular distribution ν0,1.

One consequence of the fact that b is a semicircular variable is that the function
ω is analytic on the entire set

{β ∈Mn(C) : β ⊗ 1− γ1 ⊗ a− γ2 ⊗ b is invertible.}
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This justifies the comment from Remark 6.2. We recall that in this special case the
subordination function is given by

ω(β) = β − γ2(IdMn(C) ⊗ τ)(β ⊗ 1− γ1 ⊗ a− γ2 ⊗ b)−1γ2.

Since the distribution of the random matrix XN is not usually invariant under
unitary conjugation, we can no longer assume that AN is diagonal in the stan-
dard basis {f1, . . . , fN}. There is however a (constant) unitary matrix VN ∈
MN (C) such that AN is diagonal in the basis {VNf1, . . . , VNfN} with eigenval-

ues θ1, . . . , θp, λ
(p+1)
N , . . . λ

(N)
N , N ≥ p. Viewing each realization of the random

matrices AN and XN/
√
N as elements of the noncommutative probability space

(MN (C), trN ), almost surely the pairs (AN , XN/
√
N) converge in distribution, but

not strongly, to (a, b) as N → ∞. A modification of AN provides almost surely

strongly convergent pairs (CN , XN/
√
N). Thus, let CN be diagonal in the basis

{VNf1, . . . , VNfN} with eigenvalues λ
(1)
N , . . . , λ

(N)
N that coincide with those of AN

except that λ
(1)
N = · · · = λ

(p)
N = s is an arbitrary (but fixed for the remainder of

this section) element of supp(µ). For N ≥ p, the difference ∆N = AN − CN can
then be written as ∆N = VNP

∗
NTPNV

∗
N , where T ∈ Mp(C) is the diagonal matrix

with eigenvalues θ1 − s . . . , θp − s and PN : CN → Cp is the orthogonal projec-

tion. Almost surely, the pairs (CN , XN/
√
N) converge strongly to (a, b) as shown

in [12, Theorem 1.2] and [23, Proposition 2.1]. We continue using the notation
introduced in (8.1) and (8.3) with cN = CN and dN = XN√

N
. The calculation in

Section 9 show that, almost surely, for N large enough, the number of eigenvalues
of P (AN , XN/

√
N) in a small enough neighborhood of t ∈ R \ σ(P (a, b)) is equal

to the number of zeros of FN (ze1,1 − γ0) in this neighborhood, where

FN (ze1,1 − γ0) = det(In ⊗ Ip − (γ1 ⊗ T )(In ⊗ PNV ∗N )RN (ze1,1 − γ0)(In ⊗ P ∗NVN ))

is a random analytic function. We focus on the study of the large N behavior of
the matrix function

(10.1) FN (β) = (In ⊗ PNV ∗N )RN (β)(In ⊗ VNP ∗N ).

We start with the special case in which XN is replaced by a standard G.U.E.. The
following proposition is a consequence of the results in Section 9. Thus, suppose
that (Xg

N )N∈N is a sequence of standard G.U.E. ensembles and we set RgN (β) =

(β ⊗ IN − L(CN , X
g
N/
√
N))−1, and

(10.2) FgN (β) = (In ⊗ PNV ∗N )RgN (β)(In ⊗ VNP ∗N ).

Proposition 10.1. We have

lim
N→∞

E(FgN (β)) = (ω(β)− sγ1)−1 ⊗ Ip

for every β ∈ H+(Mn(C)).

