
HAL Id: hal-01494420
https://hal.science/hal-01494420

Submitted on 23 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioning Perfect Graphs into Stars
René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen, Vincent

Froese, Rolf Niedermeier, Gerhard J. Woeginger

To cite this version:
René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen, Vincent Froese, et al.. Partition-
ing Perfect Graphs into Stars. Journal of Graph Theory, 2017, 85 (2), pp.297-335. �10.1002/jgt.22062�.
�hal-01494420�

https://hal.science/hal-01494420
https://hal.archives-ouvertes.fr


Partitioning Perfect Graphs into Stars∗

René van Bevern1,2, Robert Bredereck2, Laurent Bulteau3, Jiehua Chen2,
Vincent Froese2, Rolf Niedermeier2, and Gerhard J. Woeginger4

1Novosibirsk State University, Novosibirsk, Russian Federation, rvb@nsu.ru
2Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,

{robert.bredereck,jiehua.chen,vincent.froese,rolf.niedermeier}@tu-berlin.de
3Institut Gaspard-Monge, Université Paris-Est Marne-la-Vallée, France

l.bulteau@gmail.com
4Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands,

gwoegi@win.tue.nl

March 23, 2017

Abstract

The partition of graphs into “nice” subgraphs is a central algorithmic
problem with strong ties to matching theory. We study the partitioning
of undirected graphs into same-size stars, a problem known to be NP-
complete even for the case of stars on three vertices. We perform a
thorough computational complexity study of the problem on subclasses
of perfect graphs and identify several polynomial-time solvable cases, for
example, on interval graphs and bipartite permutation graphs, and also
NP-complete cases, for example, on grid graphs and chordal graphs.

1 Introduction

We study the computational complexity (tractable versus intractable cases) of
the following basic graph problem.

Star Partition
Input: An undirected n-vertex graph G = (V,E) and an integer s ∈ N.
Question: Can the vertex set V be partitioned into k := dn/(s + 1)e mutu-

ally disjoint vertex subsets V1, V2, . . . , Vk, such that each subgraph G[Vi]
contains an s-star (a K1,s)?

Two prominent special cases of Star Partition are the case s = 1 (finding
a perfect matching) and the case s = 2 (finding a partition into connected

∗An extended abstract of this work appeared under the title “Star Partitions of Perfect
Graphs” in Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP’14), Part I, LNCS 8572, pp. 174–185, Springer, 2014.

1



NP-complete

P

perfect

chordal

splitinterval

unit
interval

comparability

permutation

cograph

trivially
perfect

threshold
(P3 known [33])

bipartite [7]

chordal
bipartite

bipartite
permutation

subcubic planar
bipartite [22, 23]

subcubic
grid

series-parallel [31]

tree

Figure 1: Complexity classification of Star Partition. Bold borders indicate
results of this paper. An arrow from a class A to a class B indicates that
A contains B. In most classes, NP-completeness results hold for s = 2 (that is,
for P3-Partition). However, on split graphs, Star Partition is polynomi-
al-time solvable for s ≤ 2, while it is NP-complete for s ≥ 3. P3-Partition is
solvable on interval graphs in quasilinear time. We are not aware of any result
for permutation graphs, chordal bipartite graphs, interval graphs (for s ≥ 3), or
grid graphs (for s = 3).

triples). Perfect matchings (s = 1), of course, can be found in polynomial time.
Partitions into connected triples (the case s = 2), however, are hard to find; this
problem, denoted P3-Partition, was proven to be NP-complete by Kirkpatrick
and Hell [18].

Our goal in this paper is to achieve a better understanding of star partitions
for certain subclasses of perfect graphs. We provide a fairly complete classification
in terms of polynomial-time solvability versus NP-completeness on the most
prominent subclasses of perfect graphs, leaving a few potentially challenging
cases open; see Figure 1 for an overview of our results.

Motivation. The literature in algorithmic graph theory is full of packing
and partitioning problems (packing is an optimization variant of partitioning,
where one tries to maximize the number of disjoint vertex subsets). Concerning
practical relevance, note that P3-Packing and P3-Partition find applications
in dividing distributed systems into subsystems [20] as well as in the Test
Cover problem arising in bioinformatics [13]. In particular, the application
in distributed systems explicitly motivates the consideration of very restricted
(perfect) graph classes such as grid-like structures. Star Partition on grid

2



graphs naturally occurs in political redistricting problems [4]. We show that
Star Partition remains NP-hard on subcubic grid graphs.

Interval graphs are a further famous class of perfect graphs. Here, Star
Partition can be considered a team formation problem: Assume that we have
a number of agents, each being active during a certain time interval. Our goal is
to form teams, all of the same size, such that each team contains at least one
agent sharing time with every other team member. This specific team member
becomes the team leader, since he or she can act as an information hub. Forming
such teams is nothing else than solving Star Partition on interval graphs. We
present efficient algorithms for Star Partition on unit interval graphs (that
is, for the case when all agents are active for the same amount of time) and for
P3-Partition on general interval graphs.

Related work. Packing and partitioning problems are central problems in algo-
rithmic graph theory with many applications and with close connections to match-
ing theory [35]. In the case of packing, one wants to maximize the number of graph
vertices that are “covered” by vertex-disjoint copies of some fixed pattern graphH.
In the case of partitioning, one wants to cover all vertices in the graph. We focus
on the partitioning problem, which is also called H-Factor in the literature. In
this work, we always refer to it as H-Partition. Since Kirkpatrick and Hell [18]
established the NP-completeness of H-Partition on general graphs for every con-
nected pattern H with at least three vertices, one branch of research has turned
to the investigation of classes of specially structured graphs. For instance, on the
upside, H-Partition has been shown to be polynomial-time solvable on trees
and series-parallel graphs [31] and on graphs of maximum degree two [23]. On the
downside, Pk-Partition (for each fixed k ≥ 3) remains NP-complete on planar
bipartite graphs [14]; this hardness result is generalized to H-Partition on pla-
nar graphs for any outerplanar patternH with at least three vertices [2]. For every
fixed s ≥ 2, Star Partition is NP-complete on bipartite graphs [7]. Partitioning
into triangles (K3), that is, K3-Partition, is polynomial-time solvable on chordal
graphs [12] and linear-time solvable on graphs of maximum degree three [25].

An optimization version of Pk-Partition, called Min Pk-Partition, has
also received considerable interest in the literature. This version asks for a
partition of a given graph into a minimum number of paths, each of length
at most k. Clearly, all hardness results for Pk-Partition carry over to this
minimization version. If k is part of the input, then Min Pk-Partition is hard
for cographs [29] and chordal bipartite graphs [30]. In fact, Min Pk-Partition
is NP-complete even on convex graphs and trivially perfect graphs (also known
as quasi-threshold graphs), and hence on interval and chordal graphs [1]. Min
Pk-Partition is solvable in polynomial time on trees [34], threshold graphs,
cographs (for fixed k) [29] and bipartite permutation graphs [30].

While in this work we study the H-Partition problem, which partitions
the vertex set of a graph into mutually vertex-disjoint copies of some fixed
pattern graph H, the literature also studies the H-Decomposition problem,
which partitions the edge set of a graph into mutually edge-disjoint copies of

3



a pattern H. In general, H-Decomposition is NP-hard [8], yet easy to solve
on highly-connected graphs if H is a k-star: Thomassen [32] shows that every
(k2 + k)-edge-connected graph has a k-star decomposition provided its number
of edges is a multiple of k. Lovász et al. [21] strengthen this result to (3k − 3)-
edge-connected graphs for odd k ≥ 3. However, since a graph may have a k-star
decomposition without having a k-star partition and vice versa, the results
on H-Decomposition are not applicable to the Star Partition problem
considered in our work.

Our contributions. So far, surprisingly little was known about the complexity
of Star Partition for subclasses of perfect graphs. We provide a detailed
picture of the corresponding complexity landscape for classes of perfect graphs;
see Figure 1 for an overview. Let us briefly summarize our major findings. (Note
that all problem variants we consider are clearly contained in NP, which means
that our NP-hardness results in fact imply NP-completeness.)

As a central result, we provide a quasilinear-time algorithm for P3-Partition
(which is Star Partition with s = 2) on interval graphs; the complexity of
Star Partition for s ≥ 3 remains open. But if we restrict the input graphs to
be unit interval graphs or trivially perfect graphs, we can solve Star Partition
even in linear time. Furthermore, we develop a polynomial-time algorithm for
Star Partition on cographs and on bipartite permutation graphs. Most of our
polynomial-time algorithms are simple to describe: they are based on dynamic
programming or even on greedy approaches, and hence should work well in
implementations. Their correctness proofs, however, are intricate.

On the boundary of NP-completeness, we strengthen a result of Ma lafiejski
and Żyliński [22] and Monnot and Toulouse [23] by showing that P3-Partition
is NP-hard on grid graphs with maximum degree three. Note that in strong
contrast to this, K3-Partition is linear-time solvable on graphs with maximum
degree three [25]. Furthermore, we show P3-Partition to be NP-hard on chordal
graphs, while K3-Partition is known to be polynomial-time solvable in this
case [12]. Note that NP-hardness for s = 2 does not directly imply NP-hardness
for all values s ≥ 2 (for example, the case s = 5 is trivially solvable on grid
graphs since they have maximum degree four). We observe that P3-Partition
is typically not easier than Star Partition for s ≥ 3. An exception to this rule
is the class of split graphs (which are chordal), where P3-Partition is polynom-
ial-time solvable but Star Partition is NP-hard for any constant value s ≥ 3.

Preliminaries. We assume basic familiarity with standard graph classes [6, 17].
Definitions of the graph classes are provided when first studied in this paper. We
call the complete bipartite graph K1,s an s-star. For a graph G = (V,E), an s-
star partition is a set of k := |V |/(s+1) pairwise disjoint vertex subsets V1, V2, . . . ,
Vk ⊆ V with

⋃
1≤i≤k Vi = V such that each induced subgraph G[Vi] contains an

s-star as a (not necessarily induced) subgraph. We refer to the vertex sets Vi as
stars, even though the correct description of a star would be an arbitrary K1,s-
subgraph of G[Vi]. P3-Partition is the special case of Star Partition with

4



s = 2. Without loss of generality, we assume throughout the paper that the input
graph G is connected (otherwise, we can solve the partition problem separately
for each connected component of G). We denote by n := |V | the number of
vertices and by m := |E| the number of edges in a graph G = (V,E). For a
vertex v ∈ V , we denote by N [v] := {u ∈ V | {u, v} ∈ E} ∪ {v} the closed
neighborhood of v.

Article outline. The article is structured into one section per graph class.
Herein, we first present the results on graph classes with polynomial-time al-
gorithms and then head over to the graph classes with NP-hardness results.
Each section gives a formal definition of the graph class it considers. Section 2
considers interval graphs and their subclasses unit interval graphs and trivially
perfect graphs. Section 3 provides a polynomial-time algorithm for cographs, Sec-
tion 4 for bipartite permutation graphs. Section 5 marks the boundary between
tractability and NP-hardness: it shows that P3-Partition is polynomial-time
solvable on split graphs, while Star Partition is NP-hard. Section 6 shows
that P3-Partition is NP-hard on grid graphs and, finally, Section 7 shows it
for chordal graphs.

2 Interval graphs

In this section, we present algorithms that solve Star Partition on unit in-
terval graphs and on trivially perfect graphs in linear time, and a simple greedy
algorithm that solves P3-Partition on interval graphs in quasilinear time.

An interval graph is a graph whose vertices one-to-one correspond to intervals
on the real line such that there is an edge between two vertices if and only if
their representing intervals intersect. Interval graphs naturally occur in many
scheduling applications [5, 19]. In a unit interval graph, all representing intervals
are open and have the same length, while in a trivially perfect graph, any two
representing intervals are either disjoint or one is properly contained in the other.

2.1 Star Partition on unit interval graphs

The restricted structure of unit interval graphs allows us to solve Star Partition
using a simple greedy approach, which yields the following result.

Theorem 1. Star Partition is solvable in O(n+m) time on unit interval
graphs.

The general idea behind the algorithm for Theorem 1 is to order the vertices
in such a way that we can repeatedly select the s + 1 leftmost vertices to
form an s-star and then delete them. If, at some point, the s + 1 leftmost
vertices do not contain an s-star, then it can be shown that the graph cannot
be partitioned into s-stars. We order the vertices according to a so-called
bicompatible elimination order:

5



Definition 1 ([24]). For a graph G = (V,E), a bicompatible elimination order
is an ordering σ : V → {1, . . . , n} such that, for each vertex v ∈ V ,

the set Nl[v] := {u ∈ N [v] | σ(u) ≤ σ(v)} of its left neighbors and

the set Nr[v] := {u ∈ N [v] | σ(u) ≥ σ(v)} of its right neighbors

each form a clique in G.

A graph is a unit interval graph if and only if it allows for a bicompatible
elimination order [24]. Our algorithm will exploit the following property of
bicompatible elimination orders:

Lemma 1 ([3]). Let G = (V,E) be a connected unit interval graph and σ be a
bicompatible elimination order for G. Then, for all {u, v} ∈ E with σ(u) < σ(v),
the set {w ∈ V | σ(u) ≤ σ(w) ≤ σ(v)} induces a clique in G.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Given a unit interval graph G = (V,E) with n := |V | and
m := |E|, we can compute in linear time a bicompatible elimination order σ [24].
Moreover, we can assume G to be connected, thus making Lemma 1 applicable.
For a subset V ′ ⊆ V let r(V ′) := arg maxv∈V ′ σ(v) denote the rightmost vertex
in V ′ with respect to σ.

Now, we greedily partition G into s-stars starting with the first (with respect
to σ) s+ 1 vertices v1, . . . , vs+1 with σ(v1) < . . . < σ(vs+1). If G[{v1, . . . , vs+1}]
does not contain an s-star, then we answer “no”. Otherwise, we delete v1, . . . , vs+1

from G and continue on the remaining graph. If we end up with the empty
graph, then we have found a partition of G into s-stars and answer “yes”.

Obviously, the algorithm requires O(n + m) time since checking whether
an induced subgraph G[V ′] with |V ′| = s vertices contains an s-star runs in
O(|G[V ′]|) time and after the check we delete the set V ′ from the graph. In this
way, we touch each vertex at most once and each edge at most twice.

