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Abstract

Soft particle materials are composed of discrete particles that can undergo large deformations without rupture. Most food products,

many powders, colloidal pastes, vesicles and biological cells are soft particle systems. In order to model such materials, we present

an efficient numerical approach combining an implicit formulation of the Material Point Method (MPM) and Contact Dynamics

(CD) method. The MPM deals with bulk variables of an individual particle by discretizing it as a collection of material points,

whereas the CD allows for the treatment of frictional contacts between particles. This model is applied for the simulation of the uni-

axial compression of 2D soft-particle packings. The compaction is a nonlinear process in which new contacts are formed between

particles and the contact areas increase. The change of particle shapes allows these materials to reach high packing fraction. We

find that the contact specific surface, the orientation anisotropy and the aspect ratio of particles increase as a function of the packing

fraction but at different rates. We also evidence the effect of friction, which favors strong stress chains and thus the elongation of

particles, leading to larger values of the orientation anisotropy and the aspect ratio at a given level of packing fraction as compared

to a frictionless particle packing.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the organizing committee of the 1 st International Conference on the Material Point Method.
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1. Introduction

Soft particles are the main component of many natural and industrials materials like colloidal pastes, microgels,

suspensions, etc. In these materials, there is a disordered discrete network of soft particles which governs their

behaviors by a combination of particle rearrangements and particle shape change. So, the properties of soft particle

materials depend on both theirs discrete natures (contact interactions, rearrangements...) and their particle continuum
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behaviors (deformability, compressibility...). Indeed, these particles can undergo large deformation without rupture.

All of these features allow these materials to achieve high packing fractions beyond Random Close Packing (RCP)

state. Because of these complexities of soft particle systems, many aspects of their behaviors and properties under

compression and shear should be until explored.

Particular materials are mainly simulated using numerical strategies based on Discrete Element Methods (DEM).

In the DEM, these materials are modeled as a collection of undeformable particles and the elastic deformations

may be assumed at the contact points. The most common discrete methods based on hard particles are Molecular

Dynamics (MD) [1] and Contact Dynamics (CD) [2,3]. Although the DEM techniques are known as mature and

efficient approaches to model and analyze particular materials, they are intrinsically unable to account for realistic

constitutive models of individual particles and large particle deformations. So, in order to deal with both continuum

and discrete behaviors of soft particle materials, it is necessary to introduce the internal degrees of freedom for each

individual particule as well as to treat contact interaction between different particles.

A promising numerical procedure has been developed to investigate a packing of soft particles in our previous

papers [4,5]. This approach combines two numerical tools: it uses first an implicit formulation of Material Point

Method (MPM) [6] to take into account the constitutive continuum behaviors of particles. In this approach, each

particle is discretized by a collection of material points. The information carried by the material points is projected

onto a background mesh, where equations of motion are solved. The mesh solution is then used to update the material

points. The second tool which is related to the contact treatment, is based on the Contact Dynamics. The CD

method is a general approach for the treatment of frictional contacts without regularization. It was pioneered by a

mathematical formulation of non-smooth mechanics by Moreau [7] and then extensively used for the simulation of

granular materials with rigid grains [8,9]. This method is based on an implicit time-stepping scheme and formulated

in terms of grain velocities, which may undergo jumps as a result of collisions and non-smooth feature of the Coulomb

friction law. Since we use an implicit MPM scheme, the CD method is a natural choice for the treatment of contact

points. The implicit MPM-CD formulation was implemented in a manner that the contact variables can be computed

simultaneously with bulk variables. In this paper, we apply this MPM algorithm to analyze the compaction of a

packing of soft particles. We investigate the respective roles of rearrangements, particle volume change and particle

shape change to compaction by analyzing different rheological parameters (packing fraction and, contact specific

surface, orientation anisotropy and aspect ratio of particles).

2. Material point method (MPM)

Let us consider a continuum body occupying a domain Ω in R
D, D being the domain dimension. In the context of

the infinitesimal strain theory, its conservations of mass and of linear momentum can be described by the following

relations:

∂ρ(x, t)
∂t

+ ∇ · (ρ(x, t) v(x, t)) = 0 in Ω , (1)

∇ · σ(x, t) + b(x, t) = ρ(x, t) a(x, t) in Ω , (2)

where ρ(x, t) is the material density, σ(x, t) denotes the Cauchy stress tensor, b(x, t) represents the body force and,

v(x, t) and a(x, t) are the velocity and the acceleration, respectively, at position x and time t. A constitutive relationship

should supplement the continuity equation (1) and momentum equation (2). We assume here a linear, homogeneous,

isotropic and elastic relationship:

σ(x, t) = C : ε(x, t) , (3)

where C refers to fourth-order elastic tensor and ε denotes the strain tensor (ε = 1
2

(∇u +t ∇u
)
; u being the dis-

placement field). Note that, in this formulation, any other material behavior (including inelastic behaviors) may be

implemented.

