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ABSTRACT 

Object: To demonstrate the possibility to model the power deposited at the electrode of an insulated 

cable in gel at 64MHz with a transmission line model with a strictly passive electrode model. This 

offers a more related to physics alternative to the transfer function model. The equivalence between 

both models is shown. 

Materials and Methods: In a first step, the possibility of modeling an insulated cable with a 

transmission line model was analyzed through full-wave numerical simulations. An electrode model 

that has a physical meaning was proposed.  The transmission line model predictions were confronted 

to experimental and simulated data of the transfer function of a cable and of the resonant behavior 

as a function of length of cables with different termination conditions. 

Results: The assumption of a transmission line model which underlies the transfer function model is 

right for a simple cable embedded in tissue imitating gel. A transmission line model extracted from a 

transfer function allows to predict the resonant behavior of two cables with different termination 

conditions. 

Conclusion: A transmission line model of an insulated cable embedded in tissue imitating gel offers a 

more directly related to physics alternative to the transfer function model. 

Keywords: radiofrequency, transmission line, transfer function, MRI safety, heating, pacemaker 

INTRODUCTION 

Magnetic Resonance Imaging is an essential imaging modality for soft tissue imaging. Nevertheless, it 

presents a risk for patients implanted with a medical device. In particular, there is a risk concerning 

the radiofrequency field for active implants with long leads such as neurostimulators, pacemakers or 

defibrillators. Indeed, the induced currents along the lead can lead to heating of the tissues around 

the bare electrode at the end of the lead and induced voltages at the input impedance of the active 

device. Simulation plays an important role in the study of lead interactions with the radiofrequency 

field as it facilitates the collection of important information without the cost of MRI time. Currently 

the leads of the implanted devices mentioned are generally too complex to be simulated by the 

numerical resolution of full-wave Maxwell equations [1]. The problematic of simulating coaxial 

helicoidal pacemaker leads has been studied by Talcoth et al. [1] leading to the conclusion that the 

approximations necessary to allow pacemaker lead simulation are too coarse. Indeed because of the 

consequence of the proximity effect on current for two adjacent windings, the full 3D geometry of 

the winded wires has to be taken into account which would lead to unacceptable simulation times. 

An alternative to the full-wave simulation is to use the transfer function model proposed by Park et 

al. [2] that can be evaluated experimentally. This model, once determined, allows to evaluate in a 

very straight forward manner the heating at the electrode for any distribution of the incident field 

along the path of the lead. Especially, one can run a full-wave simulation of anatomical models 

without the lead to extract the possible incident field along the path of a device lead. The transfer 

function model then allows the evaluation of the heating risk in an anatomical environment. The 

transfer function model is all the more important so as the phase distribution of the incident field in 

a human body model has a crucial importance on the heating effect at the electrode. These so called 

“phase effects” were brought to light by Yeung et al. [3] in 2002 and this work was at the origin of 
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the transfer function concept proposed later [2]. The realistic phase distribution of the incident field 

in a human body is usually not experimentally reproducible in phantoms with standard 

radiofrequency MRI coils. Therefore it is essential to have a theoretical model to link the heating at 

the electrode to the real incident field distribution.  

In the article by Yeung et al.[3], the fact that the heating at the electrode depends linearly on only 

the incident electrical field along the path of the cable comes directly from the formulation of the 

numerical resolution of the problem by the method of moments. Park et al. [2] suggested that the 

work by King [4] on transmission line models of antennas embedded in matter could be useful to 

determine the transfer function of a simple cable for which analytical expression of the parameters 

exist. Also, according to Feng et al. [5] the underlying assumption under the transfer function model 

is that a transmission line model is valid to describe the behavior of the cable embedded in gel at the 

frequency of interest. 

