René Van Bevern

Robert Bredereck
email: robert.bredereck@tu-berlin.de

Laurent Bulteau
email: l.bulteau@gmail.com

Jiehua Chen
email: jiehua.chen@tu-berlin.de

Vincent Froese
email: vincent.froese@tu-berlin.de

Rolf Niedermeier
email: rolf.niedermeier@tu-berlin.de

Gerhard J Woeginger

Partitioning Perfect Graphs into Stars

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

We study the computational complexity (tractable versus intractable cases) of the following basic graph problem.

Star Partition

Input: An undirected n-vertex graph G = (V, E) and an integer s ∈ N. Question: Can the vertex set V be partitioned into k := n/(s + 1) mutually disjoint vertex subsets V 1 , V 2 , . . . , V k , such that each subgraph G[V i] contains an s-star (a K 1,s)?

Two prominent special cases of Star Partition are the case s = 1 (finding a perfect matching) and the case s = 2 (finding a partition into connected [START_REF] Yan | Quasi-threshold graphs[END_REF]) bipartite [START_REF] Chalopin | Packing bipartite graphs with covers of complete bipartite graphs[END_REF] chordal bipartite bipartite permutation subcubic planar bipartite [START_REF] Ma | Weakly cooperative guards in grids[END_REF][START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] subcubic grid series-parallel [START_REF] Takamizawa | Linear-time computability of combinatorial problems on series-parallel graphs[END_REF] tree In most classes, NP-completeness results hold for s = 2 (that is, for P 3 -Partition). However, on split graphs, Star Partition is polynomial-time solvable for s ≤ 2, while it is NP-complete for s ≥ 3. P 3 -Partition is solvable on interval graphs in quasilinear time. We are not aware of any result for permutation graphs, chordal bipartite graphs, interval graphs (for s ≥ 3), or grid graphs (for s = 3).

triples). Perfect matchings (s = 1), of course, can be found in polynomial time.

Partitions into connected triples (the case s = 2), however, are hard to find; this problem, denoted P 3 -Partition, was proven to be NP-complete by Kirkpatrick and Hell [START_REF] Kirkpatrick | On the complexity of general graph factor problems[END_REF]. Our goal in this paper is to achieve a better understanding of star partitions for certain subclasses of perfect graphs. We provide a fairly complete classification in terms of polynomial-time solvability versus NP-completeness on the most prominent subclasses of perfect graphs, leaving a few potentially challenging cases open; see Figure 1 for an overview of our results.

Motivation. The literature in algorithmic graph theory is full of packing and partitioning problems (packing is an optimization variant of partitioning, where one tries to maximize the number of disjoint vertex subsets). Concerning practical relevance, note that P 3 -Packing and P 3 -Partition find applications in dividing distributed systems into subsystems [START_REF] Kosowski | Parallel processing subsystems with redundancy in a distributed environment[END_REF] as well as in the Test Cover problem arising in bioinformatics [START_REF] De Bontridder | Approximation algorithms for the test cover problem[END_REF]. In particular, the application in distributed systems explicitly motivates the consideration of very restricted (perfect) graph classes such as grid-like structures. Star Partition on grid graphs naturally occurs in political redistricting problems [START_REF] Van Bevern | Network-based vertex dissolution[END_REF]. We show that Star Partition remains NP-hard on subcubic grid graphs.

Interval graphs are a further famous class of perfect graphs. Here, Star Partition can be considered a team formation problem: Assume that we have a number of agents, each being active during a certain time interval. Our goal is to form teams, all of the same size, such that each team contains at least one agent sharing time with every other team member. This specific team member becomes the team leader, since he or she can act as an information hub. Forming such teams is nothing else than solving Star Partition on interval graphs. We present efficient algorithms for Star Partition on unit interval graphs (that is, for the case when all agents are active for the same amount of time) and for P 3 -Partition on general interval graphs.

Related work. Packing and partitioning problems are central problems in algorithmic graph theory with many applications and with close connections to matching theory [START_REF] Yuster | Combinatorial and computational aspects of graph packing and graph decomposition[END_REF]. In the case of packing, one wants to maximize the number of graph vertices that are "covered" by vertex-disjoint copies of some fixed pattern graph H. In the case of partitioning, one wants to cover all vertices in the graph. We focus on the partitioning problem, which is also called H-Factor in the literature. In this work, we always refer to it as H-Partition. Since Kirkpatrick and Hell [START_REF] Kirkpatrick | On the complexity of general graph factor problems[END_REF] established the NP-completeness of H-Partition on general graphs for every connected pattern H with at least three vertices, one branch of research has turned to the investigation of classes of specially structured graphs. For instance, on the upside, H-Partition has been shown to be polynomial-time solvable on trees and series-parallel graphs [START_REF] Takamizawa | Linear-time computability of combinatorial problems on series-parallel graphs[END_REF] and on graphs of maximum degree two [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF]. On the downside, P k -Partition (for each fixed k ≥ 3) remains NP-complete on planar bipartite graphs [START_REF] Dyer | On the complexity of partitioning graphs into connected subgraphs[END_REF]; this hardness result is generalized to H-Partition on planar graphs for any outerplanar pattern H with at least three vertices [START_REF] Berman | Generalized planar matching[END_REF]. For every fixed s ≥ 2, Star Partition is NP-complete on bipartite graphs [START_REF] Chalopin | Packing bipartite graphs with covers of complete bipartite graphs[END_REF]. Partitioning into triangles (K 3), that is, K 3 -Partition, is polynomial-time solvable on chordal graphs [START_REF] Dahlhaus | Matching and multidimensional matching in chordal and strongly chordal graphs[END_REF] and linear-time solvable on graphs of maximum degree three [START_REF] Van Rooij | Partition into triangles on bounded degree graphs[END_REF].

An optimization version of P k -Partition, called Min P k -Partition, has also received considerable interest in the literature. This version asks for a partition of a given graph into a minimum number of paths, each of length at most k. Clearly, all hardness results for P k -Partition carry over to this minimization version. If k is part of the input, then Min P k -Partition is hard for cographs [START_REF] Steiner | On the k-path partition problem in cographs[END_REF] and chordal bipartite graphs [START_REF] Steiner | On the k-path partition of graphs[END_REF]. In fact, Min P k -Partition is NP-complete even on convex graphs and trivially perfect graphs (also known as quasi-threshold graphs), and hence on interval and chordal graphs [START_REF] Asdre | NP-completeness results for some problems on subclasses of bipartite and chordal graphs[END_REF]. Min P k -Partition is solvable in polynomial time on trees [START_REF] Yan | k-path partitions in trees[END_REF], threshold graphs, cographs (for fixed k) [START_REF] Steiner | On the k-path partition problem in cographs[END_REF] and bipartite permutation graphs [START_REF] Steiner | On the k-path partition of graphs[END_REF].

While in this work we study the H-Partition problem, which partitions the vertex set of a graph into mutually vertex-disjoint copies of some fixed pattern graph H, the literature also studies the H-Decomposition problem, which partitions the edge set of a graph into mutually edge-disjoint copies of a pattern H. In general, H-Decomposition is NP-hard [START_REF] Cohen | NP-completeness of graph decomposition problems[END_REF], yet easy to solve on highly-connected graphs if H is a k-star: Thomassen [START_REF] Thomassen | The weak 3-flow conjecture and the weak circular flow conjecture[END_REF] shows that every (k 2 + k)-edge-connected graph has a k-star decomposition provided its number of edges is a multiple of k. Lovász et al. [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] strengthen this result to (3k -3)edge-connected graphs for odd k ≥ 3. However, since a graph may have a k-star decomposition without having a k-star partition and vice versa, the results on H-Decomposition are not applicable to the Star Partition problem considered in our work.

Our contributions. So far, surprisingly little was known about the complexity of Star Partition for subclasses of perfect graphs. We provide a detailed picture of the corresponding complexity landscape for classes of perfect graphs; see Figure 1 for an overview. Let us briefly summarize our major findings. (Note that all problem variants we consider are clearly contained in NP, which means that our NP-hardness results in fact imply NP-completeness.)

As a central result, we provide a quasilinear-time algorithm for P 3 -Partition (which is Star Partition with s = 2) on interval graphs; the complexity of Star Partition for s ≥ 3 remains open. But if we restrict the input graphs to be unit interval graphs or trivially perfect graphs, we can solve Star Partition even in linear time. Furthermore, we develop a polynomial-time algorithm for Star Partition on cographs and on bipartite permutation graphs. Most of our polynomial-time algorithms are simple to describe: they are based on dynamic programming or even on greedy approaches, and hence should work well in implementations. Their correctness proofs, however, are intricate.

On the boundary of NP-completeness, we strengthen a result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] by showing that P 3 -Partition is NP-hard on grid graphs with maximum degree three. Note that in strong contrast to this, K 3 -Partition is linear-time solvable on graphs with maximum degree three [START_REF] Van Rooij | Partition into triangles on bounded degree graphs[END_REF]. Furthermore, we show P 3 -Partition to be NP-hard on chordal graphs, while K 3 -Partition is known to be polynomial-time solvable in this case [START_REF] Dahlhaus | Matching and multidimensional matching in chordal and strongly chordal graphs[END_REF]. Note that NP-hardness for s = 2 does not directly imply NP-hardness for all values s ≥ 2 (for example, the case s = 5 is trivially solvable on grid graphs since they have maximum degree four). We observe that P 3 -Partition is typically not easier than Star Partition for s ≥ 3. An exception to this rule is the class of split graphs (which are chordal), where P 3 -Partition is polynomial-time solvable but Star Partition is NP-hard for any constant value s ≥ 3.

Preliminaries. We assume basic familiarity with standard graph classes [START_REF] Brandstädt | Graph Classes: A Survey[END_REF][START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]. Definitions of the graph classes are provided when first studied in this paper. We call the complete bipartite graph K 1,s an s-star. For a graph G = (V, E), an sstar partition is a set of k :

= |V |/(s+1) pairwise disjoint vertex subsets V 1 , V 2 , . . . , V k ⊆ V with 1≤i≤k V i = V such that each induced subgraph G[V i]
contains an s-star as a (not necessarily induced) subgraph. We refer to the vertex sets V i as stars, even though the correct description of a star would be an arbitrary K 1,ssubgraph of G[V i]. P 3 -Partition is the special case of Star Partition with s = 2. Without loss of generality, we assume throughout the paper that the input graph G is connected (otherwise, we can solve the partition problem separately for each connected component of G). We denote by n := |V | the number of vertices and by m := |E| the number of edges in a graph G = (V, E). For a vertex v ∈ V , we denote by

N [v] := {u ∈ V | {u, v} ∈ E} ∪ {v} the closed neighborhood of v.
Article outline. The article is structured into one section per graph class. Herein, we first present the results on graph classes with polynomial-time algorithms and then head over to the graph classes with NP-hardness results. Each section gives a formal definition of the graph class it considers. Section 2 considers interval graphs and their subclasses unit interval graphs and trivially perfect graphs. Section 3 provides a polynomial-time algorithm for cographs, Section 4 for bipartite permutation graphs. Section 5 marks the boundary between tractability and NP-hardness: it shows that P 3 -Partition is polynomial-time solvable on split graphs, while Star Partition is NP-hard. Section 6 shows that P 3 -Partition is NP-hard on grid graphs and, finally, Section 7 shows it for chordal graphs.

Interval graphs

In this section, we present algorithms that solve Star Partition on unit interval graphs and on trivially perfect graphs in linear time, and a simple greedy algorithm that solves P 3 -Partition on interval graphs in quasilinear time.

An interval graph is a graph whose vertices one-to-one correspond to intervals on the real line such that there is an edge between two vertices if and only if their representing intervals intersect. Interval graphs naturally occur in many scheduling applications [START_REF] Van Bevern | Interval scheduling and colorful independent sets[END_REF][START_REF] Kolen | Interval scheduling: A survey[END_REF]. In a unit interval graph, all representing intervals are open and have the same length, while in a trivially perfect graph, any two representing intervals are either disjoint or one is properly contained in the other.

Star Partition on unit interval graphs

The restricted structure of unit interval graphs allows us to solve Star Partition using a simple greedy approach, which yields the following result. The general idea behind the algorithm for Theorem 1 is to order the vertices in such a way that we can repeatedly select the s + 1 leftmost vertices to form an s-star and then delete them. If, at some point, the s + 1 leftmost vertices do not contain an s-star, then it can be shown that the graph cannot be partitioned into s-stars. We order the vertices according to a so-called bicompatible elimination order: Definition 1 ([START_REF] Panda | A linear time recognition algorithm for proper interval graphs[END_REF]). For a graph G = (V, E), a bicompatible elimination order is an ordering σ : V → {1, . . . , n} such that, for each vertex v ∈ V ,

the set N l [v] := {u ∈ N [v] | σ(u) ≤ σ(v)} of its left neighbors and the set N r [v] := {u ∈ N [v] | σ(u) ≥ σ(v)} of its right neighbors each form a clique in G.
A graph is a unit interval graph if and only if it allows for a bicompatible elimination order [START_REF] Panda | A linear time recognition algorithm for proper interval graphs[END_REF]. Our algorithm will exploit the following property of bicompatible elimination orders:

Lemma 1 ([3]
). Let G = (V, E) be a connected unit interval graph and σ be a bicompatible elimination order for G. Then, for all {u, v} ∈ E with σ(u) < σ(v),

the set {w ∈ V | σ(u) ≤ σ(w) ≤ σ(v)} induces a clique in G.
We are now ready to prove Theorem 1.