It remains to show that this procedure is correct. To this end, we show
that if G admits an s-star partition, then G also admits an s-star partition P ′

with S := {v1, . . . , vs+1} ∈ P ′ (note that v1, . . . , vs+1 are the first s+ 1 vertices).
Let P be a partition of G into s-stars such that {v1, . . . , vs+1} /∈ P , that is, the
first s+1 vertices are not grouped into one star but distributed among several stars.
Then, let S1, . . . , S` ∈ P , 2 ≤ ` ≤ s+ 1, be the stars that contain at least one
vertex from S, that is, S ⊆

⋃`
i=1 Si and Si∩{v1, . . . , vs+1} 6= ∅ for 1 ≤ i ≤ `, and

assume that v1 ∈ S1. Further, let ci denote the center vertex of Si for 1 ≤ i ≤ `.
Note that σ(r(S1)) > s + 1, which implies S ⊆ N [c1]. Since Nl[c1] and Nr[c1]
are cliques, it follows that G[S] contains an s-star that could participate in

an s-star partition if the remaining vertices in S′ :=
⋃`

i=1 Si \ S can also be
partitioned into s-stars. To verify that this is possible, observe first that the
number |S′| = (`− 1)(s+ 1) of the remaining vertices is again divisible by s+ 1.

We now show that we can greedily partition S′ into stars, because S′ consists
of two cliques such that there is a vertex of the first clique that is adjacent to

6



v1 v2 v3 v4 x u

v1 v2 v3 v4 x u

Figure 2: Example of a 3-star partition of a unit interval graph with vertices
ordered according to a bicompatible elimination order from left to right. Only the
edges and vertices of the first three stars as well as the rightmost neighbor u :=
r(N(v4)) of v4 (black) are shown. Top: v1, . . . , v4 are not grouped together into
a star in the partition. Bottom: A possible rearrangement of the 3-stars as
described in the proof of Theorem 1. It is always possible to group v1, . . . , v4
into a 3-star.

all vertices of the second clique. To show this, we utilize the following claim,
which describes the relative position of the center ci of star Si and the rightmost
neighbor of vs+1:

Claim 1. For all 1 ≤ i ≤ `, the center ci of star Si satisfies that σ(ci) ≤
σ(r(N [vs+1])).

Proof of Claim 1. Suppose towards a contradiction that σ(ci) > σ(r(N [vs+1])).
Then ci 6= r(N [vs+1]) and thus, {ci, vs+1} ∈ E since ci is adjacent to at least
one vertex from v1, . . . , vs+1 and Lemma 1 holds. Hence, ci ∈ Nr[vs+1], which
contradicts σ(ci) > σ(r(N [vs+1])). (of Claim 1) �

Now, let u := r(N [vs+1]) denote the rightmost neighbor of vs+1. It holds
that S′ ⊆ N [u]. This can be seen as follows: For a vertex v′ ∈ S′, either
s+ 1 < σ(v′) ≤ σ(u) or σ(u) < σ(v′) holds. In the first case, Lemma 1 implies
that {v′, u} ∈ E since {vs+1, u} ∈ E. For the second case, let Si, 1 ≤ i ≤ `
be the star containing v′. Then, by Claim 1, it follows that Si’s center ci
satisfies σ(ci) ≤ σ(u). If σ(u) < σ(v′), then Lemma 1 implies {u, v′} ∈ E
since {ci, v′} ∈ E.

Now, consider the vertex x := r(S′∩Nl[u]), that is, the rightmost vertex in S′

that is a left neighbor of u. Clearly, from Claim 1 it follows that σ(ci) ≤ σ(x)
holds for every star center ci, 1 ≤ i ≤ `, since otherwise ci were to be ordered
between x and u, and is hence, a left neighbor of u—a contradiction to x
being the rightmost left neighbor of u in S′. Thus, x is adjacent to all vertices
in S′ ∩Nr[u] due to Lemma 1. The vertices in S′ ∩Nl[u] are also adjacent to x
as they induce a clique which includes x. Moreover, S′ ∩Nr[u] also induces a
clique. Therefore, we simply partition the vertices in S′ from right to left (with
respect to σ) into s-stars. This is always possible since x is connected to all

7



vertices in both cliques S′ ∩Nr[u] and S′ ∩Nl[u]. Figure 2 depicts an example
of the rearranged partition.

2.2 Star Partition on trivially perfect graphs

Recall that an interval graph is a graph whose vertices correspond directly to
intervals on the real line, and there is an edge between two vertices if their
intervals intersect. A trivially perfect (also known as quasi-threshold) graph is
an interval graph representable such that any two intervals are either disjoint or
one is properly contained in the other.

In order to solve Star Partition in linear time on trivially perfect graphs,
we will make use of the linear-time computable (rooted) tree representation of
connected trivially perfect graphs [33]:

Definition 2 (Rooted tree representation). Let G = (V,E) be a connected
trivially perfect graph. Let T (G) be the directed graph on the vertex set V
that contains an arc (v, w) if and only if a) the interval representing v contains
the interval representing w, and b) there is no other vertex u such that its
representing interval contains the interval representing w and is contained in the
interval representing v.

By definition of trivially perfect graphs, T (G) is a directed tree having a
unique vertex, the root, with in-degree zero. We call T (G) the rooted tree
representation of G.

If, in T (G), a vertex u lies on the directed path from the root to a vertex v,
or equivalently, if there is a directed path from u to v, we call u ancestor of v
and v descendant of u. The depth of a vertex is the length of the path from the
root to this vertex.

Definition 2 is illustrated in Figure 3. It is crucial to observe the equivalence of
the adjacency of two vertices and their ancestor-descendant relation:

Observation 1. The graph G contains an edge {p, q} if and only if p is either
an ancestor or a descendant of q in T (G).

Proof. Since G is a trivially perfect graph, G contains an edge {p, q} if and
only if either p′ ⊂ q′ or q′ ⊂ p′ where p′ and q′ are the representing intervals
of p and q, respectively. If p′ ⊂ q′, then there is a directed path from q to p
in T (G). Conversely, q′ ⊂ p′ implies that there is a directed path from p to q
in T (G). By the definition of ancestors and descendants, p is either an ancestor
or a descendant of q.

Also the following is easy to observe:

Observation 2. If there are three vertices p, q, r such that G contains an
edge {q, r} and p is an ancestor of q in T (G), then G also contains an edge {p, r}.

Proof. By Observation 1, {q, r} being an edge in G implies that q is either
an ancestor or a descendant of r. If q is an ancestor of r, then p is also an

8



f
g

h

a

b c

d e

a

b c

d e

f g h f
g

h

a

b c

d e

Figure 3: An example of a trivially perfect graph and its partition into stars K1,3.
Left: The trivially perfect graph with eight vertices partitioned into stars K1,3

(bold). Middle: The interval representation. Right: The rooted tree representa-
tion with the corresponding partition in shaded gray.

ancestor of r, implying that G contains the edge {p, r}. Otherwise, the interval q′

representing q is properly contained in the interval r′ representing r. Since q′ is
also properly contained in the interval p′ representing p (p is an ancestor of q),
we obtain that p′ and r′ are not disjoint. By the definition of trivially perfect
graphs, {p, r} is contained in G.

Before presenting our algorithm, we show that we may assume that star partitions
of G have a very restricted structure with respect to T (G). First of all, we can
assume that the center of a star is an ancestor of all its leaves:

Observation 3. Let G be a trivially perfect graph with n vertices. If G allows
for an s-star partition {V1, V2, . . . , Vn/(s+1)}, then each G[Vi], 1 ≤ i ≤ n/(s+ 1),
contains an s-star whose center vertex ci is an ancestor of all vertices Vi \ {ci}
in T (G).

Proof. Let ci be the center of an s-star in G[Vi]. By Observation 1, for each
vertex u ∈ Vi \ {ci}, ci is either an ancestor or a descendant of u. If ci is not
an ancestor of all vertices in Vi \ {ci}, then let a be an ancestor of ci in Vi with
smallest depth. Clearly, since a is an ancestor of the center ci, a is adjacent to
all vertices of Vi in G by Observation 2. It remains to show that a is also an
ancestor of all vertices in Vi \ {a}. Suppose, towards a contradiction, that there
is a vertex u ∈ Vi \{a} such that a is not an ancestor of u. By Observation 1, u is
an ancestor of a and is, hence, an ancestor of ci with a smaller depth than a—a
contradiction.

Our next observation is that we can assume that no star center is contained in a
subtree T ′ of a rooted tree representation T (G) if T ′ contains “too few” vertices.
Therefore, of special interest to use are subtrees of T (G) that can contain s-stars
but of which no subtree can:

Definition 3 (Center barrier). A subtree X of a rooted tree representation T (G)
is a center barrier for s-stars K1,s if X has at least s+1 vertices and each proper
subtree of X has at most s vertices.

The term “center barrier” is chosen since we can assume that no subtree of the
center barrier contains an s-star center. Note that any (connected) rooted tree
representation with at least s+ 1 vertices contains a center barrier.

9



Observation 4. Let X be a center barrier for s-stars in a rooted tree repre-
sentation T (G), and P be an s-star partition of G. Then, for any Vi ∈ P that
shares a vertex with X, the graph G[Vi] contains a star whose center is the root
of X or an ancestor of that root.

Proof. By the definition of center barriers, X is a subtree of T (G). Let x be its
root. By Observation 3, G[Vi] contains a star whose center c is the ancestor of
all vertices in Vi \ {c}. If x 6= c, then let w ∈ Vi ∩X, which exists by assumption.
Observe that x is an ancestor of w. Since G contains the edge {w, c} (c is a
center for Vi 3 w), by Observation 2 and {c, w} being an edge in G, G also
contains an edge {x, c}. Then, by Observation 1, c is either an ancestor or a
descendant of x. If c is a descendant of x, then the subtree of T (G) rooted at c
(which contains Vi) is a proper subtree of X. This is impossible since the proper
subtrees of X have at most s vertices. Hence, x 6= c implies that c is an ancestor
of x.

Finally, we show that there exists a feasible star partition where each star consists
only of vertices from center barriers.

Lemma 2. Let G be a trivially perfect graph allowing for an s-star partition, let
X be a center barrier for s-stars in the rooted tree representation T (G), and let
x be the root of X. Then, G admits a star partition P with S ∪ {x} ∈ P, where
S consists of s arbitrary vertices of X \ {x}.

Proof. Let Q be a star partition of G and let S consist of s arbitrary vertices
of X\{x}. By Observation 3, we can assume the center c of a vertex subset Vi ∈ Q
to be the one being the ancestor of all other vertices in Vi \ {c}. If S ∪ {x} ∈ Q,
then the partition we are searching for is P := Q. Otherwise, we show how
to transform the partition Q into a new partition P containing S ∪ {x}. We
repeatedly exchange the vertices of two vertex sets in Q until

the modified partition Q′ contains a set Vw such that S ( Vw. (1)

Finally, we set P := (Q′ \{Vw, Vu})∪{(Vu \{x})∪{w}, (Vw \{w})∪{x}}, where
w is the center of Vw and Vu is the vertex set with center u in Q′ such that
x ∈ Vu. One can verify that both (Vw \ {w})∪ {x} and (Vu \ {x})∪ {w} contain
an s-star, implying that P is indeed an s-star partition for G: on the one hand,
it is easy to see that G[(Vw \ {w})∪{x}] contains an s-star with center x since x
is the ancestor of all vertices in Vw \ {w} = S. On the other hand, the fact that
w and x are both ancestors of all vertices in S (for w, this holds since S ( Vw
and by Observation 3) implies that w and x are adjacent in G (Observations 1
and 2). Since u is an ancestor of x, by Observation 2, we have that u and w are
adjacent in G. This implies that u is either an ancestor or a descendant of w
(Observations 1 and 2). In any case, G[(Vu \ {x}) ∪ {w}] contains an s-star with
star center either u or w.

Now, in the remainder of the proof, we aim at transforming the partition Q
into a new partition Q′ fulfilling Property (1). To this end, among all vertex
subsets Vi ∈ Q with Vi∩S 6= ∅, we let Vy be the one with the center y closest to x

10



with respect to T (G) (possibly, y = x). By assumption, |S \ Vy| ≥ 1. Thus, let
Vz ∈ Q be another subset with center z that contains at least one vertex from S.
By Observation 4, z is an ancestor of x. By the selection of y, z is also an ancestor
of y. Thus, in the graph G, z is adjacent to every vertex in Vy and y is adjacent
to all vertices in Vz ∩ S since y is either x or an ancestor of x (Observations 1
and 4). Thus, by setting V ′y := (Vy \ Y ) ∪ (Vz ∩ S) and V ′z := (Vz \ S) ∪ Y ,
where Y ( Vy \ S is an arbitrary size-(|Vz ∩ S|) subset, we obtain a new valid
partition (Q\{Vy, Vz})∪{V ′y , V ′z} such that V ′y shares more vertices with S than
Vy does. Note that Y exists since |S| + 1 = |Vy| = |Vz|. Repeating the above
procedure at most s− 1 times results in a partition satisfying (1).

Based on Lemma 2, we now give a linear-time algorithm computing an s-star
partition (if existent) of a given trivially perfect graph.

Theorem 2. Star Partition can be solved in O(n + m) time on trivially
perfect graphs.

Proof. Let G be a connected trivially perfect graph. Construct a tree represen-
tation T (G) of G in linear time [33]. Furthermore, construct in linear time a
directed acyclic graph D(G) from G which has the same vertex set as G, and
for each edge {u, v} ∈ E(G), there is an arc (u, v) in D(G) if and only if the
degree of u is larger than the degree of v in G.

Due to Lemma 2, if G admits an s-star partition, then G also admits an s-star
partition P := {V1, V2, . . . , V|V |/(s+1)} such that for each i ∈ {1, 2, . . . , |V |/(s+
1)}, Vi is contained in a center barrier of the rooted tree representation for the

graph G[V \ (
⋃i−1

j=1 Vj)] resulting from G by deleting the vertices in
⋃i−1

j=1 Vj .
Hence, it is sufficient to recursively search for a center barrier X for s-stars, and
delete the root of X and s arbitrary remaining vertices from X (these deleted
vertices form a subset in the s-star partition). If, at some point, there is no
center barrier, then there are less than s+ 1 remaining vertices; hence, G cannot
allow for an s-star partition.

To realize the above algorithm in linear time, we traverse T (G) in a depth-first
post-order way. If, in D(G), the current vertex u has at least s non-marked
(out-going) neighbors, then we mark this vertex u and s (arbitrary) non-marked
(out-going) neighbors of u. Otherwise, we do nothing. We answer yes if all
vertices in D(G) are marked after traversing the whole tree, and no otherwise.
Since we mark, in D(G), each vertex and each of its out-going neighbor at most
once, and since we traverse each vertex in T (G) at most once, by the construction
of D(G) and T (G), the total running time is O(|V (G)|+ |E(G)|).