Proof. Since G.U.E. ensembles are invariant under unitary conjugation we may,
and do, assume that VN = IN for every N ∈ N. For every β ∈ H+(MN (C)) we
have

E(FgN (β)) = E(FgN (β)1‖XgN/
√
N‖≤3) + E(FgN (β)1‖XgN/

√
N‖>3),

and the second term is at most ‖(=β)−1‖P(‖Xg
N/
√
N‖ > 3). As shown by Bai and

Yin [6], this number tends to zero as N →∞. To estimate the first term, we recall

that Xg
N/
√
N = UNDNU

∗
N , where UN is a random matrix uniformly distributed in
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U(N) and DN is a random diagonal matrix, independent from UN , whose empiri-
cal spectral measure converges almost surely to ν0,1 as N →∞. Thus, we can write

E(FgN (β)1‖XgN/
√
N‖≤3)

=

∫
Ω

∫
Ω

(In ⊗ PN )RN ((ξ1, ξ2), β)(In ⊗ P ∗N ) dP(ξ1)1‖DN (ξ2)‖≤3 dP(ξ2),

RN ((ξ1, ξ2), β) := (β ⊗ IN − L(CN , UN (ξ1)DN (ξ2)Un(ξ1)∗))−1.

Proposition 8.10 can be applied for almost every ξ2 and it shows that∫
Ω

(In ⊗ PN )RN ((ξ1, ξ2), β)(In ⊗ P ∗N ) dP(ξ1)1‖DN (ξ2)‖≤3

converges to (ω(β)− sγ1)−1⊗ Ip. The proposition follows now from an application
of the dominated convergence theorem. �

Passing to arbitrary Wigner matrices requires an approximation procedure from
[12, Section 2]. For every ε > 0, there exist random selfadjoint matrices XN (ε) =
[(X(ε))ij ]1≤i,j≤N such that

(H1) the variables
√

2<Xij(ε),
√

2=Xij(ε), Xii(ε), i, j ∈ N, i < j, are inde-
pendent, centered with variance 1 and satisfy a Poincaré inequality with
common constant CPI(ε),

(H2) for every m ∈ N,

(10.3) sup
(i,j)∈N2

E (|Xij(ε)|m) < +∞,

and almost surely for large N , ∥∥∥∥XN −XN (ε)√
N

∥∥∥∥ ≤ ε.
Set

(10.4) RεN (β) = (β ⊗ IN − L(CN , XN (ε)/
√
N))−1

and

(10.5) FεN (β) = (In ⊗ PNV ∗N )RεN (β)(In ⊗ VNP ∗N )

for β ∈ H+(Mn(CN )). It readily follows that, almost surely for large N ,

(10.6) ‖FεN (β)−FN (β)‖ ≤ ε‖γ2‖‖(=β)−1‖2.
Properties (H1) and (H2) imply that, for every ε > 0,

∀(i, j) ∈ N2, κi,j,ε1 = 0, κi,j,ε2 = 1,

∀(i, j) ∈ N2, , i 6= j, κ̃i,j,ε1 = 0, κ̃i,j,ε2 = 1,

and for any m ∈ N \ {0},
(10.7) sup

(i,j)∈N2

|κi,j,εm | < +∞, sup
(i,j)∈N2

|κ̃i,j,εm | < +∞,

where for i 6= j, (κi,j,εm )m≥1 and (κ̃i,j,εm )m≥1 denote the classical cumulants of√
2<Xij(ε) and

√
2=Xij(ε) respectively, and (κi,i,εm )m≥1 denote the classical cu-

mulants of Xii(ε) (we set (κ̃i,i,εm )m≥1 ≡ 0).
We use the following notation for an arbitrary matrix M ∈Mn(C)⊗MN (C):

(10.8) M ij = (IdMn(C) ⊗ TrN ) (M (In ⊗ êj,i)) ∈Mn(C),
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and

Mij = (Trn ⊗ IdMN (C)) (M (ej,i ⊗ IN )) ∈MN (C),

where ej,i (resp. êj,i) denotes the n×n (resp. N×N) matrix whose unique nonzero
entry equals 1 and occurs in row j and column i.

Proposition 10.2. There exists a polynomial Pε in one variable with nonnegative
coefficients such that for all large N , for every v, u ∈ {1, . . . , N}, for every β ∈
H+(Mn(C)), and for every deterministic B

(1)
N , B

(2)
N ∈ Mn(C) ⊗MN (C) such that

‖B(1)
N ‖ ≤ 1 and ‖B(2)

N ‖ ≤ 1, we have

(10.9)
∥∥∥E(B

(1)
N RgN (β)B

(2)
N )vu − E(B

(1)
N RεN (β)B

(2)
N )vu

∥∥∥ ≤ 1√
N
Pε(‖(=β)−1‖),

and

(10.10) ‖E(FgN (β))− E(FεN (β))‖ ≤ 1√
N
Pε(
∥∥(=w)−1

∥∥).

