
HAL Id: hal-01494399
https://hal.science/hal-01494399

Submitted on 23 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Triangle Counting in Dynamic Graph Streams
Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, Rasmus Pagh

To cite this version:
Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, Rasmus Pagh. Triangle Counting in Dynamic
Graph Streams. Algorithmica, 2016, 76 (1), pp.259 - 278. �10.1007/s00453-015-0036-4�. �hal-01494399�

https://hal.science/hal-01494399
https://hal.archives-ouvertes.fr

Triangle counting in dynamic graph streams

Laurent Bulteau ∗1, Vincent Froese†1, Konstantin Kutzkov‡2, and Rasmus Pagh§3

1Technische Universität Berlin, Germany
2NEC Laboratories Europe, Heidelberg, Germany

3IT University of Copenhagen, Denmark

Abstract

Estimating the number of triangles in graph streams using a limited amount of memory has become
a popular topic in the last decade. Different variations of the problem have been studied, depending on
whether the graph edges are provided in an arbitrary order or as incidence lists. However, with a few
exceptions, the algorithms have considered insert-only streams. We present a new algorithm estimating
the number of triangles in dynamic graph streams where edges can be both inserted and deleted. We
show that our algorithm achieves better time and space complexity than previous solutions for various
graph classes, for example sparse graphs with a relatively small number of triangles. Also, for graphs with
constant transitivity coefficient, a common situation in real graphs, this is the first algorithm achieving
constant processing time per edge. The result is achieved by a novel approach combining sampling of
vertex triples and sparsification of the input graph. In the course of the analysis of the algorithm we
present a lower bound on the number of pairwise independent 2-paths in general graphs which might be
of independent interest. At the end of the paper we discuss lower bounds on the space complexity of
triangle counting algorithms that make no assumptions on the structure of the graph.

1 Introduction

Many relationships between real life objects can be abstractly represented as graphs. The discovery of
certain structural properties in a graph, which abstractly describes a given real-life problem, can often
provide important insights into the nature of the original problem. The number of triangles, and the closely
related clustering and transitivity coefficients, have proved to be an important measure used in applications
ranging from social network analysis and spam detection to motif detection in protein interaction networks.
We refer to [27] for a detailed discussion on the applications of triangle counting.

The best known algorithm for triangle counting in the RAM model runs in time O(m
2ω

ω+1) [4] where ω
is the matrix multiplication exponent, the best known bound is ω = 2.3727 [28]. However, this algorithm is
mainly of theoretical importance since exact fast matrix multiplication algorithms do not admit an efficient
implementation for input matrices of reasonable size.

The last decade has witnessed a rapid growth of available data. This has led to a shift in attitudes in
algorithmic research and solutions storing the whole input in main memory are not any more considered a
feasible choice for many real-life problems. Classical algorithms have been adjusted in order to cope with
the new requirements and many new techniques have been developed. This has led to the streaming model
of computation where only a single scan of the data is possible. Both efficient algorithms and impossibility

∗l.bulteau@gmail.com, Supported by the Alexander von Humboldt Foundation, Bonn, Germany.
†vincent.froese@tu-berlin.de, Supported by the DFG project DAMM (NI 369/13).
‡kutzkov@gmail.com, Work done while the author was at IT University of Copenhagen and supported by the

Danish National Research Foundation under the Sapere Aude program.
§pagh@itu.dk, Supported by the Danish National Research Foundation under the Sapere Aude program.

1

results have shed light on the computational complexity of many problems in the model [19].

Approximate triangle counting in streamed graphs. For many applications one is satisfied with
a good approximation of the number of triangles instead of their exact number, thus researchers have de-
signed randomized approximation algorithms returning with high probability a precise estimate using only
small amount of main memory. Two models of streamed graphs have been considered in the literature. In
the incidence list stream model the edges incident to each vertex arrive consecutively and in the adjacency
stream model edges arrive in arbitrary order. Also, a distinction has been made between algorithms using
only a single pass over the input, and algorithms assuming that the input graph can be persistently stored
on a secondary device and multiple passes are allowed. A simple approach for estimating the number of
triangles in insert-only streams is to sample a certain number of 2-paths, then compute the ratio of 2-paths
in the sample that are completed to triangles and multiply the obtained number with the total number of
2-paths in the graphs. For incidence list streams this is easy since we can assume that the stream consists
of (an implicit representation of) all 2-paths [8]. For the more difficult model of adjacency streams where
edges arrive in arbitrary order the approach was adjusted such that we sample a random 2-path [12, 22].
The one-pass algorithm with the best known space complexity and constant processing time per edge for
adjacency streams is due to Pavan et al. [22], and when several passes are allowed – by Kolountzakis et
al. [15]. For a more detailed overview of results and developed techniques we refer to [27].
Dynamic graph streams have a wider range of applications. Consider for example a social network like Face-
book where one is allowed to befriend and “unfriend” other members, or join and leave groups of interest.
Estimating the number of triangles in a network is a main building block in algorithms for the detection
of emerging communities [7], and thus it is required that triangle counting algorithms can also handle edge
deletions. The problem of designing triangle counting algorithms for dynamic streams matching the space
and time complexity of algorithms for insert-only streams has been presented as an open question in the
2006 IITK Workshop on Algorithms for Data Streams [17]. The best known algorithms for insert-only
streams work by sampling a non-empty subgraph on three vertices from the stream (e.g. an edge (u, v) and
a vertex w). Then one checks whether the arriving edges will complete the sampled subgraph to a triangle
(we look for (u,w) and (v, w)). The approach does not work for dynamic streams because an edge in the
sampled subgraph might be deleted later. Proposed solutions [1, 18, 11] have explored different ideas. These
approaches, however, only partially resolve the open problem from [17] because of high processing time per
edge update, see Section 3 for more details.

Our contribution. In this work we propose a method to adjust sampling to work in dynamic streams and
show that for graphs with constant transitivity coefficient, a ubiquitous assumption for real-life graphs, we
can achieve constant processing time per edge. We also show that some assumption on the graph is needed
to be able to estimate small triangle counts, by showing a lower bound on the space usage in terms of the
number of edges and triangles, matching the upper bound of Manjunath et al. [18] for constant approximation
factor.

At a very high level, the main technical contribution of the present work can be summarized as follows:
For dynamic graph streams sampling-based approaches fail because we don’t know how many of the sampled
subgraphs will survive after edges have been deleted. On the other hand, graph sparsification approaches [21,
26, 27] can handle edge deletions but the theoretical guarantees on the complexity of the algorithms depend
on specific properties of the underlying graph, e.g., the maximum number of triangles an edge is part of.
The main contribution in the present work is a novel technique for sampling 2-paths after the stream has
been processed. It is based on the combination of standard 2-path sampling with graph sparsification. The
main technical challenge is to show that sampling at random a 2-path in a sparsified graph is (almost)
equivalent to sampling at random a 2-path in the original graph. In the course of the analysis, we also
obtain combinatorial results about general graphs that might be of independent interest.