Proof of Theorem 1. Given a unit interval graph G = (V, E) with n := |V | and m := |E|, we can compute in linear time a bicompatible elimination order σ [START_REF] Panda | A linear time recognition algorithm for proper interval graphs[END_REF]. Moreover, we can assume G to be connected, thus making Lemma 1 applicable. For a subset V ⊆ V let r(V) := arg max v∈V σ(v) denote the rightmost vertex in V with respect to σ. Now, we greedily partition G into s-stars starting with the first (with respect to σ) s + 1 vertices v 1 , . . . , v s+1 with σ(v 1) < . . . < σ(v s+1). If G[{v 1 , . . . , v s+1 }] does not contain an s-star, then we answer "no". Otherwise, we delete v 1 , . . . , v s+1 from G and continue on the remaining graph. If we end up with the empty graph, then we have found a partition of G into s-stars and answer "yes".

Obviously, the algorithm requires O(n + m) time since checking whether an induced subgraph G[V] with |V | = s vertices contains an s-star runs in O(|G[V]|) time and after the check we delete the set V from the graph. In this way, we touch each vertex at most once and each edge at most twice.

It remains to show that this procedure is correct. To this end, we show that if G admits an s-star partition, then G also admits an s-star partition P with S := {v 1 , . . . , v s+1 } ∈ P (note that v 1 , . . . , v s+1 are the first s + 1 vertices). Let P be a partition of G into s-stars such that {v 1 , . . . , v s+1 } / ∈ P , that is, the first s+1 vertices are not grouped into one star but distributed among several stars. Then, let S 1 , . . . , S ∈ P , 2 ≤ ≤ s + 1, be the stars that contain at least one vertex from S, that is, S ⊆ i=1 S i and S i ∩{v 1 , . . . , v s+1 } = ∅ for 1 ≤ i ≤ , and assume that v 1 ∈ S 1 . Further, let c i denote the center vertex of S i for 1

≤ i ≤ . Note that σ(r(S 1)) > s + 1, which implies S ⊆ N [c 1]. Since N l [c 1] and N r [c 1]
are cliques, it follows that G[S] contains an s-star that could participate in an s-star partition if the remaining vertices in S := i=1 S i \ S can also be partitioned into s-stars. To verify that this is possible, observe first that the number |S | = (-1)(s + 1) of the remaining vertices is again divisible by s + 1.

We now show that we can greedily partition S into stars, because S consists of two cliques such that there is a vertex of the first clique that is adjacent to all vertices of the second clique. To show this, we utilize the following claim, which describes the relative position of the center c i of star S i and the rightmost neighbor of v s+1 :

v 1 v 2 v 3 v 4 x u v 1 v 2 v 3 v 4 x u
Claim 1. For all 1 ≤ i ≤ , the center c i of star S i satisfies that σ(c i) ≤ σ(r(N [v s+1])).
Proof of Claim 1. Suppose towards a contradiction that σ(c i) > σ(r(N [v s+1])).

Then c i = r(N [v s+1]) and thus, {c i , v s+1 } ∈ E since c i is adjacent to at least one vertex from v 1 , . . . , v s+1 and Lemma 1 holds. Hence,

c i ∈ N r [v s+1], which contradicts σ(c i) > σ(r(N [v s+1])). (of Claim 1)
Now, let u := r(N [v s+1]) denote the rightmost neighbor of v s+1 . It holds that S ⊆ N [u]. This can be seen as follows: For a vertex v ∈ S , either s + 1 < σ(v) ≤ σ(u) or σ(u) < σ(v) holds. In the first case, Lemma 1 implies that {v , u} ∈ E since {v s+1 , u} ∈ E. For the second case, let S i , 1 ≤ i ≤ be the star containing v . Then, by Claim 1, it follows that S i 's center

c i satisfies σ(c i) ≤ σ(u). If σ(u) < σ(v), then Lemma 1 implies {u, v } ∈ E since {c i , v } ∈ E. Now, consider the vertex x := r(S ∩ N l [u]
), that is, the rightmost vertex in S that is a left neighbor of u. Clearly, from Claim 1 it follows that σ(c i) ≤ σ(x) holds for every star center c i , 1 ≤ i ≤ , since otherwise c i were to be ordered between x and u, and is hence, a left neighbor of u-a contradiction to x being the rightmost left neighbor of u in S . Thus, x is adjacent to all vertices in S ∩ N r [u] due to Lemma 1. The vertices in S ∩ N l [u] are also adjacent to x as they induce a clique which includes x. Moreover, S ∩ N r [u] also induces a clique. Therefore, we simply partition the vertices in S from right to left (with respect to σ) into s-stars. This is always possible since x is connected to all vertices in both cliques S ∩ N r [u] and S ∩ N l [u]. Figure 2 depicts an example of the rearranged partition.

Star Partition on trivially perfect graphs

Recall that an interval graph is a graph whose vertices correspond directly to intervals on the real line, and there is an edge between two vertices if their intervals intersect. A trivially perfect (also known as quasi-threshold) graph is an interval graph representable such that any two intervals are either disjoint or one is properly contained in the other.

In order to solve Star Partition in linear time on trivially perfect graphs, we will make use of the linear-time computable (rooted) tree representation of connected trivially perfect graphs [START_REF] Yan | Quasi-threshold graphs[END_REF]: Definition 2 (Rooted tree representation). Let G = (V, E) be a connected trivially perfect graph. Let T (G) be the directed graph on the vertex set V that contains an arc (v, w) if and only if a) the interval representing v contains the interval representing w, and b) there is no other vertex u such that its representing interval contains the interval representing w and is contained in the interval representing v.

By definition of trivially perfect graphs, T (G) is a directed tree having a unique vertex, the root, with in-degree zero. We call T (G) the rooted tree representation of G.

If, in T (G), a vertex u lies on the directed path from the root to a vertex v, or equivalently, if there is a directed path from u to v, we call u ancestor of v and v descendant of u. The depth of a vertex is the length of the path from the root to this vertex. Definition 2 is illustrated in Figure 3. It is crucial to observe the equivalence of the adjacency of two vertices and their ancestor-descendant relation: Observation 1. The graph G contains an edge {p, q} if and only if p is either an ancestor or a descendant of q in T (G).

Proof. Since G is a trivially perfect graph, G contains an edge {p, q} if and only if either p ⊂ q or q ⊂ p where p and q are the representing intervals of p and q, respectively. If p ⊂ q , then there is a directed path from q to p in T (G). Conversely, q ⊂ p implies that there is a directed path from p to q in T (G). By the definition of ancestors and descendants, p is either an ancestor or a descendant of q.

Also the following is easy to observe: Observation 2. If there are three vertices p, q, r such that G contains an edge {q, r} and p is an ancestor of q in T (G), then G also contains an edge {p, r}.

Proof. By Observation 1, {q, r} being an edge in G implies that q is either an ancestor or a descendant of r. If q is an ancestor of r, then p is also an ancestor of r, implying that G contains the edge {p, r}. Otherwise, the interval q representing q is properly contained in the interval r representing r. Since q is also properly contained in the interval p representing p (p is an ancestor of q), we obtain that p and r are not disjoint. By the definition of trivially perfect graphs, {p, r} is contained in G.

Before presenting our algorithm, we show that we may assume that star partitions of G have a very restricted structure with respect to T (G). First of all, we can assume that the center of a star is an ancestor of all its leaves: Observation 3. Let G be a trivially perfect graph with n vertices. If G allows for an s-star partition

{V 1 , V 2 , . . . , V n/(s+1) }, then each G[V i], 1 ≤ i ≤ n/(s + 1
), contains an s-star whose center vertex c i is an ancestor of all vertices V i \ {c i } in T (G).

Proof. Let c i be the center of an s-star in G[V i]. By Observation 1, for each vertex u ∈ V i \ {c i }, c i is either an ancestor or a descendant of u. If c i is not an ancestor of all vertices in V i \ {c i }, then let a be an ancestor of c i in V i with smallest depth. Clearly, since a is an ancestor of the center c i , a is adjacent to all vertices of V i in G by Observation 2. It remains to show that a is also an ancestor of all vertices in V i \ {a}. Suppose, towards a contradiction, that there is a vertex u ∈ V i \ {a} such that a is not an ancestor of u. By Observation 1, u is an ancestor of a and is, hence, an ancestor of c i with a smaller depth than a-a contradiction.

Our next observation is that we can assume that no star center is contained in a subtree T of a rooted tree representation T (G) if T contains "too few" vertices. Therefore, of special interest to use are subtrees of T (G) that can contain s-stars but of which no subtree can: Definition 3 (Center barrier). A subtree X of a rooted tree representation T (G) is a center barrier for s-stars K 1,s if X has at least s + 1 vertices and each proper subtree of X has at most s vertices.

The term "center barrier" is chosen since we can assume that no subtree of the center barrier contains an s-star center. Note that any (connected) rooted tree representation with at least s + 1 vertices contains a center barrier.

Observation 4. Let X be a center barrier for s-stars in a rooted tree representation T (G), and P be an s-star partition of G. Then, for any V i ∈ P that shares a vertex with X, the graph G[V i] contains a star whose center is the root of X or an ancestor of that root.

Proof. By the definition of center barriers, X is a subtree of T (G). Let x be its root. By Observation 3, G[V i] contains a star whose center c is the ancestor of all vertices in V i \ {c}. If x = c, then let w ∈ V i ∩ X, which exists by assumption.

Observe that x is an ancestor of w. Since G contains the edge {w, c} (c is a center for V i w), by Observation 2 and {c, w} being an edge in G, G also contains an edge {x, c}. Then, by Observation 1, c is either an ancestor or a descendant of x. If c is a descendant of x, then the subtree of T (G) rooted at c (which contains V i) is a proper subtree of X. This is impossible since the proper subtrees of X have at most s vertices. Hence, x = c implies that c is an ancestor of x.

Finally, we show that there exists a feasible star partition where each star consists only of vertices from center barriers.

Lemma 2. Let G be a trivially perfect graph allowing for an s-star partition, let X be a center barrier for s-stars in the rooted tree representation T (G), and let x be the root of X. Then, G admits a star partition P with S ∪ {x} ∈ P, where S consists of s arbitrary vertices of X \ {x}.

Proof. Let Q be a star partition of G and let S consist of s arbitrary vertices of X \{x}. By Observation 3, we can assume the center c of a vertex subset V i ∈ Q to be the one being the ancestor of all other vertices in V i \ {c}. If S ∪ {x} ∈ Q, then the partition we are searching for is P := Q. Otherwise, we show how to transform the partition Q into a new partition P containing S ∪ {x}. We repeatedly exchange the vertices of two vertex sets in Q until the modified partition Q contains a set V w such that S V w .

(1)

Finally, we set

P := (Q \ {V w , V u }) ∪ {(V u \ {x}) ∪ {w}, (V w \ {w}) ∪ {x}},
where w is the center of V w and V u is the vertex set with center u in Q such that x ∈ V u . One can verify that both (V w \ {w}) ∪ {x} and (V u \ {x}) ∪ {w} contain an s-star, implying that P is indeed an s-star partition for G: on the one hand, it is easy to see that G[(V w \ {w}) ∪ {x}] contains an s-star with center x since x is the ancestor of all vertices in V w \ {w} = S. On the other hand, the fact that w and x are both ancestors of all vertices in S (for w, this holds since S V w and by Observation 3) implies that w and x are adjacent in G (Observations 1 and 2). Since u is an ancestor of x, by Observation 2, we have that u and w are adjacent in G. This implies that u is either an ancestor or a descendant of w (Observations 1 and 2). In any case, G[(V u \ {x}) ∪ {w}] contains an s-star with star center either u or w. Now, in the remainder of the proof, we aim at transforming the partition Q into a new partition Q fulfilling Property (1). To this end, among all vertex subsets V i ∈ Q with V i ∩S = ∅, we let V y be the one with the center y closest to x with respect to T (G) (possibly, y = x). By assumption, |S \ V y | ≥ 1. Thus, let V z ∈ Q be another subset with center z that contains at least one vertex from S. By Observation 4, z is an ancestor of x. By the selection of y, z is also an ancestor of y. Thus, in the graph G, z is adjacent to every vertex in V y and y is adjacent to all vertices in V z ∩ S since y is either x or an ancestor of x (Observations 1 and 4). Thus, by setting

V y := (V y \ Y) ∪ (V z ∩ S) and V z := (V z \ S) ∪ Y , where Y V y \ S is an arbitrary size-(|V z ∩ S|) subset, we obtain a new valid partition (Q \ {V y , V z }) ∪ {V y , V z } such that V y shares more vertices with S than V y does. Note that Y exists since |S| + 1 = |V y | = |V z |.
Repeating the above procedure at most s -1 times results in a partition satisfying [START_REF] Asdre | NP-completeness results for some problems on subclasses of bipartite and chordal graphs[END_REF].

Based on Lemma 2, we now give a linear-time algorithm computing an s-star partition (if existent) of a given trivially perfect graph. Proof. Let G be a connected trivially perfect graph. Construct a tree representation T (G) of G in linear time [START_REF] Yan | Quasi-threshold graphs[END_REF]. Furthermore, construct in linear time a directed acyclic graph D(G) from G which has the same vertex set as G, and for each edge {u, v} ∈ E(G), there is an arc (u, v) in D(G) if and only if the degree of u is larger than the degree of v in G.

Due to Lemma 2, if G admits an s-star partition, then G also admits an s-star

partition P := {V 1 , V 2 , . . . , V |V |/(s+1) } such that for each i ∈ {1, 2, . . . , |V |/(s + 1)}, V i is contained in a center barrier of the rooted tree representation for the graph G[V \ (i-1 j=1 V j)] resulting from G by deleting the vertices in i-1 j=1 V j .
Hence, it is sufficient to recursively search for a center barrier X for s-stars, and delete the root of X and s arbitrary remaining vertices from X (these deleted vertices form a subset in the s-star partition). If, at some point, there is no center barrier, then there are less than s + 1 remaining vertices; hence, G cannot allow for an s-star partition.