The work of King [6] inspired the modified transmission line model proposed by Acikel et al.[7]. This 

model considers the ambient conducting medium to be the return path for the current. The main 

adjustment made from the model by King et al. was to integrate the fact that the excitation was no 

more a point excitation at the end of the insulated cable but a field distribution all along the cable 

generated by another antenna. They evaluate the transmission line parameters for bare and 

insulated wires using a theoretical analytical analysis and show that their model correctly predicts 

the full-wave simulation current distribution along different wires. In this work [7], for the insulated 

wire, the current distributions fall progressively to zero at the ends suggesting that they are also 

isolated at the end, the end loads being considered as infinite. 

 An issue of this transmission line model is actually to correctly model the bare electrode at the end 

of the insulated cable which corresponds neither to a short-circuit nor to an open circuit. In [4], King 

considers that the impedance of a bare portion of the cable at the end of an insulated cable can be 

calculated from the expression of the impedance of a bare monopole in a homogeneous media 

determined in previous work [8]. Alternatively Acikel et al.[9] propose an electrode model which is a 

voltage source associated to an impedance. The voltage source models the incident field influence 

and is normalized to it. Nevertheless, it seems non physical to have to model a completely passive 

element such as an electrode embedded in gel by a voltage source as if it acted as an incident field 

amplifier. In the work presented here, we present a transmission line model with an electrode model 

which is a simple complex load impedance meaning a strictly passive element as suggested by King 

[4]. This model has a physical meaning and might even be a measurable parameter in the future.  

An issue that also appears here is the definition of the voltage along the transmission line. Here the 

second conductor, which is the return path for the current, is made of the slightly conducting 

ambient medium. At the surface of the insulation, the electrical field decays exponentially in the gel 

with a characteristic distance which is not negligible therefore necessitating a new definition of the 

voltage drop between the two conductors. Acikel et al.[10] explain that the voltage is a scaled 

version of the charge distribution at the surface of the insulated cable. It seems nevertheless 

necessary to give a physical definition of the transmission line voltage that can be quantitatively 

calculated from the field distributions. This work proposes a definition. The proposed definition of 

the voltage along the line allows the simple extraction of the load impedance from a full-wave 

simulation. 
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To sum up, this work presents a model based on the modified transmission line method (MoTLim) 

presented by Acikel et al.[7] inspired from earlier work by King [6] but with a strictly passive model 

for the end electrodes. It specifically focuses on showing that this model is indeed an alternative to 

the transfer function model having the advantage of being described by a set of more physical 

parameters than the mathematical transfer function model. 

We concentrated on a wire similar to the standard S-AIMD 1 wire from the ISO-TS 10974 norm [11] 

for active implants and we varied the length and termination conditions. We first studied the data 

extracted from full-wave simulations at 64 MHz (1.5T MRI), to evaluate if indeed an insulated wire 

embedded in gel can be described by the modified transmission line theory meaning that the 

incident field, voltage and current distribution along the cable respect the modified transmission line 

equations. A second part focused on the equivalence with the transfer function model and how the 

transmission line model can predict experimental and simulated transfer functions. A third part 

shows the transmission line model can predict the experimental and full-wave simulated resonant 

behavior of the heating at the electrode as a function of length of two different cables with two 

different distal electrode termination conditions. 

MATERIAL AND METHODS 

Determination of a transmission line model from a full-wave numerical simulation 

The wire studied was a steel wire with a 1.5 mm diameter isolated by a 0.5 mm thick heat-shrinkable 

tube made of polyolefin. Steel was considered to be a perfect electrical conductor at the working 

frequency of 64 MHz. The measured insulation permittivity at 64MHz was 2.35+/-0.01. The wire 

studied to extract the transmission line parameters was a 20 cm wire of the type described above 

with 1 cm of insulation removed at both ends.  

The full-wave simulations were performed using the software SEMCAD-X v14.8 (SPEAG, Zurich, 

Switzerland). The cable was placed in an American Society for Testing and Materials (ASTM) [12] 

phantom filled with gel with a relative permittivity εr of 80 and a conductivity of 0.47 S/m. The 

excitation used was a plane wave excitation in a volume of 208 x 110 x 640 mm encompassing the 

cable. The boundary conditions were set up such as to imitate an infinite volume of the ASTM gel. 