2.3 P3-Partition on interval graphs

While it might not come as a surprise that Star Partition can be solved
efficiently on unit interval graphs using a greedy strategy, this is far from obvious
for general interval graphs even when s = 2. The obstacle here is that two
intervals arbitrarily far apart from each other may eventually be required to form
a P3 in the solution. Indeed, the greedy strategy we propose to overcome this

11



a

e

fb c

d

a

b c

d

e
f

A0

∅
A1

a
a⊕

A2

a
a
b
b⊕

A3

a

	

A4

a
c
c⊕

A5

a
d
d
c
c

⊕

A6

a
d

	

A7

e
e
a
d

⊕

A8

e

	

A9

e

A10

f
f
e

⊕

A11

∅
	

A12

∅

Figure 4: Left: An interval graph with six vertices and a P3-partition P (bold).
Right: Interval representation of this graph and successive token lists A0, . . . , A12

computed by Algorithm 1 (additions and deletions are marked with ⊕ and 	).

obstacle is naive in the sense of allowing wrong choices that can be corrected later.
Note that, while we can solve the more general Star Partition in polynomial
time on subclasses of interval graphs like unit interval graphs and trivially
perfect graphs (see previous subsections), we are not aware of a polynomial-time
algorithm for Star Partition with s ≥ 3 on interval graphs.

Overview of the algorithm. The algorithm is based on the following analysis
of a P3-partition of an interval graph. Each P3 contains a center and two leaves
connected to the center via their incident edges called links. We associate with
each interval two so-called tokens. We require that the link between a leaf and a
center consumes both of the leaf’s tokens (such that a leaf can be associated to
only one link) and one token of the center (which can thus be linked to two leaves).

The algorithm examines the event points (start and end points of intervals)
of an interval representation in increasing order. We consider that a link {x, y}
consumes three tokens of x and y as soon as one of the two intervals ends.
Intuitively, a graph is a no-instance if, at some point, an interval with one or
two remaining tokens ends, but there are not enough tokens of other adjacent
intervals to create a link. Note that a link consumes three tokens. A graph is a
yes-instance if the number of tokens is always sufficient.

The algorithm works according to the following two rules: when an interval
starts, its two tokens are added to a list; when an interval with remaining
tokens ends, then three tokens are deleted from this list. Only tokens of the
earliest-ending intervals will be deleted (this choice may not directly translate
into a “sane” solution, with each link consuming tokens from only two intervals,
but it turns out not to be a problem). The algorithm is sketched in Algorithm 1.
Figure 4 shows an example instance and the list of tokens maintained by the
algorithm. Note that a token of an interval x is simply represented by a copy of
interval x itself. We now introduce the necessary formal definitions.

Definition 4. Let G = (V,E) be a fixed interval graph. We assume that any
vertex u ∈ V represents a right-open interval u = [start(u), end(u)[ with integer

12



Algorithm 1: P3-partition of an interval graph

Input: An interval representation of an interval graph with pairwise
distinct event points in {1, . . . , 2n}.

Output: true if the graph allows for a P3-partition, otherwise false.
1 A0 ← empty token list ∅;
2 for t← 1 to 2n do
3 if t = start(x) then At ← At−1 ⊕ (x, x) ;
4 if t = end(x) then
5 if x /∈ At−1 then At ← At−1;
6 else if ‖At−1‖ < 3 then return false ;
7 else
8 (x, y, z)← top three elements of At−1 (intervals ending first);
9 At ← At−1 	 (x, y, z);

10 end

11 end

12 end
13 return true ;

end points start(u) < end(u). Moreover, without loss of generality, each position
in {1, . . . , 2n} corresponds to exactly one event.

Let P be a P3-partition and P = {x, y, z} ∈ P with end(x) < end(y) <
end(z), we write rankP(x) = 1, rankP(y) = 2, and rankP(z) = 3 (we omit the
subscript when there is no ambiguity). Moreover, we call the element among
{y, z} having the earliest start point the center of P . The other two elements
of P are called leaves. Note that the center of P intersects both leaves.

A token list Q is a list of intervals (q1, . . . , qk) sorted in decreasing order
of their end points (end(qi) ≥ end(qj) for 1 ≤ i ≤ j ≤ k). To avoid confusion
with the left-to-right sequence of event points, we consider the list to be written
vertically, with the earliest-ending interval on top. We write ‖Q‖ for the length
of Q, ∅ for the empty token list, and x ∈ Q if interval x appears in Q. We now
define insertion ⊕, deletion 	, and comparison 4 of token lists: Q⊕ (x1, . . . , xl)
is the token list obtained from Q by inserting intervals x1 . . . , xl so that the list
remains sorted. For x ∈ Q, the list Q	 x is obtained by deleting one copy of x
from Q (otherwise, Q	 x = Q); and Q	 (x1, . . . , xl) = Q	 x1 	 . . .	 xl. We
write (q1, . . . , qk) 4 (q′1, . . . , q

′
k′) if k ≤ k′ and ∀i ∈ {1, . . . k} : end(qi) ≤ end(q′i).

Let P be a P3-partition. We define tokens(P) as a tuple (T0, T1, . . . , T2n) of
2n+ 1 token lists such that T0 := ∅ and for t ∈ {1, . . . , 2n+ 1},

• if t = start(x), then Tt := Tt−1 ⊕ (x, x),

• if t = end(x), then let P := {x, y, z} be the P3 in P containing x and

– if rank(x) = 1, then Tt := Tt−1 	 (x, x, c) where c is the center of P ,

– if rank(x) = 2, then Tt := Tt−1 	 (x, x, y, y, z, z),

– if rank(x) = 3, then Tt := Tt−1.

13



Note that in Figure 4, each token list Tt for P is equal to the respective At,
except for T6 = (d, d) and T7 = (e, e, d, d).

To compare the token lists generated by Algorithm 1 to those induced by a
P3-partition, we show a few properties for both types of lists.

Property 1. Let P be a P3-partition with tokens(P) = (T0, T1, . . . , T2n) and
let x be an interval with t := end(x). Then, one of the following is true:

i) x ∈ Tt−1, ‖Tt−1‖ ≥ 3, and ‖Tt‖ = ‖Tt−1‖ − 3 or

ii) x /∈ Tt−1 and Tt = Tt−1.

Moreover, in both cases, x /∈ Tt.

Proof. Let P ∈ P be the P3 containing x. Depending on the rank of x, we prove
that either case (i) or (ii) applies.

If rank(x) = 1, then x is not the center of P . Let c be the center of P . Since
c is adjacent to x, it follows that start(c) < t. Since x ranks first, Tt−1 contains
twice both elements x and c. Hence, ‖Tt−1‖ ≥ 4, and from the definition of
Tt = Tt−1 	 (x, x, c) it follows that ‖Tt‖ = ‖Tt−1‖ − 3, we are thus in case (i).
Moreover, only one copy of c remains in Tt.

If rank(x) = 2 and x is not the center, then let c be the center of P and
y be the interval of the first rank in P . From the reasoning above, it follows
that Tt−1 contains once c and twice x but no y, implying that ‖Tt−1‖ ≥ 3.
As Tt = Tt−1 	 (x, x, c, c, y, y), this implies that ‖Tt‖ = ‖Tt−1‖ − 3: we are in
case (i).

If rank(x) = 2 and x is the center, then let P = {x, y, z} such that y
ranks first and z ranks third. Using the same reasoning as before it follows
that Tt−1 contains x once and z twice, but not y, implying that ‖Tt−1‖ ≥ 3.
As Tt = Tt−1 	 (x, x, y, y, z, z), this implies that ‖Tt‖ = ‖Tt−1‖ − 3: we are in
case (i).

Finally, if rank(x) = 3, then Tt−1 does not contain x (the last copies have
been removed when the rank-2-interval ended), and Tt = Tt−1: we are in case (ii).

The fact that x /∈ Tt is clear in each case (all copies are removed when
x ∈ Tt−1, none is added).

Property 2. For any At defined by Algorithm 1 and x ∈ At, it holds that
start(x) ≤ t < end(x). For any P3-partition P with tokens(P) = (T0, T1, . . . , T2n)
and x ∈ Tt, it holds that start(x) ≤ t < end(x).

Proof. An element x is only added to a token list At or Tt when t = start(x), so
the inequality start(x) ≤ t is trivial in both cases. Consider now an interval x
and t := end(x). We show that neither At nor Tt contain x, which suffices to
complete the proof.

The fact that x /∈ Tt is already proven in Property 1. Moreover, if x /∈ At−1,
then x /∈ At follows obviously.

Now, assume that x ∈ At−1. We inductively apply Property 2 to obtain
that for any y ∈ At−1, we have t− 1 < end(y) (note that the property is trivial

14



for A0). Hence, x is the interval with the earliest end point in At−1 (i. e., the
interval on top) and all of its copies(at most two) are removed from At−1 to
obtain At in line 9 of Algorithm 1. It follows that x /∈ At.

Property 3. Let Q = (q1, . . . , qk) and Q′ = (q′1, . . . , q
′
k′) be two token lists such

that Q 4 Q′. Then for any qi ∈ Q, Q 	 qi 4 Q′ 	 q′k′ and for any interval x,
Q⊕ x 4 Q′ ⊕ x.

Proof. For both insertion and deletion, the size constraint is clearly maintained
(both list lengths respectively increase or decrease by 1). It remains to compare
pairs of elements with the same index in both lists (such pairs are said to be
aligned).

For the deletion case, qi is removed from Q. For any j 6= i, qj is now aligned
with either q′j (if j < i) or q′j−1 (if j > i). We have end(qj) ≤ end(q′j) since
Q 4 Q′ and end(q′j) ≤ end(q′j−1) since Q′ is sorted. Hence, qj is aligned with an
interval in Q′ ending no later than qj itself.

We now prove the property for the insertion of x in both Q and Q′. An
element q of Q or Q′ is said to be shifted if it is higher than the insertion point
of x (assuming that already-presentcopies of x in Q or Q′ are not shifted), this is
equivalent to end(q) < end(x). Note that if some q′i is shifted but qi is not, then
end(q′i) < end(x) ≤ end(qi), a contradiction to end(q′i) ≥ end(qi). This implies
that the insertion point of x in Q′ is not lower than the insertionpoint in Q.

Let q be an interval of Q⊕ x, now aligned with some q′ in Q′ ⊕ x. We prove
that end(q′) ≥ end(q). Assume first that q = x, then either q′ = x, in which
case trivially end(q′) ≥ end(q), or q′ 6= x. Then, q′ cannot be shifted (since x’s
insertion point is not lower in Q′ thanin Q), and end(q′) ≥ end(x) = end(q).

Assume now that q 6= x. Then, q = qi for some i. With Q 4 Q′, we have
end(q) ≤ end(q′i). If q′ = q′i then we directly have end(q) ≤ end(q′). Otherwise,
exactly one of qi and q′i must be shifted. It cannot be q′i (the insertion point of
x is not lower in Q′ than in Q), henceqi is shifted and q′i is not. In Q we have
end(qi) < end(x), and in Q′ interval q′i must be placed directly below q′ and
both cannot occur higher than x (note that q′ = x ispossible), thus we have
end(q′i) ≥ end(q′) ≥ end(x). Overall, we indeed have end(q) ≤ end(q′).

Using the proven properties, we can put the token lists defined by a P3-partition
into relation with the token lists generated by Algorithm 1.

The following two lemmas state that, on the one hand, if there is a P3-
partition, then each token list created by Algorithm 1 is comparable with the
corresponding Tt, hence it always contains enough tokens to create the next list,
up to A2n, and answer “true” in the end. On the other hand, if the algorithm
returns “true”, then it is indeed possible to construct a P3-partition using
(indirectly) the triples of intervals removed from the token list to create the links.

Lemma 3. If an interval graph G has a P3-partition P, then, for all 0 ≤ t ≤ 2n,
Algorithm 1 defines list At with Tt 4 At and ‖Tt‖ − ‖At‖ ≡ 0 (mod 3), where
tokens(P) = (T0, T1, . . . , T2n).

15



Proof. We show by induction that for any position t, 0 ≤ t ≤ 2n, the algorithm
defines a list At with Tt 4 At and ‖Tt‖ − ‖At‖ ≡ 0 (mod 3).

For t = 0, Algorithm 1 defines list A0 = ∅, and T0 = ∅ 4 A0. Consider now
some 0 < t ≤ 2n, and assume that the induction property is proven for t− 1.

If an interval x starts at position t, then x /∈ Tt−1, x /∈ At−1, Tt = Tt−1⊕(x, x),
and Algorithm 1 defines At := At−1 ⊕ (x, x). Then property ‖Tt‖ − ‖At‖ ≡ 0
(mod 3) is trivially preserved, and Property 3 implies Tt 4 At.

If an interval x ends at t, then we first show that Algorithm 1 defines At.
Towards a contradiction, suppose that At is not defined. This means that
x ∈ At−1 and ‖At−1‖ ≤ 2. Then, ‖Tt−1‖ ≤ 2 since Tt−1 4 At−1, which implies
‖Tt−1‖ = ‖At−1‖ (since ‖Tt−1‖−‖At−1‖ ≡ 0 (mod 3)). By Property 1, we must
have x /∈ Tt−1 and Tt = Tt−1 (the second case). Also, with Tt−1 4 At−1, the top
element x′ in Tt−1 must have end(x′) ≤ end(x) = t. By Property 2 and due to
x′ ∈ Tt−1, end(x′) > t− 1, i. e., end(x′) = end(x), and x′ = x: a contradiction
since x /∈ Tt−1 = At−1.

We have shown that Algorithm 1 defines At. Moreover, we have ‖Tt‖ −
‖Tt−1‖ ∈ {0,−3} (Property 1), and ‖At‖ − ‖At−1‖ ∈ {0,−3} (Algorithm 1),
hence ‖Tt‖ − ‖At‖ ≡ 0 (mod 3). Note also that Tt 4 Tt−1 and At 4 At−1.

If x /∈ At−1, then At = At−1, and Tt 4 Tt−1 4 At−1 = At.
If x ∈ At−1 and x /∈ Tt−1, then Tt = Tt−1 (Property 1). Observe that

Tt−1 4 At−1 and, therefore, ‖Tt−1‖ = ‖At−1‖ would imply the existence of an
interval u ∈ Tt−1 with end(u) ≤ end(x). This is impossible since for all u ∈ Tt =
Tt−1, by Property 2, end(u) > t = end(x). Thus, one has ‖Tt−1‖ < ‖At−1‖,
which implies ‖Tt−1‖ ≤ ‖At−1‖ − 3. Hence, since the top three elements of At−1
are removed to obtainAt, from Tt−1 4 At−1 we conclude Tt−1 4 At and, in turn,
Tt 4 At.

If x ∈ At−1 and x ∈ Tt−1, then let (u, v, w) be the three deleted intervals
from Tt−1, and (u′, v′, w′) the topthree elements of At−1 (which are removed to
obtain At). Then, applying Property 3 three times, we obtain Tt−1 	 (u, v, w) 4
At−1 	 (u′, v′, w′), i. e., Tt 4 At.

Before we move on to our last lemma for the interval graph algorithm, we
introduce further notions necessary for constructing a P3-partition from the
list A2n that our algorithm produces at step 2n.