2

2 Preliminaries

Notation. A simple undirected graph without loops is denoted as G = (V,E) with V = {1, 2, . . . , n} being
a set of vertices and E a set of edges. The edges are provided as a stream of insertions and deletions in
arbitrary order. We assume the strict turnstile model where each edge can be deleted only after being
inserted. We assume that n is known in advance1 and that the number of edges cannot exceed m. For an
edge connecting the vertices u and v we write (u, v) and u and v are the endpoints of the edge (u, v). Vertex
u is neighbor of v and vice versa and N(u) is the set of u’s neighbors. We say that edge (u, v) is isolated if
|N(u)| = |N(v)| = 1. We consider only edges (u, v) with u < v. A 2-path centered at v, (u, v, w), consists of
the edges (u, v) and (v, w). A k-clique in G is a subgraph of G on k vertices v1, . . . , vk such that (vi, vj) ∈ E
for all 1 ≤ i < j ≤ k. A 3-clique on u, v, w is called a triangle on u, v, w, and is denoted as 〈u, v, w〉. We
denote by P2(v) the number of 2-paths centered at a vertex v, and P2(G) =

∑
v∈V P2(v) and T3(G) the

number of 2-paths and number of triangles in G, respectively. We will omit G when clear from the context.
We say that two 2-paths are independent if they have at most one common vertex. The transitivity

coefficient of G is

α(G) =
3T3∑
v∈V

(
dv
2

) =
3T3
P2

,

i.e., the ratio of 2-paths in G contained in a triangle to all 2-paths in G. When clear from the context, we
will omit G.

Hashing. A family F of functions from U to a finite set S is k-wise independent if for a function f : U → S
chosen uniformly at random from F it holds

Pr[f(u1) = c1 ∧ f(u2) = c2 ∧ · · · ∧ f(uk) = ck] = 1/sk

for s = |S|, distinct ui ∈ U and any ci ∈ S and k ∈ N. We will call a function chosen uniformly at random
from a k-wise independent family k-wise independent function and a function f : U → S fully random if f
is |U |-wise independent. We will say that a function f : U → S behaves like a fully random function if for
any set of input from U , with high probability f has the same probability distribution as a fully random
function.

We will say that an algorithm returns an (ε, δ)-approximation of some quantity q if it returns a value q̃
such that (1− ε)q ≤ q̃ ≤ (1 + ε)q with probability at least 1− δ for every 0 < ε, δ < 1.

Probability inequalities. In the analysis of the algorithm we use the following inequalities.

• Chebyshev’s inequality. Let X be a random variable and λ > 0. Then

Pr[|X − E[X]| ≥ λσ(X)] ≤ 1

λ2

• Chernoff’s inequality. Let X1, . . . , X` be ` independent identically distributed Bernoulli random vari-
ables and E[Xi] = µ. Then for any ε > 0 we have

Pr[|1
`

∑̀
i=1

Xi − µ| > εµ] ≤ 2e−ε
2µ`/2

3 Results

The following theorem is our main result.

1More generally, our results hold when the n vertices come from some arbitrary universe U known in advance.

3

Space Update time
Ahn et al.[1] O(mnε2T3

1 log 1
δ) O(n log n)

Manjunath et al. [18] O(m3

ε2T 2
3

log 1
δ) O(m3

ε2T 2
3

log 1
δ)

Section 5 Ω(m
3

T 2
3

) —

Section 4 O(
√
m

ε3α log 1
δ) O(1

ε2α log 1
δ)

Table 1: Overview of time and space bounds.

n log n m3/T 2
3

z < 1/2 T3 = ω(C2/(n2z log n)) T3 = o(Cn2−z)
1/2 < z < 1 T3 = ω(C2/(n log n)) T3 = o(Cn3−3z)

z > 1 T3 = ω(C2/(n log n)) T3 = o(C)

Table 2: Comparison of the theoretical guarantees for the per edge processing time for varying z.

Theorem 1 Let G = (V,E) be a graph given as a stream of edge insertions and deletions with no isolated
edges and vertices, V = {1, 2, . . . , n} and |E| ≤ m. Let P2, T3 and α be the number of 2-paths, number
of triangles and the transitivity coefficient of G, respectively. Let ε, δ ∈ (0, 1) be user defined. Assuming

fully random hash functions, there exists a one-pass algorithm running in expected space O(
√
m

ε3α log 1
δ) and

O(1
ε2α log 1

δ) processing time per edge. After processing the stream, an (ε, δ)-approximation of T3 can be

computed in expected time O(logn
ε2α log 1

δ) and worst case time O(log2 n
ε2α log 1

δ) with high probability.

(For simplicity, we assume that there are no isolated edges in G. More generally, the result holds by
replacing n with nC , where nC is the number of vertices in connected components with at least two edges.
We assume m and n can be described in O(1) words.)

Before presenting the algorithm, let us compare the above to the bounds in [1, 18]. The algorithm
in [1] estimates T3 by applying `0 sampling [10] to non-empty subgraphs on 3 vertices. There are O(mn)
such subgraphs, thus O(mnε2T3

log 1
δ) samples are needed for an (ε, δ)-approximation. However, each edge

insertion or deletion results in the update of n−2 non-empty subgraphs on 3 vertices. Using the `0 sampling
algorithm from [13], this results in processing time of O(n log n) per edge. The algorithm by Manjunath
et al. [18] (which builds upon the the work of Jowhari and Ghodsi [11]) estimates the number of triangles
(and more generally of cycles of fixed length) in streamed graphs by computing complex valued sketches of

the stream. Each of them yields an unbiased estimator of T3. The average of O(m3

ε2T 2
3

log 1
δ) estimators is

an (ε, δ)-approximation of T3. However, each new edge insertion or deletion has to update all estimators,

resulting in update time of O(m3

ε2T 2
3

log 1
δ). The algorithm was generalized to counting arbitrary subgraphs of

fixed size in [14].
The time and space bounds are summarized in Table 1. Comparing our space complexity to the bounds

in [1, 18], we see that for several graph classes our algorithm is more time and space efficient. (We ignore ε
and δ and logarithmic factors in n for the space complexity.) For d-regular graphs the processing time per
edge is better than O(n log n) for T3 = ω(d2/ log n), and better than O(m3/T 2

3) for T3 = o(n2d). Our space
bound is better than O(mn/T3) when d = o(n1/3), and better than O(m3/T 2

3) for T3 = o(n3/2d1/2). Most
real-life graphs exhibit a skewed degree distribution adhering to some form of power law, see for example [2].
Assume vertices are sorted according to their degree in decreasing order such that the ith vertex has degree
C/iz for some C ≤ n, and constant z > 0, i.e., we have Zipfian distribution with parameter z. It holds∑n
i=1 i

−z = O(n1−z) for z < 1 and
∑n
i=1 i

−z = O(1) for z > 1. Table 2 summarizes for which values of T3
our algorithm achieves faster processing time than [1, 18], and Table 3 – for which values of C our algorithm
is more space-efficient than [1], and for which values of T3 – more space-efficient than [18].