The proof uses a well-known lemma.

Lemma 10.3. Let Z be a real-valued random variable such that E(|Z|p+2) < ∞.
Let φ : R→ C be a function whose first p+1 derivatives are continuous and bounded.
Then,

(10.11) E(Zφ(Z)) =

p∑
a=0

κa+1

a!
E(φ(a)(Z)) + η,

where κa are the cumulants of Z, |η| ≤ C supt |φ(p+1)(t)|E(|Z|p+2), and C only
depends on p.

Proof of Proposition 10.2. Following the approach of [38, Ch. 18 and 19] we intro-
duce the interpolation matrix Xε(α) = cosαXN (ε) + sinαYN , α ∈ [0, π/2], and the
corresponding resolvent

Rε,αN (β) = (β ⊗ IN − L(CN , Xε(α)/
√
N)−1, β ∈ H+(Mn(C)).

We have

B
(1)
N (ERgN (β)− ERεN (β))B

(2)
N =

∫ π/2

0

E
(
B

(1)
N

∂

∂α
Rε,αN (β)B

(2)
N

)
dα,

∂

∂α
Rε,αN (β) = Rε,αN (β)γ2 ⊗

(
cosα

Xg
N√
N
− sinα

XN (ε)√
N

)
Rε,αN (β).

Define a basis of the real vector space of selfadjoint matrices in MN (C) as follows:

ẽj,j = êj,j , 1 ≤ j ≤ N,

ẽj,k =:
1√
2

(êj,k + êk,j), 1 ≤ j < k ≤ N,

f̃j,k =:
i√
2

(êj,k − êk,j), 1 ≤ j < k ≤ N.
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In the following calculation, we write simply Rε,RN in place of Rε,αN (β) and Xg in
place of Xg

N :

∂

∂α
Rε,αN =

1√
N

N∑
k=1

(− sinαXkk(ε) + cosαXg
kk)Rε,αN β2 ⊗ ẽk,kRε,αN

+
1√
N

∑
1≤j<k≤N

(− sinα
√

2<Xjk(ε) + cosα
√

2<Xg
jk)Rε,αN γ2 ⊗ ẽj,kRε,αN

+
1√
N

∑
1≤j<k≤N

(− sinα
√

2=Xjk(ε) + cosα
√

2=Xg
jk)Rε,αN γ2 ⊗ f̃j,kRε,αN .

Next, we apply Lemma 10.3 with p = 3 for 1 ≤ k ≤ N , j < k, to each random
variable Z in the set

{
√

2<Xjk(ε),
√

2<Xg
jk,
√

2=Xjk(ε),
√

2=Xg
jk, Xkk(ε), Xg

kk, j < k}

and to each φ in the set

{Tr(B
(1)
N Rε,αN γ2 ⊗ ẽk,kRε,αN B

(2)
N eq,l ⊗ êu,v),Tr(B

(1)
N Rε,αN γ2 ⊗ ẽj,kRε,αN B

(2)
N eq,l ⊗ êu,v),

Tr(B
(1)
N Rε,αN γ2 ⊗ f̃j,kRε,αN B

(2)
N eq,l ⊗ êu,v) : 1 ≤ u, v ≤ N, 1 ≤ q, l ≤ m}.