Definition 5 (Partial partition). Given an interval x and a token list Q, we
write |Q|x for the number of occurrences of interval x in Q. For 0 ≤ t ≤ 2n, let
P = {V1, . . . , Vk} be a partition of {u ∈ V | start(u) ≤ t}. Then P is called a
partial partition at t if each Vj is either

• a singleton {x}, in which case end(x) > t,

• an edge {x, y}, in which case max{end(x), end(y)} > t,

• a triple {x, y, z} containing a P3.

Note that a P3-partition of an interval graph corresponds to a partial partition
at t = 2n. A partial solution P at t satisfies At if

16



• for any singleton {x} ∈ P we have |At|x = 2,

• for any edge {x, y} ∈ P with end(x) < end(y) we have |At|x = 0 and
|At|y = 1, and

• for any triple {x, y, z} ∈ P we have |At|x = |At|y = |At|z = 0.

Note that, for any x ∈ At, since start(x) ≤ t < end(x) (Property 2), it follows
that x must be in a singleton or in an edge of any partial solution satisfying At.
Moreover, for any t and x, y ∈ At with x 6= y, intervals x and y intersect (there
is an edge between them in the interval graph).

Lemma 4. Let G be an interval graph such that Algorithm 1 returns true on G.
Then G admits a P3-partition.

Proof. We prove by induction that for any t such that Algorithm 1 defines At,
there exists a partial solution at t satisfying At.

For t = 0, the partial solution ∅ satisfies A0. Assume now that for some t ≤ 2n,
Algorithm 1 defines At, and that there exists a partial solution P at t − 1
satisfying At−1.

First, if t = start(x) for some interval x, then let P ′ := P ∪ {{x}}. Thus,
P ′ is now a partial solution at t (it partitions every interval with earlier starting
point into singletons, edges and P3s) which satisfies At since by construction
of At by Algorithm 1, |At|x = 2.

Now assume that t = end(x) with x /∈ At−1. Then, in P, either x is part of
an edge {x, y} with end(y) > t, or x is part of a P3. In both cases, P ′ := P is a
partial solution at t which satisfies At = At−1.

We now explore the case where t = end(x) with x ∈ At−1. Then, the top
element of At−1 must be x (no other interval u ∈ At−1 can have t−1 < end(u) ≤
end(x)). Let y and z be the two elements below x in At−1. Then, by construction,
At = At−1 	 (x, y, z) and end(x) ≤ end(y) ≤ end(z) ≤ end(u) for all u ∈ At.
We create a partial solution P ′ at t depending on the number of occurrences of
x, y, and z in At−1.

If x = y (hence, |At−1|x = 2) and |At−1|z = 2, then P contains two single-
tons {x} and {z}. Let P ′ := (P \ {{x}, {z}}) ∪ {{x, z}}. Then, P ′ is indeed a
partial solution at t (since {x, z} is an edge with end(z) > t) that satisfies At,
since |At|x = 0 and |At|z = 1.

If x = y (hence, |At−1|x = 2) and |At−1|z = 1, then P contains a single-
ton {x} and an edge {z, u}. Also, note that |At−1|u = 0, that is, u /∈ At−1.
Because there is an edge {x, z}, the triple {x, z, u} contains a P3. Let P ′ :=
(P \ {{x}, {z, u}}) ∪ {{x, z, u}}. Then P ′ is a partial solution at t that satisfies
At, since |At|x = |At|z = |At|u = 0.

If z = y (hence, |At−1|x = 1 and |At−1|z = 2), then similarly P contains
an edge {x, u} and a singleton {z}: P ′ := (P \ {{x, u}, {z}}) ∪ {{x, z, u}} is a
partial solution at t that satisfies At.

If y 6= x and y 6= z (hence, |At−1|x = 1 and |At−1|y = 1), and |At−1|z = 2,
then P contains two edges {x, u} and {y, v} and a singleton {z}. Recall that
v, u /∈ At−1. Assume first that start(y) < start(x), then interval u intersects

17



y, and {y, u, v} contains a P3. Also, {x, z} forms an edge with |At|z = 1:
define P ′ := (P \ {{x, u}, {y, v}, {z}}) ∪ {{y, u, v}, {x, z}}. In the case where
start(x) < start(y), {x, u, v} contains a P3 and P ′ := (P \{{x, u}, {y, v}, {z}})∪
{{x, u, v}, {y, z}} is a partial solution at t that satisfies At.

Finally, we have a similar situation when y 6= x, y 6= z and |At−1|z = 1: then,
P contains three edges {x, u}, {y, v} and {z, w}. If start(y) < start(x), then
both {y, u, v} and {x, z, w} contain P3s. Otherwise, {x, u, v} and {y, z, w} con-
tain P3s. Thus, we define P ′ := (P\{{x, u}, {y, v}, {z, w}})∪{{y, u, v}, {x, z, w}}
and P ′ := (P \ {{x, u}, {y, v}, {z, w}}) ∪ {{x, u, v}, {y, z, w}} respectively. In
both cases, P ′ is a partial solution at t that satisfies At.

Overall, if Algorithm 1 returns true, then it defines A2n. According to the
property we have proven, there exists a partial solution at t = 2n, hence G has
a P3-partition.

The above lemmas allow us to conclude the correctness of Algorithm 1.

Theorem 3. P3-Partition on interval graphs is solvable in O(n log n+m) time.

Proof. Let G be an interval graph. To prove the theorem, we show that Al-
gorithm 1 returns true on G if and only if G has a P3-partition. The “only
if” part is the statement of Lemma 4. For the “if” part, suppose that G has
a P3-partition P. Then Lemma 3 implies that Algorithm 1 defines list At at
position t = 2n, which means it returns true.

It remains to prove the running time bound. We first preprocess the input as
follows: in O(n+m) time, we can get an interval representation of an interval
graph with n intervals that use start and end points in {1, . . . , n} [10, Section 8].
We modify this representation so that each position is the start or end point
of at most one interval: first, for each interval, we add its start point to the
beginning of a list L and its end point to the end of L. We sort L using a stable
sorting algorithm like counting sort in O(n) time. The result is a sorted list L
that, for each position, contains first the start points and then the end points.
Now, in O(n) time, we iterate over L and reassign each event points to its own
position in {1, . . . , 2n} in the order of its appearance in L. At the same time,
we build an 2n-element array B such that B[i] holds a pointer to the interval
starting or ending at event point i (there is at most one such interval). It follows
that all preprocessing works in O(n+m) time.

After this preprocessing, each of the O(n) iterations for some t ∈ {1, . . . , 2n}
of the loop in line 2 of Algorithm 1 is executed in O(log n) time: in constant time,
we get the interval B[t] starting or ending at t and each operation on the token
list can be executed in O(log n) time if it is implemented as a balanced binary
tree (note that only the current value of At need to be kept at each point, hence
it is never necessary for the algorithm to make a copy of the whole token list).

18



3 Cographs

A cograph is a graph that does not contain a P4 (path on four vertices) as an
induced subgraph. Cographs allow for a so-called cotree to be computed in linear
time [9].

Definition 6. A cotree cot(G) of a cograph G = (V,E) is a rooted binary
tree T = (VT , ET , r), r ∈ VT , where each internal node is assigned a label in
{⊕,⊗} and the set of leaves corresponds to the original set V of vertices such that:

• A subtree consisting of a single leaf node corresponds to an induced sub-
graph with a single vertex.

• A subtree rooted at a union node, labeled “⊕”, corresponds to the disjoint
union of the subgraphs defined by the two children of that node.

• A subtree rooted at a join node, labeled “⊗”, corresponds to the join of
the subgraphs defined by the two children of that node; that is, the union
of the two subgraphs with additional edges between every two vertices
corresponding to leaves in different subtrees.

Consequently, the subtree rooted at the root r of cot(G) corresponds to G.

Using a dynamic programming approach on the cotree representation of the
cograph, we can solve Star Partition in polynomial time.

Theorem 4. Star Partition can be solved in O(kn2) time on cographs.

Proof. Let (G = (V,E), s) be a Star Partition instance with G being a co-
graph. Let T = (VT , ET , r) = cot(G) denote the cotree of G. Furthermore, for
any node x ∈ VT , let T [x] denote the subgraph of G that corresponds to the
subtree of T rooted at x.

We define a dynamic programming table L as follows. For every node x ∈ VT
and every non-negative integer c ≤ k, the table entry L[x, c] denotes the maximum
number of leaves in T [x] that are covered by a center in T [x] when c vertices
in T [x] are centers. Consequently, (G, s) is a yes-instance if and only if L[r, k] =
ks. Now, let us describe how to compute L processing the cotree T bottom up.

Leaf nodes. For a leaf node x, either the only vertex v from T [x] is a center
or not. In both cases no leaf in T [x] is covered by v. Thus, L[x, 0] = L[x, 1] = 0
and ∀c > 1 : L[x, c] = −∞.

Union nodes. Let x be a node labeled with “⊕” and let x1 and x2 be its
children. Note that there is no edge between a vertex from T [x1] and a vertex
from T [x2], neither in T [x] nor in any other subgraph of G corresponding to
any T [x′], x′ ∈ VT . Thus, for every leaf v in T [x] that is covered by a center v′

from T [x], it holds that either both v and v′ are in T [x1] or both are in T [x2].
Hence, it follows L[x, c] = maxc1+c2=c(L[x1, c1] + L[x2, c2]).

19



Join nodes. Let x be a node labeled with “⊗” and let x1 and x2 be its children.
Join nodes are more complicated than leaf or union nodes for computing the
table entries, because these nodes actually introduce the edges. However, they
always introduce all possible edges between vertices from T [x1] and T [x2] which
has some nice consequences. The idea is that the maximum number of leaves
in T [x] that are covered by centers in T [x] is achieved by maximizing the number
of leaves from T [x2] that are covered by centers from T [x1] and vice versa.

To compute L[x, c], we introduce an auxiliary table A as follows. For every
pair c1, c2 of non-negative integers with c1 + c2 = c, the table entry A[c1, c2]
denotes the maximum number of leaves in T [x] that are covered by a center
in T [x] when c1 vertices in T [x1] are centers and c2 vertices in T [x2] are centers.
To this end, let `i, i ∈ {1, 2}, be the number of leaves in the desired s-star par-
tition being in T [xi]. (Note that in every solution every vertex is either a center
or a leaf and a leaf is not necessarily already covered within the current T [x].
That is, `i can be larger than the number of leaves covered by a center in T [x].)
Moreover, `i = |V (T [xi])| − ci, where V (T [xi]) is the set of vertices in T [xi]. To
compute the auxiliary table A, we consider three cases:

Case 1: (c1s > `2) ∧ (c2s > `1). In this case, we can cover all leaves in
T [x] by covering the leaves from T [x1] with centers from T [x2] and vice versa.
Thus, A[c1, c2] = `1 + `2.

Case 2: (c1s ≤ `2)∧ (c2s ≤ `1). In this case, we can cover cs leaves in T [x]
by covering c1s leaves from T [x2] by centers from T [x1] and c2s leaves from T [x1]
by centers from T [x2]. This is obviously the best one can do. Thus, A[c1, c2] = cs.

Case 3: (c1s > `2) ∧ (c2s ≤ `1) or (c1s ≤ `2) ∧ (c2s > `1). In this case
it is also optimal to greedily maximize the number of leaves from T [x2] that are
covered by centers from T [x1] and vice versa. To see this, let yi, i ∈ {1, 2}, denote
the number of leaves from T [xi] that are covered by a center from T [xi]. More
precisely, assume that y1 and y2 are both greater than zero. Then, repeatedly
take one center from T [x1] covering a leaf in T [x2] and one center from T [x2]
covering a leaf in T [x1] and exchange their leaves until either y1 or y2 is zero
(if both become zero, we would be in Case 2).

Without loss of generality, let y1 > 0 and y2 = 0. Note that this corresponds
to the first subcase, i. e., (c1s > `2) ∧ (c2s ≤ `1)—the other subcase works analo-
gously. As y2 = 0 and c2s ≤ `1, we can assume that c2 centers from T [x2] cover
altogether c2s leaves from T [x1]. Furthermore, all `2 leaves from T [x2] are cov-
ered by centers in T [x1]. Since c1s > `2, the centers in T [x1] might additionally
cover some number `′ of leaves from T [x1]. We thus have A[c1, c2] = c2s+ `2 + `′.
We now compute the maximum possible value of `′. Clearly:

• `′ is at most c1s− `2, the maximum number of leaves that can be covered
by c1 centers after `2 leaves are covered in T [x2],

20



• `′ is at most `1 − c2s, the maximum number of leaves that are not already
covered by centers from T [x2], and

• `′ is at most L[x1, c1], the maximum number of leaves from T [x1] that can
be covered by centers from T [x1].

Hence, `′ ≤ min(c1s− `2, `1 − c2s, L[x1, c1])
Conversely, for `′′ = min(c1s − `2, `1 − c2s, L[x1, c1]), it is possible for c1

centers in T [x1] to cover `′′ leaves in T [x1] and `2 leaves in T [x2], and for c2
centers in T [x2] to cover c2s leaves in T [x1]. Here, the property that a join node
introduces all possible edges between the two subgraphs is crucial, because we
can therefore simply cover leaves from T [x1] by centers from T [x1] in an optimal
way. (Each center from T [x1] can cover each leaf from T [x2] and vice versa.)
So `′ ≥ `′′ = min(c2s− `1, `2 − c1s, L[x2, c2]). Overall,

A[c1, c2] =
`1 + `2 if (c1s > `2) ∧ (c2s > `1)

cs if (c1s ≤ `2) ∧ (c2s ≤ `1)

c2s+ `2 + min(c1s− `2, `1 − c2s, L[x1, c1]) if (c1s > `2) ∧ (c2s ≤ `1)

c1s+ `1 + min(c2s− `1, `2 − c1s, L[x2, c2]) if (c1s ≤ `2) ∧ (c2s > `1).

Finally, we compute L[x, c] by considering the auxiliary table, that is,

L[x, c] = max
c1+c2=c

(A[c1, c2]).

The O(kn2) running time of this algorithm can be seen as follows: Computing
the cotree representation runs in linear time [9]. The table size of the dynamic
program is bounded by O(kn)—there are O(n) nodes in the cotree and c ≤ k.
Since V (T [xi]) corresponds to the set of leaf nodes of the subtree of T rooted
in xi, the sizes |V (T [xi])| can be precomputed in linear time for each node xi
of the cotree. Hence, computing a table entry costs at most O(n).

4 Bipartite permutation graphs

In this section, we show that Star Partition can be solved in O(n2) time on
bipartite permutation graphs. The class of bipartite permutation graphs is the
intersection of the class of bipartite graphs and the class of permutation graphs.
An alternative characterization of bipartite permutation graphs can be given
using strong orderings of the vertices of a bipartite graph:

Definition 7 (Spinrad et al. [28]). A strong ordering ≺ of the vertices of a
bipartite graph G = (U,W,E) is the union of a total order ≺U of U and a total
order ≺W of W , such that, for all edges {u,w}, {u′, w′} in E with u, u′ ∈ U and
w,w′ ∈W , u ≺ u′ and w′ ≺ w implies that there are edges {u,w′} and {u′, w}
in E.

