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Abstract 

We look at the behavior of structural systems under the occurrence of seismic events with the aim of 

identifying the fragility curves. Artificial Neural Network (ANN) empirical regression models are 

employed as fast-running surrogates of the (long-running) Finite Element Models (FEMs) that are 

typically adopted for the simulation of the system structural response. However, the use of regression 

models in safety critical applications raises concerns with regards to accuracy and precision. For this 

reason, we use the bootstrap method to quantify the uncertainty introduced by the ANN metamodel. 

An application is provided with respect to the evaluation of the structural damage (in this case, the 

maximal top displacement) of a masonry building subject to seismic risk. A family of structure 

fragility curves is identified, that accounts for both the (epistemic) uncertainty due to the use of ANN 

metamodels and the (epistemic) uncertainty due to the paucity of data available to infer the fragility 

parameters. 

 

Keywords: seismic risk, structure, fragility curve, Artificial Neural Network, epistemic uncertainty, 

bootstrap, confidence intervals 
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Nomenclature 

a : ground motion level 

b : index of the bootstrap training data sets or of the bootstrapped regression models, b = 1, …, B 

B : number of the bootstrap training data sets or of the bootstrapped regression models 

CP : coverage probability 

D = {(Yn, �n), n = 1, …, N} : entire data set 

Dtrain = {(Yn, ����(��)), n = 1, …, Ntrain} : training data set 

Dtrain,b : bootstrap training data set, b ∈ {1, …, B} 

Dval = {(Yn, ����(��)), n = 1, …, Nval} : validation data set 

Dtest = {(Yn, ����(��)), n = 1, …, Ntest} : test data set 

E = network performance (energy function) 

f(Yn, w): regression function 

fb(Yn, wb): bootstrapped regression function, b ∈ {1, …, B} 

F : fragility curve 

Fb : fragility curve built on the basis of the b-th bootstrapped regression function, b ∈ {1, …, B} 

	 : lower bound fragility curve due to the paucity of data 

	� : upper bound fragility curve due to the paucity of data 

	 : lower bound fragility curve due to the model and the paucity of data 

	� : upper bound fragility curve due to the model and the paucity of data 

h : optimal number of hidden neurons 

IArias : Arias intensity 

j : index of the inputs Y 

L : likelihood function 

M :  number of input variables 

n : index of the data in a given set 

N : number of realization of the seismic event 

NMW : normalized mean width 

Ntest : number of test data 

Ntrain : number of training data 

Nval : number of validation data 

p : coverage indicator; p = 1 if the output is included in the confidence interval; p = 0 otherwise 

pgv :  Peak Ground Velocity 

PSA(Tstr) : spectral acceleration at the first-mode period of the structure 

RMSEANN : root mean square error of the ANN trained with the whole training data set Dtrain 

RMSEBoot : root mean square error of the bootstrap ensemble of ANNs 

SI : spectral intensity 

Tm : mean period 

Tp : predominant period 

Tstr : fundamental period of the structure 

Vs30 : average shear wave velocity in the upper 30 m 
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w : vector of parameters of the regression functions 

wb : vector of parameters of the b-th bootstrapped regression functions, b ∈ {1, …, B} 

X : outcome of a seismic event (Bernoulli random variable) 

xn : realization of the Bernoulli random variable Xn 

 = {x1, x2, …, xn, …, xN} : vector of the realizations of the N Bernoulli random variable Xn, n = 1, …, N 

y : ground motion IMs 

Y = {y1, y2, …, yi, …, yM} : vector of M uncertain input variables  

Z = {z1, z2, …} : vector of system responses 

Greek Letters 

α : median ground motion intensity measure (IM) 

�� : estimate of α 

�����(���)%,   �����(���)%� : 100(1 – θ)% confidence interval of α 

β : logarithmic standard deviation  

��  : estimate of β 

�����(���)%,   �̅���(���)%� : 100(1 – θ)% confidence interval of β 

1 – γ : level of confidence for the bootstrap-based empirical PDFs 

δ : target, maximal structural top displacement 

�(��) : model output (maximal structural top displacement) in correspondence of the n-th input vector Yn 

�ANN(Yn) : estimate of the maximal structural top displacement obtained by the ANN 

��  !"(��) : estimate of the maximal structural top displacement given by one of the b-th bootstrapped regression 

functions, b ∈ {1, …, B} 

��̅  !(��) : average of the B estimates ��  !"(��), b = 1, …, B 

�FEM(Yn) : true maximal structural top displacement computed by the FEM 

δ* : damage threshold  

�����(��&)%(��),   �̅���(��&)%(��)� : 100(1 – γ)% confidence interval of the quantity �(Yn) 