The cable was placed along the z-axis of the phantom. The plane-wave excitation had a propagation 

direction along the direction x, the electrical field direction being along z meaning it was parallel to 

the cable direction which is necessary to induce currents therefore heating at the bare electrodes. 

The simulation was a 20 period harmonic simulation at 64 MHz. A simulation without the cable was 

performed to extract the incident field along the cable which is the entry to the transmission line 

model. We worked in the frequency domain, all variables were phasors which are the complex 

representative of the sinusoidally time varying fields characterized by an amplitude and a phase. 

The power deposited at the electrode was considered to be proportional to the active power at the 

load impedance modeling it. The actual output wanted from the model is the voltage or the current 

at the load impedance. Nevertheless, a transmission line model taking for input the incident field 

along the cable ������� will allow the prediction of the voltage and current distribution all along the 

cable. And the voltage and current distribution along the cable extracted from full-wave simulations 

were necessary to extract the transmission line parameters which are the impedance per unit length 

of the cable �, the admittance per unit length of the cable 	, and the load impedances at both ends 
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�
��
�and �
��
�. The current distribution ���� was extracted directly from the current density 

map. The voltage distribution ����  was considered to be the integration of the electrical field 

component perpendicular to the cable in the x-direction until it reaches less than 1% of its maximum 

value which is at the interface with the perfect electrical conductor. If the cable embedded in gel 

follows a transmission line model, the distribution of ����, ���� and �_����������� should follow the 

transmission line model equation 1 and 2 associated to the two boundary conditions 3 and 4, z1 and 

z2 being the z coordinate of the ends of the cable. These boundary conditions introduce the simple 

passive electrode model proposed in this work. Therefore, knowing these distributions allows to 

extract ���� and 	��� which should be constant if the hypothesis of a transmission line model is 

right. �
��
�and �
��
� can be extracted as well. 

��
�� = −	�	                                                                                      [1] 

� 
�� = ���� − ��                                                                              [2] 

���!� = −�
��
����!�                                                                [3] 

���"� = �
��
����"�                                                                   [4] 

Parameters extracted from the full-wave simulations were then used in a finite difference model of 1 

to 4 to predict voltage and current distributions of the original simulation. 

Hertel et al. [13] give analytical expression of the parameters � and 		for simple geometries of 

insulated antennas. These parameters were compared to those extracted from the full-wave 

simulation. Associated to the values of the loads extracted from these same simulations, they will be 

used as an input for the finite difference model to compare the results to the original full-wave 

distributions. 

Different lengths and different termination conditions of the same type of cable were considered to 

check that the transmission line model has indeed a predictive value for other cables than the one 

used to extract the model. We considered a 30 cm cable uncapped at both ends as well as a 20 cm 

cable capped at one end. For the load of the capped cable at the capped end, we used two different 

values of �
��
� . First 1 MΩ to simulate an open circuit as it is isolated from the gel, second a load 

extracted from the full-wave simulation as for the first cable studied. The extracted parameters were 

used at inputs for the transmission line finite difference model for both cables and the results were 

compared to the full-wave simulations. 

From the modified transmission line model to the transfer function model. 

Finite difference model 

Solving equation (1) to (4) for an incident field Einc with a finite difference method can be written 

under the following matrix form#Dz1 Z
Y Dz2* #

V
I * = #Einc

0 *. The submatrices Dz1, Z, Y and Dz2 have a 

dimension NxN with N the number of discretization points along the cable. The boundary conditions 

are implemented at the Nth and last line of the whole matrice. The value that is directly related to 
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the scattered electric field at the electrode is the voltage at the load modeling the electrode. To solve 

the finite difference model we inversed the square matrix. The transfer function seen from the left 

electrode corresponds to the N-1 values of the first line of the inverse matrix, and the transfer 

function seen from the right electrode corresponds to the N-1 values of the Nth line of the inverse 

matrix. 