21



A graph is a bipartite permutation graph if and only if it is bipartite and
there is a strong ordering of its vertices; a strong ordering can be computed in
linear time [28].

In a bipartite graph G with vertex set U ∪W , if the subgraph induced by
a size-(s + 1) vertex subset X ⊆ U ∪W contains an s-star, then this induced
subgraph is a star—there is only one way to choose the star center. Thus, we
refer to G[X] as a star. We denote by center(X) the center of the star G[X].
Observe that the number kU of star centers in U and the number kW of star
centers in W are uniquely determined by the sizes |U | and |W | of the two
independent vertex sets and by the number s of leaves in a star, since

|U | = kU + s · kW and |W | = kW + s · kU

and therefore

kU =
|U | − |W | · s

1− s2
and kW =

|W | − |U | · s
1− s2

.

If these numbers are not positive integers, then G does not have an s-star
partition. Thus, we assume throughout this section that kU and kW are positive
integers.

Our key to obtain star partitions on bipartite permutation graphs is a
structural result that only a certain “normal form” of star partitions has to
be searched for. This paves the way to developing a dynamic programming
algorithm exploiting these normal forms. We define these structural properties
of an s-star partition of bipartite permutation graphs in the following.

Let (G, s) be a Star Partition instance, where G = (U,W,E) is a bipartite
permutation graph, ≺ is a strong ordering of the vertices, and 4 is the reflexive
closure of ≺. For two vertex sets A,B, we also write A ≺ B if for all vertices
v ∈ A and w ∈ B, we have v ≺ w.

Assume that G admits an s-star partition P. Let X ∈ P form a star. By
lm(X) (respectively by rm(X)), we denote the leftmost (that is, the minimum),
respectively the rightmost (that is, the maximum) leaf of X with respect to ≺.
The scope of star X is the set scope(X) := {v | xl 4 v 4 xr} containing all
vertices from xl = lm(X) to xr = rm(X). The width of star X is the cardinality
of its scope, that is, width(X) := | scope(X)|. The width of P, width(P), is the
sum of width(X) over all X ∈ P.

Let e = {u,w} and e′ = {u′, w′} be two edges. We say that e and e′ cross
each other if it holds that u ≺ u′ and w′ ≺ w or if it holds that u′ ≺ u and
w ≺ w′. The edge-crossing number of two stars X,Y ∈ P is the number of pairs
of crossing edges e, e′ with respect to the given strong order ≺ where e is an
edge of X and e′ is an edge of Y . The edge-crossing number #edge-crossings(P)
of P is the sum of the edge-crossing numbers over all pairs of stars X 6= Y ∈ P.

We identify the possible configurations of two stars, depending on the relative
positions of their leaves and centers, see Figure 5. Among those, the following
two configurations are favorable: Given X,Y ∈ P, we say that X and Y are

• non-crossing if their edge-crossing number is zero;

22



Non-crossing

Interleaving

Configuration I

Configuration III

Configuration II

Configuration IV

Figure 5: Possible interactions between two stars of a partition. Centers are
drew black. The four possible configurations of star centers and scopes that
are neither non-crossing nor interleaving are labeled I to IV. By Lemma 5, any
partition containing one of the configurations I to IV can be edited to reduce
the score (see the thick gray edges).

• interleaving if center(X) ∈ scope(Y ) and center(Y ) ∈ scope(X);

We say that P is good if any two stars X 6= Y ∈ P are either non-crossing or in-
terleaving. We define the score of P as the tuple (width(P),#edge-crossings(P)).
We use the lexicographical order to compare scores.

These definitions allow us to observe the following property and show a
normal form of star partitions in bipartite permutation graphs.

Property 4. Let u0 ≺ u1 and w0 ≺ w1 be four vertices such that edges {u0, w1}
and {u1, w0} are in G. Then, G has edges {u0, w0} and {u1, w1} and, for any
edge e crossing one (respectively both) edge(s) in {{u0, w0}, {u1, w1}}, e crosses
one (respectively both) edge(s) in {{u0, w1}, {u1, w0}}.

Proof. The existence of the edges {u0, w0} and {u1, w1} is a direct consequence
of Definition 7. Let e = {u,w} be an edge crossing {u0, w0} and/or {u1, w1}.
We consider the cases where u ≺ u0 and where u0 ≺ u ≺ u1 (the case u1 ≺ u
being symmetrical to u ≺ u0).

If u ≺ u0, then w0 ≺ w, and e crosses both {u0, w0} and {u1, w0}. Also, if
e crosses {u1, w1}, then e also crosses {u0, w1}, which proves the property for
this case.

If u0 ≺ u ≺ u1, then if e crosses {u0, w0}, then e also crosses {u0, w1}. If
e crosses {u1, w1}, then e also crosses {u1, w0}. Overall, the property is thus
proven for all cases.

Our main structural lemma now is the following.

23



Lemma 5. Any s-star partition of a bipartite permutation graph G with mini-
mum score is a good s-star partition, that is, any two stars are either non-crossing
or interleaving.

Proof. Let P be an s-star partition for G. First, we show that any two stars
X 6= Y ∈ P are non-crossing, interleaving, or in one of the following four
configurations (possibly after exchanging the roles of X and Y , see Figure 5 for
an illustration):

Configuration I. scope(X) ∩ scope(Y ) 6= ∅;

Configuration II. center(Y ) ∈ scope(X) and center(X) 6∈ scope(Y );

Configuration III. center(X) ≺ center(Y ) and scope(Y ) ≺ scope(X);

Configuration IV. center(X) ≺ scope(Y ) and center(Y ) ≺ scope(X) or, sym-
metrically, scope(Y ) ≺ center(X) and scope(X) ≺ center(Y ).

First, assume that center(X) and center(Y ) are both either in U or in W .
Furthermore, assume, without loss of generality, that center(X) ≺ center(Y ).
If X and Y are not in Configuration I, then either scope(X) ≺ scope(Y ) or
scope(Y ) ≺ scope(X). If scope(X) ≺ scope(Y ), then G[X] and G[Y ] are non-
crossing. Otherwise, scope(Y ) ≺ scope(X) and, hence, Configuration III holds.

If center(X) and center(Y ) are in different vertex sets and if X and Y
are not in Configuration IV, then center(X) ∈ scope(Y ) and/or center(Y ) ∈
scope(X). If center(X) ∈ scope(Y ) and G[X] and G[Y ] are not interleaving, then
center(Y ) /∈ scope(X) and we are in Configuration II. Otherwise, if center(Y ) ∈
scope(X) and, again, G[X] and G[Y ] are not interleaving, then center(X) /∈
scope(Y ) and we are again in Configuration II.

We now prove that a minimum-score s-star partition P does not contain any
pair of stars X 6= Y ∈ P in Configurations I, II, III or IV (see Figure 5). For
each such configuration, we construct an s-star partition P ′ with a score strictly
smaller than P.

Configuration I. Let X,Y be two stars of P in Configuration I, that is,
scope(X) ∩ scope(Y ) 6= ∅. Write xc = center(X) and yc = center(Y ). Then, xc
and yc are either both in U or both in W . Without loss of generality, assume
xc ≺ yc. Write {z1, z2, . . . , z2s} for the union of the leaves of X and Y , with
indices taken such that zi ≺ zj for 1 ≤ i < j ≤ 2s. Let Zl = {z1, . . . , zs}
and Zr = {zs+1, . . . , z2s}. We first show that both vertex sets Zl ∪ {xc} and
Zr ∪ {yc} form a star in G.

Let k be the index such that zk = lm(Y ). Then, since the scopes of X and Y
intersect, zk cannot be to the right of all the leaves of G[X], hence we have k ≤ s,
and zk ≺ Zr. Consider now any z ∈ Zr. If z ∈ Y , then there exists an edge
{z, yc} in G. If z ∈ X, then there exists an edge {z, xc} in G that crosses {zk, yc}
(since zk ≺ z and xc ≺ yc). Thus, there also exists an edge {z, yc} in G by
Definition 7. With a symmetrical argument, G has an edge {z, xc} for all z ∈ Zl.

24



It follows that the vertex sets X ′ = Zl ∪ {xc} and Y ′ = Zr ∪ {yc} both form
stars in G.

We now compare the widths of G[X ′] and G[Y ′] to the widths of the original
stars G[X] and G[Y ]. Let w be the total number of elements between z1 and z2s,
that is, the cardinality of the vertex set {u | z1 4 u 4 z2s} = scope(X)∪scope(Y ).
Then, using the fact that the scopes of X ′ and Y ′ are disjoint and included in a
size-w set, we have

width(X ′) + width(Y ′) ≤ w
= | scope(X)|+ | scope(Y )| − | scope(X) ∩ scope(Y )|
< width(X) + width(Y ).

We can thus construct an s-star partition P ′ = (P \ {X,Y }) ∪ {X ′, Y ′} such
that width(P ′) < width(P), that is, with strictly smaller score. Thus, no pair of
stars in the minimum-score s-star partition P may be in Configuration I.

Configuration II. Let X,Y be two stars of P in Configuration II, i. e.,
center(Y ) ∈ scope(X) and center(X) 6∈ scope(Y ). Write xc = center(X)
and yc = center(Y ). Then yc ≺ rm(X) and either xc ≺ scope(Y ) or scope(Y ) ≺
xc. We only consider the case xc ≺ scope(Y ); the case scope(Y ) ≺ xc works
analogously.

Let v = rm(X) be the rightmost vertex of the leaves of the star G[X]. First,
G contains the edge {xc, yc} since the star G[Y ] has at least one leaf u with
xc ≺ u and yc ≺ v, and G contains the edges {xc, v} and {yc, u}. Now, consider
any vertex u ∈ Y \ {center(Y )}. Then, the edge {xc, v} crosses the edge {u, yc},
since xc ≺ u and yc ≺ rm(X). The graph G contains the edges {xc, yc} and
{v, u}. Thus, the vertex sets X ′ = (X \ {v}) ∪ {yc} and Y ′ = (Y \ {yc}) ∪ {v}
both form stars in G.

We now compare the widths of G[X ′] and G[Y ′] to the widths of the original
stars G[X] and G[Y ].

Since yc ≺ v, one has width(X ′) ≤ width(X) − 1. Obviously, width(Y ) =
width(Y ′). We can thus construct an s-star partition P ′ = (P\{X,Y })∪{X ′, Y ′}
with width(P ′) < width(P), that is, with strictly smaller score. Therefore, no
pair of stars in the s-star partition P may be in Configuration II.

Configuration III. Let X,Y be two stars of P in Configuration III. Let xc :=
center(X) and yc := center(Y ) and assume, without loss of generality, that xc ≺
yc. Then, scope(Y ) ≺ scope(X). Thus, all edges of G[X] cross all edges of G[Y ].
Hence, there exists an edge {xc, y} for each leaf y of G[Y ], and an edge {yc, x} for
each leaf x of G[X]. Defining X ′ = (X \ {xc})∪{yc} and Y ′ = (Y \ {xc})∪{yc},
we thus have two stars G[X ′] and G[Y ′] with the same width as G[X] and G[Y ],
respectively. Hence, the s-star partition P ′ = (P \ {X,Y }) ∪ {X ′, Y ′} has the
same width as P.

We now show that #edge-crossings(P ′) < #edge-crossings(P). We write BX

(respectively BY , BX′ , and BY ′) for the branches of the corresponding star, that

25



center(Y ) lm(X) rm(X)

center(X) lm(Y ) rm(Y )

center(Y ′) lm(X ′) rm(X ′)

center(X ′)lm(Y ′) rm(Y ′)

Figure 6: Left: Two stars X and Y in Configuration IV such that d(X,Y ) is
minimal. Right: Two stars X ′ and Y ′ obtained from X and Y , with equal width
and fewer crossings.

is, for the set of edges of G[X] (respectively of G[Y ], G[X ′], and G[Y ′]), and
RX,Y (respectively RX′,Y ′) for the set of edges in G[Z] for any Z ∈ P \ {X,Y }
(respectively for any Z ∈ P ′ \{X ′, Y ′}). Note that, by definition of P ′, RX′,Y ′ =
RX,Y . We thus simply denote this set by R. We write ×b,b (respectively ×b′,b′)
for the number of crossings between branches of BX and BY (respectively of BX′

and BY ′), ×b,r (respectively ×b′,r) for the number of crossings between a branch
in BX ∪ BY (respectively in BX′ ∪ BY ′) and an edge in R, and ×r,r for the
number of crossings between two edges in R. Note that #edge-crossings(P) =
×b,b +×b,r +×r,r and that #edge-crossings(P ′) = ×b′,b′ +×b′,r +×r,r.

It is easy to see that ×b′,b′ = 0 (X ′ and Y ′ form non-crossing stars),
and ×b,b > 0. Let xi (respectively yi) be the i-th leaf of X (respectively
of Y ) in the order ≺. Then, by Property 4, any edge in R crossing one
or two edges among {{yc, xi}, {xc, yi}} also crosses at least as many edges
among {{xc, xi}, {yc, yi}}. Summing over all branches and all crossing edges,
we obtain ×b′,r ≤ ×b,r. Thus, overall, we indeed have #edge-crossings(P ′) <
#edge-crossings(P).

Finally, we have constructed an s-star partition with the same width but
fewer crossings, that is, with strictly smaller score. Thus, no pair of stars in
the s-star partition P may be in Configuration III.

Configuration IV. Let X,Y be two stars of P in Configuration IV. Without
loss of generality, we assume that center(X) ≺ scope(Y ) and center(Y ) ≺
scope(X). We moreover assume that X and Y are chosen so that the number
of elements between center(X) and rm(Y ), written d(X,Y ), is minimal among
all pairs in Configuration IV. The configuration is depicted in more detail in
Figure 6 (left).

We first show that d(X,Y ) = s − 1, which means that no vertex exists
between center(X) and rm(Y ), except for the s− 1 other leaves of Y . Suppose,
towards a contradiction, that there is a vertex z /∈ {center(X)} ∪ scope(Y ) such
that center(X) ≺ z ≺ rm(Y ).

26



Assume first that z is the center of a star G[X ′] with X ′ ∈ P. Then,
scope(X) ≺ scope(X ′), since X and X ′ cannot be in Configuration I or III.
Moreover, we have center(X) ≺ z ≺ scope(Y ) since, otherwise, z ∈ scope(Y ) and
Y and X ′ would be in Configuration II. Hence, X ′ and Y are in configuration IV
(with center(X ′) ≺ scope(Y ), center(Y ) ≺ scope(X ′)), and d(X ′, Y ) < d(X,Y ),
which is a contradiction.