Setting now B = B
(2)
N eq,l ⊗ êu,vB(1)

N , we have:

Tr
( ∂
∂α

Rε,αN B
)

=
C(α)

N
3
2

N∑
k=1

κk,k,ε3 Tr(Rε,αN γ2 ⊗ ẽk,kRε,αN γ2 ⊗ ẽk,kRε,αN γ2 ⊗ ẽk,kRε,αN B)

+
C(α)

N
3
2

∑
1≤j<k<N

κj,k,ε3 Tr(Rε,αN γ2 ⊗ ẽj,kRε,αN γ2 ⊗ ẽj,kRε,αN γ2 ⊗ ẽj,kRε,αN B)

+
C(α)

N
3
2

∑
1≤j<k<N

κ̃j,k,ε3 Tr(Rε,αN γ2 ⊗ f̃j,kRε,αN γ2 ⊗ f̃j,kRε,αN γ2 ⊗ f̃j,kRε,αN B)

+
C̃(α)

N2

N∑
k=1

κk,k,ε4 Tr(Rε,αN γ2 ⊗ ẽk,kRε,αN γ2 ⊗ ẽk,kRε,αN γ2 ⊗ ẽk,kRε,αN γ2 ⊗ ẽk,kRε,αN B)

+
C̃(α)

N2

∑
1≤j<k<N

κj,k,ε4 Tr(Rε,αN γ2 ⊗ ẽj,kRε,αN γ2 ⊗ ẽj,kRε,αN γ2 ⊗ ẽj,kRε,αN γ2 ⊗ ẽj,kRε,αN B)

+
C̃(α)

N2

∑
1≤j<k<N

κ̃j,k,ε4 Tr(Rε,αN γ2 ⊗ f̃j,kRε,αN γ2 ⊗ f̃j,kRε,αN γ2 ⊗ f̃j,kRε,αN γ2 ⊗ f̃j,kRε,αN ) + δ

= I1 + I2 + I3 + I4 + I5 + I6 + δ,

where

|δ| ≤ Cε

∥∥(=w)−1
∥∥6

√
N

,

for some Cε ≥ 0, while C(α) and C̃(α) are polynomials in cosα and sinα. In the
following, Cε may vary from line to line. It is clear that

|I1| ≤ Cε

∥∥(=β)−1
∥∥4

√
N

, and |I4| ≤ Cε

∥∥(=w)−1
∥∥5

N
.



OUTLYING EIGENVALUES OF A POLYNOMIAL IN LARGE RANDOM MATRICES 31

Next, I2 and I3 are a finite linear combinations of terms of the form
(10.12)
C(α)

N
3
2

∑
j,k∈E

Cj,k,εTrn(γ2(Rε,αN )
p1p2γ2(Rε,αN )

p3p4γ2(Rε,αN B
(2)
N )p5ueq,l(B

(1)
N Rε,αN )vp6),

where E is some subset of {1, . . . , N}2, Cj,k,ε ∈ {κj,k,ε3 , κ̃j,k,ε3 }, and (p1, . . . , p6) is a
permutation of (k, k, k, j, j, j). The two following cases hold:

• p5 = p6, in which case Lemma 11.1 yields

‖
∑
j,k∈E

Cj,k,εTrn(γ2(Rε,αN )
p1p2γ2(Rε,αN )

p3p4γ2(Rε,αN B
(2)
N )p5ueq,l(B

(1)
N Rε,αN )vp6)‖

≤ Cε‖γ2‖3‖(=β)−1‖2N
N∑
j=1

‖(B(1)
N Rε,αN )vj‖‖(Rε,αN B

(2)
N )ju‖

≤ Cε‖γ2‖3‖(=β)−1‖2N
( N∑
j=1

‖(B(1)
N Rε,αN )vj‖2

)1/2( N∑
j=1

‖(Rε,αN B
(2)
N )ju‖2

)1/2

≤ Cε ‖γ2‖3 ‖(=β)−1‖4nN.

• p5 6= p6, in which case Lemma 11.1 yields

‖
∑
j,k∈E

Cj,k,εTrn(γ2(Rε,αN )
p1p2γ2(Rε,αN )

p3p4γ2(Rε,αN B
(2)
N )p5ueq,l(B

(1)
N Rε,αN )vp6)‖

≤ Cε‖γ2‖3‖(=β)−1‖2
( N∑
k=1

‖(Rε,αN B
(2)
N )ku‖

)( N∑
j=1

‖(B(1)
N Rε,αN )vj‖

)

≤ CεN‖γ2‖3‖(=β)−1‖2
( N∑
k=1

‖(Rε,αN B
(2)
N )ku‖2

)1/2( N∑
j=1

‖(B(1)
N Rε,αN )vj‖2

)1/2

≤ CεnN ‖γ2‖3
∥∥(=β)−1

∥∥4
.