ε(Yn) : Gaussian white noise 

1 – θ : level of confidence for parameters α and β 

'((��) : nonlinear deterministic function 

)�  !* (��) : bootstrap estimate of the variance of )+*(�,) 

)+*(��) : variance of the distribution of the regression function f(Yn, w) 

)-*(��) : variance of ε(Yn)  

Φ[∙] : standard Gaussian cumulative distribution 

Acronyms 

ANN : Artificial Neural Network 

CDF : Cumulative Distribution Function 

CP : Coverage Probability 

FEM : Finite Element Model 



4 

GA : Genetic Algorithm 

IM : Intensity Measure 

LGP : Local Gaussian Process 

NMW : Normalized Mean Width 

NPP : Nuclear Power Plant 

PGA : Peak Ground Acceleration 

PDF : Probability Density Function 

RMSE : Root Mean Square Error 

RS : polynomial Response Surface 

SA : Spectral Acceleration 

SPRA : Seismic Probabilistic Risk Assessment  

SVMs : Support Vector Machines  
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1. Introduction 

In the aftermath of the Fukushima nuclear accident, the 5-year project SINAPS@ (Earthquake and 

Nuclear Facilities: Ensuring and Sustaining Safety) has been launched in France in 2013. One of the 

key objectives of the project is the quantitative assessment of the behavior of Nuclear Power Plants 

(NPPs) under the occurrence of a seismic event. In the framework of this project, we made a 

preliminary study on the behavior of a structural system subject to seismic risk [Ferrario et al., 2015], 

with the aim of identifying the structure fragility curve, i.e., the conditional probability of damage of 

a component for any given ground motion level [EPRI, 2003]. In this work, we complete the previous 

analysis with the estimation of the associated uncertainties. 

 

Within the framework of analysis considered, in general the actions, events and physical phenomena 

that may cause damages to a nuclear (structural) system are described by complex mathematical 

models, which are then implemented into computer codes to simulate the behavior of the system of 

interest under various conditions [USNRC, 2009; NASA, 2010]. In particular, computer codes based 

on Finite Element Models (FEMs) are typically adopted for the simulation of the system structural 

behavior and response: an example is represented by the Gefdyn code [Aubry et al., 1986]. 

In practice, not all the system characteristics can be fully captured in the mathematical model. As a 

consequence, uncertainty is always present both in the values of the model input parameters and 

variables and in the hypotheses supporting the model structure. This translates into variability in the 

model outputs, whose uncertainty must be estimated for a realistic assessment of the (seismic) risk 

[Ellingwood and Kinali, 2009; Liel et al., 2009].  

For the treatment of uncertainty in risk assessment, it is often convenient to distinguish two types: 

randomness due to inherent variability in the system behavior (aleatory uncertainty) and imprecision 

due to the lack of knowledge and information on the system (epistemic uncertainty). The former is 

related to random phenomena, like the occurrence of unexpected events (e.g., earthquakes) whereas 

the latter arises from a lack of knowledge of some phenomena and processes (e.g., the power level in 

the nuclear reactor), and/or from the paucity of operational and experimental data available 

[Apostolakis, 1990; Ferson and Ginzburg, 1996; USNRC, 2009; Aven, 2010; Aven and Zio, 2011 

Beer et al., 2014].  

 

For uncertainty characterization, two issues need to be considered: first, the assessment of the system 

behavior typically requires a very large number (e.g., several hundreds or thousands) of FEM 

simulations under many different scenarios and conditions, to fully explore the wide range of 

uncertainties affecting the system; second, FEMs are computationally expensive and may require 
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hours or even days to carry out a single simulation. This makes the computational burden associated 

with the analysis impracticable, at times. 

In this context, fast-running regression models, also called metamodels (such as Artificial Neural 

Networks (ANNs) [Zio, 2006; Cardoso et al., 2008; Beer and Spanos, 2009; Pedroni et al., 2010; 

Chojaczyk et al., 2015], Local Gaussian Processes (LGPs) [Bichon et al., 2008; Villemonteix et al., 

2009] polynomial Response Surfaces (RSs) [Bucher and Most, 2008; Liel et al., 2009], polynomial 

chaos expansions [Ciriello et al., 2013; Sudret and Mai, 2015], stochastic collocations [Babuska et 

al., 2010], Support Vector Machines (SVMs) [Hurtado, 2007] and kriging [Bect et al., 2012; Dubourg 

and Sudret, 2014; Zhang et al., 2015]), can be built by means of input-output data examples to 

approximate the response of the original long-running FEMs without requiring a detailed physical 

understanding and modeling of the system process, and used for the seismic analysis. Since the 

metamodel response is obtained quickly, the problem of high computational times is circumvented. 