Now assume that z is a leaf of a star G[Y ′] with Y ′ ∈ P. First compare
Y and Y ′: scope(Y ′) ∩ scope(Y ) = ∅ since, otherwise, Y and Y ′ would be in
Configuration I. Using z ≺ rm(Y ), it follows that scope(Y ′) ≺ scope(Y ). This
implies that center(Y ′) ≺ center(Y ) ≺ scope(X) since, otherwise, Y ′ and Y
would be in Configuration III. We now compare X and Y ′. We have already
seen that center(Y ′) ≺ scope(X). Also, center(X) /∈ scope(Y ′) since, otherwise,
Y ′ and X would be in Configuration II. Using center(X) ≺ z, we thus have
center(X) ≺ scope(Y ′), which implies that X and Y ′ are in Configuration IV
with d(X,Y ′) < d(X,Y ), which is a contradiction. We conclude that no vertex
other than the leaves of Y may exist between center(X) and rm(Y ).

We now construct an s-star partition with score strictly less than P . To this
end, let X0 = X \ {center(X)} and Y0 = Y \ {rm(Y )}. First observe that G
contains the edge {center(X), center(Y )} since there is an edge in G[X] and
an edge in G[Y ] crossing each other. Hence, Y ′ = Y0 ∪ {center(X)} forms a
star. Now, consider any vertex u ∈ X0. The edge {center(X), u} crosses the
edge {center(Y ), rm(Y )} and, therefore, G contains the edge {rm(Y ), u}. Thus,
X ′ = X0 ∪ {rm(Y )} forms a star. For an illustration, see Figure 6 (right). Also,
X ′ and Y ′ are non-crossing (X ′ is completely to the right of Y ′).

We now compare the widths of G[X ′] and G[Y ′] to the widths of the original
stars G[X] and G[Y ]. Obviously, width(X ′) = width(X). Moreover, since
d(X,Y ) = s − 1, it follows that width(Y ′) = width(Y ) = s. Hence, the s-star
partition P ′ = (P \ {X,Y }) ∪ {X ′, Y ′} has the same width as P.

Since the widths have not changed, we have to show that #edge-crossings(P ′) <
#edge-crossings(P). We introduce the same notations as in Configuration III:
Let BX (respectively BY , BX′ , and BY ′) be the set of branches of the corre-
sponding star, that is, the set of edges in G[X] (respectively in G[Y ], G[X ′],
and G[Y ′]), and let RX,Y (respectively RX′,Y ′) be the set of edges in G[Z] for any
Z ∈ P \ {X,Y } (respectively for any Z ∈ P ′ \ {X ′, Y ′}). Note that by definition
of P ′, RX′,Y ′ = RX,Y , and we thus simply denote this set by R. Furthermore,
let ×b,b (respectively ×b′,b′) be the number of crossings between branches of BX

and BY (respectively between branches of BX′ and BY ′), let ×b,r (respectively
×b′,r) be the number of crossings between a branch in BX ∪BY (respectively in
BX′ ∪BY ′) and an edge in R, and let ×r,r be the number of crossings between
two edges in R. Note that #edge-crossings(P) = ×b,b + ×b,r + ×r,r and that
#edge-crossings(P ′) = ×b′,b′ +×b′,r +×r,r. Then, it is easy to see that ×b′,b′ = 0
(X ′ and Y ′ form non-crossing stars), and ×b,b > 0.

We now show that ×b′,r ≤ ×b,r. First recall that no edge in R has an end
point between center(X) and rm(Y ). We consider the branches in BX′∪BY ′ and,
for each, give a unique edge in BX ∪BY crossing the same edges of R. For any
leaf x of X ′, any r ∈ R crossing {center(X ′), x} must also cross {center(X), x}.

27



For the leftmost branch of Y ′, any r ∈ R crossing {center(X), center(Y )} must
also cross {rm(Y ), center(Y )}. For any other branch b = {center(Y ), y} of
Y ′, any r ∈ R must also cross the same branch b of Y ′. Overall, we indeed
have ×b′,r ≤ ×b,r, which implies #edge-crossings(P ′) < #edge-crossings(P).

Altogether, we have shown that a minimum-score s-star partition P containing
pairs of stars in Configurations I to IV leads to a contradiction, since, in this case,
we could find an s-star partition of lower score, which is a contradiction.

As a consequence of Lemma 5, we obtain the following corollary.

Corollary 1. Let P be an s-star partition of a bipartite permutation graph G
with minimum score. Then, for each star X ∈ P, there is at most one Y ∈ P
such that X and Y are interleaving, and for all Z ∈ P \ {X,Y }, X and Z are
non-crossing.

Proof. Since P has minimum score, for any Y ∈ P \ {X}, G[X] and G[Y ] are
either interleaving or non-crossing.

Any star interleaving with G[X] contains center(x) in its scope. If there
exist at least two such stars in P, then their scopes intersect and they are in
Configuration I, which is impossible by Lemma 5.

We now informally describe a dynamic programming algorithm for deciding
whether a bipartite graph G = (U,W,E) allows for a good s-star partition. It
builds up a solution following the strong ordering of the graph from left to right.
A partial solution can be extended in three ways only: either (i) a star is added
with the center in U , or (ii) a star is added with the center in W , or (iii) two
interleaving stars are added. The algorithm can thus compute, for any given
number of centers in U and in W , whether it is possible to partition the leftmost
vertices of U and W in one of the three ways (i)–(iii). This algorithm leads to
the following result.

Theorem 5. Star Partition can be solved in O(n2) time on bipartite permu-
tation graphs.

Proof. Let (G, s) denote a Star Partition instance, where G = (U,W,E) is a
bipartite permutation graph. Furthermore, let U = {u1, u2, . . . , ukU

} and W =
{w1, w2, . . . , wkW

} such that ui ≺ uj (respectively wi ≺ wj) implies i < j for
some fixed strong ordering ≺. We describe a dynamic programming algorithm
that finds a good s-star partition P . The idea is to use the fact that a star from P
is either interleaving with exactly one other star from P or it does not cross any
other star from P (see Lemma 5 and Corollary 1). In both cases, the part of
the graph that lies entirely to the left of the star (of the two interleaving stars
respectively) with respect to the strong ordering must have an s-star partition
on its own. This is clearly also true for the part of the graph that lies entirely to
the right, but we do not need this for the proof.

Informally, an entry T (x, y) of our binary dynamic programming table T is
true if and only if x stars with centers from U and y stars with centers from W
can “consecutively cover” the correspondingly large part of the graph from the

28



left side of the strong ordering. Formally, the binary dynamic programming
table T is defined as

T (x, y) =


1 if G[{u1, u2, . . . , ux+s·y, w1, w2, . . . , wy+s·x}]

has an s-star partition,

0 otherwise.

Initialize the table T by:

T (0, 1) =

{
1 if G[{u1, u2, . . . , us, w1}] contains an s-star,

0 otherwise,

T (1, 0) =

{
1 if G[{u1, w1, w2, . . . , ws}] contains an s-star,

0 otherwise, and

T (1, 1) =


1 if G[{u1, u2, . . . , us+1, w1, w2, . . . , ws+1}]

contains disjoint s-stars,

0 otherwise.

Update the table T for all 1 < x ≤ kU and 1 < y ≤ kW by

T (x, y) =

1 if one of the following holds:

(a) T (x, y− 1) = 1 and G[{ux+s·(y−1)+1, ux+s·(y−1)+2, . . . , ux+s·(y−1)+s,
w(y−1)+s·x+1}] contains an s-star,

(b) T (x−1, y) = 1 and G[{u(x−1)+s·y+1, wy+s·(x−1)+1, wy+s·(x−1)+2, . . . ,
wy+s·(x−1)+s}] contains an s-star,

(c) T (x− 1, y− 1) = 1 and G[{u(x−1)+s·(y−1)+1, . . . , u(x−1)+s·(y−1)+s+1,
w(y−1)+s·(x−1)+1, . . . , w(y−1)+s·(x−1)+s+1}] contains disjoint s-stars.

0 otherwise.

Concerning the running time, first, a strong ordering of the vertices can be
computed in linear time [28]. Second, the table in the dynamic program has
O(k2) entries and initialization as well as updating works in O(s2) time. Hence,
the total running time is O(k2 · s2) = O(n2).

Concerning the correctness of the algorithm, we show that T (kU , kV ) is
true if and only if there is a good s-star partition and, hence, if and only if
there is an s-star partition. To this end, consider an s-star partition P ′ for
G′ := G[{u1, u2, . . . , ux+s·y, w1, w2, . . . , wy+s·x}] with minimum score. Now
there are three simple cases:

Case (a). The rightmost vertex of G′ in W is a center of a non-crossing star
in P ′ and, hence, G[{u1, u2, . . . , ux+s·(y−1), w1, w2, . . . , wy−1+s·x}] has an s-star
partition.

29



Case (b). The rightmost vertex of G′ in U is a center of a non-crossing star
in P ′ and, hence, G[{u1, u2, . . . , ux−1+s·y, w1, w2, . . . , wy+s·(x−1)}] has an s-star
partition.

Case (c). The rightmost vertex of G′ in U and G′s rightmost vertex in W
are leaves of two interleaving stars. Due to Corollary 1, none of the other stars
from P ′ is crossing these two stars. It follows that G[{u1, u2, . . . , ux−1+s·(y−1),
w1, w2, . . . , wy−1+s·(x−1}] has an s-star partition.

Note that the rightmost vertex of G′ in U can only be a leaf of a non-crossing
star in P ′ if the rightmost vertex of G′ in W is the center and vice versa. Oth-
erwise, the corresponding star is clearly not non-crossing. Hence, these cases
are already covered by (a) and (b). Furthermore, neither the rightmost vertex
of G′ in U nor in W can be a center of an interleaving star from P ′, because
both are rightmost with respect to the strong ordering and, thus, interleaving is
impossible. Thus we considered all cases and the update process is correct.

5 Split graphs

A split graph is a graph whose vertices can be partitioned into a clique (that is,
a complete subgraph) and an independent set (that is, a subgraph with only
isolated vertices). Remarkably, split graphs are the only graph class where we
could show that P3-Partition is solvable in polynomial time, but that Star
Partition for s ≥ 3 is NP-hard.

More precisely, we solve P3-Partition on split graphs by reducing it to
finding a restricted form of factor in an auxiliary graph; herein, a factor of
a graph G is a spanning subgraph of G (that is, a subgraph containing all
vertices). This graph factor problem then can be solved in polynomial time [11].
Alternatively, we can also solve the problem by reducing it to finding perfect
matchings (Theorem 6).

Let G = (C ∪ I, EC ∪E) be a split graph where (C,EC) is a clique, I induces
an independent set, and B = (C ∪ I, E) forms a bipartite graph over C and I.
Note that if |C| + |I| is not a multiple of 3, or if |I| > 2|C|, then G trivially
has no P3-partition. We thus assume that |C|+ |I| (and hence 2|C| − |I|) is a
multiple of 3, and that 2|C| − |I| ≥ 0.

First, we show how a P3-partition of a split graph is related to a specific
factor of the bipartite graph B. Assume that G admits a partition into P3s and
let P denote the set of edges in the partition. There are three types of P3s:

(i) a P3 consisting of three clique vertices,

(ii) a P3 consisting of two clique vertices and one independent set vertex, and

(iii) a P3 consisting of one clique vertex and two independent set vertices.

Note that, for each P3, we can assume that the edges are selected so that each
independent set vertex is incident with at most one edge in P . In particu-

30



lar, this implies that the two clique vertices in Type (ii) are adjacent in the
corresponding P3. This leads to the following definition.

Definition 8. A factor F of the bipartite graph B is feasible if, in F , every
independent set vertex has degree one, every clique vertex has degree zero, one
or two, and there are at least as many degree-zero clique vertices as degree-one
clique vertices.

It turns out that Definition 8 is necessary and sufficient for obtaining a
P3-partition.

Lemma 6. A split graph G admits a partition into P3s if and only if there exists
a feasible factor of its bipartite graph B.

Proof. Assume that there is a partition of G into P3s with edge set P such that
each vertex in I is incident with exactly one edge in P . Let PE := P ∩ E be
the subset of edges of the partition which connect vertices from C with vertices
from I, and let F := (C ∪ I, PE) be the corresponding factor of B = (C ∪ I, E).

Each independent set vertex in I has degree one in F (since it is adjacent to
exactly one edge in P , which is also in PE). Each clique vertex v in C belongs
to a P3 from P . Depending on the type of this P3, in F , vertex v can have
degree zero (Type (i) or (ii), note that we assume each independent set vertex
to be incident with at most one edge in P ), degree one (Type (ii)), or degree
two (Type (iii)). Let n(i) (respectively n(ii)) denote the number of P3s of Type (i)
(respectively (ii)). It remains to show that the number of degree-zero clique
vertices is equal to or greater than the number of degree-one clique vertices: The
number of degree-zero vertices is n(ii) + 3n(i), and the number of degree-one
vertices is n(ii), hence the difference is positive. Thus, F is feasible.

Conversely, let F = (C ∪ I, PE) be a feasible factor of B. Then we par-
tition G into P3s as follows. For each degree-two clique vertex v in C, add
{v, x, y} to P where x and y are the neighbors of v in F . For each degree-one
clique vertex v in C, add {v, x, y} to P , where x is v’s neighbor in F and y is an
arbitrary degree-zero clique vertex (there are enough such vertices). The number
of remaining degree-zero vertices in C is thus a multiple of 3: these vertices are
simply grouped up in arbitrary triples Add these triples to P . Overall, due to
the degree constraints, P is a P3-partition of G.

Cornuéjols [11] shows that finding a feasible factor in B can be solved in
polynomial time by reducing it to finding disjoint edges and triangles in a
corresponding auxiliary graph. Nevertheless, we show in the following how to
reduce the problem to finding perfect matchings. To this end, we formulate a
nice property that a feasible factor in B must fulfill:

Property 5. Let F = (C ∪ I, P ∩ E) be a feasible factor of the bipartite
graph B = (C ∪ I, E). Let q and r be two non-negative integers such that
r ∈ {0, 1} and (2|C| − |I|)/3 = 2q + r. Then, in F , the number n1 of degree-one
vertices in C is 2i+ r for some i, 0 ≤ i ≤ q. In particular, n1 ≤ (2|C| − |I|)/3.

31



Proof. Let n0, n1, and n2 be the number of degree-zero, degree-one, and degree-
two clique vertices in F . Then, n0 + n1 + n2 = |C| (all clique vertices have
degree 0, 1 or 2), n1 + 2n2 = |I| (vertices in I have degree 1). Rearranging and
resolving variable n2 yields

3n1 = 2|C| − |I| − 2(n0 − n1). (2)

As mentioned, 2|C| − |I| is a multiple of three (as well as |C|+ |I|). Note that
n0 − n1, which is positive because F is feasible, is a multiple of three because it
equals the number of clique vertices in P3s of Type (i). Let j be an integer with
(n0 − n1)/3 = j. Then, together with (2), we obtain that

n1 =
2|C| − |I|

3
− 2 · n0 − n1

3
= 2q + r − 2j.