Wave propagation model 

Another way of considering the problem is to consider that the incident field at a certain position 

propagates in both ways with a propagation constant k related to the transmission line parameters 

by . = √−�		 [6] and is reflected at each end with a reflection coefficient ρ that can be calculated 

by the following classical transmission line equations 5 and 6. 

�0 = 123                                                                                                                                                                 [5] 

4 = 2567892:
25678;2:                                                                                                                                                         [6] 

Considering that the origin of the z axis is at the electrode we want the scattered electrical field from, 

that the reflection coefficient at this end is ρ1 and ρ2 at the distal end and that the length of the 

isolated part of cable is l, the transfer function at position z can be written: 

<=��� = �9�>� − 4"�9�>�"?9�� + 4!4"�9�>�"?;�� − 4"4!4"�9�>�A?9��                                                      [7] 

+4!4"4!4"�9�>�A?;�� − 4"4!4"4!4"�9�>�B?9�� + 	��� … 

For a 16 cm capped wire of the type SAIMD-1 of the ISO-TS 10974 norm [11] for active implants the 

value of the transfer function converges with a error of less than 1% if one considers 9 terms and is in 

accordance with the transfer function derived from the finite difference model described above with 

an difference of about 7%. In this work, this wave propagation model was considered to be the more 

reliable because analytic and was used to calculate the transfer functions from the transmission line 

model. 

Validation 

Comparison with experimental and simulated transfer functions 

The cable tested was the same as the uncapped cable one used in numerical study but with a total 

length of 53 cm.  

Direct comparison 

The transmission line model was determined partly from analytical formulas for the impedance and 

admittance per unit length and Z and Y [13] and from the previous SEMCAD-X simulation for the load 

impedances. Using the wave propagation model, the transmission line model was used to predict a 

transfer function. 

We have measured the transfer function with a set up based on the reciprocity approach described 

by Feng et al. [5]. We excited the electrode we wanted to know the power deposited with a simple 

monopole at and measured the current along the cable. The cable was placed in an ASTM phantom 
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as described on Figure 1. The transfer function was given by the transmission parameter S21 

between the excitation probe and the current probe measured with a vector network analyzer. It 

was measured every cm. 

 

Fig. 1 Setup for the measurement and simulation of the transfer function. 

The transfer function predicted by the transmission line model was also compared to a simulated 

transfer function based on the reciprocity approach. The excitation scheme of the experimental 

setup was reproduced and the current distribution along the cable directly extracted from the 

simulation results. The simulation software was CST MICROWAVE STUDIO® (CST® MWS®, Darmstadt, 

Germany). Nyenhuis et al. [14] demonstrate that the measured transfer function with the direct 

approach depends on the boundaries of the phantom it is measured in. It is also the case for the 

simulated transfer function based on the reciprocity approach. The transmission line model extracted 

from the full-wave SEMCAD simulations is a transmission line of the cable in an infinite volume of gel. 

Therefore the results on the transfer functions are likely to be different.  

Solving the inverse problem 

As mentioned earlier the transfer function is fully determined by the transmission line propagation 

constant k and two reflection coefficients through equation 7. The inverse problem was solved for 

both the experimental and simulated transfer function first letting the two parameters k, and ρ (the 

reflection coefficient being in our case the same at both ends) free and second by fixing the constant 

propagation to the value given by the analytical formulas [13] and letting the reflection coefficient 

free. In the second case the analytical formulas give also the characteristic impedance of the cable 

therefore from the reflection coefficient one can deduce the load impedance ZLOAD. The parameters 

k, ρ  and ZLOAD extracted to best fit the experimental and simulated transfer functions were  

compared to the analytical parameters and the full-wave extracted ZLOAD. The inverse problem was 

also solved using the finite difference model and not the wave propagation model for comparison. 
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Resonant behaviour of a capped and uncapped cable in an ASTM phantom as a function of 
cable length. 