4

mn/T3 m3/T 2
3

z < 1/2 C = o(n1/3+z) T3 = o(C1/2n
3−z
2))

1/2 < z < 1 C = o(n1−z/3) T3 = o(C1/2n
5−5z

2)

z > 1 C = o(n2/3) T3 = o(C1/2)

Table 3: Comparison of the theoretical guarantees for the space usage for varying z.

However, the above values are for arbitrary graphs adhering to a certain degree distribution. We consider
the main advantage of the new algorithm to be that it achieves constant processing time per edge for
graphs with constant transitivity coefficient. This is a common assumption for real-life networks, see for
instance [3, 8]. Note that fast update is essential for real life applications. Consider for example the Facebook
graph. In May 2011, for less than eight years existence, there were about 69 billion friendship links [6]. This
means an average of above 300 new links per second, without counting deletions and peak hours.

In Section 6 we compare the theoretical guarantees for several real life graphs. While such a comparison
is far from being a rigorous experimental evaluation, it clearly indicates that the processing time per edge
in [1, 18] is prohibitively large and the assumption that the transitivity coefficient is constant is justified.
Also, for graphs with a relatively small number of triangles our algorithm is much more space-efficient.

4 Our algorithm

The main idea behind our algorithm is to design a new sampling technique for dynamic graph streams. It
exploits a combination of the algorithms by Buriol et al. [8] for the incidence stream model, and the Doulion
algorithm [26] and its improvement [21]. Let us briefly describe the approaches.

The Buriol et al. algorithm for incidence list streams. Assume we know the total number of 2-
paths in G. One chooses at random one of them, say (u, v, w), and checks whether the edge (u,w) appears
later in the stream. For a triangle 〈u, v, w〉 the three 2-paths (u, v, w), (w, u, v), (v, w, u) appear in the
incidence list stream, thus the probability that we sample a triangle is exactly α. One chooses independently
at random K 2-paths and using standard techniques shows that for K = O(1

ε2α log 1
δ) we compute an (ε, δ)-

approximation of α(G). One can get rid of the assumption that the number of 2-paths is known in advance
by running O(log n) copies of the algorithm in parallel, each guessing the right value. The reader is referred
to the original work for more details. For incidence streams, the number of 2-paths in G can be computed
exactly by updating a single counter, thus if α̃ is an (ε, δ)-approximation of the transitivity coefficient then
T̃3 = α̃P2 is an (ε, δ)-approximation of T3.

Doulion and monochromatic sampling. The Doulion algorithm [26] is a simple and intuitive spar-
sification approach. Each edge is sampled independently with probability p and added to a sparsified graph
GS . We expect pm edges to be sampled and a triangle survives in GS with probability p3, thus multiplying
the number of triangles in GS by 1/p3 we obtain an estimate of T3. The algorithm was improved in [21] by
using monochromatic sampling. Instead of throwing a biased coin for each edge, we uniformly at random
color each vertex with one of 1/p colors. Then we keep an edge in the sparsified graph iff its endpoints
have the same color. A triangle survives in GS with probability p2. It is shown that for a fully random
coloring the variance of the estimator is better than in Doulion. However, in both algorithms it depends on
the maximum number of triangles an edge is part of, and one might need constant sampling probability in
order to obtain an (ε, δ)-approximation on T3. The algorithm can be applied to dynamic streams because
one counts the number of triangles in the sparsified graph after all edges have been processed. However, it
can be expensive to obtain an estimate since the exact number of triangles in GS is required.

Combining the above approaches. The basic idea behind the new algorithm is to use the estima-

5

tor of Buriol et al. for the incidence stream model: (i) estimate the transitivity coefficient α(G) by choosing
a sufficiently large number of 2-paths at random and check which of them are part of a triangle, and (ii)
estimate the number of 2-paths P2 in the graph. We first observe that estimating P2 in dynamic graph
streams can be reduced to second moment estimation of streams of items in the turnstile model, see e.g. [25].
For (i), we will estimate α(G) by adjusting the monochromatic sampling approach. Its main advantage
compared to the sampling of edges separately is that if we have sampled the 2-path (u, v, w), then we must
also have sampled the edge (u,w), if existent. So, the idea is to use monochromatic sampling and then in
the sparsified graph to pick up at random a 2-path and check whether it is part of a triangle. Instead of
random coloring of the vertices, we will use a suitably defined hash function and we will choose a sampling
probability guaranteeing that for a graph with no isolated edges (or rather a small number of isolated edges)
the sparsified graph will contain a sufficiently big number of 2-paths. A 2-path in the sparsified graph picked
up at random, will then be used to estimate α(G). Thus, unlike in [8], we sample after the stream has been
processed and this allows to handle edge deletions. The main technical obstacles are to analyze the required
sampling probability p and to show that this sampling approach indeed provides an unbiased estimator of
α(G). We will obtain bounds on p and show that even if the estimator might be biased, the bias can be
made arbitrarily small and one can still achieve an (ε, δ)-approximation of α(G). Also, we present an imple-
mentation for storing a sparsified graph GS such that each edge is added or deleted in constant time and a
random 2-path in GS , if existent, can be picked up without explicitly considering all 2-paths in GS .