The last statement is satisfied since 2q + r = (2|C| − |I|)/3 and j ≥ 0.

To be able use a perfect matching algorithm to solve our problem, we first
reduce it to a restricted variant of the graph factor problem: We add an additional
vertex z to the bipartite graph B, and connect it to all vertices in C. We call
this graph B′. Now, the following lemma states that B′ can be used to find a
feasible factor for B.

Lemma 7. The bipartite graph B = (C ∪ I, E) admits a feasible factor if and
only if graph B′ = (C ∪ I ∪ {z}, E ∪ {{z, c} | c ∈ C}) has a factor satisfying the
following degree constraints: (1) Every vertex in I has degree one, (2) every
vertex in C has degree zero or two, and (3) the added vertex z has degree 2i+ r,
where r ∈ {0, 1} such that there is an integer q with (2|C| − |I|)/3 = 2q + r and
i ∈ {0, 1, . . . , q}.

Proof. Assume that B admits a feasible factor F = (C ∪ I, PE). Then F ′ =
(C ∪ I ∪ {z}, PE) is a factor of B′. For each degree-one vertex v ∈ C, we add
edge {v, z} to factor F ′. By Property 5, we thus add 2i+ r edges, with 0 ≤ i ≤ q.
It is easy to verify that the degree constraints stated in the lemma are satisfied.

Conversely, let F ′ be a factor for graph B′ where every independent set
vertex has degree one, every clique vertex has degree zero or two, and vertex z
has degree 2i+ r with i ∈ {0, 1, . . . , q}. If we delete from F ′ all edges incident
to vertex z, then we obtain a feasible factor F for B where the number n1 of
degree-one clique vertices is the original degree of z, that is,

n1 = 2i+ r ≤ (2|C| − |I|)/3. (3)

Since each independent set vertex still has degree one, the number of degree-
two clique vertices is (|I| − n1)/2, and the number of degree-zero clique ver-
tices is n0 = |C| − n1 − (|I| − n1)/2 = (2|C| − |I| − n1)/2. The difference
between the number of degree-zero and the number of degree-one vertices is
n0 − n1 = (2|C| − |I| − 3n1)/2, which is non-negative by using (3).

32



z

C

u

v

I
e7

e8

e1

zu

zv

x1

x2

v1x3

x4

x5

u1

u7

u8

y1u

y2u

y3u

e7

e8e1

Figure 7: Left: An example of a factor for B′ fulfilling the degree constraints as
required in Lemma 7. The black thick bold edges reflects the constraints. Right:
The gadget for vertex z and the gadget for the clique vertex u used to construct
graph B∗ (according to Construction 1). The black thick bold edges (labeled)
correspond to the ones marked on the right. The black bold edges are additional
matching edges.

Figure 7 (Left) depicts an example factor for the graph B′ fulfilling the degree
constraints of Lemma 7.

Using a gadget introduced by Cornuéjols [11], we can even reduce P3-
Partition to the perfect matching problem. We construct a graph B∗ from B′

in which we are searching for a perfect matching. The idea is to replace every
clique vertex v by a gadget which can simulate the constraint that v has degree
zero or two, and to replace vertex z by a gadget to simulate its degree constraint.

Construction 1. Let m = |E| (number of edges between C and I in the original
split graph) and du be the degree of a clique vertex u in C. Note that due to the
edges going to vertex z, we have

∑
u∈C du = m+ |C|. It holds that |I| = O(m)

and |C| = O(m).
To construct the vertex set of B∗, first add a copy of I to B∗. For each clique

vertex u ∈ C, add du vertices y1u, y
2
u, . . . , y

du
u to B∗; denote this set as Y (u). For

each edge ej ∈ E that is incident with u, add a vertex uj to B∗; denote this
set as V (u). Note that |Y (u)| = |V (u)| (Y (u) and V (u) are used to form a
complete bipartite subgraph). For each edge {z, u} in B′, add a vertex zu to B∗;
denote this set as V (z). Finally, add a set X of |C|− r copies of vertex z, named
as x1, x2, . . . , x|C|−r to B∗ (V (z) and X are used to form a complete bipartite
subgraph).

This completes the construction for the vertex set, which consists of |I| +∑
u∈C 2du + 2|C| − r = O(m) vertices.
Now we are ready to add edges to B∗. For each edge ej = {u, v} in B′ which

connects a clique vertex u and an independent set vertex v, add an edge {uj , v}
to B∗. Analogously, for each edge ej = {u, z} in B′ which connects z and a
clique vertex u, add an edge {uj , zu} to B∗. This is used to model the original
edges of B′. Now, to model the degree constraints, for each clique vertex u ∈ C,
add to B∗ an edge between every vertex from V (u) and every vertex from Y (u),
and an edge between y1u and y2u. Add to B∗ an edge between every vertex from

33



V (z) and every vertex from X. Finally, for each integer i with 1 ≤ i ≤ q, add
to B∗ edge {x2i−1, x2i}.

The overall number of edges in B∗ is (m+ |C|) +
∑

u∈C(du)2 + |C|(|C| − r) +
|C|+ q ≤ (m+ |C|)2 + |C|2 +O(m) = O(m2). This finishes the construction.

Figure 7 (Right), shows the gadget constructed for a clique vertex and the
gadget for vertex z. Now, we show how the constructed graph B∗ can be used
to find a factor for B′ satisfying the specific degree constraints as specified in
Lemma 7.

Lemma 8. Graph B∗ constructed according to Construction 1 admits a perfect
matching if and only if graph B′ admits a factor F ′ satisfying the condition that
(1) Every vertex in I has degree one, (2) every vertex in C has degree zero or
two, and (3) the added vertex z has degree 2i + r, where r ∈ {0, 1} such that
there is an integer q with (2|C| − |I|)/3 = 2q + r and i ∈ {0, 1, . . . , q}.

Proof. Let M be a perfect matching for B∗. We construct a factor F ′ =
(C∪I∪{z}, P ′E) for B′. For each edge {uj , v} ∈M which connects an independent
set vertex v, add to P ′E edge {u, v}. For each edge {zu, uj} ∈M which connects
vertices in V (z) and V (u), u ∈ C, add to P ′E edge {z, u}.

We show that F ′ is a factor for B∗ satisfying the properties stated in the
lemma. Obviously, every independent set vertex u ∈ I has degree one. Consider
a clique vertex u ∈ C. By the construction of graph B∗, in order to match all
vertices in Y (u), either (i) every vertex in Y (u) has to be matched to a vertex in
V (u) or (ii) y1u and y2u are matched together while every vertex in Y (u)\{y1u, y2u}
is matched to exactly one vertex in V (u). This implies that either no vertex
or exactly two vertices in V (u) are matched to some vertices which are not
from Y (u). Thus, v has either degree zero or degree two in F ′.

Analogously, by the construction of graph B∗, in order to match all vertices in
X which has size |C|−r, exactly i pairs of vertices in X can be left without being
matched to any vertex in V (z) where 0 ≤ i ≤ q (note that only the first 2q vertices
are connected by a path). This implies that exactly |C| − (|C| − r− 2i) = 2i+ r
vertices from V (z) are matched to vertices that are not from X. Thus, z has
degree 2i+ r.

Conversely, assume that B′ admits a factor F ′ satisfying the above properties.
We show that the following construction yields a perfect matching M for B∗.

For each edge ej = {u, v} in F ′ that connects a clique vertex u and an
independent set vertex v, add to M edge {uj , v}. For each edge ej = {z, u}
in F ′ that connects vertex z with a clique vertex u, add to M edge {zu, uj}.

For each clique vertex u ∈ C, let R(u) ⊆ V (u) be the set of vertices which
are not yet matched by M . We need to match all vertices in R(u). Depending
on whether u has degree zero or two in F ′, |V (u)| − |R(u)| is either zero or two,
and |Y (u)| − |R(u)| = |V (u)| − |R(u)|. Moreover, B∗[V (u) ∪ Y (u)| contains a
complete bipartite graph for V (u) and Y (u). If |R(u)| = |V (u)| (which means
that u has degree zero in F ′), then add to M edges connecting exactly one
vertex of R(u) and one vertex of Y (u); otherwise, |R(u)| = |V (u)| − 2: add
edge {y1u, y2u} to M , and edges connecting exactly one vertex of R(u) and one

34



vertex of Y (u) \ {y1u, y2u}. Analogously, let R(z) ⊆ V (z) be the set of vertices
in V (z) which are not yet matched by M . By assumption, there is an integer i,
0 ≤ i ≤ q such that |V (z)| − |R(z)| = 2i + r. Since |X| = |V (z)| − r, we have
|X| − |R(z)| = 2i. Moreover, B∗[V (z) ∪X| contains a complete bipartite graph
for V (z) and X. Thus, for each 1 ≤ k ≤ i, add edge {x2k−1, x2k} to M , and
add edges connecting exactly one vertex of R(z) and one vertex of X to match
vertices of Rz and of V ′z \ {x1, x2, . . . , x2i}. It is easy to verify that M is indeed
a perfect matching.

We now have gathered all ingredients to show Theorem 6.

Theorem 6. Star Partition on split graphs is solvable in O(m2.5) time for
s = 2.

Proof. Let G = (C ∪ V,CE ∪ E) be a split graph with m being the number of
edges in E. Let B′ = (C ∪ V ∪ {z}, E ∪ {{z, v} | v ∈ C}) be a bipartite graph
over C and I ∪ {z}. Let B∗ be computed from B′ using Construction 1. By
Lemmas 6 to 8, G admits a P3-partition if and only if B∗ admits a perfect
matching. Since deciding whether a graph with s vertices and t edges has a
perfect matching can be done in O(t

√
s) time [27, Theorem 16.4] and since B∗

has O(m) vertices and O(m2) edges, deciding whether G has a P3-partition can
be done in O(m2.5) time.

In contrast, we can show that Star Partition is NP-hard for each s ≥ 3 by a
reduction from Exact Cover by s-Sets.

Theorem 7. Star Partition on split graphs is NP-hard for s ≥ 3.

Proof. We show that it is NP-hard to find an s-star partition of a split graph
via reduction from Exact Cover by s-Sets [16] (illustrated in Figure 8).

Exact Cover by s-Sets
Input: A finite set U and a collection S of size-s subsets of U .
Question: Is there a subcollection S ′ ⊆ S that partitions U (each element

of U is contained in exactly one subset in S ′)?

Given (U,S) with |U | = sn and |S| = m ≥ n where n,m ∈ N, we construct a
split graph G = (C ∪ I, E) as follows: The vertex set consists of a clique C and
an independent set I. The clique C contains a vertex for each subset in S, the
independent set I contains a vertex for each element of U . For each S ∈ S the
corresponding vertex in C is adjacent to the s vertices in I that correspond to
the elements of S. Moreover, let q, r ∈ N such that m− n = (s− 1)q + r. We
add q dummy vertices to both C and I and connect every dummy vertex in C
with all other vertices in C and uniquely with one of the dummy vertices in I.
Finally, we add one more dummy vertex to C and another s− r dummy vertices
to I. This last dummy in C is connected to all other vertices in C and to each
of the s− r dummies in I. Note that each dummy vertex in I has degree one.
The above construction can be carried out in polynomial time.

35



IU

CS

Figure 8: Reduction from Exact Cover by s-Sets to Star Partition with
s = 3. Dummy vertices are in the light gray area and non-dummy vertices are in
the dark gray area. The 3-star partition for the constructed graph G is indicated
by thick edges.

Now, let S ′ ⊆ S be a partition of U . Then we can partition G into stars of
size s in the following way: For each S ∈ S ′, we choose the star containing the
vertex from C corresponding to S and the vertices in I corresponding to the
elements of S. Moreover, each of the dummy vertices in I is put together with
its neighboring dummy in C and filled up to a star of size s with the remaining
non-dummy vertices in C corresponding to the subsets in S \ S ′. Indeed, the
values of q and r are chosen in a way that guarantees that this is possible.
Since S ′ partitions U , we get a valid s-star partition of G.

Conversely, in any s-star partition of G, all dummy vertices in I are grouped
together into an s-star with their one dummy neighbor in C and the respective
number of other non-dummy vertices from C. The values of q and r are such that
there are exactly n non-dummy vertices left in C together with the s · n vertices
in I corresponding to U . It follows that each remaining non-dummy vertex in C
forms a star with its s neighbors in I, which yields a partition of U .

6 Grid graphs

In this section, we show that P3-Partition is NP-hard even on grid graphs
with maximum degree three, thus strengthening a result of Ma lafiejski and
Żyliński [22] and Monnot and Toulouse [23], who showed that P3-Partition is
NP-complete on planar bipartite graphs of maximum degree three.

A grid graph is a graph with a vertex set V ⊆ N× N and edge set {{u, v} |
u = (i, j) ∈ V, v = (k, `) ∈ V, |i− k|+ |j − `| = 1}. That is, its vertices can be
given integer coordinates such that every pair of vertices is joined by an edge if
and only if their coordinates differ by 1 in exactly one dimension.

To show NP-hardness of P3-Partition on grid graphs, we exploit the above
mentioned result of Ma lafiejski and Żyliński [22] and Monnot and Toulouse [23]
and find a suitable embedding of planar graphs into grid graphs while maintain-
ing the property of a graph having a P3-partition. This allows us to prove the
following.

36



v w
⇐⇒

v w

(a) Case 1: Vertex v and vertex w are covered by the same P3 (which implies that one vertex is
an endpoint and the other vertex is an internal point of the P3).

v w
⇐⇒

v w

(b) Case 2: Vertex v and vertex w are covered by different P3s (vertex v and/or vertex w can
also be internal vertices).

Figure 9: All possibilities of two vertices v and w participating in a P3-partition
if they are joined by an edge or a path on three other degree-two vertices. Edges
participating in the same P3 are grouped together in a gray background.

Theorem 8. P3-Partition is NP-hard on grid graphs of maximum degree
three.

Towards proving Theorem 8, the following observation helps us embed planar
graphs into grid graphs: it allows us to replace edges by paths on 3i new vertices
for any i ∈ N.

Observation 5. Let G be a graph, e = {v, w} be an edge of G, and G′ be the
graph obtained by removing the edge e from G and by connecting v and w using
a path on three new vertices. Then, G has a P3-partition if and only if G′ has
one.

Note that the correctness of Observation 5 is proven by Figure 9, which enumer-
ates all possible cases.

We can now prove Theorem 8 by showing that G has a P3-partition if and
only G′ has, where G′ is the graph obtained from a planar graph G of maximum
degree three using the following construction.