We see now that |Ij | ≤ Cε‖(=β)−1‖4/
√
N for j = 2, 3. Finally, I5 and I6 are finite

linear combinations of terms of the form
(10.13)

C̃(α)

N2

∑
j,k∈E

Cj,k,εTrn(γ2(Rε,αN )
p1p2γ2(Rε,αN )

p3p4γ2(Rε,αN )
p5p6γ2(Rε,αN B

(2)
N )p7ueq,l(B

(1)
N Rε,αN )vp8)

where E is some subset of {1, . . . , N}2, Cj,k,ε ∈ {κj,k,ε4 , κ̃j,k,ε4 } and (p1, . . . , p6) is
a permutation of (k, k, k, k, j, j, j, j). Lemma 11.1 shows that the norm of such a
term can be estimated by

1

N2
CεN‖γ2‖4‖(=β)−1‖4

( N∑
k=1

‖(Rε,αN B
(2)
N )ku‖

)
≤ 1

N2
CεN

3
2 ‖γ2‖4‖(=β)−1‖4

( N∑
k=1

‖(Rε,αN B
(2)
N )ku‖2

)1/2

≤ 1

N2
Cε
√
nN

3
2 ‖γ2‖4‖(=β)−1‖5.

It follows that |Ij | ≤ Cε
∥∥(=w)−1

∥∥5
/
√
N for j = 5, 6. The proposition follows. �
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We show next that FεN (β) is close to its expected value. This result uses con-
centration inequalities in the presence of a Poincaré inequality. We recall that
if the law of a random variable X satisfies the Poincaré inequality with constant
C and α ∈ R \ {0}, then the law of αX satisfies the Poincaré inequality with
constant α2C. Moreover, suppose that the probability measures µ1, . . . , µr on R
satisfy the Poincaré inequality with constants C1, . . . , Cr respectively. Then the
product measure µ1⊗· · ·⊗µr on Rr satisfies the Poincaré inequality with constant
C = max{C1, . . . , Cr}. That is, if f : Cr → R is an arbitrary differentiable function
such that f and its gradient gradf are square integrable relative to µ1 ⊗ · · · ⊗ µr,
then

V(f) ≤ C
∫
Rr
‖gradf‖22dµ1 ⊗ · · · ⊗ µr.

Here V(f) =
∫
|f −

∫
f dµ1 ⊗ · · · ⊗ µr|2 dµ1 ⊗ · · · ⊗ µr (see [28, Theorem 2.5]).

We use the following concentration result (see [3, Lemma 4.4.3 and Exercise
4.4.5] or [32, Chapter 3]).

Lemma 10.4. Let P be a probability measure on Rr which satisfies a Poincaré
inequality with constant C. Then there exist K1 > 0 and K2 > 0 such that, for
every Lipschitz function F on Rr with Lipschitz constant |F |Lip, and for every
ε > 0, we have

P (|F − EP(F )| > ε) ≤ K1 exp
(
− ε

K2

√
C|F |Lip

)
.

The following result is similar to Proposition 8.4(1).

Proposition 10.5. Suppose that TN , SN ∈ MN (C) are contractions of uniformly
bounded rank. Given ε > 0 and β ∈ H+(Mn(C)), almost surely

lim
N→∞

‖(In ⊗ TN )(RεN (β)− ERεN (β))(In ⊗ SN )‖ = 0.