To realize the above algorithm in linear time, we traverse T (G) in a depth-first post-order way. If, in D(G), the current vertex u has at least s non-marked (out-going) neighbors, then we mark this vertex u and s (arbitrary) non-marked (out-going) neighbors of u. Otherwise, we do nothing. We answer yes if all vertices in D(G) are marked after traversing the whole tree, and no otherwise. Since we mark, in D(G), each vertex and each of its out-going neighbor at most once, and since we traverse each vertex in T (G) at most once, by the construction of D(G) and T (G), the total running time is

O(|V (G)| + |E(G)|).

P 3 -Partition on interval graphs

While it might not come as a surprise that Star Partition can be solved efficiently on unit interval graphs using a greedy strategy, this is far from obvious for general interval graphs even when s = 2. The obstacle here is that two intervals arbitrarily far apart from each other may eventually be required to form a P 3 in the solution. Indeed, the greedy strategy we propose to overcome this obstacle is naive in the sense of allowing wrong choices that can be corrected later.

Note that, while we can solve the more general Star Partition in polynomial time on subclasses of interval graphs like unit interval graphs and trivially perfect graphs (see previous subsections), we are not aware of a polynomial-time algorithm for Star Partition with s ≥ 3 on interval graphs.

Overview of the algorithm. The algorithm is based on the following analysis of a P 3 -partition of an interval graph. Each P 3 contains a center and two leaves connected to the center via their incident edges called links. We associate with each interval two so-called tokens. We require that the link between a leaf and a center consumes both of the leaf's tokens (such that a leaf can be associated to only one link) and one token of the center (which can thus be linked to two leaves).

The algorithm examines the event points (start and end points of intervals) of an interval representation in increasing order. We consider that a link {x, y} consumes three tokens of x and y as soon as one of the two intervals ends. Intuitively, a graph is a no-instance if, at some point, an interval with one or two remaining tokens ends, but there are not enough tokens of other adjacent intervals to create a link. Note that a link consumes three tokens. A graph is a yes-instance if the number of tokens is always sufficient.

The algorithm works according to the following two rules: when an interval starts, its two tokens are added to a list; when an interval with remaining tokens ends, then three tokens are deleted from this list. Only tokens of the earliest-ending intervals will be deleted (this choice may not directly translate into a "sane" solution, with each link consuming tokens from only two intervals, but it turns out not to be a problem). The algorithm is sketched in Algorithm 1. Figure 4 shows an example instance and the list of tokens maintained by the algorithm. Note that a token of an interval x is simply represented by a copy of interval x itself. We now introduce the necessary formal definitions. Input: An interval representation of an interval graph with pairwise distinct event points in {1, . . . , 2n}. Output: true if the graph allows for a P 3 -partition, otherwise false. end points start(u) < end(u). Moreover, without loss of generality, each position in {1, . . . , 2n} corresponds to exactly one event.

1 A 0 ← empty token list ∅; 2 for t ← 1 to 2n do 3 if t = start(x) then A t ← A t-1 ⊕ (x, x) ; 4 if t = end(x) then 5 if x / ∈ A t-1 then A t ← A t-1 ; 6 else if A t-1 < 3 then
Let P be a P 3 -partition and P = {x, y, z} ∈ P with end(x) < end(y) < end(z), we write rank P (x) = 1, rank P (y) = 2, and rank P (z) = 3 (we omit the subscript when there is no ambiguity). Moreover, we call the element among {y, z} having the earliest start point the center of P . The other two elements of P are called leaves. Note that the center of P intersects both leaves.

A token list Q is a list of intervals (q 1 , . . . , q k) sorted in decreasing order of their end points (end(q i) ≥ end(q j) for 1 ≤ i ≤ j ≤ k). To avoid confusion with the left-to-right sequence of event points, we consider the list to be written vertically, with the earliest-ending interval on top. We write Q for the length of Q, ∅ for the empty token list, and x ∈ Q if interval x appears in Q. We now define insertion ⊕, deletion , and comparison of token lists: Q ⊕ (x 1 , . . . , x l) is the token list obtained from Q by inserting intervals x 1 . . . , x l so that the list remains sorted. For x ∈ Q, the list Q x is obtained by deleting one copy of

x from Q (otherwise, Q x = Q); and Q (x 1 , . . . , x l) = Q x 1 . . . x l . We write (q 1 , . . . , q k) (q 1 , . . . , q k) if k ≤ k and ∀i ∈ {1, . . . k} : end(q i) ≤ end(q i).
Let P be a P 3 -partition. We define tokens(P) as a tuple (T 0 , T 1 , . . . , T 2n) of 2n + 1 token lists such that T 0 := ∅ and for t ∈ {1, . . . , 2n + 1},

• if t = start(x), then T t := T t-1 ⊕ (x, x),
• if t = end(x), then let P := {x, y, z} be the P 3 in P containing x and

-if rank(x) = 1, then T t := T t-1 (x, x, c) where c is the center of P , -if rank(x) = 2, then T t := T t-1 (x, x, y, y, z, z), -if rank(x) = 3, then T t := T t-1 .
Note that in Figure 4, each token list T t for P is equal to the respective A t , except for T 6 = (d, d) and T 7 = (e, e, d, d).

To compare the token lists generated by Algorithm 1 to those induced by a P 3 -partition, we show a few properties for both types of lists.

Property 1. Let P be a P 3 -partition with tokens(P) = (T 0 , T 1 , . . . , T 2n) and let x be an interval with t := end(x). Then, one of the following is true:

i) x ∈ T t-1 , T t-1 ≥ 3, and T t = T t-1 -3 or ii) x / ∈ T t-1 and T t = T t-1 .
Moreover, in both cases, x / ∈ T t .

Proof. Let P ∈ P be the P 3 containing x. Depending on the rank of x, we prove that either case (i) or (ii) applies.

If rank(x) = 1, then x is not the center of P . Let c be the center of P . Since c is adjacent to x, it follows that start(c) < t. Since x ranks first, T t-1 contains twice both elements x and c. Hence, T t-1 ≥ 4, and from the definition of T t = T t-1 (x, x, c) it follows that T t = T t-1 -3, we are thus in case (i). Moreover, only one copy of c remains in T t .

If rank(x) = 2 and x is not the center, then let c be the center of P and y be the interval of the first rank in P . From the reasoning above, it follows that T t-1 contains once c and twice x but no y, implying that T t-1 ≥ 3. As T t = T t-1 (x, x, c, c, y, y), this implies that T t = T t-1 -3: we are in case (i).

If rank(x) = 2 and x is the center, then let P = {x, y, z} such that y ranks first and z ranks third. Using the same reasoning as before it follows that T t-1 contains x once and z twice, but not y, implying that T t-1 ≥ 3. As T t = T t-1 (x, x, y, y, z, z), this implies that T t = T t-1 -3: we are in case (i).

Finally, if rank(x) = 3, then T t-1 does not contain x (the last copies have been removed when the rank-2-interval ended), and T t = T t-1 : we are in case (ii).

The fact that x / ∈ T t is clear in each case (all copies are removed when x ∈ T t-1 , none is added). Property 2. For any A t defined by Algorithm 1 and x ∈ A t , it holds that start(x) ≤ t < end(x). For any P 3 -partition P with tokens(P) = (T 0 , T 1 , . . . , T 2n) and x ∈ T t , it holds that start(x) ≤ t < end(x).

Proof. An element x is only added to a token list A t or T t when t = start(x), so the inequality start(x) ≤ t is trivial in both cases. Consider now an interval x and t := end(x). We show that neither A t nor T t contain x, which suffices to complete the proof.

The fact that x / ∈ T t is already proven in Property 1. Moreover, if x / ∈ A t-1 , then x / ∈ A t follows obviously. Now, assume that x ∈ A t-1 . We inductively apply Property 2 to obtain that for any y ∈ A t-1 , we have t -1 < end(y) (note that the property is trivial for A 0). Hence, x is the interval with the earliest end point in A t-1 (i. e., the interval on top) and all of its copies(at most two) are removed from A t-1 to obtain A t in line 9 of Algorithm 1. It follows that x / ∈ A t .

Property 3. Let Q = (q 1 , . . . , q k) and Q = (q 1 , . . . , q k) be two token lists such that Q Q . Then for any

q i ∈ Q, Q q i Q q k and for any interval x, Q ⊕ x Q ⊕ x.
Proof. For both insertion and deletion, the size constraint is clearly maintained (both list lengths respectively increase or decrease by 1). It remains to compare pairs of elements with the same index in both lists (such pairs are said to be aligned).

For the deletion case, q i is removed from Q. For any j = i, q j is now aligned with either q j (if j < i) or q j-1 (if j > i). We have end(q j) ≤ end(q j) since Q Q and end(q j) ≤ end(q j-1) since Q is sorted. Hence, q j is aligned with an interval in Q ending no later than q j itself.

We now prove the property for the insertion of x in both Q and Q . An element q of Q or Q is said to be shifted if it is higher than the insertion point of x (assuming that already-presentcopies of x in Q or Q are not shifted), this is equivalent to end(q) < end(x). Note that if some q i is shifted but q i is not, then end(q i) < end(x) ≤ end(q i), a contradiction to end(q i) ≥ end(q i). This implies that the insertion point of x in Q is not lower than the insertionpoint in Q.

Let q be an interval of Q ⊕ x, now aligned with some q in Q ⊕ x. We prove that end(q) ≥ end(q). Assume first that q = x, then either q = x, in which case trivially end(q) ≥ end(q), or q = x. Then, q cannot be shifted (since x's insertion point is not lower in Q thanin Q), and end(q) ≥ end(x) = end(q). Assume now that q = x. Then, q = q i for some i. With Q Q , we have end(q) ≤ end(q i). If q = q i then we directly have end(q) ≤ end(q). Otherwise, exactly one of q i and q i must be shifted. It cannot be q i (the insertion point of x is not lower in Q than in Q), henceq i is shifted and q i is not. In Q we have end(q i) < end(x), and in Q interval q i must be placed directly below q and both cannot occur higher than x (note that q = x ispossible), thus we have end(q i) ≥ end(q) ≥ end(x). Overall, we indeed have end(q) ≤ end(q). Using the proven properties, we can put the token lists defined by a P 3 -partition into relation with the token lists generated by Algorithm 1.

The following two lemmas state that, on the one hand, if there is a P 3partition, then each token list created by Algorithm 1 is comparable with the corresponding T t , hence it always contains enough tokens to create the next list, up to A 2n , and answer "true" in the end. On the other hand, if the algorithm returns "true", then it is indeed possible to construct a P 3 -partition using (indirectly) the triples of intervals removed from the token list to create the links. Lemma 3. If an interval graph G has a P 3 -partition P, then, for all 0 ≤ t ≤ 2n, Algorithm 1 defines list A t with T t A t and T t -A t ≡ 0 (mod 3), where tokens(P) = (T 0 , T 1 , . . . , T 2n).

Proof. We show by induction that for any position t, 0 ≤ t ≤ 2n, the algorithm defines a list A t with T t A t and T t -A t ≡ 0 (mod 3).

For t = 0, Algorithm 1 defines list A 0 = ∅, and T 0 = ∅ A 0 . Consider now some 0 < t ≤ 2n, and assume that the induction property is proven for t -1.

If an interval x starts at position t, then x / ∈ T t-1 , x / ∈ A t-1 , T t = T t-1 ⊕(x, x), and Algorithm 1 defines A t := A t-1 ⊕ (x, x). Then property T t -A t ≡ 0 (mod 3) is trivially preserved, and Property 3 implies T t A t .

If an interval x ends at t, then we first show that Algorithm 1 defines A t . Towards a contradiction, suppose that A t is not defined. This means that

x ∈ A t-1 and A t-1 ≤ 2. Then, T t-1 ≤ 2 since T t-1 A t-1 , which implies T t-1 = A t-1 (since T t-1 -A t-1 ≡ 0 (mod 3)).
By Property 1, we must have x / ∈ T t-1 and T t = T t-1 (the second case). Also, with T t-1 A t-1 , the top element x in T t-1 must have end(x) ≤ end(x) = t. By Property 2 and due to x ∈ T t-1 , end(x) > t -1, i. e., end(x) = end(x), and x = x: a contradiction since x / ∈ T t-1 = A t-1 . We have shown that Algorithm 1 defines A t . Moreover, we have T t -T t-1 ∈ {0, -3} (Property 1), and

A t -A t-1 ∈ {0, -3} (Algorithm 1), hence T t -A t ≡ 0 (mod 3). Note also that T t T t-1 and A t A t-1 . If x / ∈ A t-1 , then A t = A t-1 , and T t T t-1 A t-1 = A t . If x ∈ A t-1 and x / ∈ T t-1 , then T t = T t-1 (Property 1)
. Observe that T t-1 A t-1 and, therefore, T t-1 = A t-1 would imply the existence of an interval u ∈ T t-1 with end(u) ≤ end(x). This is impossible since for all u ∈ T t = T t-1 , by Property 2, end(u) > t = end(x). Thus, one has T t-1 < A t-1 , which implies T t-1 ≤ A t-1 -3. Hence, since the top three elements of A t-1 are removed to obtainA t , from T t-1 A t-1 we conclude T t-1 A t and, in turn, T t A t .

If x ∈ A t-1 and x ∈ T t-1 , then let (u, v, w) be the three deleted intervals from T t-1 , and (u , v , w) the topthree elements of A t-1 (which are removed to obtain A t). Then, applying Property 3 three times, we obtain T t-1 (u, v, w) A t-1 (u , v , w), i. e., T t A t .

Before we move on to our last lemma for the interval graph algorithm, we introduce further notions necessary for constructing a P 3 -partition from the list A 2n that our algorithm produces at step 2n.