However, the use of regression models in safety critical applications like NPPs still raises concerns 

as regards the control of their accuracy and precision.  

In this work, we use ANN-based metamodels to approximate the response of a detailed FEM. To 

evaluate the approximation introduced by using the ANN metamodels in replacement of the detailed 

FEM, we can adopt three main approaches for the estimation of ANN accuracy and precision: the 

bootstrap method, based on a resampling technique [Efron, 1979; Efron and Tibshirani, 1993]; the 

delta method, based on a Taylor expansion of the regression function [Rivals and Personnaz, 1998; 

Dybowski and Roberts, 2001]; the Bayesian approach, based on Bayesian statistics [Bishop, 1995; 

Dybowski and Roberts, 2001]. We adopt the first one, because it requires no prior knowledge about 

the distribution function of the underlying population, being a distribution-free inference method 

[Efron and Thibshirani, 1993], it is simple to implement and provides accurate uncertainty estimates 

[Zio, 2006]. 

The effectiveness of ANN and bootstrap methods in robustly quantifying the uncertainty associated 

with (safety-related) estimates (possibly obtained with small-sized data sets) has been thoroughly 

demonstrated in the open literature: see, e.g., [Efron and Thibshirani, 1993; Zio, 2006; Pedroni et al., 

2010; Zio and Pedroni, 2011]. 

 

In this work, we originally apply bootstrapped ANNs in seismic risk analysis for the estimation of 

fragility curves and the quantification of the corresponding uncertainty. For the analysis, we consider 

the same case study employed in [Ferrario et al., 2015], which consider the structural damages of a 

masonry structure subject to a seismic event [Lopez-Caballero et al., 2011]. First, we use the ANN 

metamodel to estimate the maximal structural top displacement, and its uncertainty in the form of 
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bootstrap-based confidence intervals. Then, we derive the corresponding family of fragility curves 

for a given damage threshold, taking into account both the variability of the maximal structural top 

displacement within the confidence intervals and the epistemic uncertainty due to paucity of data 

available for the estimation of the fragility curve parameters. 

 

The paper organization is as follows. In Section 2, the steps necessary to build the fragility curves are 

illustrated and the sources of uncertainty identified; in Section 3, a synthetic description of ANN 

metamodels is provided; in Section 4, the uncertainty introduced by the ANN metamodels is 

described; in Section 5, the bootstrap approach for the estimation of the ANN uncertainty is given; in 

Section 6, the procedure for the bootstrapped ANN-based estimation of fragility curves in the 

presence of uncertainties is provided; in Section 7, the case study and the main results of the analysis 

are presented; in Section 8, conclusions and future developments are provided. 

2. Analysis of the failure behavior of structural systems: fragility curve estimation  

Within the framework of Seismic Probabilistic Risk Assessment (SPRA), a fragility curve, F, is the 

conditional probability of failure (i.e., of exceeding a level of damage) of a component/structure for 

any given ground motion level (i.e., peak ground acceleration – PGA – or peak spectral acceleration 

– SA – at different component or structural frequencies) [EPRI, 2003]. It represents in probabilistic 

terms the seismic capacity of a component/structure, in terms of the maximum ground motion level 

(PGA or SA) that a component/structure can sustain without failure. Both PGA and SA are good 

indicators of structural damage; however, most SPRAs are based on PGA since most existing hazard 

studies have focused primarily on it [EPRI, 2003]. 

It is standard practice to model the seismic capacity by a lognormal probability distribution and 

evaluate its parameters for critical failure modes by the Fragility Analysis [EPRI, 2003; Ulrich et al., 

2014], though any measure of ground motion intensity can be used. The use of the lognormal 

distribution is justified by its mathematical simplicity and by the fact that it has been widely used for 

several decades in earthquake engineering: actually, it often fits the observed distributions of 

quantities of interest, such as ground motion intensity measures (IMs) [Porter, 2015].  

In this paper, we retain the lognormal model assumption and we infer the associated parameters by 

the maximum likelihood method, taking into account the epistemic uncertainty in their estimates due 

to the paucity of data available. 

 

In particular, we construct the fragility curve through the following three main steps: 

(a) structural system modeling; 
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(b) structural system behavior simulation; 

(c) fragility curve estimation. 

 

In step (a), a mathematical model of the system is built to quantify its performance indicator. A 

quantitative model for seismic risk analysis may be viewed as composed of three main elements: a 

vector Y = {y1, y2, …, yj, …, yM} containing all the uncertain input variables (e.g., the ground motion 

IMs); a computer code to simulate the behavior of the system of interest; and an output vector Z = 

{z1, z2, …} describing the system responses (e.g., the maximal structural top displacement). 