Proof. As in the proof of Proposition 8.4, it suffices to consider the case in which
TN and SN are contractions of rank 1. Write In as a sum Q1 + · · ·+Qn of rank 1
projections. Then the norm in the statement is at most equal to

n∑
j,k=1

‖(Qj ⊗TN )(RεN (β)−ERεN (β))(Qk⊗SN )‖ =

n∑
j,k=1

|Tr(RεN (β)−ERεN (β))Qj,k|,

where each Qj,k is a contraction of rank 1. Given a selfadjoint matrix ZN ∈MN (C),
we set R(Z, β) = (β ⊗ IN − L(CN , Z))−1 and fN,j,k(Z) = TrR(Z, β)Qj,k. We have

fN (Z1)− fN (Z2) = Tr(R(Z1, β)(γ2 ⊗ (Z1 − Z2))R(Z2, β)Qj,k),

and thus

|fN (Z1)− fN (Z2)| ≤ ‖γ2 ⊗ (Z1 − Z2)‖2‖R(Z1, β)Qj,kR(Z2, β)‖2
≤ ‖γ2‖2‖(Z1 − Z2)‖2‖(=β)−1‖2.

An application of Lemma 10.4 and of the comment preceding it yield

P(|Tr(RεN (β)− ERεN (β))Qj,k| > δ) ≤ 2 exp(−CN1/2‖(=β)−1‖−2δ)

for every δ > 0, with a constant C that does not depend in N, j, or k. The
proposition follows by an application of the Borel-Cantelli lemma. �
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Corollary 10.6. For every β ∈ H+(Mn(C)) and every ε > 0 we have, almost
surely,

(10.14) lim
N→∞

FεN (β)− E(FεN (β)) = 0.

Observe now that

FN (β)−(ω(β)− sγ1)−1 ⊗ Ip = FN (β)−FεN (β) + FεN (β)− E(FεN (β))

+ E(FεN (β))− E(FgN (β)) + E(FgN (β))− (ω(β)− sγ1)−1 ⊗ Ip.
We let N → ∞ and then ε → 0 and apply (10.6), (10.14), Proposition 10.2, and
Proposition 10.1 to obtain the following result.

Theorem 10.7. For every β ∈ H+(Mn(C)) we have, almost surely, when N goes
to infinity, limN→∞ FN (β) = (ω(β)− sγ1)−1 ⊗ Ip.

Everything is now in place for completing the argument.

Proof of Theorem 6.3. We noted earlier that ω(ze1,1−γ0) is analytic in C\σ(P (a, b)).
For fixed t ∈ R \ σ(P (a, b)), set Ψ(β) = β ⊗ 1 − L(a, b) and ΨN (β) = β ⊗ 1 −
L(CN , XN/

√
N). According to Lemma 4.2, Ψ(te1,1 − γ0) is invertible, and thus

there exists δ > 0 such that

(10.15) d(0, σ(Ψ(te1,1 − γ0))) ≥ δ > 0.

Theorem 2.3 and Proposition 2.2 imply that, almost surely, for every complex
polynomial Q in one variable we have

lim
N→∞

‖Q(ΨN (te1,1 − γ0)‖ = ‖Q(Ψ(te1,1 − γ0))‖.

Asymptotic freeness implies that almost surely, for every complex polynomial Q in
one variable,

lim
N→∞

(trn ⊗ trN )(Q(ΨN (te1,1 − γ0))) = (trn ⊗ τ)(Q(Ψ(te1,1 − γ0))).

Thus, denoting the Hausdorff distance by dH , we deduce that almost surely for N
large enough,

dH(σ(ΨN (te1,1 − γ0)), σ(Ψ(te1,1 − γ0))) ≤ δ/4.
Note that ΨN (te1,1 − γ0) is selfadjoint. For an arbitrary β ∈Mn(C), we have