Definition 5 (Partial partition). Given an interval x and a token list Q, we write |Q| x for the number of occurrences of interval x in Q. For 0 ≤ t ≤ 2n, let

P = {V 1 , . . . , V k } be a partition of {u ∈ V | start(u) ≤ t}. Then P is called a partial partition at t if each V j is either • a singleton {x}, in which case end(x) > t,
• an edge {x, y}, in which case max{end(x), end(y)} > t,

• a triple {x, y, z} containing a P 3 .

Note that a P 3 -partition of an interval graph corresponds to a partial partition at t = 2n. A partial solution P at t satisfies A t if

• for any singleton {x} ∈ P we have

|A t | x = 2,
• for any edge {x, y} ∈ P with end(x) < end(y) we have |A t | x = 0 and |A t | y = 1, and

• for any triple {x, y, z} ∈ P we have

|A t | x = |A t | y = |A t | z = 0.
Note that, for any x ∈ A t , since start(x) ≤ t < end(x) (Property 2), it follows that x must be in a singleton or in an edge of any partial solution satisfying A t . Moreover, for any t and x, y ∈ A t with x = y, intervals x and y intersect (there is an edge between them in the interval graph).

Lemma 4. Let G be an interval graph such that Algorithm 1 returns true on G.

Then G admits a P 3 -partition.

Proof. We prove by induction that for any t such that Algorithm 1 defines A t , there exists a partial solution at t satisfying A t . For t = 0, the partial solution ∅ satisfies A 0 . Assume now that for some t ≤ 2n, Algorithm 1 defines A t , and that there exists a partial solution P at t -1 satisfying A t-1 .

First, if t = start(x) for some interval x, then let P := P ∪ {{x}}. Thus, P is now a partial solution at t (it partitions every interval with earlier starting point into singletons, edges and P 3 s) which satisfies A t since by construction of A t by Algorithm 1,

|A t | x = 2.
Now assume that t = end(x) with x / ∈ A t-1 . Then, in P, either x is part of an edge {x, y} with end(y) > t, or x is part of a P 3 . In both cases, P := P is a partial solution at t which satisfies A t = A t-1 .

We now explore the case where t = end(x) with x ∈ A t-1 . Then, the top element of A t-1 must be x (no other interval u ∈ A t-1 can have t -1 < end(u) ≤ end(x)). Let y and z be the two elements below x in A t-1 . Then, by construction, A t = A t-1 (x, y, z) and end(x) ≤ end(y) ≤ end(z) ≤ end(u) for all u ∈ A t . We create a partial solution P at t depending on the number of occurrences of x, y, and z in A t-1 .

If x = y (hence, |A t-1 | x = 2) and |A t-1 | z = 2, then P contains two singletons {x} and {z}. Let P := (P \ {{x}, {z}}) ∪ {{x, z}}. Then, P is indeed a partial solution at t (since {x, z} is an edge with end(z) > t) that satisfies A t , since

|A t | x = 0 and |A t | z = 1. If x = y (hence, |A t-1 | x = 2) and |A t-1 | z = 1
, then P contains a singleton {x} and an edge {z, u}. Also, note that

|A t-1 | u = 0, that is, u / ∈ A t-1 .
Because there is an edge {x, z}, the triple {x, z, u} contains a P 3 . Let P := (P \ {{x}, {z, u}}) ∪ {{x, z, u}}. Then P is a partial solution at t that satisfies

A t , since |A t | x = |A t | z = |A t | u = 0. If z = y (hence, |A t-1 | x = 1 and |A t-1 | z = 2
), then similarly P contains an edge {x, u} and a singleton {z}: P := (P \ {{x, u}, {z}}) ∪ {{x, z, u}} is a partial solution at t that satisfies A t .

If y = x and y = z (hence, |A t-1 | x = 1 and |A t-1 | y = 1), and |A t-1 | z = 2, then P contains two edges {x, u} and {y, v} and a singleton {z}. Recall that v, u / ∈ A t-1 . Assume first that start(y) < start(x), then interval u intersects y, and {y, u, v} contains a P 3 . Also, {x, z} forms an edge with |A t | z = 1: define P := (P \ {{x, u}, {y, v}, {z}}) ∪ {{y, u, v}, {x, z}}. In the case where start(x) < start(y), {x, u, v} contains a P 3 and P := (P \ {{x, u}, {y, v}, {z}}) ∪ {{x, u, v}, {y, z}} is a partial solution at t that satisfies A t . Finally, we have a similar situation when y = x, y = z and |A t-1 | z = 1: then, P contains three edges {x, u}, {y, v} and {z, w}. If start(y) < start(x), then both {y, u, v} and {x, z, w} contain P 3 s. Otherwise, {x, u, v} and {y, z, w} contain P 3 s. Thus, we define P := (P\{{x, u}, {y, v}, {z, w}})∪{{y, u, v}, {x, z, w}} and P := (P \ {{x, u}, {y, v}, {z, w}}) ∪ {{x, u, v}, {y, z, w}} respectively. In both cases, P is a partial solution at t that satisfies A t .

Overall, if Algorithm 1 returns true, then it defines A 2n . According to the property we have proven, there exists a partial solution at t = 2n, hence G has a P 3 -partition.

The above lemmas allow us to conclude the correctness of Algorithm 1.

Theorem 3. P 3 -Partition on interval graphs is solvable in O(n log n+m) time.

Proof. Let G be an interval graph. To prove the theorem, we show that Algorithm 1 returns true on G if and only if G has a P 3 -partition. The "only if" part is the statement of Lemma 4. For the "if" part, suppose that G has a P 3 -partition P. Then Lemma 3 implies that Algorithm 1 defines list A t at position t = 2n, which means it returns true.

It remains to prove the running time bound. We first preprocess the input as follows: in O(n + m) time, we can get an interval representation of an interval graph with n intervals that use start and end points in {1, . . . , n} [10, Section 8]. We modify this representation so that each position is the start or end point of at most one interval: first, for each interval, we add its start point to the beginning of a list L and its end point to the end of L. We sort L using a stable sorting algorithm like counting sort in O(n) time. The result is a sorted list L that, for each position, contains first the start points and then the end points. Now, in O(n) time, we iterate over L and reassign each event points to its own position in {1, . . . , 2n} in the order of its appearance in L. At the same time, we build an 2n-element array B such that B[i] holds a pointer to the interval starting or ending at event point i (there is at most one such interval). It follows that all preprocessing works in O(n + m) time.

After this preprocessing, each of the O(n) iterations for some t ∈ {1, . . . , 2n} of the loop in line 2 of Algorithm 1 is executed in O(log n) time: in constant time, we get the interval B[t] starting or ending at t and each operation on the token list can be executed in O(log n) time if it is implemented as a balanced binary tree (note that only the current value of A t need to be kept at each point, hence it is never necessary for the algorithm to make a copy of the whole token list).

Cographs

A cograph is a graph that does not contain a P 4 (path on four vertices) as an induced subgraph. Cographs allow for a so-called cotree to be computed in linear time [START_REF] Corneil | A linear recognition algorithm for cographs[END_REF]. Definition 6. A cotree cot(G) of a cograph G = (V, E) is a rooted binary tree T = (V T , E T , r), r ∈ V T , where each internal node is assigned a label in {⊕, ⊗} and the set of leaves corresponds to the original set V of vertices such that:

• A subtree consisting of a single leaf node corresponds to an induced subgraph with a single vertex.

• A subtree rooted at a union node, labeled "⊕", corresponds to the disjoint union of the subgraphs defined by the two children of that node.

• A subtree rooted at a join node, labeled "⊗", corresponds to the join of the subgraphs defined by the two children of that node; that is, the union of the two subgraphs with additional edges between every two vertices corresponding to leaves in different subtrees.

Consequently, the subtree rooted at the root r of cot(G) corresponds to G.

Using a dynamic programming approach on the cotree representation of the cograph, we can solve Star Partition in polynomial time. We define a dynamic programming table L as follows. For every node x ∈ V T and every non-negative integer c ≤ k, the table entry L[x, c] denotes the maximum number of leaves in T [x] that are covered by a center in T [x] when c vertices in T [x] are centers. Consequently, (G, s) is a yes-instance if and only if L[r, k] = ks. Now, let us describe how to compute L processing the cotree T bottom up.

Leaf nodes. For a leaf node x, either the only vertex v from T [x] is a center or not. In both cases no leaf in T

[x] is covered by v. Thus, L[x, 0] = L[x, 1] = 0 and ∀c > 1 : L[x, c] = -∞.
Union nodes. Let x be a node labeled with "⊕" and let x 1 and x 2 be its children. Note that there is no edge between a vertex from T [x 1] and a vertex from T [x 2], neither in T [x] nor in any other subgraph of G corresponding to any T [x], x ∈ V T . Thus, for every leaf v in T [x] that is covered by a center v from T [x], it holds that either both v and v are in

T [x 1] or both are in T [x 2]. Hence, it follows L[x, c] = max c1+c2=c (L[x 1 , c 1] + L[x 2 , c 2]).
Join nodes. Let x be a node labeled with "⊗" and let x 1 and x 2 be its children. Join nodes are more complicated than leaf or union nodes for computing the table entries, because these nodes actually introduce the edges. However, they always introduce all possible edges between vertices from T [x 1] and T [x 2] which has some nice consequences. The idea is that the maximum number of leaves in T [x] that are covered by centers in T [x] is achieved by maximizing the number of leaves from T [x 2] that are covered by centers from T [x 1] and vice versa.

To compute L[x, c], we introduce an auxiliary table A as follows. For every pair c 1 , c 2 of non-negative integers with

c 1 + c 2 = c, the table entry A[c 1 , c 2]
denotes the maximum number of leaves in T [x] that are covered by a center in T [x] when c 1 vertices in T [x 1] are centers and c 2 vertices in T [x 2] are centers. To this end, let i , i ∈ {1, 2}, be the number of leaves in the desired s-star partition being in T [x i]. (Note that in every solution every vertex is either a center or a leaf and a leaf is not necessarily already covered within the current T [x]. That is, i can be larger than the number of leaves covered by a center in T

[x].) Moreover, i = |V (T [x i])| -c i , where V (T [x i]) is the set of vertices in T [x i].
To compute the auxiliary table A, we consider three cases:

Case 1: (c 1 s > 2) ∧ (c 2 s > 1)
. In this case, we can cover all leaves in T [x] by covering the leaves from T [x 1] with centers from T [x 2] and vice versa.

Thus, A[c 1 , c 2] = 1 + 2 .
3: (c 1 s > 2) ∧ (c 2 s ≤ 1) or (c 1 s ≤ 2) ∧ (c 2 s > 1)
. In this case it is also optimal to greedily maximize the number of leaves from T [x 2] that are covered by centers from T [x 1] and vice versa. To see this, let y i , i ∈ {1, 2}, denote the number of leaves from T [x i] that are covered by a center from T [x i]. More precisely, assume that y 1 and y 2 are both greater than zero. Then, repeatedly take one center from T [x 1] covering a leaf in T [x 2] and one center from T [x 2] covering a leaf in T [x 1] and exchange their leaves until either y 1 or y 2 is zero (if both become zero, we would be in Case 2).

Without loss of generality, let y 1 > 0 and y 2 = 0. Note that this corresponds to the first subcase, i. e., (c 1 s > 2) ∧ (c 2 s ≤ 1)-the other subcase works analogously. As y 2 = 0 and c 2 s ≤ 1 , we can assume that c 2 centers from T [x 2] cover altogether c 2 s leaves from T [x 1]. Furthermore, all 2 leaves from T [x 2] are covered by centers in T [x 1]. Since c 1 s > 2 , the centers in T [x 1] might additionally cover some number of leaves from T [x 1]. We thus have A[c 1 , c 2] = c 2 s + 2 + . We now compute the maximum possible value of . Clearly:

• is at most c 1 s -2 , the maximum number of leaves that can be covered by c 1 centers after 2 leaves are covered in T [x 2],

• is at most 1 -c 2 s, the maximum number of leaves that are not already covered by centers from T [x 2], and

• is at most L[x 1 , c 1]
, the maximum number of leaves from T [x 1] that can be covered by centers from

T [x 1]. Hence, ≤ min(c 1 s -2 , 1 -c 2 s, L[x 1 , c 1]) Conversely, for = min(c 1 s -2 , 1 -c 2 s, L[x 1 , c 1]), it is possible for c 1 centers in T [x 1] to cover leaves in T [x 1] and 2 leaves in T [x 2]
, and for c 2 centers in T [x 2] to cover c 2 s leaves in T [x 1]. Here, the property that a join node introduces all possible edges between the two subgraphs is crucial, because we can therefore simply cover leaves from T [x 1] by centers from T [x 1] in an optimal way. (Each center from T [x 1] can cover each leaf from T [x 2] and vice versa.)

So ≥ = min(c 2 s -1 , 2 -c 1 s, L[x 2 , c 2]). Overall, A[c 1 , c 2] =          1 + 2 if (c 1 s > 2) ∧ (c 2 s > 1) cs if (c 1 s ≤ 2) ∧ (c 2 s ≤ 1) c 2 s + 2 + min(c 1 s -2 , 1 -c 2 s, L[x 1 , c 1]) if (c 1 s > 2) ∧ (c 2 s ≤ 1) c 1 s + 1 + min(c 2 s -1 , 2 -c 1 s, L[x 2 , c 2]) if (c 1 s ≤ 2) ∧ (c 2 s > 1).
Finally, we compute L[x, c] by considering the auxiliary table, that is,

L[x, c] = max c1+c2=c (A[c 1 , c 2]).
The O(kn 2) running time of this algorithm can be seen as follows: Computing the cotree representation runs in linear time [START_REF] Corneil | A linear recognition algorithm for cographs[END_REF]. The table size of the dynamic program is bounded by O(kn)-there are O(n) nodes in the cotree and c ≤ k. Since V (T [x i]) corresponds to the set of leaf nodes of the subtree of T rooted in x i , the sizes |V (T [x i])| can be precomputed in linear time for each node x i of the cotree. Hence, computing a table entry costs at most O(n).