4.1 Algorithm details

Pseudocode description of the algorithm is given in Figure 1. We assume that the graph is given as a
stream S of pairs ((u, v), $), where (u, v) ∈ E and $ ∈ {+,−} with the obvious meaning that the edge
(u, v) is inserted or deleted from G. In EstimateNumberOfTwoPaths each incoming pair ((u, v), $) is
treated as the insertion, respectively deletion, of two items u and v, and these update a second moment
estimator SME, working as a blackbox algorithm. We refer to the proof of Lemma 1 for more details. In
SparsifyGraph we assume access to a fully random coloring hash function f : V → C. Each edge (u, v) is
inserted/deleted to/from a sparsified graph GS iff f(u) = f(v). At the end GS consists of all monochromatic
edges that have not been deleted. In EstimateNumberOfTriangles we run in parallel the algorithm
estimating P2 and K copies of SampleRandom2Path. For each GiS , 1 ≤ i ≤ K, with at least s pairwise
independent 2-paths we choose at random a 2-path and check whether it is a triangle. (Note that we require
the existence of s pairwise independent 2-paths but we choose a 2-path at random from all 2-paths in GS .)
The ratio of triangles to all sampled 2-paths and the estimate of P2 are then used to estimate T3. In the next
section we obtain bounds on the user defined parameters C,K and s. In Lemma 7 we present en efficient
implementation of GS that guarantees constant time updates and allows the sampling of a random 2-path
in expected time O(log n) and worst case time O(log2 n) with high probability.

4.2 Theoretical analysis

We will prove the main result in several lemmas. The first lemma provides an estimate of P2 using an
estimator for the second frequency moment of data streams [25].

Lemma 1 Let G be a graph with no isolated edges given as a stream of edge insertions and deletions. There
exists an algorithm returning an (ε, δ)-approximation of the number of 2-paths in G in one pass over the
stream of edges which needs O(1

ε2 log 1
δ) space and O(log 1

δ) processing time per edge.

Proof: We show that EstimateNumberOfTwoPaths in Figure 1 returns an (ε, δ)-approximation of
the number of 2-paths in G. We reduce the problem of computing the number of 2-paths in dynamic graph
streams to the problem of estimating the second frequency moment in streams of items in the turnstile model.
By associating vertices with items and treating each incoming pair ((u, v), $) as the insertion, respectively
deletion, of two new items u and v, it is a simple observation that the second moment of the so defined

6

EstimateNumberOfTwoPaths

Input: stream of edge deletions and insertions S, algorithm SME estimating the second moment items
streams

1: m = 0
2: for each ((u, v), $) in S do
3: if $= + then
4: m = m+ 1
5: SME.update(u, 1), SME.update(v, 1)
6: else
7: m = m− 1
8: SME.update(u,−1), SME.update(v,−1)
9: return SME.estimate/2−m

SparsifyGraph

Input: stream of edge deletions and insertions S, coloring function f : V → C

1: GS = ∅
2: for each ((u, v), $) ∈ S do
3: if f(u) = f(v) then
4: if $= + then
5: GS = GS ∪ (u, v).
6: else
7: GS = GS\(u, v).
8: Return GS .

SampleRandom2Path

Input: sparsified graph GS

1: choose at random a 2-path (u, v, w) in GS
2: if the vertices {u, v, w} form a triangle then
3: return 1
4: else
5: return 0

EstimateNumberOfTriangles

Input: streamed graph S, set of K independent fully random coloring functions F , algorithm SME esti-
mating the second moment of streams of items, threshold s

1: run in parallel EstimateNumberOfTwoPaths(S, SME) and let P̃2 be the returned estimate
2: run in parallel K copies of SparsifyGraph(S, fi), fi ∈ F
3: ` = 0
4: for each GiS with at least s pairwise independent 2-paths do
5: X+ = SampleRandom2Path(GiS)
6: `+ = 1
7: α̃ = X/`

8: return α̃P̃2

3

Figure 1: Estimating the number of 2-paths in G, the transitivity coefficient and the number of triangles.

7

stream of items corresponds to F2 =
∑
v∈V d

2
v. For the number of 2-paths in G we have

∑
v∈V

(
dv
2

)
= (
∑
v∈V

d2v)/2−m.

Since G contains no isolated edges, for each edge (u, v) we can assume that at least one of its endpoints has
degree more than one, w.l.o.g. du ≥ 2. Thus, (u, v) must be part of at least one 2-path, namely a 2-path
centered at u. Each edge can be assigned thus to at least one 2-path and this implies a lower bound on the
number of 2-paths in G,

∑
v∈V

(
dv
2

)
≥ m/2, thus

F2 = 2
∑
v∈V

(
dv
2

)
+ 2m ≥ 3m.

Assume now that we have computed an (1 ± ε/2)-approximation of F2 and we have the exact value of m.
Then the over- and underestimation returned by EstimateNumberOfTwoPaths is bounded by (ε/2)F2.
For F2 ≥ 3m it holds

(ε/2)F2 ≤ ε(F2 −m) = εP2.

As for the complexity of EstimateNumberOfTwoPaths, we observe that recording the exact value of
m requires constant processing time per edge and O(log n) bits. For SME, we use the algorithm from [25] for
the estimation of the second moment, which computes an (ε, δ)-approximation of

∑
v∈V d

2
v with the claimed

time and space complexity. �

The next two lemmas show a lower bound of Ω(m) on the number of pairwise independent 2-paths in a
graph without isolated edges. The result is needed in order to obtain bounds on the required sampling
probability. We first show that in order to obtain a lower bound for general graphs it is sufficient to consider
bipartite connected graphs. This is true because every connected graph contains a cut with at least m/2
edges such that the bipartite graph between the two vertex subsets is connected. We prove this first.

Lemma 2 Let G = (V,E) be an arbitrary connected graph with |E| = m. There exists a bipartition (U,W)
of V such that the bipartite graph B := (V,E′) with E′ := E ∩ {{u,w} | u ∈ U,w ∈ W} is connected
and |E′| ≥ m/2.

Proof: Let G = (V,E) be a connected graph. We first show that there exists (U,W) such that B contains
at least m/2 edges. To this end, initialize U := ∅ and W := V . Now, as long as there either exists a
vertex v ∈ W with |NG(v) ∩ W | > |NG(v) ∩ U | or a vertex v ∈ U with |NG(v) ∩ U | > |NG(v) ∩ W |,
we exchange this vertex v, that is, in the first case, we add v to U and delete it from W and vice versa
in the second case. Clearly, this increases the number of edges between U and W ; hence, this procedure
terminates after a finite number of steps. Moreover, after termination, it holds |NG(v) ∩W | ≤ |NG(v) ∩ U |
for each v ∈W and |NG(v) ∩ U | ≤ |NG(v) ∩W | for each v ∈ U . Thus, there are at least m/2 edges in B.

Assume now that B is not connected and let B1, . . . , Bc denote the c ≥ 2 connected components of B
and let Ui ⊆ U , Wi ⊆W be the bipartition of Bi. We simply “swap” an arbitrary component, say B1, that
is, we delete the vertices Ui from U and add them to W and delete the vertices Wi from W adding them
to U . Clearly, the edges between Ui and Wi remain in B. Additionally, the edges between Ui and U \ Ui
as well as the edges between Wi and W \Wi are added to B. Hence, the number of edges in B increased.
Moreover, since G is connected, the component B1 is now connected to some other component in B and
thus the number of connected components decreased. This proves the claim. �

We also need, for the case where there are few edges in the graph, the following lower bound.