Cable configurations 

The cable type tested was the same as the one used for the transfer function study. Different lengths 

of the capped cable and uncapped cable were tested. The cables were placed at a position x=130 mm 

at the right of an ASTM phantom [12] when looking from the bottom of the torso. The phantom was 

positioned head first in a birdcage and the static 1.5 T field pointed to the head of the phantom. The 

center of the torso was placed at the isocenter of the MRI bore on the x and z axis and at y=-55 mm, 

the y axis pointing up.  The cable was positioned 45 mm under the surface of gel which was 90 mm 

deep. The uncapped end of the cable where the temperature was measured was always positioned 

at the bottom of the torso at z=215mm (the z axis pointing to the bottom of the torso). The heating 

at the electrode was measured for 14 different lengths ranging from 16 cm to 53 cm for each of the 

capped and uncapped cables.  The set of experiments were conducted twice for the capped cable 

giving an idea of the uncertainty of the measurement results. 

Sequence 

The sequence run was the Fast Spin Echo sequence described in the ASTM F2182 norm [12] on a 1.5T 

GE scanner with the number of slices fixed to 42, the transmit gain to 130 and a nex of 2 which 

makes a total duration of 6 min 34 s. The mean SAR in the ASTM phantom corresponding to this 

transmit gain is 1.38 +/-0.11 W/kg according to the calorimetric measurements made following the 

ASTM heating norm [12]. 

Full-wave simulation 

The exact experiments were reproduced using the full-wave simulator CST MWS. The 1.5T birdcage 

model used was validated by comparison of the B1 map in the ASTM phantom. The result extracted 

was the mean loss on a 2 mm cube of gel at the uncapped end.  

Transmission Line Model 

The same 1.5T birdcage model as for the full-wave simulation was used to simulate the incident field 

at the position of the cables which was the input to the model. The transmission line model was the 

one determined from solving the inverse problem on the simulated transfer function fixing k to the 

analytical values and calculating the best fitting value for the reflection coefficient. The reflection 

coefficient for the capped end was considered to be one. The wave propagation model with the 

transmission line parameters will be used to predict the transfer function for each length of cable. 

The transfer function associated to the simulated incident electrical field allows to predict the 

scattered electrical field at the electrode. The temperature increase is proportional to the square of 

the scattered electrical field. 

Scaling 

A scaling has to be applied corresponding to the calibration procedure for the transfer function [2]. 

The scaling factor for the full-wave simulation results and the transmission line model results were 

calculated such that the error with the experimental results was minimized. 
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RESULTS 

Determination of a transmission line model from a full-wave simulation 

Figure 2 shows the current and voltage distribution along the uncapped and capped 20 cm cables 

extracted from the full-wave simulation with a plane-wave excitation. One can notice the asymmetry 

induced by the different termination conditions at both ends for the capped cable compared to the 

uncapped one. 

Figure 3 shows the norm and phase of ���� and 	��� along the uncapped and capped 20 cm cables 

extracted using equation 1 and 2. The load impedances model the bare part of the cable for 

uncapped ends, so the uncapped cable is considered to be situated between -0.09 m and 0.09 m and 

the capped cable between -0.09m and 0.1m. The results of Figure 3 show that ���� as well as 	���  
seem to be approximately constant along the cables therefore demonstrating that the hypothesis of 

a transmission line behavior of a cable embedded in gel holds. If one looks more precisely, one can 

notice that |�| varies quite notably along the length of the cables. The relative difference between 

the value of ���� along the uncapped cable compared to the value at the center reaches 30%. For 

the admittance per unit length 	���, ignoring the singularity at the center due to the small voltage 

values , the relative difference along the cable can reach 20%. 