In the MPM, the continuum body is divided into Np material points with constant masses. This last assumption

allows satisfying automatically the mass conservation relation (1). The material points represent the integration points
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to compute the integrals in the context of the finite element method. However, the MPM discretizes these integrals

through a Dirac delta function. For instance, the density can be discretized for an element in the following form:

ρ(x, t) =
Np∑

p=1

ρp δ(x − Xp(t)) , (4)

where ρp (ρp = mp/Vp with material point mass mp and volume Vp) is material point density, Xp(t) refers to position

of material point and δ denotes the Dirac delta function.

By supposing contact interactions between bodies, the discretized form of the momentum equation can be written

as:

M anode(t) = Fint(t) + Fext(t) + FC(t) , (5)

where anode is the nodal acceleration, FC denotes the contact force (see below), Fext represents the external applied

force, and

M =
Ne∑

e=1

Np∑

p=1

mp Np , Fint = −
Ne∑

e=1

Np∑

p=1

Gp σp Vp . (6)

In the above equations, M is the lumped mass matrix and Fint gives the internal force vector resulting from the stress

divergence. Np denotes interpolation matrix or shape function matrix and Gp represents the gradient of the shape

function Np at Xp.

Nodal velocities vnode can be computed from the material point velocities vp using a weighted least-squares proce-

dure:

Pnode =M vnode =

Ne∑

e=1

Np∑

p=1

mp Np vp , (7)

where Pnode is the nodal momentum. Applying this approach is justified by the fact that there are generally more

material points than grid nodes.

A MPM implicit approach is implemented to solve the problem (5) [4]. The nodal solutions are projected onto the

material points, allowing for updating the information carried by these points.

Furthermore, since we aim to treat the packings of deformable particles, the contact interactions are considered

in the movement equations, FC. These contact forces between particles need to be calculated by means of a contact

algorithm accounting for the condition of non-interpenetration of matter as well as the Coulomb friction law. So, our

implicit MPM scheme is combined with the Contact Dynamic (CD) method which is also an implicit procedure. For

this reason, the CD method can be considered as a natural choice for the treatment of contact points. In the MPM,

a multi-mesh mapping can be used to implement contact laws such as the friction Coulomb law or adhesion laws at

the contact points [10,11]. In such models the contact variables are computed simultaneously with bulk stresses and

strains.

Let us consider two deformable particles(α and β); see Fig. 1a. In the context of multi-mesh algorithm, each

particle maps in its proper background mesh. A contact point at the interface between the two particles may be treated

by introducing a common background mesh with the same type of grids for the transfer of nodal quantities from

proper meshes to the common mesh. The contact points between the particles α and β are treated at the neighboring

nodes belonging to the common background mesh. Their nodal values involve contributions from the two particles.

At a potential contact node i, a normal unit vector ni, oriented from particle β to particle α, and a tangential unit vector

ti are defined [12]. As long as the normal velocity vn (vn = (vαi − vβi ) · ni) remains positive, the normal force fn is

identically zero. But when vn = 0, a non-negative (repulsive) normal force fn is mobilized at the contact node. These

conditions define the velocity-Signorini complementary condition as shown in Fig. 1b [13,14]. On the other hand,

by combining the equations of motion Pα
node
= Mα vα

node
and Pβ

node
= Mβ vβ

node
at the common node, we get a linear

relation fn = Mnvn + kn, where Mn is the reduced mass and kn is an offset force which depends on the internal and

external forces as well as the relative velocity at the beginning of a time step and other contact forces. The normal
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Fig. 1: (a) Multi-mesh contact algorithm scheme in MPM. The solid points represent the potentiel contact nodes (see text); (b-c) Contact conditions:

(b) Signorini graph relating the normal relative velocity vn and normal force fn; (c) Coulomb graph relating the sliding velocity vt and friction force

ft; μ is the coefficient of friction. The dashed lines represent linear relations extracted from the equations of dynamics.

force at all contact nodes are obtained through an iterative process by intersecting the above linear relation with the

Signorini graph, as shown in Fig. 1b.

In a similar vein, the Coulomb law of dry friction is a complementarity relation between the friction force ft and

the tangential velocity vt (vt = (vαi − vβi ) · ti) at the contact node; see Fig. 1c. Like the Signorini graph, the Coulomb

law is a complementarity relation in the sense that it can not be reduced to a single-valued function. The equations

of motion at the common node yield a linear relation ft = Mtvt + kt, which is intersected with the Coulomb graph

to calculated the friction force ft simultaneously at all contact nodes in the same iterative process used to calculate

the normal forces. The convergence to the solution both for contact forces and internal stresses is smooth, and a

high precision may be achieved through the convergence criterion. The details of our MPM procedure are given in a

previous paper [4].