Lemma 3 Let G = (V,E) be a connected graph. The number of independent 2-paths in G is at least
|V |/2− 1.

8

Proof: This can easily be obtained by taking a rooted spanning tree T of G. Assuming |V | ≥ 3, take any
leaf u of T with maximum depth (distance to the root). Let v be the parent of u. If v has another child w,
then w is a leaf of T . Select the 2-path {{u, v}, {v, w}}, remove vertices u and w from V , and start again.
Otherwise, v has a parent w: Similarly, select the 2-path {{u, v}, {v, w}}, remove vertices u and v from V ,
and start again. The set of 2-paths thus selected is independent (each one uses 2 new vertices) and contains
at least (m− 1)/2 = (|V | − 2)/2 2-paths. �

We now prove the lower bound for bipartite connected graphs.

Lemma 4 Let G = (V,E) with |E| = m be a connected bipartite graph. The number of independent 2-paths
in G is at least bm/9c.

Proof: We say that a set of independent 2-paths P is maximal if for any 2-path P of G not yet in P,
P ∪ {P} is not independent. We first prove the following property by induction on |E|:

In any bipartite graph G = (V,E), if P is a maximal set of independent 2-paths, then

|P| ≥ m

6
− |V |

4
.

Let F be the set of edges which are not used in any 2-path of P. Note that |P| = m−|F |
2 . We consider

the subgraph H := (V, F) of G. First, consider the easy case where all vertices have degree at most 1 in H.

It follows that |F | ≤ |V |2 . Thus,

|P| ≥
m− |V |2

2
≥ m

6
− |V |

4
.

Otherwise, pick a vertex u having maximum degree in H, write k for its degree (k ≥ 2), and N(u) for the
set of its k neighbors in H. Consider any two distinct vertices v, v′ ∈ N(u). Then {{v, u}, {u, v′}} is a
2-path of G. Since P is maximal, this 2-path must be in conflict with some selected 2-path Pv,v′ ∈ P. So,
Pv,v′ covers two vertices among {v, u, v′}. Since the graph is bipartite, and Pv,v′ does not use the edges
{u, v}, {u, v′} ∈ F , it follows that Pv,v′ must cover both vertices v and v′. Let F (u) ⊆ F be the subset of
edges of F which are incident to a vertex of N(u). Note that |F (u)| ≤ k2. Indeed, N(u) contains k vertices,
all of them having degree at most k in H. Let P (u) ⊆ E \ F be the subset of E containing all edges used
by a 2-path Pv,v′ ∈ P for any pair v, v′ ∈ N(u), then |P (u)| = 2

(
k
2

)
= k(k − 1). Indeed, there are

(
k
2

)
pairs

v, v′ ∈ N(u), and each of them yields a unique 2-path Pv,v′ containing two edges (two 2-paths cannot share
any edge since they are independent). Now, we define

E′ := E \ (P (u) ∪ F (u)) and P ′ := P \ {Pv,v′ | v 6= v′ ∈ N(u)},

and claim that P ′ is a maximal set of 2-paths of the subgraph G′ := (V,E′). Assume towards a contradiction
that there is a 2-path P ∗ in G′ which is not in conflict with any 2-path of P ′. Since G′ is a subgraph of G,
and P is maximal, it follows that P ∗ is in conflict with some Pv,v′ ∈ P \ P ′. Thus, P ∗ contains at least one
of the two vertices v, v′, and must contain an edge in F (u) ⊆ E \E′; a contradiction. Hence, P ′ is maximal
for the bipartite graph G′ and, by induction, we have

|P ′| ≥ |E
′|

6
− |V |

4
.

Putting everything together, we have

|P ′| = |P| −
(
k

2

)
and |E′| ≥ |E| − k(k − 1)− k2,

9

which yields

|P| = |P ′|+
(
k

2

)
≥ |E

′|
6
− |V |

4
+

(
k

2

)
≥ |E| − k(k − 1)− k2

6
− |V |

4
+

(
k

2

)
=
|E|
6
− |V |

4
+

2k(k − 1)− k2

6

≥ |E|
6
− |V |

4
(since 2k(k − 1) ≥ k2 for all k ≥ 2).

This completes the proof of the induction property.
To prove the lemma, it remains to distinguish between the following two cases:

• If m = |E| ≥ 9|V |
2 , then with the induction property above, any maximal set of independent 2-paths

has size at least
m

6
− |V |

4
≥ m

6
− 1

4
· 2m

9
=

3m−m
18

≥
⌊m

9

⌋
.

• If m = |E| < 9|V |
2 , then with Lemma 3, there exists a set of independent 2-paths with size at least

|V |
2 − 1 ≥ dm9 − 1e =

⌊
m
9

⌋
.

�

Combining Lemmas 2 and 4 we obtain that any connected graph has at least
⌊
m
18

⌋
independent 2-paths.

For dense graphs, Lemma 4 gives a lower bound of m
12 −

|V |
4 ∼

m
12 . This yields the following result:

Theorem 2 Let G = (V,E) with |E| = m be a connected graph. The number of independent 2-paths in G
is in Ω(m).

Next we obtain bounds on the sampling probability such that we can guarantee there are sufficiently many
pairwise independent 2-paths in GS . As we show later, this is needed to guarantee that SampleRan-
dom2Path will return an almost unbiased estimator of the transitivity coefficient. The events for two
2-paths being monochromatic are independent, thus the next lemma follows from Theorem 2 and Cheby-
shev’s inequality. Note that we still don’t need the coloring function f to be fully random.

Lemma 5 Let f be 6-wise independent and p ≥ 5
ε
√
b

where b is the number of independent 2-paths in G and

ε ∈ (0, 1]. Then with probability at least 3/4 SparsifyGraph returns GS such that there are at least 18/ε2

independent 2-paths in GS.

Proof: Let D2 be a set of pairwise independent 2-paths in G, |D2| = b. Clearly, each 2-path in D2 is
monochromatic with probability p2. Consider two pairwise independent 2-paths (u1, v1, w1) and (u2, v2, w2).
If they do not share a vertex, then since f is 6-wise independent, the two of them are monochromatic with
probability p4. Otherwise, assume w.l.o.g. u1 = u2. Under the assumption that f(u1) = c for some c ∈ C,
we have that evaluating f on vi, wi, i = 1, 2, is 5-wise independent. Thus, Pr[f(vi) = f(wi) = c] = p4.
The events of sampling the two 2-paths are thus independent. We introduce an indicator random variable
X(u,v,w) for each 2-path (u, v, w) ∈ D2 denoting whether (u, v, w) ∈ GS and set X =

∑
(u,v,w)∈D2

X(u,v,w).