Construction 2. Let G be a planar n-vertex graph of maximum degree three.
Using a polynomial-time algorithm of Rosenstiehl and Tarjan [26] we obtain a
crossing-free rectilinear embedding of G into the plane such that:

1. Each vertex is represented by a horizontal line.

2. Each edge is represented by a vertical line.

3. All lines end at integer coordinates with integers in O(n).

37



a b

cd

(a) A planar graph G.

a

b

d

c

(b) A rectilinear embed-
ding of G.

a′

c′

d′

b′

(c) The grid graph G′ ob-
tained from G.

Figure 10: Various embeddings of a planar graph. In the rectilinear embedding in
Figure 10b, horizontal lines represent vertices of G, while vertical lines represent
its edges. In Figure 10c, every intersection of a line with a grid point is a
vertex, but only the vertices corresponding to vertices in Figure 10a are shown.
The horizontal lines of the rectilinear embedding are now replaced by paths
highlighted in gray.

4. If two vertices are joined by an edge, then the vertical line representing
this edge ends on the horizontal lines representing the vertices.

Figure 10b illustrates such an embedding. Without loss of generality, every end
point of a line lies on another line. Now, in polynomial time, we obtain a grid
graph G′ from the rectilinear embedding, as follows:

1. We multiply all coordinates by six (see Figure 10c).

2. Every point in the grid touched by a horizontal line that represents a
vertex v of G becomes a vertex in G′. The horizontal path resulting from
this horizontal line we denote by P (v) (indicated by a gray background in
Figure 10c).

3. For each vertical line, all its grid points become vertices in G′, except for
the third point from the bottom horizontal line that we bypass by adding
a bend of five vertices to the vertical line (see Figure 10c).

4. With each vertex v in G, we associate the vertex v′ of G′ that lies on P (v)
and has degree three. There is at most one such vertex. If no such vertex
exists, then we arbitrarily associate with v one of the end points of P (v).

Proof of Theorem 8. Since Construction 2 runs in polynomial time, it remains
to prove that a graph G has a P3-partition if and only if the graph G′ obtained
by Construction 2 has. By Observation 5, it is sufficient to verify that every
edge e := {u, v} in G is replaced by a path p between u′ and v′ in G′ whose
number of inner vertices is divisible by three. To this end, we partition the
path p into two parts: one part consists of the subpaths pu, pv of p that lie on
P (u) and P (v), respectively. Note that each of pu and pv might consist only of

38



one vertex, as seen for the path from d′ to a′ in Figure 10c. The other part is a
path pe that connects pu to pv. We consider pe not to contain the vertices of pu
or pv. Hence, pe contains no vertices of any horizontal paths.

The number of inner vertices of p shared with the horizontal paths pu and pv
is divisible by three (it is possibly zero) since all coordinates that start or end
paths are divisible by three (in fact, by six). Herein, note that we do not count
the vertices u′ and v′ lying on pu or pv, respectively.

Moreover, the number of vertices on pe is also divisible by three: the number
of vertices on a strictly vertical path ps connecting pu with pv would leave a
remainder of two when divided by three (as the two vertices on pu and pv are
not considered to be part of ps). However, our added bend of five new vertices
makes pe by four vertices longer compared to ps. Hence, the number of vertices
on pe is also divisible by three. It follows that the total number of inner vertices
of p is divisible by three.

7 Chordal graphs

A graph is chordal if every induced subgraph containing a cycle of length at
least four also contains a triangle, that is, a cycle of length three. We show
that P3-Partition restricted to chordal graphs is NP-hard (in contrast to the
polynomial-time solvability on split graphs which form a subclass of chordal
graphs) by reduction from 3-Dimensional Matching. More precisely, we use
the construction that Dyer and Frieze [14] provided to show that P3-Partition
is NP-complete and observe that we can triangulate the resulting graph while
maintaining the correctness of the reduction.

3-Dimensional Matching (3DM)
Input: Pairwise disjoint sets R,B, Y with |R| = |B| = |Y | = q and a set of

triples T ⊆ R×B × Y .
Question: Does there exist a perfect 3-dimensional matching M ⊆ T , that is,
|M | = q and each element of R ∪B ∪ Y occurs in exactly one triple of M?

Dyer and Frieze [14] introduced Construction 3 described below and illustrated
in Figure 11). Using it as a reduction from the NP-complete restriction of 3DM
to planar graphs [15], they proved that P3-Partition restricted to bipartite
planar graphs is NP-complete.

Construction 3. Let (R,B, Y, T ⊆ R × B × Y ) with |R| = |B| = |Y | = q
be an instance of 3DM. Construct a graph G = (V,E) as follows: For each
element a ∈ R ∪ B ∪ Y , create two vertices ua, u

′
a and connect them by an

edge {ua, u′a}. We call ua an element-vertex and u′a a pendant-vertex. For
each triple t = (r, b, y) ∈ T , create three vertices vtr, v

t
b, v

t
y. We call these three

vertices triple-vertices. Make triple-vertex vtb adjacent to both vtr and vty. Also

39



vtr vtb vty

ur

u′r

ub

u′b

uy

u′y

Figure 11: Gadget for a triple t = (r, b, y) ∈ T based on Construction 3 (solid
edges). The reduction in the proof of Theorem 9 introduces the dashed edges.

make triple-vertex vtr (respectively vtb and vty) adjacent to element-vertex ur
(respectively ub and uy). Formally,

V = {ua, u′a | a ∈ R ∪B ∪ Y } ∪ {vtr, vtb, vty | t = (r, b, y) ∈ T}, and

E = {{ua, u′a} | a ∈ R ∪B ∪ Y }∪
{{ur, vtr}, {ub, vtb}, {uy, vty}, {vtr, vtb}, {vtb, vty} | t = (r, b, y) ∈ T}.

Theorem 9. P3-Partition restricted to chordal graphs is NP-hard.

Proof. We extend Construction 3 to show the NP-hardness of P3-Partition
restricted to chordal graphs. Make any two element-vertices adjacent to each
other such that the graph induced by all element-vertices is complete. Further-
more, for each triple t = (r, b, y) ∈ T , add two edges {vtb, ur} and {vtb, uy} to the
graph, as illustrated in Figure 11. Let G be the resulting graph.

We first show that G is chordal. Consider any size-` set C of vertices
with ` ≥ 4 such that the subgraph GC induced by C contains a simple cycle of
length `. Since the pendant-vertices all have degree one, C cannot contain any
pendant-vertex. If C contains a degree-two triple-vertex vtr (respectively vty) for
some t = (r, b, y) ∈ T , then C contains both its neighbors: vtb and ur (respectively
vtb and uy) which are connected, that is, forming a triangle. Otherwise, if C
contains a degree-five triple-vertex vtb but does not contain vtr nor vty, then, in
the cycle, vtb lies between two element-vertices. Since two element-vertices are
always connected, GC contains a triangle. Finally, if C does not contain any
triple-vertex, then it is included in the set of element-vertices, which form a
complete graph. Hence, GC contains a triangle.

Second, we show that (R,B, Y, T ⊆ R×B × Y ) has a perfect 3-dimensional
matching if and only if G can be partitioned into P3s.

For the “only if” part, suppose that M ⊆ T is a perfect 3-dimensional
matching for (R,B, Y, T ⊆ R×B × Y ). Then, the P3s in(⋃

t=(r,b,y)/∈M

{{vtr, vtb, vty}}
)
∪
(⋃

t=(r,b,y)∈M

{{u′r, ur, vtr}, {u′b, ub, vtb}, {u′y, uy, vty}}
)

indeed partition the graph G.

40



For the “if” part, suppose that G has a partition P into P3s. We first
enumerate the possible centers of the P3s. Since each pendant-vertex is only
adjacent to its element-vertex, every element-vertex is the center of a P3 that
contains a pendant-vertex. We call such a P3 an element-P3. For each triple t =
(r, b, y) ∈ T , neither vtr nor vty can be the center of a P3 since they are adjacent to
only one vertex which is not already a center (namely vtb). Thus, any P3 which
is not an element-P3 must have vertex vtb as a center for some t = (r, b, y) ∈ T .
We call such a P3 a triple-P3 corresponding to t.

Now, consider a triple t = (r, b, y) ∈ T . If there exists a triple-P3 correspond-
ing to t (that is, with center vtb), then its two leaves can only be vtr and vty (since
utr, utb, and uty are centers). Otherwise, each of the three triple-vertices vtr, vtb,
and vty must be a leaf of an element-P3 centered on ur, ub, and uy. Indeed, there
is only one way to match the three triple-vertices to these three element-vertices,
that is, by using the edges {vtr, ur}, {vtb, ub} and {vty, uy}. As a consequence,
the leaves of the element-P3 centered on ua are u′a and vta for some triple t
containing a.

It remains to show that the triples with no corresponding triple-P3 in P
form a perfect 3-dimensional matching M for (R,B, Y, T ⊆ R×B × Y ). Note
that for each element a ∈ R ∪ B ∪ Y , the element-P3 centered in ua uses a
triple-vertex vta for some triple t containing a, which means that no triple-P3

in P corresponds to t. Hence, t ∈ M and element a is matched by t. Now, it
remains to show that every element is matched at most once. Suppose for the
sake of contradiction that there is an element a ∈ R ∪B ∪ Y which is matched
at least twice. To this end, let vta be a triple-vertex that together with ua and
u′a forms an element-P3. Thus, t ∈ M . Furthermore, let t′ be another triple
in M that matches a. Since t′ has no corresponding triple-P3 in P , there is an
element-P3 containing vt

′

a . But then, vt
′

a must form an element-P3 together with
ua and u′a, which is a contradiction.

8 Conclusion

We close with three open questions for future research. What is the complexity
of Star Partition for s ≥ 2 on permutation graphs? What is the complexity of
Star Partition for s ≥ 3 on interval graphs? Are there other important graph
classes (not necessarily perfect ones) where Star Partition is polynomial-time
solvable?

Acknowledgments. René van Bevern was supported by the Russian Founda-
tion for Basic Research (RFBR), project 16-31-60007 mol a dk, at Novosibirsk
State University, and by the German Research Foundation (DFG), project DAPA
(NI 369/12), at TU Berlin. Robert Bredereck was supported by the DFG, project
PAWS (NI 369/10). Laurent Bulteau and Gerhard J. Woeginger were supported
by the Alexander von Humboldt Foundation, Bonn, Germany, while visiting
TU Berlin. Jiehua Chen was supported by the Studienstiftung des Deutschen
Volkes. Vincent Froese was supported by the DFG, project DAMM (NI 369/13).

41



This work started at the yearly research retreat of the group “Algorithms and
Computational Complexity TU Berlin” in March 2013, held in Bad Schandau,
Germany.

References

[1] K. Asdre and S. D. Nikolopoulos. NP-completeness results for some problems
on subclasses of bipartite and chordal graphs. Theoretical Computer Science,
381(1-3):248–259, 2007.

[2] F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized
planar matching. Journal of Algorithms, 11(2):153–184, 1990.

[3] R. van Bevern, C. Komusiewicz, H. Moser, and R. Niedermeier. Measuring
indifference: Unit Interval Vertex Deletion. In Proceedings of the 36th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG ’10), volume 6410 of LNCS, pages 232–243. Springer, 2010.

[4] R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J.
Woeginger. Network-based vertex dissolution. SIAM Journal on Discrete
Mathematics, 29(2):888–914, 2015.

[5] R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller. Interval scheduling
and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015.

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey,
volume 3 of SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 1999.

[7] J. Chalopin and D. Paulusma. Packing bipartite graphs with covers of
complete bipartite graphs. Discrete Applied Mathematics, 168:40–50, 2014.

[8] E. Cohen and M. Tarsi. NP-completeness of graph decomposition problems.
Journal of Complexity, 7(2):200–212, 1991.

[9] D. G. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for
cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[10] D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition
of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–1953,
2009.

[11] G. Cornuéjols. General factors of graphs. Journal of Combinatorial Theory.
Series B, 45(2):185–198, 1988.

[12] E. Dahlhaus and M. Karpinski. Matching and multidimensional matching
in chordal and strongly chordal graphs. Discrete Applied Mathematics, 84
(1-3):79–91, 1998.

42



[13] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J.
Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms
for the test cover problem. Mathematical Programming, 98(1-3):477–491,
2003.

[14] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into
connected subgraphs. Discrete Applied Mathematics, 10(2):139–153, 1985.

[15] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. Journal of
Algorithms, 7(2):174–184, 1986.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[17] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of
Discrete Mathematics. Elsevier, Amsterdam, Boston, Paris, 2004.

[18] D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor
problems. SIAM Journal on Computing, 12(3):601–608, 1983.

[19] A. W. J. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. R. Spieksma.
Interval scheduling: A survey. Naval Research Logistics, 54(5):530–543,
2007.

[20] A. Kosowski, M. Ma lafiejski, and P. Żýlinski. Parallel processing subsystems
with redundancy in a distributed environment. In Proceedings of the 6th
International Conference on Parallel Processing and Applied Mathematics
(PPAM ’05), volume 3911 of LNCS, pages 1002–1009. Springer, 2006.

[21] L. M. Lovász, C. Thomassen, Y. Wu, and C. Zhang. Nowhere-zero 3-flows
and modulo k-orientations. Journal of Combinatorial Theory. Series B, 103
(5):587–598, 2013.

[22] M. Ma lafiejski and P. Żyliński. Weakly cooperative guards in grids. In Pro-
ceedings of the International Conference on Computational Science and Its
Applications (ICCSA ’05), volume 3480 of LNCS, pages 647–656. Springer,
2005.

[23] J. Monnot and S. Toulouse. The path partition problem and related problems
in bipartite graphs. Operations Research Letters, 35(5):677–684, 2007.

[24] B. S. Panda and S. K. Das. A linear time recognition algorithm for proper
interval graphs. Information Processing Letters, 87(3):153–161, 2003.

[25] J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender.
Partition into triangles on bounded degree graphs. Theory of Computing
Systems, 52(4):687–718, 2013.

[26] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar
orientations of planar graphs. Discrete & Computational Geometry, 1(1):
343–353, 1986.

43



[27] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol-
ume A. Springer, 2003.

[28] J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

[29] G. Steiner. On the k-path partition problem in cographs. Congressus
Numerantium, 147:89–96, 2000.

[30] G. Steiner. On the k-path partition of graphs. Theoretical Computer Science,
290(3):2147–2155, 2003.

[31] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of
combinatorial problems on series-parallel graphs. Journal of the ACM, 29
(3):623–641, 1982.

[32] C. Thomassen. The weak 3-flow conjecture and the weak circular flow
conjecture. Journal of Combinatorial Theory. Series B, 102(2):521–529,
2012.

[33] J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete
Appl. Math., 69(3):247–255, 1996.

[34] J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path
partitions in trees. Discrete Applied Mathematics, 78(1-3):227–233, 1997.

[35] R. Yuster. Combinatorial and computational aspects of graph packing and
graph decomposition. Computer Science Review, 1(1):12–26, 2007.

44