Bipartite permutation graphs

In this section, we show that Star Partition can be solved in O(n 2) time on bipartite permutation graphs. The class of bipartite permutation graphs is the intersection of the class of bipartite graphs and the class of permutation graphs. An alternative characterization of bipartite permutation graphs can be given using strong orderings of the vertices of a bipartite graph: Definition 7 (Spinrad et al. [START_REF] Spinrad | Bipartite permutation graphs[END_REF]). A strong ordering ≺ of the vertices of a bipartite graph G = (U, W, E) is the union of a total order ≺ U of U and a total order ≺ W of W , such that, for all edges {u, w}, {u , w } in E with u, u ∈ U and w, w ∈ W , u ≺ u and w ≺ w implies that there are edges {u, w } and {u , w} in E.

A graph is a bipartite permutation graph if and only if it is bipartite and there is a strong ordering of its vertices; a strong ordering can be computed in linear time [START_REF] Spinrad | Bipartite permutation graphs[END_REF].

In a bipartite graph G with vertex set U ∪ W , if the subgraph induced by a size-(s + 1) vertex subset X ⊆ U ∪ W contains an s-star, then this induced subgraph is a star-there is only one way to choose the star center. Thus, we refer to G[X] as a star. We denote by center(X) the center of the star G[X].

Observe that the number k U of star centers in U and the number k W of star centers in W are uniquely determined by the sizes |U | and |W | of the two independent vertex sets and by the number s of leaves in a star, since

|U | = k U + s • k W and |W | = k W + s • k U and therefore k U = |U | -|W | • s 1 -s 2 and k W = |W | -|U | • s 1 -s 2 .
If these numbers are not positive integers, then G does not have an s-star partition. Thus, we assume throughout this section that k U and k W are positive integers.

Our key to obtain star partitions on bipartite permutation graphs is a structural result that only a certain "normal form" of star partitions has to be searched for. This paves the way to developing a dynamic programming algorithm exploiting these normal forms. We define these structural properties of an s-star partition of bipartite permutation graphs in the following.

Let (G, s) be a Star Partition instance, where G = (U, W, E) is a bipartite permutation graph, ≺ is a strong ordering of the vertices, and is the reflexive closure of ≺. For two vertex sets A, B, we also write A ≺ B if for all vertices v ∈ A and w ∈ B, we have v ≺ w.

Assume that G admits an s-star partition P. Let X ∈ P form a star. By lm(X) (respectively by rm(X)), we denote the leftmost (that is, the minimum), respectively the rightmost (that is, the maximum) leaf of X with respect to ≺. The scope of star X is the set scope(X) := {v | x l v x r } containing all vertices from x l = lm(X) to x r = rm(X). The width of star X is the cardinality of its scope, that is, width(X) := | scope(X)|. The width of P, width(P), is the sum of width(X) over all X ∈ P.

Let e = {u, w} and e = {u , w } be two edges. We say that e and e cross each other if it holds that u ≺ u and w ≺ w or if it holds that u ≺ u and w ≺ w . The edge-crossing number of two stars X, Y ∈ P is the number of pairs of crossing edges e, e with respect to the given strong order ≺ where e is an edge of X and e is an edge of Y . The edge-crossing number #edge-crossings(P) of P is the sum of the edge-crossing numbers over all pairs of stars X = Y ∈ P.

We identify the possible configurations of two stars, depending on the relative positions of their leaves and centers, see Figure 5. Among those, the following two configurations are favorable: Given X, Y ∈ P, we say that X and Y are • interleaving if center(X) ∈ scope(Y) and center(Y) ∈ scope(X);

We say that P is good if any two stars X = Y ∈ P are either non-crossing or interleaving. We define the score of P as the tuple (width(P), #edge-crossings(P)). We use the lexicographical order to compare scores.

These definitions allow us to observe the following property and show a normal form of star partitions in bipartite permutation graphs. Property 4. Let u 0 ≺ u 1 and w 0 ≺ w 1 be four vertices such that edges {u 0 , w 1 } and {u 1 , w 0 } are in G. Then, G has edges {u 0 , w 0 } and {u 1 , w 1 } and, for any edge e crossing one (respectively both) edge(s) in {{u 0 , w 0 }, {u 1 , w 1 }}, e crosses one (respectively both) edge(s) in {{u 0 , w 1 }, {u 1 , w 0 }}.

Proof. The existence of the edges {u 0 , w 0 } and {u 1 , w 1 } is a direct consequence of Definition 7. Let e = {u, w} be an edge crossing {u 0 , w 0 } and/or {u 1 , w 1 }. We consider the cases where u ≺ u 0 and where u 0 ≺ u ≺ u 1 (the case u 1 ≺ u being symmetrical to u ≺ u 0).

If u ≺ u 0 , then w 0 ≺ w, and e crosses both {u 0 , w 0 } and {u 1 , w 0 }. Also, if e crosses {u 1 , w 1 }, then e also crosses {u 0 , w 1 }, which proves the property for this case.

If u 0 ≺ u ≺ u 1 , then if e crosses {u 0 , w 0 }, then e also crosses {u 0 , w 1 }. If e crosses {u 1 , w 1 }, then e also crosses {u 1 , w 0 }. Overall, the property is thus proven for all cases.

Our main structural lemma now is the following.

Lemma 5. Any s-star partition of a bipartite permutation graph G with minimum score is a good s-star partition, that is, any two stars are either non-crossing or interleaving.

Proof. Let P be an s-star partition for G. First, we show that any two stars X = Y ∈ P are non-crossing, interleaving, or in one of the following four configurations (possibly after exchanging the roles of X and Y , see Figure 5 We now prove that a minimum-score s-star partition P does not contain any pair of stars X = Y ∈ P in Configurations I, II, III or IV (see Figure 5). For each such configuration, we construct an s-star partition P with a score strictly smaller than P.

Configuration I. Let X, Y be two stars of P in Configuration I, that is, scope(X) ∩ scope(Y) = ∅. Write x c = center(X) and y c = center(Y). Then, x c and y c are either both in U or both in W . Without loss of generality, assume x c ≺ y c . Write {z 1 , z 2 , . . . , z 2s } for the union of the leaves of X and Y , with indices taken such that z i ≺ z j for 1 ≤ i < j ≤ 2s. Let Z l = {z 1 , . . . , z s } and Z r = {z s+1 , . . . , z 2s }. We first show that both vertex sets Z l ∪ {x c } and Z r ∪ {y c } form a star in G.

Let k be the index such that z k = lm(Y). Then, since the scopes of X and Y intersect, z k cannot be to the right of all the leaves of G[X], hence we have k ≤ s, and z k ≺ Z r . Consider now any z ∈ Z r . If z ∈ Y , then there exists an edge {z, y c } in G. If z ∈ X, then there exists an edge {z, x c } in G that crosses {z k , y c } (since z k ≺ z and x c ≺ y c). Thus, there also exists an edge {z, y c } in G by Definition 7. With a symmetrical argument, G has an edge {z, x c } for all z ∈ Z l .

It follows that the vertex sets X = Z l ∪ {x c } and Y = Z r ∪ {y c } both form stars in G.

We now compare the widths of G[X] and G[Y] to the widths of the original stars G[X] and G[Y]. Let w be the total number of elements between z 1 and z 2s , that is, the cardinality of the vertex set {u | z 1 u z 2s } = scope(X)∪scope(Y). Then, using the fact that the scopes of X and Y are disjoint and included in a size-w set, we have

width(X) + width(Y) ≤ w = | scope(X)| + | scope(Y)| -| scope(X) ∩ scope(Y)| < width(X) + width(Y).
We can thus construct an s-star partition P = (P \ {X, Y }) ∪ {X , Y } such that width(P) < width(P), that is, with strictly smaller score. Thus, no pair of stars in the minimum-score s-star partition P may be in Configuration I. Since y c ≺ v, one has width(X) ≤ width(X) -1. Obviously, width(Y) = width(Y). We can thus construct an s-star partition P = (P \{X, Y })∪{X , Y } with width(P) < width(P), that is, with strictly smaller score. Therefore, no pair of stars in the s-star partition P may be in Configuration II. We now show that #edge-crossings(P) < #edge-crossings(P). We write B X (respectively B Y , B X , and B Y) for the branches of the corresponding star, that for the number of crossings between branches of B X and B Y (respectively of B X and B Y), × b,r (respectively × b ,r) for the number of crossings between a branch in B X ∪ B Y (respectively in B X ∪ B Y) and an edge in R, and × r,r for the number of crossings between two edges in R. Note that #edge-crossings

center(Y) lm(X) rm(X) center(X) lm(Y) rm(Y) center(Y) lm(X) rm(X) center(X) lm(Y) rm(Y)
(P) = × b,b + × b,r + × r,r and that #edge-crossings(P) = × b ,b + × b ,r + × r,r .
It is easy to see that × b ,b = 0 (X and Y form non-crossing stars), and × b,b > 0. Let x i (respectively y i) be the i-th leaf of X (respectively of Y) in the order ≺. Then, by Property 4, any edge in R crossing one or two edges among {{y c , x i }, {x c , y i }} also crosses at least as many edges among {{x c , x i }, {y c , y i }}. Summing over all branches and all crossing edges, we obtain × b ,r ≤ × b,r . Thus, overall, we indeed have #edge-crossings(P) < #edge-crossings(P).

Finally, we have constructed an s-star partition with the same width but fewer crossings, that is, with strictly smaller score. Thus, no pair of stars in the s-star partition P may be in Configuration III.

Configuration IV. Let X, Y be two stars of P in Configuration IV. Without loss of generality, we assume that center(X) ≺ scope(Y) and center(Y) ≺ scope(X). We moreover assume that X and Y are chosen so that the number of elements between center(X) and rm(Y), written d(X, Y), is minimal among all pairs in Configuration IV. The configuration is depicted in more detail in Figure 6 (left).

We first show that d(X, Y) = s -1, which means that no vertex exists between center(X) and rm(Y), except for the s -1 other leaves of Y . Suppose, towards a contradiction, that there is a vertex z / ∈ {center(X)} ∪ scope(Y) such that center(X) ≺ z ≺ rm(Y).

Assume first that z is the center of a star G[X] with X ∈ P. Then, scope(X) ≺ scope(X), since X and X cannot be in Configuration I or III. Moreover, we have center(X) ≺ z ≺ scope(Y) since, otherwise, z ∈ scope(Y) and Y and X would be in Configuration II. Hence, X and Y are in configuration IV (with center(X) ≺ scope(Y), center(Y) ≺ scope(X)), and d(X , Y) < d(X, Y), which is a contradiction. Now assume that z is a leaf of a star G[Y] with Y ∈ P. First compare Y and Y : scope(Y) ∩ scope(Y) = ∅ since, otherwise, Y and Y would be in Configuration I. Using z ≺ rm(Y), it follows that scope(Y) ≺ scope(Y). This implies that center(Y) ≺ center(Y) ≺ scope(X) since, otherwise, Y and Y would be in Configuration III. We now compare X and Y . We have already seen that center(Y) ≺ scope(X). Also, center(X) / ∈ scope(Y) since, otherwise, Y and X would be in Configuration II. Using center(X) ≺ z, we thus have center(X) ≺ scope(Y), which implies that X and Y are in Configuration IV with d(X, Y) < d(X, Y), which is a contradiction. We conclude that no vertex other than the leaves of Y may exist between center(X) and rm(Y).

We now construct an s-star partition with score strictly less than P. To this end, let X 0 = X \ {center(X)} and Y 0 = Y \ {rm(Y)}. First observe that G contains the edge {center(X), center(Y)} since there is an edge in G[X] and an edge in G[Y] crossing each other. Hence, Y = Y 0 ∪ {center(X)} forms a star. Now, consider any vertex u ∈ X 0 . The edge {center(X), u} crosses the edge {center(Y), rm(Y)} and, therefore, G contains the edge {rm(Y), u}. Thus, X = X 0 ∪ {rm(Y)} forms a star. For an illustration, see Figure 6 (right). Also, X and Y are non-crossing (X is completely to the right of Y).

We now compare the widths of G[X] and G[Y] to the widths of the original stars G[X] and G[Y]. Obviously, width(X) = width(X). Moreover, since d(X, Y) = s -1, it follows that width(Y) = width(Y) = s. Hence, the s-star partition P = (P \ {X, Y }) ∪ {X , Y } has the same width as P.

Since the widths have not changed, we have to show that #edge-crossings(P) < #edge-crossings(P). We introduce the same notations as in Configuration III: Let B X (respectively B Y , B X , and B Y) be the set of branches of the corresponding star, that is, the set of edges in G

[X] (respectively in G[Y], G[X],
and G[Y]), and let R X,Y (respectively R X ,Y) be the set of edges in G[Z] for any Z ∈ P \ {X, Y } (respectively for any Z ∈ P \ {X , Y }). Note that by definition of P , R X ,Y = R X,Y , and we thus simply denote this set by R. Furthermore, let × b,b (respectively × b ,b) be the number of crossings between branches of B X and B Y (respectively between branches of B X and B Y), let × b,r (respectively × b ,r) be the number of crossings between a branch in B X ∪ B Y (respectively in B X ∪ B Y) and an edge in R, and let × r,r be the number of crossings between two edges in R. Note that #edge-crossings(P) = × b,b + × b,r + × r,r and that #edge-crossings(P) = × b ,b +× b ,r +× r,r . Then, it is easy to see that × b ,b = 0 (X and Y form non-crossing stars), and × b,b > 0.