We have E[X] ≥ p2b = 25/ε2 and since the events that any two 2-paths in D2 are sampled are independent,
we have V [X] ≤ E[X]. From Chebyshev’s inequality with some algebra we then obtain that with probability
at least 3/4 we have at least 18/ε2 monochromatic pairwise independent 2-paths in GS . �

Lemma 6 Assume we run EstimateNumberOfTriangles with s = 18/ε2 and let X be the value returned
by SampleRandom2Path. Then (1− ε)α ≤ E[X] ≤ (1 + ε)α.

10

Proof: We analyze how much differs the probability between 2-paths to be selected by SampleRan-
dom2Path. Consider a given 2-path (u, v, w). It will be sampled if the following three events occur:

1. (u, v, w) is monochromatic, i.e., it is in the sparsified graph GS .

2. There are i ≥ 18/ε2 pairwise independent 2-paths in GS .

3. (u, v, w) is selected by SampleRandom2Path.

The first event occurs with probability p2. Since f is fully random, the condition that (u, v, w) is monochro-
matic does not alter the probability for any 2-path independent from (u, v, w) to be also monochromatic.
The probability to be in GS changes only for 2-paths containing two vertices from {u, v, w}, which in turn
changes the number of 2-paths in GS and thus probability for (u, v, w) to be picked up by SampleRan-
dom2Path. In the following we denote by pGS

the probability that a given 2-path is monochromatic and
there are at least 18/ε2 pairwise independent 2-paths in GS , note that pGS

is equal for all 2-paths.
Consider a fixed coloring to V \{u, v, w}. We analyze the difference in the number of monochromatic

2-paths depending whether f(u) = f(v) = f(w) or not. There are two types of 2-paths that can become
monochromatic conditioning on f(u) = f(v) = f(w): either (i) 2-paths with two endpoints in {u, v, w}
centered at some {u, v, w}, or (ii) 2-paths with two vertices in {u, v, w} centerer at a vertex x /∈ {u, v, w}.
For the first case assume w.l.o.g. there is a 2-path (u, v, w) ∈ GS centered at v and let d

f(v)
v = |{z ∈

N(v)\{u,w} : f(z) = f(v)}|, i.e., d
f(v)
v is the number of v’s neighbors different from u and w, having the

same color as v. Thus, the number of monochromatic 2-paths centered at v varies by 2d
f(v)
v conditioning on

the assumption that f(u) = f(v) = f(w). The same reasoning applies also to the 2-paths centered at u and
w. For the second case consider the vertices u and v. Conditioning on f(u) = f(w), we additionally add to
GS 2-paths (u, xi, w) for which f(xi) = f(u) = f(w) and xi ∈ N(u) ∩ N(w). The number of such 2-paths

is at most min(d
f(u)
u , d

f(w)
w). The same reasoning applies to any pair of vertices from {u, v, w}. Therefore,

depending on whether f(u) = f(v) = f(w) or not, the number of monochromatic 2-paths centered at a
vertex from {u, v, w} varies between

∑
y∈{u,v,w}

(
d
f(y)
y

2

)
and

∑
y∈{u,v,w}

(
d
f(y)
y

2

)
+ 3df(y)y .

Set k = 18/ε2. Consider now two different, but not necessarily independent, 2-paths (u1, v1, w1), (u2, v2, w2) ∈
G. We analyze the probability for each of them to be selected by SampleRandom2Path. Let C be a partial
coloring to V \{uj , vj , wj}, j = 1, 2. If C is completed to a coloring of all vertices such that both (u1, v1, w1)
and (u2, v2, w2) are monochromatic, then clearly they are picked up with the same probability. Assume
that with probability pi, i − 1 2-paths are colored monochromatic by C and consider extensions of C that
make exactly one of (u1, v1, w1) and (u2, v2, w2) monochromatic. Under the assumption there are i ≥ k
2-paths in GS and following the above discussion about the number of 2-paths with at least two vertices
from {uj , vj , wj}, we see that the number of monochromatic 2-paths can vary between i and i+ 3

√
2i. Thus,

the probability for (u1, v1, w1) and (u2, v2, w2) to be sampled varies between

pGS

∑
i≥k

pi
i

and pGS

∑
i≥k

pi

i+ 3
√

2i
.

We assume GS contains at least k 2-paths, thus
∑
i≥k pi = 1 and there exists r ≥ k, r ∈ R such that∑

i≥k pii
−1 = 1/r. Thus we bound

∑
i≥k

pi

i+ 3
√

2i
=
∑
i≥k

pi

i(1 + 3
√

2/i)
≥ 1

1 + 3
√

2/k

∑
i≥k

pi
i

=
1

r(1 + 3
√

2/k)
.

11

Since the function f is fully random, each coloring is equally probable. The above reasoning applies to
any pair of 2-paths in G, thus for any 2-path the probability to be sampled varies between

pGS

r
and

pGS

(1 +
√

18/k)r
=

pGS

(1 + ε)r
.

Assume first the extreme case that 2-paths which are not part of a triangle are sampled with probability 1
r

and 2-paths part of a triangle with probability 1
(1+ε)r . We have X =

∑
(u,v,w)∈P2

I(u,v,w), where I(u,v,w) is

an indicator random variable denoting whether (u, v, w) is part of a triangle. Thus

E[X] ≥ pGS
3T3

(1 + ε)r

r

pGS
P2

=
α

1 + ε
≥ (1− ε)α.

On the other extreme, assuming that we select 2-paths part of triangles with probability 1
r and 2-paths not

part of a triangle with probability 1
r(1+ε) , using similar reasoning we obtain E[X] ≤ (1 + ε)α. �

Applying a variation of rejection sampling, in the next lemma we show how to store a sparsified graph
GS such that we efficiently sample a 2-path uniformly at random and GS is updated in constant time.

Lemma 7 Let GS = (V,ES) be a sparsified graph over m′ monochromatic edges. There exists an imple-
mentation of GS in space O(m′) such that an edge can be inserted to or deleted from GS in constant time
with high probability. A random 2-path, if existent, can be selected from GS in expected time O(log n) and
O(log2 n) time with high probability.