The load impedance of the bare electrode is calculated by using equation 3 and 4 at the positions 

z=+/- 0.09m. The load impedance for this electrode is found to be 51.3-j 32.7 ohm.  

Although the characteristic parameters of the transmission line seem to vary along the uncapped 

cable, we fixed them to the value at the center for � and to the mean value of the values at +/-0.05 

m for 	. Associated to the value of the load impedance, we used them as an input to the finite 

difference transmission line model. Table 1 sums up the results on the error on the voltage and 

current distribution for the full-wave simulation extracted model (Model 1) and the one using 

analytical formulas for Z and Y [13] associated to �
��
	 from the simulation (Model 2). 

 Z Y ZLOAD Error I Error V 

Model 1 (full_wave) 91.5+j 324.6 0.0071+j 0.0972 51.3-j 32.7 3.17% 2.97% 

Model 2 

(analytical, �
��
full-wave) 

85.1+j 361.8 0.0073+j 0.0939 51.3-j 32.7 6.02% 7.56% 

Table 1 Error of the transmission line models with constant parameters on the full-wave current and voltage distribution for 

a 20 cm uncapped cable. 

One can notice that the fact of fixing the characteristic parameters to a certain constant value allows 

to predict the current and voltage distribution of the full-wave simulation with an error of less than 

5%. The parameters extracted from the simulation are close to the parameters given by the 

analytical formulas [13], and these allow to retrieve the full-wave distributions with a relative 

quadratic error of less than 10%. 

Figure 3 also shows the amplitude and phase of ���� and 	��� for a 20 cm capped cable to be 

compared to the uncapped case. The results are in accordance. The differences can be attributed to 

numerical errors. 

The load impedance at the capped end extracted from the full-wave simulation was 2203 –j 1969 

ohm. Considering that the capped end corresponds to an infinite impedance means that the 



10 

 

reflection coefficient is 1. With the full-wave simulation load impedance and the analytical 

transmission line parameters the reflection coefficient is found to be 0.965-j0.026.  

The results concerning the ability of the transmission line model determined from the simulation on 

the 20 cm uncapped cable to retrieve the current and voltage distribution of the full-wave simulation 

for a 30 cm uncapped cable and a 20 cm capped cable are summarized in Table 2.  

 20 cm capped cable 30 cm uncapped cable 

Error I Error V Error I Error V 

Model 1(full-wave) 8.34% 3.64% 3.04% 5.2% 

Model 2 (analytical, full-

wave) 
6.82% 3.37% 7.99% 5.3% 

Model 1 (full-wave/ 

infinite load 1 MΩ) 
12.65% 3.29% x x 

Model 2 (analytical/ 

infinite load 1 MΩ) 
11.4% 4.69% x x 

Table 2 Error on the voltage and current distribution of a 20 cm capped and 30 cm uncapped cables of the transmission line 

model with constant parameters extracted from full-wave simulation on a 20 cm uncapped cable. The reference 

distributions are from full-wave simulations. 

For both the 20 cm capped and 30 cm uncapped cable, the full-wave extracted model and the mixed 

analytical/ full-wave model predict the current and voltage distribution of the full-wave simulation 

with an error on the distribution of less than 10%. Fixing the reflection coefficient of the capped end 

to 1 makes the error on the current distribution increase to slightly above 10%, the voltage error 

remaining under 5%. The mixed analytical/full-wave model gives results as good as the full-wave 

extracted model. 

 

Fig. 2 Distribution of amplitude and phase of current and voltage for an uncapped 20 cm cable (solid blue line) and a capped 

20 cm cable (dashed green line). The capped end is at +0.1m. a) amplitude of current, b) phase of current, c)amplitude of 

voltage, d) phase of voltage. 



11 

 

 

Fig. 3 Amplitude and phase of the impedance per unit length Z and admittance per unit length Y as a function of position 

along the cable if one makes the transmission line model assumption. The blue solid line represents the results for an 20 cm  

uncapped cable, the green dashed line represent the results for a 20 cm capped cable isolated at the position +0.1m.a) 

amplitude of impedance per unit length, b) phase of impedance per unit length, c) amplitude of admittance per unit length, 

d) phase of admittance per unit length. 