3. Uni-axial compression of a soft particle system

In this section, we use the MPM-CD coupled algorithm to analyze the compaction of a packing of soft particles.

It is composed of 300 soft disks confined inside a rectangular box of width L in which only the top wall is mobile

and moves downwards at constant velocity of 2 m/s. The box walls are also modeled using the MPM. The initial

configuration is prepared by means of CD simulations. A small size polydispersity is introduced in order to avoid

long-range ordering; the particles’ radii vary from 0.7 mm to 1.2 mm. The gravitational acceleration is set to be zero

in order to avoid stress gradients. We consider two cases below: 1) without friction and 2) with a high coefficient of

friction μ = 0.5 between the particles. There is no friction between the particles and the walls. This allows for higher

degree of homogeneity in stress transmission. The particles are supposed to behave elastically with Young’s modulus

of E = 10 MPa and Poisson’s ratio of ν = 0.45. We used this value for Poisson’s ratio in order to favor particle shape

change compared to particle volume change. The particle density is set to ρ = 990 kg/m3. A time step of δt = 0.5 μs
is considered for these simulations.

Three effects contribute to the increase of packing fraction: (i) particle rearrangements, (ii) elastic volume change

of the particles and (iii) particle shape change. Since we are interested here in the mechanisms by which the particles

exceed the RCP limit, the evolution of the packing fraction is analyzed in terms of the mean values of contact specific

surface S , orientation anisotropy Am and aspect ratio α of the particles; see Fig. 2. These quantities are defined as

follows:

S =

∑Ng

g=1
S C

g
∑Ng

g=1
πDg

, Am = 2(G1 −G2) , α =
1

Ng

Ng∑

g=1

l1g

l2g

, (8)

where Ng is the total number of the particles, Dg, S C
g and Vg denote the diameter, contact surface and volume of the
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Fig. 2: Evolutions of mean contact specific surface S , mean orientation anisotropy Am and mean aspect ratio α as a function of packing fraction Φ.

x1

θ

x2

Fig. 3: Schematic of a deformed particle in which the particle orientation θ and its principal axes x1 and x2 are represented.

particle g, respectively, and l1g and l2g represent its longest and shortest dimensions along its principal axes x1 and x2;

Fig. 3. Furthermore, G1 and G2 (G1 > G2) are the eigenvalues of the fabric tensor F defined by:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ng

Ng∑

g=1

cos2(θg)
1

Ng

Ng∑

g=1

cos(θg) sin(θg)

1

Ng

Ng∑

g=1

cos(θg) sin(θg)
1

Ng

Ng∑

g=1

sin2(θg)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

with the particle orientation θ as illustrated in Fig. 3.

As observed in Fig. 2, the three variables S , Am and α increase as a function of the packing fraction Φ at different

rates. Hence, three regimes may be distinguished. In the first regime (Φ < 0.72), the particle configuration evolves

as a result of global rearrangements. The evolution of S , Am and α is due to the elongation of nearly all particles in

the second regime (0.72 < Φ < 0.9). Here, although the contact specific surface S varies approximately at a same

rate for the frictionless and frictional cases, the particle aspect ratio α grows at a higher rate for frictional case in

comparison to the frictionless one. Moreover, the value of the particle orientation anisotropy Am for the frictional case

is larger than the frictionless one while Am evaluates at slower rate for frictional particles. Indeed, in this regime, the

friction between particles allows for stronger and more linear stress chains as compared to frictionless particles, and

thus it leads to more elongated particles in the frictional case, as you can see in Fig. 4 [4]. This figure shows some

snapshots of the compaction test by MPM simulation. The particle shapes evolve from circular to nearly polygonal

as shown in Fig.4, and the void space is filled by the particles. Furthermore, for frictionless particles, the variation of

Am decreases for packing fractions ranging from 0.72 to 0.75. It can be explained by particle rearrangements due to

deformation-induced sliding whereas frictional particles cannot move freely due to friction. In the third regime (Φ <
0.9), the particles can no more slide and move so that S , Am and α vary at a slower rate than in the second regime.
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(a) Φ = 0.65; Initial state (b) Φ = 0.9; Frictionless particles (c) Φ = 0.9; Frictional particles

Fig. 4: The snapshots of the compaction of a packing of soft particles. Filled Circles are material points in the MPM.

4. Conclusion

This paper was concerned with the mechanical modeling of soft-particle materials by interfacing the Material

Point Method, for dealing with the bulk behavior of particles, with the Contact Dynamics method for the treatment

of frictional contacts. From simulations of the uniaxial compaction of an assembly of elastic particles, we analyzed

the relationship between particle shape change and the evolution of the packing fraction. In particular, it was shown

that the friction increases the stress ratio of the particles and hence leads to higher particle shape change. As a result,

the aspect ratio and orientational anisotropy of frictional particles are above that of frictionless particles whereas their

contact specific surface remains approximately constant.
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