We now show that × b ,r ≤ × b,r . First recall that no edge in R has an end point between center(X) and rm(Y). We consider the branches in B X ∪B Y and, for each, give a unique edge in B X ∪ B Y crossing the same edges of R. For any leaf x of X , any r ∈ R crossing {center(X), x} must also cross {center(X), x}.

For the leftmost branch of Y , any r ∈ R crossing {center(X), center(Y)} must also cross {rm(Y), center(Y)}. For any other branch b = {center(Y), y} of Y , any r ∈ R must also cross the same branch b of Y . Overall, we indeed have × b ,r ≤ × b,r , which implies #edge-crossings(P) < #edge-crossings(P).

Altogether, we have shown that a minimum-score s-star partition P containing pairs of stars in Configurations I to IV leads to a contradiction, since, in this case, we could find an s-star partition of lower score, which is a contradiction.

As a consequence of Lemma 5, we obtain the following corollary.

Corollary 1. Let P be an s-star partition of a bipartite permutation graph G with minimum score. Then, for each star X ∈ P, there is at most one Y ∈ P such that X and Y are interleaving, and for all Z ∈ P \ {X, Y }, X and Z are non-crossing.

Proof. Since P has minimum score, for any Y ∈ P \ {X}, G[X] and G[Y] are either interleaving or non-crossing.

Any star interleaving with G[X] contains center(x) in its scope. If there exist at least two such stars in P, then their scopes intersect and they are in Configuration I, which is impossible by Lemma 5.

We now informally describe a dynamic programming algorithm for deciding whether a bipartite graph G = (U, W, E) allows for a good s-star partition. It builds up a solution following the strong ordering of the graph from left to right. A partial solution can be extended in three ways only: either (i) a star is added with the center in U , or (ii) a star is added with the center in W , or (iii) two interleaving stars are added. The algorithm can thus compute, for any given number of centers in U and in W , whether it is possible to partition the leftmost vertices of U and W in one of the three ways (i)-(iii). This algorithm leads to the following result.

Theorem 5. Star Partition can be solved in O(n 2) time on bipartite permutation graphs.

Proof. Let (G, s) denote a Star Partition instance, where G = (U, W, E) is a bipartite permutation graph. Furthermore, let U = {u 1 , u 2 , . . . , u k U } and W = {w 1 , w 2 , . . . , w k W } such that u i ≺ u j (respectively w i ≺ w j) implies i < j for some fixed strong ordering ≺. We describe a dynamic programming algorithm that finds a good s-star partition P. The idea is to use the fact that a star from P is either interleaving with exactly one other star from P or it does not cross any other star from P (see Lemma 5 and Corollary 1). In both cases, the part of the graph that lies entirely to the left of the star (of the two interleaving stars respectively) with respect to the strong ordering must have an s-star partition on its own. This is clearly also true for the part of the graph that lies entirely to the right, but we do not need this for the proof.

Informally, an entry T (x, y) of our binary dynamic programming table T is true if and only if x stars with centers from U and y stars with centers from W can "consecutively cover" the correspondingly large part of the graph from the left side of the strong ordering. Formally, the binary dynamic programming table T is defined as

T (x, y) =      1 if G[{u 1 , u 2 , . . . , u x+s•y , w 1 , w 2 , . . . , w y+s•x }]
has an s-star partition, 0 otherwise.

Initialize the table T by:

T (0, 1) = 1 if G[{u 1 , u 2 , .
. . , u s , w 1 }] contains an s-star, 0 otherwise,

T (1, 0) = 1 if G[{u 1 , w 1 , w 2 , .
. . , w s }] contains an s-star, 0 otherwise, and

T (1, 1) =      1 if G[{u 1 , u 2 , . . . , u s+1 , w 1 , w 2 , . . . , w s+1 }] contains disjoint s-stars, 0 otherwise. Update the table T for all 1 < x ≤ k U and 1 < y ≤ k W by T (x, y) =                               
1 if one of the following holds: Concerning the running time, first, a strong ordering of the vertices can be computed in linear time [START_REF] Spinrad | Bipartite permutation graphs[END_REF]. Second, the table in the dynamic program has O(k 2) entries and initialization as well as updating works in O(s 2) time. Hence, the total running time is

O(k 2 • s 2) = O(n 2).
Concerning the correctness of the algorithm, we show that T (k U , k V) is true if and only if there is a good s-star partition and, hence, if and only if there is an s-star partition. To this end, consider an s-star partition P for G := G[{u 1 , u 2 , . . . , u x+s•y , w 1 , w 2 , . . . , w y+s•x }] with minimum score. Now there are three simple cases:

Case (a). The rightmost vertex of G in W is a center of a non-crossing star in P and, hence, G[{u 1 , u 2 , . . . , u x+s•(y-1) , w 1 , w 2 , . . . , w y-1+s•x }] has an s-star partition.

Case (b). The rightmost vertex of G in U is a center of a non-crossing star in P and, hence, G[{u 1 , u 2 , . . . , u x-1+s•y , w 1 , w 2 , . . . , w y+s•(x-1) }] has an s-star partition.

Case (c). The rightmost vertex of G in U and G s rightmost vertex in W are leaves of two interleaving stars. Due to Corollary 1, none of the other stars from P is crossing these two stars. It follows that G[{u 1 , u 2 , . . . , u x-1+s•(y-1) , w 1 , w 2 , . . . , w y-1+s•(x-1 }] has an s-star partition.

Note that the rightmost vertex of G in U can only be a leaf of a non-crossing star in P if the rightmost vertex of G in W is the center and vice versa. Otherwise, the corresponding star is clearly not non-crossing. Hence, these cases are already covered by (a) and (b). Furthermore, neither the rightmost vertex of G in U nor in W can be a center of an interleaving star from P , because both are rightmost with respect to the strong ordering and, thus, interleaving is impossible. Thus we considered all cases and the update process is correct.

Split graphs

A split graph is a graph whose vertices can be partitioned into a clique (that is, a complete subgraph) and an independent set (that is, a subgraph with only isolated vertices). Remarkably, split graphs are the only graph class where we could show that P 3 -Partition is solvable in polynomial time, but that Star Partition for s ≥ 3 is NP-hard.

More precisely, we solve P 3 -Partition on split graphs by reducing it to finding a restricted form of factor in an auxiliary graph; herein, a factor of a graph G is a spanning subgraph of G (that is, a subgraph containing all vertices). This graph factor problem then can be solved in polynomial time [START_REF] Cornuéjols | General factors of graphs[END_REF]. Alternatively, we can also solve the problem by reducing it to finding perfect matchings (Theorem 6).

Let G = (C ∪ I, E C ∪ E) be a split graph where (C, E C) is a clique, I induces an independent set, and B = (C ∪ I, E) forms a bipartite graph over C and I. Note that if |C| + |I| is not a multiple of 3, or if |I| > 2|C|, then G trivially has no P 3 -partition. We thus assume that |C| + |I| (and hence 2|C| -|I|) is a multiple of 3, and that 2|C| -|I| ≥ 0.

First, we show how a P 3 -partition of a split graph is related to a specific factor of the bipartite graph B. Assume that G admits a partition into P 3 s and let P denote the set of edges in the partition. There are three types of P 3 s:

(i) a P 3 consisting of three clique vertices, (ii) a P 3 consisting of two clique vertices and one independent set vertex, and (iii) a P 3 consisting of one clique vertex and two independent set vertices. Note that, for each P 3 , we can assume that the edges are selected so that each independent set vertex is incident with at most one edge in P . In particu-lar, this implies that the two clique vertices in Type (ii) are adjacent in the corresponding P 3 . This leads to the following definition. Definition 8. A factor F of the bipartite graph B is feasible if, in F , every independent set vertex has degree one, every clique vertex has degree zero, one or two, and there are at least as many degree-zero clique vertices as degree-one clique vertices.

It turns out that Definition 8 is necessary and sufficient for obtaining a P 3 -partition. Lemma 6. A split graph G admits a partition into P 3 s if and only if there exists a feasible factor of its bipartite graph B.

Proof. Assume that there is a partition of G into P 3 s with edge set P such that each vertex in I is incident with exactly one edge in P . Let P E := P ∩ E be the subset of edges of the partition which connect vertices from C with vertices from I, and let F := (C ∪ I, P E) be the corresponding factor of B = (C ∪ I, E).

Each independent set vertex in I has degree one in F (since it is adjacent to exactly one edge in P , which is also in P E). Each clique vertex v in C belongs to a P 3 from P . Depending on the type of this P 3 , in F , vertex v can have degree zero (Type (i) or (ii), note that we assume each independent set vertex to be incident with at most one edge in P), degree one (Type (ii)), or degree two (Type (iii)). Let n (i) (respectively n (ii)) denote the number of P 3 s of Type (i) (respectively (ii)). It remains to show that the number of degree-zero clique vertices is equal to or greater than the number of degree-one clique vertices: The number of degree-zero vertices is n (ii) + 3n (i) , and the number of degree-one vertices is n (ii) , hence the difference is positive. Thus, F is feasible.

Conversely, let F = (C ∪ I, P E) be a feasible factor of B. Then we partition G into P 3 s as follows. For each degree-two clique vertex v in C, add {v, x, y} to P where x and y are the neighbors of v in F . For each degree-one clique vertex v in C, add {v, x, y} to P , where x is v's neighbor in F and y is an arbitrary degree-zero clique vertex (there are enough such vertices). The number of remaining degree-zero vertices in C is thus a multiple of 3: these vertices are simply grouped up in arbitrary triples Add these triples to P . Overall, due to the degree constraints, P is a P 3 -partition of G.

Cornuéjols [START_REF] Cornuéjols | General factors of graphs[END_REF] shows that finding a feasible factor in B can be solved in polynomial time by reducing it to finding disjoint edges and triangles in a corresponding auxiliary graph. Nevertheless, we show in the following how to reduce the problem to finding perfect matchings. To this end, we formulate a nice property that a feasible factor in B must fulfill: Property 5. Let F = (C ∪ I, P ∩ E) be a feasible factor of the bipartite graph B = (C ∪ I, E). Let q and r be two non-negative integers such that r ∈ {0, 1} and (2|C| -|I|)/3 = 2q + r. Then, in F , the number n 1 of degree-one vertices in C is 2i + r for some i, 0 ≤ i ≤ q. In particular, n 1 ≤ (2|C| -|I|)/3.

Proof. Let n 0 , n 1 , and n 2 be the number of degree-zero, degree-one, and degreetwo clique vertices in F . Then, n 0 + n 1 + n 2 = |C| (all clique vertices have degree 0, 1 or 2), n 1 + 2n 2 = |I| (vertices in I have degree 1). Rearranging and resolving variable n 2 yields 3n 1 = 2|C| -|I| -2(n 0 -n 1).

(

) 2
As mentioned, 2|C| -|I| is a multiple of three (as well as |C| + |I|). Note that n 0 -n 1 , which is positive because F is feasible, is a multiple of three because it equals the number of clique vertices in P 3 s of Type (i). Let j be an integer with (n 0 -n 1)/3 = j. Then, together with (2), we obtain that

n 1 = 2|C| -|I| 3 -2 • n 0 -n 1 3 = 2q + r -2j.
The last statement is satisfied since 2q + r = (2|C| -|I|)/3 and j ≥ 0.

To be able use a perfect matching algorithm to solve our problem, we first reduce it to a restricted variant of the graph factor problem: We add an additional vertex z to the bipartite graph B, and connect it to all vertices in C. We call this graph B . Now, the following lemma states that B can be used to find a feasible factor for B. Proof. Assume that B admits a feasible factor F = (C ∪ I, P E). Then F = (C ∪ I ∪ {z}, P E) is a factor of B . For each degree-one vertex v ∈ C, we add edge {v, z} to factor F . By Property 5, we thus add 2i + r edges, with 0 ≤ i ≤ q. It is easy to verify that the degree constraints stated in the lemma are satisfied.

Conversely, let F be a factor for graph B where every independent set vertex has degree one, every clique vertex has degree zero or two, and vertex z has degree 2i + r with i ∈ {0, 1, . . . , q}. If we delete from F all edges incident to vertex z, then we obtain a feasible factor F for B where the number n 1 of degree-one clique vertices is the original degree of z, that is,

n 1 = 2i + r ≤ (2|C| -|I|)/3. (3)
Since each independent set vertex still has degree one, the number of degreetwo clique vertices is (|I| -n 1)/2, and the number of degree-zero clique vertices is n 0 = |C| -n 1 -(|I| -n 1)/2 = (2|C| -|I| -n 1)/2. The difference between the number of degree-zero and the number of degree-one vertices is n 0 -n 1 = (2|C| -|I| -3n 1)/2, which is non-negative by using (3). Using a gadget introduced by Cornuéjols [START_REF] Cornuéjols | General factors of graphs[END_REF], we can even reduce P 3 -Partition to the perfect matching problem. We construct a graph B * from B in which we are searching for a perfect matching. The idea is to replace every clique vertex v by a gadget which can simulate the constraint that v has degree zero or two, and to replace vertex z by a gadget to simulate its degree constraint. To construct the vertex set of B * , first add a copy of I to B * . For each clique vertex u ∈ C, add d u vertices y 1 u , y 2 u , . . . , y du u to B * ; denote this set as Y (u). For each edge e j ∈ E that is incident with u, add a vertex u j to B * ; denote this set as V (u). Note that |Y (u)| = |V (u)| (Y (u) and V (u) are used to form a complete bipartite subgraph). For each edge {z, u} in B , add a vertex z u to B * ; denote this set as V (z). Finally, add a set X of |C| -r copies of vertex z, named as x 1 , x 2 , . . . , x |C|-r to B * (V (z) and X are used to form a complete bipartite subgraph).