Validation 

Comparison with experimental and simulated transfer functions 

Direct comparison 

Figure 4 shows the experimental and full-wave simulated transfer function. The green line shows for 

comparison, the transfer function predicted by the transmission line model with the analytical 

propagation constant and the full-wave load impedance. The phase distribution fits nearly perfectly. 

The amplitude distribution has the same global trend but one can observe a shift of the local 

maximum and minimum towards the distal end.  
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Fig. 4 Experimental and different models amplitude and phase distribution of the transfer function of a 53 cm uncapped 

cable. a) Transfer function normalized amplitude, b) Transfer function Phase. The electrode the heating will be evaluated at 

is at position d=0 cm 

Solving the inverse problem 

The red line of Figure 4 corresponds to the transmission line model extracted by best fitting the 

simulated transfer function according to equation 7 using the analytical propagation constant. Table 

3 shows that the transfer function perfectly fits a transmission line model but with a load impedance 

slightly different from the one determined from the full-wave simulation.  

Table 3 also sums up the results on the propagation constant k, the reflection coefficient ρ and the 

load impedance ZLOAD of solving the inverse problem from the experimental and simulated transfer 

functions. The fit leaving the propagation constant k free gives a result very close to the analytical 

propagation constant for the simulated transfer function and slightly different for the experimental 

transfer function. The finite difference model also allows to solve the inverse problem and gives 

results comparable to the wave propagation model. 
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 k ρ ZLOAD Error of fit 

Analytical (k) + full-wave 

(ZLOAD) 
5.84-j0.90 -0.02-j0.25 51.3-j32.7 x 

Inverse k, ρ on experimental TF 

data 
5.49-j0.91 0.04-j0.25 x 2.7% 

Inverse k, ρ on simulated TF 

data 
5.75-j0.90 0.07-j0.25 x 0.6% 

Inverse ρ (ZLOAD) on 

experimental TF data, k 

analytical 

x 0.17-j0.19 79.2-j38.7 7.8% 

Inverse ρ (ZLOAD) on simulated 

TF data,  k analytical 
x 0.11-j0.24 66.1-j39.9 2.1% 

Inverse ρ (ZLOAD) on simulated 

TF data,  k analytical (Finite 

Difference Model) 

x 0.04-j0.25 65.2-j40.6 1.8% 

Table 3 Results on the propagation constant k, the reflection coefficient of the uncapped end ρ, and the load impedance of 

the uncapped end solving the inverse problem of getting these parameters from the simulated and experimental transfer 

function of an uncapped 53 cm cable 

Resonant behaviour of a capped and uncapped cable in an ASTM phantom as a function of 
cable length. 

Figure 5 shows the resonant behavior of the capped and uncapped cable placed in an ASTM phantom 

in a 1.5T birdcage as a function of length. The full-wave simulation results (green line) coincide well 

with the results predicted by the transmission line model extracted from the simulated transfer 

function (black line). There is a shift of a few cm of the resonant length.  The trend of the 

experimental data is the same as the trend of the full-wave model and the two different transmission 

line extracted model. There is a high uncertainty of the temperature increase measurement for 

higher temperature. This is due to the fact that for higher temperature increases the temperature 

gradients around the electrode are higher inducing a greater sensitivity of the measurement on the 

temperature probe position. 

The results on the resonant behavior of the uncapped are also consistent. Especially the shift of the 

resonant length between the capped and uncapped cable is correctly predicted by the different 

models. The sharper increase of the temperature elevation with the length for the capped cable 

compared to the uncapped cable is also correctly predicted.  
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Fig. 5 Temperature increase at the uncapped end of capped and uncapped cable placed in an ASTM phantom in a 1.5T MRI 

as a function of length of the cable. The prediction of the transmission line models best fitting the simulated and 

experimental transfer function are compared to experimental data. a) capped cable, b) uncapped cable. 