Proof: We implement GS as follows. Let ∆ ≤ n be the maximum vertex degree in GS . We maintain a hash
table Hi for all vertices v ∈ GS with P2(v) ∈ {2i, 2i + 1, . . . , 2i+1 − 1}, 0 ≤ i ≤ log ∆, i.e., there are between
2i and 2i+1 − 1 2-paths centered at v. The hash table contains a vertex v as a key together with the set of
its neighbors N(v). We also store the vertices with only one neighbor in GS in a hashtable H∅. (Note that
if there are no vertices in a given Hi, we don’t maintain Hi.)

In another hash table T we maintain for each vertex incident to at least one sampled edge, a link to
the Hi it is contained in. Whenever a new edge (u, v) is inserted or deleted from GS , we first look-up in
T for the Hi containing u and v and then update the corresponding numbers of 2-paths centered at u and
v. It may happen that we need to move u and/or v from a hashtable Hi to a hashtable Hi±1. For each Hi

we also maintain the total number of 2-paths centered at vertices v ∈ Hi, denote this number as P2(Hi).
Implementing T and the Hi using the implementation from [5], each update takes constant time with high
probability and the total space is O(m′).

We sample a 2-path from GS at random as follows. We compute P2(GS) =
∑
iHi and select an Hi

where each Hi has a chance of being picked up of P2(Hi)/P2(GS). This is done by generating a random
number r ∈ (0, 1] and then computing a prefix-sum of P2(Hi)’s until the sum reaches r in time O(log n).
Once we have chosen an Hi, we select a vertex v ∈ Hi at random as follows. Assume we maintain the set
of vertices in each Hi in a dynamic dictionary Vi implemented as a hashtable using tabulation hashing. We
assume that the longest chain in Vi is bounded by a κ = O(log n/ log log n) [24]. We select a chain in Vi
at random and keep it with probability `/κ, where ` ≥ 0 is the length of the selected chain, otherwise we
reject it and repeat the step until a chain is kept. Then, we select at random one of the vertices on the
chain, let this be v. We apply one more time rejection sampling in order to decide whether we keep v or
not: Let q = 2i+1 − 1. We get the value dv from Hi and keep v with probability

(
dv
2

)
/q and reject it with

with probability 1−
(
dv
2

)
/q. Once we keep a vertex v, we choose at random two of its neighbors in GS which

constitutes the sampled 2-path. The expected number of sampling a chain and a random vertex until we
keep a vertex is O(log n/ log log n), thus the expected number of trials is O(log n) and with high probability
we determine a 2-path in time O(log2 n). It is easy to see that each 2-path is selected with equal probability
p such that 1

2κP2(GS) ≤ p ≤
1

P2(GS) , thus we sample uniformly at random from the set P2(GS). �

Now we have all components in order to prove the main result.

12

Proof: (of Theorem 1).
Assume EstimateNumberOfTriangles runs K copies in parallel of SparsifyGraph with p = 5

ε
√
b

for

b = bm/18c. By Lemma 2, Lemma 4 and and Lemma 5 with probability 3/4 we have a sparsified graph with
at least s = 18/ε2 pairwise independent 2-paths. Thus, we expect to obtain from 3K/4 of them an indicator
random variable. A standard application of Chernoff’s inequality yields that with probability O(2−K/36) we
will have ` ≥ K/2 indicator random variables Xi denoting whether the sampled 2-path is part of a triangle.

By Lemma 6 we have (1 − ε)α ≤ E[Xi] ≤ (1 + ε)α and as an estimate of α we return
∑`
i=1Xi/`. Observe

that (1 + ε/3)2 ≤ 1 + ε, respectively (1− ε/3)2 ≥ 1− ε. From the above discussion and applying Chernoff’s
inequality and the union bound, we see that for K = 36

ε2α log 2
δ , we obtain an (ε, δ/2)-approximation of α.

By Lemma 1 we can compute an (ε, δ/2)-approximation of the number of 2-paths in space O(1
ε2 log 1

δ)
and O(log 1

δ) per edge processing time. It is trivial to show that this implies an (3ε, δ)-approximation of
the number of triangles for ε < 1/3. Clearly, one can rescale ε in the above, i.e. ε = ε/3, such that
EstimateNumberOfTriangles returns an (ε, δ)-approximation.

By Lemma 7, each sparsified graph with m′ edges uses space O(m′) and each update takes constant time
with high probability, thus we obtain that each edge is processed with high probability in time O(K). Each
monochromatic edge and its color can be represented in O(log n) bits.

By Lemma 7, in expected time O(log n) and worst case time O(log2 n) with high probability we sample
uniformly at random a 2-path from each GS with at least 18/ε2 pairwise independent 2-paths. �

5 Lower bound

Pavan et al. [22] show that every streaming algorithm approximating the number of triangles in adjacency
streams (edges are inserted in arbitrary order) needs space ω(1/α(G)). For the general case, we show another
lower bound on the memory needed which matches the upper bound by Manjunath at al. [18]. Our lower
bound works for the promise version of this problem where the algorithm is required to distinguish between
the case where there are no triangles and the case where there are at least T3 triangles, for a parameter
T3. The behavior if the number of triangles is between 1 and T3 − 1 is unspecified, i.e., the algorithm may
return any result. Clearly this problem is solved as a special case by any streaming algorithm that is able to
approximate the number of triangles, so our space lower bound will also apply to the setting of our upper
bound.

Theorem 3 Let G = (V,E) be a graph over m vertices. Any one-pass streaming algorithm distinguishing
between the cases where G has at least T3 triangles and G is triangle-free, needs Ω(m3/T 2

3) bits.

Proof: We obtain the lower bound by a reduction from 1-way protocols for the Index problem in commu-
nication complexity. In this problem Alice is given a bit string x ∈ {0, 1}a and needs to send a message
to Bob who holds an index i, such that Bob is able to output xi with probability at least 2/3 (where the
probability is over random coin tosses made by Alice and Bob). It is known that this problem requires a
message of size Ω(a) [16].