This completes the construction for the vertex set, which consists of |I| + u∈C 2d u + 2|C| -r = O(m) vertices. Now we are ready to add edges to B * . For each edge e j = {u, v} in B which connects a clique vertex u and an independent set vertex v, add an edge {u j , v} to B * . Analogously, for each edge e j = {u, z} in B which connects z and a clique vertex u, add an edge {u j , z u } to B * . This is used to model the original edges of B . Now, to model the degree constraints, for each clique vertex u ∈ C, add to B * an edge between every vertex from V (u) and every vertex from Y (u), and an edge between y 1 u and y 2 u . Add to B * an edge between every vertex from vertex of Y (u) \ {y 1 u , y 2 u }. Analogously, let R(z) ⊆ V (z) be the set of vertices in V (z) which are not yet matched by M . By assumption, there is an integer i,

0 ≤ i ≤ q such that |V (z)| -|R(z)| = 2i + r. Since |X| = |V (z)| -r, we have |X| -|R(z)| = 2i. Moreover, B * [V (z)
∪ X| contains a complete bipartite graph for V (z) and X. Thus, for each 1 ≤ k ≤ i, add edge {x 2k-1 , x 2k } to M , and add edges connecting exactly one vertex of R(z) and one vertex of X to match vertices of R z and of V z \ {x 1 , x 2 , . . . , x 2i }. It is easy to verify that M is indeed a perfect matching.

We now have gathered all ingredients to show Theorem 6. Proof. We show that it is NP-hard to find an s-star partition of a split graph via reduction from Exact Cover by s-Sets [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] (illustrated in Figure 8).

Exact Cover by s-Sets

Input: A finite set U and a collection S of size-s subsets of U . Question: Is there a subcollection S ⊆ S that partitions U (each element of U is contained in exactly one subset in S)?

Given (U, S) with |U | = sn and |S| = m ≥ n where n, m ∈ N, we construct a split graph G = (C ∪ I, E) as follows: The vertex set consists of a clique C and an independent set I. The clique C contains a vertex for each subset in S, the independent set I contains a vertex for each element of U . For each S ∈ S the corresponding vertex in C is adjacent to the s vertices in I that correspond to the elements of S. Moreover, let q, r ∈ N such that m -n = (s -1)q + r. We add q dummy vertices to both C and I and connect every dummy vertex in C with all other vertices in C and uniquely with one of the dummy vertices in I.

Finally, we add one more dummy vertex to C and another s -r dummy vertices to I. This last dummy in C is connected to all other vertices in C and to each of the s -r dummies in I. Note that each dummy vertex in I has degree one. The above construction can be carried out in polynomial time. Now, let S ⊆ S be a partition of U . Then we can partition G into stars of size s in the following way: For each S ∈ S , we choose the star containing the vertex from C corresponding to S and the vertices in I corresponding to the elements of S. Moreover, each of the dummy vertices in I is put together with its neighboring dummy in C and filled up to a star of size s with the remaining non-dummy vertices in C corresponding to the subsets in S \ S . Indeed, the values of q and r are chosen in a way that guarantees that this is possible. Since S partitions U , we get a valid s-star partition of G.

Conversely, in any s-star partition of G, all dummy vertices in I are grouped together into an s-star with their one dummy neighbor in C and the respective number of other non-dummy vertices from C. The values of q and r are such that there are exactly n non-dummy vertices left in C together with the s • n vertices in I corresponding to U . It follows that each remaining non-dummy vertex in C forms a star with its s neighbors in I, which yields a partition of U .

Grid graphs

In this section, we show that P 3 -Partition is NP-hard even on grid graphs with maximum degree three, thus strengthening a result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF], who showed that P 3 -Partition is NP-complete on planar bipartite graphs of maximum degree three.

A grid graph is a graph with a vertex set V ⊆ N × N and edge set {{u, v} | u = (i, j) ∈ V, v = (k,) ∈ V, |i -k| + |j -| = 1}. That is, its vertices can be given integer coordinates such that every pair of vertices is joined by an edge if and only if their coordinates differ by 1 in exactly one dimension.

To show NP-hardness of P 3 -Partition on grid graphs, we exploit the above mentioned result of Ma lafiejski and Żyliński [START_REF] Ma | Weakly cooperative guards in grids[END_REF] and Monnot and Toulouse [START_REF] Monnot | The path partition problem and related problems in bipartite graphs[END_REF] and find a suitable embedding of planar graphs into grid graphs while maintaining the property of a graph having a P 3 -partition. This allows us to prove the following. Theorem 8. P 3 -Partition is NP-hard on grid graphs of maximum degree three.

Towards proving Theorem 8, the following observation helps us embed planar graphs into grid graphs: it allows us to replace edges by paths on 3i new vertices for any i ∈ N.

Observation 5. Let G be a graph, e = {v, w} be an edge of G, and G be the graph obtained by removing the edge e from G and by connecting v and w using a path on three new vertices. Then, G has a P 3 -partition if and only if G has one.

Note that the correctness of Observation 5 is proven by Figure 9, which enumerates all possible cases. We can now prove Theorem 8 by showing that G has a P 3 -partition if and only G has, where G is the graph obtained from a planar graph G of maximum degree three using the following construction.

Construction 2. Let G be a planar n-vertex graph of maximum degree three. Using a polynomial-time algorithm of Rosenstiehl and Tarjan [START_REF] Rosenstiehl | Rectilinear planar layouts and bipolar orientations of planar graphs[END_REF] we obtain a crossing-free rectilinear embedding of G into the plane such that:

1. Each vertex is represented by a horizontal line. Figure 10b illustrates such an embedding. Without loss of generality, every end point of a line lies on another line. Now, in polynomial time, we obtain a grid graph G from the rectilinear embedding, as follows:

1. We multiply all coordinates by six (see Figure 10c).

2. Every point in the grid touched by a horizontal line that represents a vertex v of G becomes a vertex in G . The horizontal path resulting from this horizontal line we denote by P (v) (indicated by a gray background in Figure 10c).

3. For each vertical line, all its grid points become vertices in G , except for the third point from the bottom horizontal line that we bypass by adding a bend of five vertices to the vertical line (see Figure 10c).

4. With each vertex v in G, we associate the vertex v of G that lies on P (v) and has degree three. There is at most one such vertex. If no such vertex exists, then we arbitrarily associate with v one of the end points of P (v).

Proof of Theorem 8. Since Construction 2 runs in polynomial time, it remains to prove that a graph G has a P 3 -partition if and only if the graph G obtained by Construction 2 has. By Observation 5, it is sufficient to verify that every edge e := {u, v} in G is replaced by a path p between u and v in G whose number of inner vertices is divisible by three. To this end, we partition the path p into two parts: one part consists of the subpaths p u , p v of p that lie on P (u) and P (v), respectively. Note that each of p u and p v might consist only of one vertex, as seen for the path from d to a in Figure 10c. The other part is a path p e that connects p u to p v . We consider p e not to contain the vertices of p u or p v . Hence, p e contains no vertices of any horizontal paths.

The number of inner vertices of p shared with the horizontal paths p u and p v is divisible by three (it is possibly zero) since all coordinates that start or end paths are divisible by three (in fact, by six). Herein, note that we do not count the vertices u and v lying on p u or p v , respectively.

Moreover, the number of vertices on p e is also divisible by three: the number of vertices on a strictly vertical path p s connecting p u with p v would leave a remainder of two when divided by three (as the two vertices on p u and p v are not considered to be part of p s). However, our added bend of five new vertices makes p e by four vertices longer compared to p s . Hence, the number of vertices on p e is also divisible by three. It follows that the total number of inner vertices of p is divisible by three.

Chordal graphs

A graph is chordal if every induced subgraph containing a cycle of length at least four also contains a triangle, that is, a cycle of length three. We show that P 3 -Partition restricted to chordal graphs is NP-hard (in contrast to the polynomial-time solvability on split graphs which form a subclass of chordal graphs) by reduction from 3-Dimensional Matching. More precisely, we use the construction that Dyer and Frieze [START_REF] Dyer | On the complexity of partitioning graphs into connected subgraphs[END_REF] provided to show that P 3 -Partition is NP-complete and observe that we can triangulate the resulting graph while maintaining the correctness of the reduction. Dyer and Frieze [START_REF] Dyer | On the complexity of partitioning graphs into connected subgraphs[END_REF] introduced Construction 3 described below and illustrated in Figure 11). Using it as a reduction from the NP-complete restriction of 3DM to planar graphs [START_REF] Dyer | Planar 3DM is NP-complete[END_REF], they proved that P 3 -Partition restricted to bipartite planar graphs is NP-complete. We call u a an element-vertex and u a a pendant-vertex. For each triple t = (r, b, y) ∈ T , create three vertices v t r , v t b , v t y . We call these three vertices triple-vertices. Make triple-vertex v t b adjacent to both v t r and v t y . Also

Figure 1 :

 1 Figure 1: Complexity classification of Star Partition. Bold borders indicate results of this paper. An arrow from a class A to a class B indicates that A contains B.In most classes, NP-completeness results hold for s = 2 (that is, for P 3 -Partition). However, on split graphs, Star Partition is polynomial-time solvable for s ≤ 2, while it is NP-complete for s ≥ 3. P 3 -Partition is solvable on interval graphs in quasilinear time. We are not aware of any result for permutation graphs, chordal bipartite graphs, interval graphs (for s ≥ 3), or grid graphs (for s = 3).

Theorem 1 .

 1 Star Partition is solvable in O(n + m) time on unit interval graphs.

Figure 2 :

 2 Figure 2: Example of a 3-star partition of a unit interval graph with vertices ordered according to a bicompatible elimination order from left to right. Only the edges and vertices of the first three stars as well as the rightmost neighbor u := r(N (v 4)) of v 4 (black) are shown. Top: v 1 , . . . , v 4 are not grouped together into a star in the partition. Bottom: A possible rearrangement of the 3-stars as described in the proof of Theorem 1. It is always possible to group v 1 , . . . , v 4 into a 3-star.

Figure 3 :

 3 Figure 3: An example of a trivially perfect graph and its partition into stars K 1,3 . Left: The trivially perfect graph with eight vertices partitioned into stars K 1,3 (bold). Middle: The interval representation. Right: The rooted tree representation with the corresponding partition in shaded gray.

Theorem 2 .

 2 Star Partition can be solved in O(n + m) time on trivially perfect graphs.

12 ∅Figure 4 :

 124 Figure 4: Left: An interval graph with six vertices and a P 3 -partition P (bold). Right: Interval representation of this graph and successive token lists A 0 , . . . , A 12 computed by Algorithm 1 (additions and deletions are marked with ⊕ and).

Definition 4 .

 4 Let G = (V, E) be a fixed interval graph. We assume that any vertex u ∈ V represents a right-open interval u = [start(u), end(u)[with integer Algorithm 1: P 3 -partition of an interval graph

Theorem 4 .

 4 Star Partition can be solved in O(kn 2) time on cographs.Proof. Let (G = (V, E), s) be a Star Partition instance with G being a cograph. Let T = (V T , E T , r) = cot(G) denote the cotree of G. Furthermore, for any node x ∈ V T , let T [x] denote the subgraph of G that corresponds to the subtree of T rooted at x.

Case 2 :

 2 (c 1 s ≤ 2) ∧ (c 2 s ≤ 1). In this case, we can cover cs leaves in T [x] by covering c 1 s leaves from T [x 2] by centers from T [x 1] and c 2 s leaves from T [x 1] by centers from T [x 2]. This is obviously the best one can do. Thus, A[c 1 , c 2] = cs.

Case

•Figure 5 :

 5 Figure 5: Possible interactions between two stars of a partition. Centers are drew black. The four possible configurations of star centers and scopes that are neither non-crossing nor interleaving are labeled I to IV. By Lemma 5, any partition containing one of the configurations I to IV can be edited to reduce the score (see the thick gray edges).

 for an illustration): Configuration I. scope(X) ∩ scope(Y) = ∅; Configuration II. center(Y) ∈ scope(X) and center(X) ∈ scope(Y); Configuration III. center(X) ≺ center(Y) and scope(Y) ≺ scope(X); Configuration IV. center(X) ≺ scope(Y) and center(Y) ≺ scope(X) or, symmetrically, scope(Y) ≺ center(X) and scope(X) ≺ center(Y). First, assume that center(X) and center(Y) are both either in U or in W . Furthermore, assume, without loss of generality, that center(X) ≺ center(Y). If X and Y are not in Configuration I, then either scope(X) ≺ scope(Y) or scope(Y) ≺ scope(X). If scope(X) ≺ scope(Y), then G[X] and G[Y] are noncrossing. Otherwise, scope(Y) ≺ scope(X) and, hence, Configuration III holds. If center(X) and center(Y) are in different vertex sets and if X and Y are not in Configuration IV, then center(X) ∈ scope(Y) and/or center(Y) ∈ scope(X). If center(X) ∈ scope(Y) and G[X] and G[Y] are not interleaving, then center(Y) / ∈ scope(X) and we are in Configuration II. Otherwise, if center(Y) ∈ scope(X) and, again, G[X] and G[Y] are not interleaving, then center(X) / ∈ scope(Y) and we are again in Configuration II.

 Configuration II. Let X, Y be two stars of P in Configuration II, i. e., center(Y) ∈ scope(X) and center(X) ∈ scope(Y). Write x c = center(X) and y c = center(Y). Then y c ≺ rm(X) and either x c ≺ scope(Y) or scope(Y) ≺ x c . We only consider the case x c ≺ scope(Y); the case scope(Y) ≺ x c works analogously. Let v = rm(X) be the rightmost vertex of the leaves of the star G[X]. First, G contains the edge {x c , y c } since the star G[Y] has at least one leaf u with x c ≺ u and y c ≺ v, and G contains the edges {x c , v} and {y c , u}. Now, consider any vertex u ∈ Y \ {center(Y)}. Then, the edge {x c , v} crosses the edge {u, y c }, since x c ≺ u and y c ≺ rm(X). The graph G contains the edges {x c , y c } and {v, u}. Thus, the vertex sets X = (X \ {v}) ∪ {y c } and Y = (Y \ {y c }) ∪ {v} both form stars in G. We now compare the widths of G[X] and G[Y] to the widths of the original stars G[X] and G[Y].