 

The full-wave simulation results slightly differ from the results predicted by the transmission line 

model extracted by solving the inverse problem on the simulated transfer function. One has to recall 

that the simulate transfer function depends on the position of the cable inside the phantom. The full-

wave simulations were made with the cable placed in the position it was in the experiments which is 

different from the position used for the transfer function simulation. This probably explains the 

difference in the predicted temperature elevation as a function of the length of the cable. 

DISCUSSION 

Full-wave simulations 

It has been shown using full-wave simulations of an insulated cable embedded in gel that the current 

and voltage distribution along the cable do follow approximately a transmission line behavior. 

Supposing it strictly follows a transmission line behavior still gives results consistent with the full-

wave simulation. 
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From a transfer function model to a transmission line model 

It was shown that simulated and experimental transfer function can fit nearly perfectly a 

transmission line model showing the underlying assumption under the transfer function model is 

indeed a transmission line model [2, 5]. Therefore the behavior of a simple cable submitted to the 

radiofrequency field of a 1.5T MRI can be entirely described by a physical set of parameters instead 

of a mathematical transfer function model. Especially as the termination conditions play a crucial role 

[15], it can link the heating at the bare electrode to the reflection coefficient at the distal end. More 

generally, this can help in the design of safe cables as this model enables to link directly the 

geometrical and physical properties of the cable to the heating risk in MRI for any incident field. For 

example, it was possible to predict the experimental resonant behavior as a function of length of a 

capped and uncapped cable from the simple set of very few parameters without having to evaluate 

experimentally or with full-wave simulations the transfer function for each length. 

Load impedance model 

This work combined the work by Acikel et al. [7] which extended the work by King[4, 6] for a cable 

excited by a field distribution with the simple model of the bare electrode proposed by King [4, 8]. 

Instead of being calculated analytically considering it as a monopole as in [8], the load model was 

first extracted from full-wave simulation data then determined from solving the inverse problem 

from transfer function data. The results showed that the load was not exactly the same. The most 

relevant method in the future seems to be to get the load or reflection coefficient from the 

experimental or simulated transfer function. Indeed the high field distribution around the bare 

electrode will be very sensitive to numerical errors. Further work would be to compare for simple 

cables, the load model determined from the transfer function and the analytical value from King [8]. 

Transmission line model for pacemaker leads 

 One has to remind oneself that the transfer function concept was thought mainly for cables one 

cannot simulate. Therefore it is important to be able to get the information from experimental data 

for example, an experimentally measured transfer function. There are nevertheless two problems 

arising for leads of typical medical devices such as pacemakers. If someone wants to reduce the 

heating at the electrode by varying the reflection coefficient at the distal end meaning at the case, it 

is necessary in the future to develop tools to directly evaluate this coefficient either theoretically or 

experimentally without measuring the new transfer function each time. Nevertheless, the 

transmission line will still give a better physical insight of the behavior of the pacemaker lead in the 

radiofrequency field. A second problem arising comes from the fact that pacemaker leads are usually 

made of two coaxial helicoidal wires. The transmission line model developed here was for cables 

made of one wire only. Further work needs to be carried on to see if it is possible to consider a 

coupled transmission line model for cables made of multiple wires which will be a model with 

supplementary coupling parameters such as a distributed mutual inductance and a distributed 

mutual capacitance. 

CONCLUSION 

A new transmission line model was developed for simple cables made of one wire submitted to a 

radiofrequency excitation field at 64 MHz and embedded in tissue properties imitating gel. The 
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termination conditions were modeled by a simple passive load impedance that has a physical 

meaning. It was shown that it has a strict equivalence with the transfer function model and it brings 

physical insight into it. This physical insight can help in the design of safe cables in MRI. 
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