From a streaming algorithm with space usage s that distinguishes the cases of 0 and ≥ T3 triangles we
obtain a communication protocol for the indexing problem with a = Θ(m3/T 2

3). The reduction is as follows:
Consider a vertex disjoint bicliques C1, . . . , Ca with Θ(T3/m) vertices on each side, and form the stream with
edge set ∪i,xi=1Ci. The number of edges in this stream is Θ(a(T3/m)2), which is Θ(m). Adjusting constants
we can make the number of edges less than m/2. Alice can simulate the streaming algorithm on this input and
send its state of s bits to Bob. In order to determine the value of xi Bob now connects Θ(m2/T3) new (i.e.,
previously isolated) vertices to all vertices in Ci. Adjusting constants this gives another m/2 edges, and will
create either no triangles (if Ci was not in the stream simulated by Alice) or Θ((m2/T3)(T3/m)2) = Θ(T3)
triangles (if Ci was in the stream). Thus, if the streaming algorithm succeeds with probability 2/3, so does
Bob. In conclusion we must have a space usage of s = Ω(a) bits, which is Ω(m3/T 2

3) as desired. �

13

Dataset n m T3 α m3/T 2
3 mn/T3

√
m/α

Enron 36K 367K 727K 0.0853 93.5K 18K 7.1K
AS20000102 6.4K 13.2K 6.5K 0.0095 52K 12.9K 12.1K

Astro-Ph 18.7K 396.1K 1.35M 0.318 34K 5.5K 2K
Cond-Mat 23.1K 186.9K 173.3K 0.2643 215K 24.9K 1.6K

roadNet-CA 1.96M 5.53M 120.6K 0.0603 11.55M 89.8M 39K
DBLP 317K 1.05M 2.2M 0.3064 239K 148K 3.4K
Oregon 10.6K 22K 17.1K 0.0093 37.1K 13.6K 16K

Facebook 4K 88.2K 1.61M 0.2647 264 218 1.1K
LiveJournal 4M 34.6M 177.8M 0.1154 1.3M 778K 51K

Youtube 1.1M 2.9M 3M 0.0062 2.7M 1.06M 275K
Amazon 334K 928K 667K 0.2052 1.79M 464K 4.7K
Skitter 1.7M 11.1M 28.7M 0.0053 1.66M 657K 629K

Table 4: Comparison of the theoretical guarantees for several real-life graphs, b = max(n, P2/n). The lowest space
usage in each row is given in bold font.

6 Comparison on the theoretical guarantee for real graphs

In Table 4 we compare the theoretical guarantee on the complexity of our algorithm to the ones shown
in [1, 18] for real graphs. We used the publicly available information from the Stanford Large Network
Dataset Collection2. (Note that there the transitivity coefficient is called fraction of closed triangles.) As
can be seen, the transitivity coefficient α appears to be constant. The update time of O(n log n) from [1] is
always impractical, and for [18] it is almost always prohibitively large, the only exception being the Facebook
graph for which the m3/T 2

3 is small. (Note that this is a graph collected from users who used the Social
Circles application and does not reflect the structure of the whole social network graph.) The space usage
of our algorithm is also much better for several graphs which are not very dense with respect to the number
triangles.

References

[1] K. J. Ahn, S. Guha, A. McGregor. Graph sketches: sparsification, spanners, and subgraphs. PODS 2012:
5–14

[2] W. Aiello, F. R. K. Chung, L. Lu. A random graph model for massive graphs. STOC 2000: 171–180

[3] R. Albert, A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

[4] N. Alon, R. Yuster, U. Zwick. Finding and Counting Given Length Cycles. Algorithmica 17(3): 209–223
(1997)

[5] Y. Arbitman, M. Naor, G. Segev. Backyard Cuckoo Hashing: Constant Worst-Case Operations with a
Succinct Representation. FOCS 2010: 787–796

[6] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna. Four degrees of separation. WebSci 2012: 33–42

[7] J.W. Berry, B. Hendrickson, R. LaViolette, C.A. Phillips. Tolerating the Community Detection Resolu-
tion Limit with Edge Weighting. Phys. Rev. E, 83(5)

[8] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, C. Sohler. Counting triangles in data
streams. PODS 2006: 253–262

2http://snap.stanford.edu/data/index.html

14

[9] L. Carter, M. N. Wegman. Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18(2): 143–154
(1979)

[10] G. Frahling, P. Indyk, C. Sohler. Sampling in dynamic data streams and applications. Symposium on
Computational Geometry 2005: 142–149

[11] H. Jowhari, M. Ghodsi. New Streaming Algorithms for Counting Triangles in Graphs. COCOON 2005:
710–716

[12] M. Jha, C. Seshadhri, A. Pinar. A space efficient streaming algorithm for triangle counting using the
birthday paradox. KDD 2013: 589–597

[13] H. Jowhari, M. Saglam, G. Tardos. Tight bounds for Lp samplers, finding duplicates in streams, and
related problems. PODS 2011: 49–58

[14] D. M. Kane, K. Mehlhorn, T. Sauerwald, H. Sun. Counting Arbitrary Subgraphs in Data Streams.
ICALP (2) 2012: 598–609

[15] M. N. Kolountzakis, G. L. Miller, R. Peng, C. E. Tsourakakis. Efficient Triangle Counting in Large
Graphs via Degree-based Vertex Partitioning. Internet Mathematics 8(1-2), 161–185 (2012)

[16] I. Kremer, N. Nisan, D. Ron. On Randomized One-Round Communication Complexity. Computational
Complexity 8(1): 21–49 (1999) 1995

[17] S. Leonardi. List of Open Problems in Sublinear Algorithms: Problem 11. http://sublinear.info/11

[18] M. Manjunath, K. Mehlhorn, K. Panagiotou, H. Sun. Approximate Counting of Cycles in Streams.
ESA 2011: 677–688

[19] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical
Computer Science, Vol. 1, Issue 2, 2005

[20] A. Pagh, R. Pagh. Uniform Hashing in Constant Time and Optimal Space. SIAM J. Comput. 38(1):
85–96 (2008)

[21] R. Pagh, C. E. Tsourakakis. Colorful triangle counting and a MapReduce implementation. Inf. Process.
Lett. 112(7): 277–281 (2012)

[22] A. Pavan, K. Tangwongsan, S. Tirthapura, K.-L. Wu. Counting and Sampling Triangles from a Graph
Stream. PVLDB 6(14): 1870–1881 (2013)

[23] C. Seshadhri, A. Pinar, and T. Kolda. Triadic Measures on Graphs: The Power of Wedge Sampling.
SDM 2013, to appear.

[24] M. Pǎtraşcu, M. Thorup. The Power of Simple Tabulation Hashing. J. ACM 59(3): 14 (2012)

[25] M. Thorup, Y. Zhang. Tabulation based 4-universal hashing with applications to second moment
estimation. SODA 2004: 615–624

[26] C. E. Tsourakakis, U. Kang, G. L. Miller, C. Faloutsos. DOULION: counting triangles in massive graphs
with a coin. KDD 2009: 837–846

[27] C. E. Tsourakakis, M. N. Kolountzakis, G. L. Miller. Triangle Sparsifiers. J. of Graph Algorithms and
Appl. 15(6): 703–726 (2011)

[28] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. STOC 2012, 887–898

15