 Configuration III. Let X, Y be two stars of P in Configuration III. Let x c := center(X) and y c := center(Y) and assume, without loss of generality, that x c ≺ y c . Then, scope(Y) ≺ scope(X). Thus, all edges of G[X] cross all edges of G[Y]. Hence, there exists an edge {x c , y} for each leaf y of G[Y], and an edge {y c , x} for each leaf x of G[X]. Defining X = (X \ {x c }) ∪ {y c } and Y = (Y \ {x c }) ∪ {y c }, we thus have two stars G[X] and G[Y] with the same width as G[X] and G[Y], respectively. Hence, the s-star partition P = (P \ {X, Y }) ∪ {X , Y } has the same width as P.

Figure 6 :

 6 Figure 6: Left: Two stars X and Y in Configuration IV such that d(X, Y) is minimal. Right: Two stars X and Y obtained from X and Y , with equal width and fewer crossings.

 (a) T (x, y -1) = 1 and G[{u x+s•(y-1)+1 , u x+s•(y-1)+2 , . . . , u x+s•(y-1)+s , w (y-1)+s•x+1 }] contains an s-star, (b) T (x-1, y) = 1 and G[{u (x-1)+s•y+1 , w y+s•(x-1)+1 , w y+s•(x-1)+2 , . . . , w y+s•(x-1)+s }] contains an s-star, (c) T (x -1, y -1) = 1 and G[{u (x-1)+s•(y-1)+1 , . . . , u (x-1)+s•(y-1)+s+1 , w (y-1)+s•(x-1)+1 , . . . , w (y-1)+s•(x-1)+s+1 }] contains disjoint s-stars. 0 otherwise.

Lemma 7 .

 7 The bipartite graph B = (C ∪ I, E) admits a feasible factor if and only if graph B = (C ∪ I ∪ {z}, E ∪ {{z, c} | c ∈ C}) has a factor satisfying the following degree constraints: (1) Every vertex in I has degree one, (2) every vertex in C has degree zero or two, and (3) the added vertex z has degree 2i + r, where r ∈ {0, 1} such that there is an integer q with (2|C| -|I|)/3 = 2q + r and i ∈ {0, 1, . . . , q}.

1 Figure 7 :

 17 Figure 7: Left: An example of a factor for B fulfilling the degree constraints as required in Lemma 7. The black thick bold edges reflects the constraints. Right: The gadget for vertex z and the gadget for the clique vertex u used to construct graph B * (according to Construction 1). The black thick bold edges (labeled) correspond to the ones marked on the right. The black bold edges are additional matching edges.

Figure 7 (

 7 Figure 7 (Left) depicts an example factor for the graph B fulfilling the degree constraints of Lemma 7.Using a gadget introduced by Cornuéjols[START_REF] Cornuéjols | General factors of graphs[END_REF], we can even reduce P 3 -Partition to the perfect matching problem. We construct a graph B * from B in which we are searching for a perfect matching. The idea is to replace every clique vertex v by a gadget which can simulate the constraint that v has degree zero or two, and to replace vertex z by a gadget to simulate its degree constraint.

Construction 1 .

 1 Let m = |E| (number of edges between C and I in the original split graph) and d u be the degree of a clique vertex u in C. Note that due to the edges going to vertex z, we have u∈C d u = m + |C|. It holds that |I| = O(m) and |C| = O(m).

Theorem 6 .

 6 Star Partition on split graphs is solvable in O(m 2.5) time for s = 2. Proof. Let G = (C ∪ V, C E ∪ E) be a split graph with m being the number of edges in E. Let B = (C ∪ V ∪ {z}, E ∪ {{z, v} | v ∈ C}) be a bipartite graph over C and I ∪ {z}. Let B * be computed from B using Construction 1. By Lemmas 6 to 8, G admits a P 3 -partition if and only if B * admits a perfect matching. Since deciding whether a graph with s vertices and t edges has a perfect matching can be done in O(t √ s) time [27, Theorem 16.4] and since B * has O(m) vertices and O(m 2) edges, deciding whether G has a P 3 -partition can be done in O(m 2.5) time. In contrast, we can show that Star Partition is NP-hard for each s ≥ 3 by a reduction from Exact Cover by s-Sets. Theorem 7. Star Partition on split graphs is NP-hard for s ≥ 3.

Figure 8 :

 8 Figure 8: Reduction from Exact Cover by s-Sets to Star Partition with s = 3. Dummy vertices are in the light gray area and non-dummy vertices are in the dark gray area. The 3-star partition for the constructed graph G is indicated by thick edges.

1 :

 1 Vertex v and vertex w are covered by the same P 3 (which implies that one vertex is an endpoint and the other vertex is an internal point of the P 3). Case 2: Vertex v and vertex w are covered by different P 3 s (vertex v and/or vertex w can also be internal vertices).

Figure 9 :

 9 Figure 9: All possibilities of two vertices v and w participating in a P 3 -partition if they are joined by an edge or a path on three other degree-two vertices. Edges participating in the same P 3 are grouped together in a gray background.

2 .

 2 Each edge is represented by a vertical line.

3 .

 3 All lines end at integer coordinates with integers in O(n). The grid graph G obtained from G.

Figure 10 :

 10 Figure10: Various embeddings of a planar graph. In the rectilinear embedding in Figure10b, horizontal lines represent vertices of G, while vertical lines represent its edges. In Figure10c, every intersection of a line with a grid point is a vertex, but only the vertices corresponding to vertices in Figure10aare shown. The horizontal lines of the rectilinear embedding are now replaced by paths highlighted in gray.

3 -

 3 Dimensional Matching (3DM) Input: Pairwise disjoint sets R, B, Y with |R| = |B| = |Y | = q and a set of triples T ⊆ R × B × Y . Question: Does there exist a perfect 3-dimensional matching M ⊆ T , that is, |M | = q and each element of R ∪ B ∪ Y occurs in exactly one triple of M ?

Construction 3 .

 3 Let (R, B, Y, T ⊆ R × B × Y) with |R| = |B| = |Y | = q be an instance of 3DM. Construct a graph G = (V, E) as follows: For each element a ∈ R ∪ B ∪ Y , createtwo vertices u a , u a and connect them by an edge {u a , u a }.

Acknowledgments. René van Bevern was supported by the Russian Foundation for Basic Research (RFBR), project 16-31-60007 mol a dk, at Novosibirsk State University, and by the German Research Foundation (DFG), project DAPA (NI 369/12), at TU Berlin. Robert Bredereck was supported by the DFG, project PAWS (NI 369/10). Laurent Bulteau and Gerhard J. Woeginger were supported by the Alexander von Humboldt Foundation, Bonn, Germany, while visiting TU Berlin. Jiehua Chen was supported by the Studienstiftung des Deutschen Volkes. Vincent Froese was supported by the DFG, project DAMM (NI 369/13).

This work started at the yearly research retreat of the group "Algorithms and Computational Complexity TU Berlin" in March 2013, held in Bad Schandau, Germany.

V (z) and every vertex from X. Finally, for each integer i with 1 ≤ i ≤ q, add to B * edge {x 2i-1 , x 2i }.

The overall number of edges in B * is (m + |C|) + u∈C (d u) 2 + |C|(|C| -r) + |C| + q ≤ (m + |C|) 2 + |C| 2 + O(m) = O(m 2). This finishes the construction.

Figure 7 (Right), shows the gadget constructed for a clique vertex and the gadget for vertex z. Now, we show how the constructed graph B * can be used to find a factor for B satisfying the specific degree constraints as specified in Lemma 7.

Lemma 8. Graph B * constructed according to Construction 1 admits a perfect matching if and only if graph B admits a factor F satisfying the condition that (1) Every vertex in I has degree one, (2) every vertex in C has degree zero or two, and (3) the added vertex z has degree 2i + r, where r ∈ {0, 1} such that there is an integer q with (2|C| -|I|)/3 = 2q + r and i ∈ {0, 1, . . . , q}.

Proof. Let M be a perfect matching for B * . We construct a factor F = (C∪I∪{z}, P E) for B . For each edge {u j , v} ∈ M which connects an independent set vertex v, add to P E edge {u, v}. For each edge {z u , u j } ∈ M which connects vertices in V (z) and V (u), u ∈ C, add to P E edge {z, u}.

We show that F is a factor for B * satisfying the properties stated in the lemma. Obviously, every independent set vertex u ∈ I has degree one. Consider a clique vertex u ∈ C. By the construction of graph B * , in order to match all vertices in Y (u), either (i) every vertex in Y (u) has to be matched to a vertex in V (u) or (ii) y 1 u and y 2 u are matched together while every vertex in Y (u) \ {y 1 u , y 2 u } is matched to exactly one vertex in V (u). This implies that either no vertex or exactly two vertices in V (u) are matched to some vertices which are not from Y (u). Thus, v has either degree zero or degree two in F .

Analogously, by the construction of graph B * , in order to match all vertices in X which has size |C| -r, exactly i pairs of vertices in X can be left without being matched to any vertex in V (z) where 0 ≤ i ≤ q (note that only the first 2q vertices are connected by a path). This implies that exactly |C| -(|C| -r -2i) = 2i + r vertices from V (z) are matched to vertices that are not from X. Thus, z has degree 2i + r.

Conversely, assume that B admits a factor F satisfying the above properties. We show that the following construction yields a perfect matching M for B * .

For each edge e j = {u, v} in F that connects a clique vertex u and an independent set vertex v, add to M edge {u j , v}. For each edge e j = {z, u} in F that connects vertex z with a clique vertex u, add to M edge {z u , u j }.

For make triple-vertex v t r (respectively v t b and v t y) adjacent to element-vertex u r (respectively u b and u y). Formally,

Theorem 9. P 3 -Partition restricted to chordal graphs is NP-hard.

Proof. We extend Construction 3 to show the NP-hardness of P 3 -Partition restricted to chordal graphs. Make any two element-vertices adjacent to each other such that the graph induced by all element-vertices is complete. Furthermore, for each triple t = (r, b, y) ∈ T , add two edges {v t b , u r } and {v t b , u y } to the graph, as illustrated in Figure 11. Let G be the resulting graph.

We first show that G is chordal. Consider any size-set C of vertices with ≥ 4 such that the subgraph G C induced by C contains a simple cycle of length . Since the pendant-vertices all have degree one, C cannot contain any pendant-vertex. If C contains a degree-two triple-vertex v t r (respectively v t y) for some t = (r, b, y) ∈ T , then C contains both its neighbors: v t b and u r (respectively v t b and u y) which are connected, that is, forming a triangle. Otherwise, if C contains a degree-five triple-vertex v t b but does not contain v t r nor v t y , then, in the cycle, v t b lies between two element-vertices. Since two element-vertices are always connected, G C contains a triangle. Finally, if C does not contain any triple-vertex, then it is included in the set of element-vertices, which form a complete graph. Hence, G C contains a triangle.

Second, we show that (R, B, Y, T ⊆ R × B × Y) has a perfect 3-dimensional matching if and only if G can be partitioned into P 3 s.

For the "only if" part, suppose that M ⊆ T is a perfect 3-dimensional matching for (R, B, Y, T ⊆ R × B × Y). Then, the P 3 s in

indeed partition the graph G.

For the "if" part, suppose that G has a partition P into P 3 s. We first enumerate the possible centers of the P 3 s. Since each pendant-vertex is only adjacent to its element-vertex, every element-vertex is the center of a P 3 that contains a pendant-vertex. We call such a P 3 an element-P 3 . For each triple t = (r, b, y) ∈ T , neither v t r nor v t y can be the center of a P 3 since they are adjacent to only one vertex which is not already a center (namely v t b). Thus, any P 3 which is not an element-P 3 must have vertex v t b as a center for some t = (r, b, y) ∈ T . We call such a P 3 a triple-P 3 corresponding to t. Now, consider a triple t = (r, b, y) ∈ T . If there exists a triple-P 3 corresponding to t (that is, with center v t b), then its two leaves can only be v t r and v t y (since u t r , u t b , and u t y are centers). Otherwise, each of the three triple-vertices v t r , v t b , and v t y must be a leaf of an element-P 3 centered on u r , u b , and u y . Indeed, there is only one way to match the three triple-vertices to these three element-vertices, that is, by using the edges {v t r , u r }, {v t b , u b } and {v t y , u y }. As a consequence, the leaves of the element-P 3 centered on u a are u a and v t a for some triple t containing a.

It remains to show that the triples with no corresponding triple-P 3 in P form a perfect 3-dimensional matching M for (R, B, Y, T ⊆ R × B × Y). Note that for each element a ∈ R ∪ B ∪ Y , the element-P 3 centered in u a uses a triple-vertex v t a for some triple t containing a, which means that no triple-P 3 in P corresponds to t. Hence, t ∈ M and element a is matched by t. Now, it remains to show that every element is matched at most once. Suppose for the sake of contradiction that there is an element a ∈ R ∪ B ∪ Y which is matched at least twice. To this end, let v t a be a triple-vertex that together with u a and u a forms an element-P 3 . Thus, t ∈ M . Furthermore, let t be another triple in M that matches a. Since t has no corresponding triple-P 3 in P , there is an element-P 3 containing v t a . But then, v t a must form an element-P 3 together with u a and u a , which is a contradiction.

Conclusion

We close with three open questions for future research. What is the complexity of Star Partition for s ≥ 2 on permutation graphs? What is the complexity of Star Partition for s ≥ 3 on interval graphs? Are there other important graph classes (not necessarily perfect ones) where Star Partition is polynomial-time solvable?