‖ΨN (te1,1 − γ0)−ΨN (β)‖ ≤ ‖(te1,1 − γ0)− β‖.
It follows from (10.15) that, almost surely for all large N , if ‖β−(te1,1−γ0)‖ < δ/4,
then

d(0, σ(ΨN (β))) ≥ δ/2.
Moreover, denoting by s1(M) the smallest singular value of an arbitrary matrix M ,

s1(ΨN (β)) ≥ s1(ΨN (te1,1 − γ0))− ‖β − (te1,1 − γ0)‖.
Thus, almost surely for all large N , provided that ‖β − (te1,1 − γ0)‖ < δ/4, we
have ‖FN (β)‖ = ‖(ΨN (β))−1‖ ≤ 4/δ. In other words, almost surely, the family
{FN}N∈N is normal in a neighborhood of te1,1 − γ0. According to Theorem 10.7,
for any β ∈ H+(Mn(C)), almost surely FN converges towards (ω(β)− sγ1)−1 ⊗ Ip.
Set

Λ = {w ∈Mn(C), ‖w − (te1,1 − γ0)‖ < δ/4, =w > 0}.
Almost surely for any w ∈ Λ such that =w ∈ Mn(Q) and <w ∈ Mn(Q), FN (w)
converges towards (ω(w) − sγ1)−1 ⊗ Ip. The Vitali-Montel convergence theorem
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implies that that almost surely FN converges towards a holomorphic function on
{w ∈Mn(C), ‖w−(te1,1−γ0)‖ < δ/4}, and, in particular, FN (ze1,1−β0) converges
for any z ∈ C such that |z − t| < δ/4 towards (ω((ze1,1 − γ0)− sγ1)−1 ⊗ Ip.

Now, the Hurwitz theorem on zeros of analytic functions implies that, almost
surely for large N , the function FN (ze1,1− γ0) = det(In⊗ Ip−FN (ze1,1− γ0)) has
as many zeros in a neighborhood of t as the function

det(In ⊗ Ip − (γ1 ⊗ T )((ω((ze1,1 − γ0)− sγ1)−1 ⊗ Ip).
Now, note that

γ1((ω(ze11 − γ0)− sγ1)−1 ⊗ T − In ⊗ Ip
= (γ1 ⊗ T − sγ1 ⊗ Ip) (ω(ze11 − γ0)− sγ1)−1 ⊗ Ip − In ⊗ Ip
= (γ1 ⊗ T − ω(ze11 − γ0)⊗ Ip) (ω(ze11 − γ0)− sγ1)−1 ⊗ Ip

and

ω(ze1,1 − γ0)⊗ Ip − γ1 ⊗ T =

p∑
i=1

(ω(ze11 − γ0)− γ1θi)⊗ ei,i.

Therefore

det(ω(ze11 − γ0)⊗ Ip − γ1 ⊗ T ) =

p∏
i=1

det(ω(ze11 − γ0)− γ1θi).

The theorem follows. �

11. Appendix

The following result is [12, Lemma 8.1].

Lemma 11.1. For any matrix M ∈Mn(C)⊗MN (C),

(11.1)
1

N

N∑
k,l=1

‖Mkl‖2 ≤ n‖M‖2

and for any fixed k,

(11.2)

N∑
l=1

‖M lk‖2 ≤ n‖M‖2

and

(11.3)

N∑
l=1

‖Mkl‖2 ≤ n‖M‖2,

where Mkl is defined by (10.8).
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Birkhäuser, Basel, 1998.
[16] Ph. Biane, On the free convolution with a semi-circular distribution. Indiana Univ Math. J.

46(3), 705–718 (1997).
[17] B. Blackadar, Operator Algebras. Theory of C∗-Algebras and von Neumann Algebras. Ency-

clopaedia of Mathematical Sciences, Volume 122. Springer-Verlag Berlin Heidelberg 2006.

[18] M. Capitaine, Additive/multiplicative free subordination property and limiting eigenvectors
of spiked additive deformations of Wigner matrices and spiked sample covariance matrices,

Journal of Theoretical Probability, Volume 26 (3) (2013), 595–648.

[19] M. Capitaine, Exact separation phenomenon for the eigenvalues of large Information-Plus-
Noise type matrices. Application to spiked models, Indiana Univ. Math. J. 63 (2014), 1875–

1910.

[20] M. Capitaine and C. Donati-Martin. Strong asymptotic freeness for Wigner and Wishart
matrices. Indiana Univ. Math. J., 56 (2):767-803, 2007.
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