 

In step (b), the mathematical model is implemented in a computer code and used to simulate system 

behavior under different uncertain operational and accidental conditions: for N vectors Yn, n = 1, …, 

N, of possible model input values (i.e., N seismic events in this case), N model outputs �(��), n = 1, 

…, N, are computed. In order to deeply explore the wide range of uncertainties, a very large number 

(e.g., several thousands) of simulations is typically needed. 

 

Finally, in step (c) the fragility curve F is estimated from the data (i.e., the N maximal structural top 

displacements �(��),  n = 1, …, N) generated at step (b) above.  

The mathematical formulation of the fragility is the following [EPRI, 2003]: 

	 =  /(� > �∗|3) =  Φ ��
5 678 9:

;<�,         (1) 

where � is the maximal structural top displacement, �* is the damage threshold, a is the ground 

motion level (e.g., PGA), Φ[∙] is the standard Gaussian cumulative distribution function (CDF), and 

α and β are the parameters of the lognormal distribution of the seismic capacity, where α is the median 

ground motion IM, i.e., the median ground acceleration capacity (e.g., median PGA), and β the 

logarithmic standard deviation. 

Given the model outputs �(Yn), n = 1, …, N, of step (b) above, the parameters α and β in equation (1) 

can be estimated through the maximum likelihood method [Shinozuka et al., 2000; Saez et al., 2011] 

by analyzing those outputs �(Yn), n = 1, …, N, that exceed the damage threshold of interest �*. The 

likelihood function L that has to be maximized to infer parameters α and β is: 

=(; �, �) = ∏  @	�ABC@1 − 	�A��BCF�G� ,        (2) 

where  = {x1, x2, …, xn, …, xN} is the vector of the N realizations of a Bernoulli random variable X 

representing the outcome of a seismic event that can be classified into two mutually exclusive ways: 

xn = 0, if the component/structure sustains the damage threshold �* (i.e., �(Yn) < �*) for a given 

ground motion level a, and xn = 1, otherwise (i.e., �(Yn) > �*); Fn, n = 1, …, N, is the fragility value 

in correspondence of the n-th seismic event.  
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Two sources of uncertainty are involved in step (c), due to: 

• aleatory uncertainty due to randomness in the structural seismic capacity, described by a 

lognormal distribution; 

• epistemic uncertainty due to the finite amount of data available to infer the parameters (α and 

β) of the lognormal distribution. 

The seismic capacity is characterized by aleatory uncertainty: actually, the structural response results 

from randomness in the ground motion IM; thus, even with a large data set available, this uncertainty 

is irreducible. The classical way to address the uncertainty due to randomness is to collect data about 

the random phenomenon of interest (i.e., the ground motion) and perform a statistical analysis to 

identify the probability density function (PDF) that best captures the variability of the available data. 

The analyst’s choice of a particular shape of the PDF (i.e., lognormal) represents a source of epistemic 

uncertainty and can be progressively reduced by the analyst as the size of the available data set 

increases [Apostolakis, 1990]. In this work, we assume that the chosen lognormal PDF is a well-fitted 

model for the random seismic capacity (i.e., its shape acceptably represents the variability of the 

uncertain seismic capacity). 

The (epistemic) uncertainty upon the distribution parameters (α and β) depends on the quantity of 

data available: the higher the number N of seismic events, the more accurate the estimates of the 

parameters. To account for this type of epistemic uncertainty, we consider the (1 – θ)% = 95% 

confidence intervals (i.e., θ = 0.05) of the α and β estimates, i.e., �����(���)%,   �����(���)%� and 

�����(���)%,   �̅���(���)%�, respectively. Letting the parameters vary in their corresponding 

confidence intervals, a family of fragility curves is thereby obtained. Then, the upper and lower 

bounds, 	 and   	�, respectively, of these curves can be identified to provide a measure of the epistemic 

uncertainty associated with F due to the paucity of data.  

 

A final remark is in order. Traditionally, computer codes based on FEMs are adopted for the 

simulation of structural systems behavior and response. Since FEMs are computationally expensive 

(e.g., they may require hours or even days to carry out a single simulation), the computational cost 

associated with the analysis may be prohibitive.  

One possibility to overcome this computational issue is to resort to fast-running regression models 

(metamodels) to replace the detailed, long-running FEMs with acceptable approximation. In this 

work, we adopt ANNs (see Section 3) to reproduce the nonlinear relation between the vector Y of M 

inputs representing the different characteristics of the seismic event, like Peak Ground Velocity (pgv), 

Arias Intensity (IArias), Spectral Intensity (SI), etc., and one output, that is the maximal structural top 
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displacement �, i.e., Z = {z1} = �. The estimates provided by ANNs are affected by uncertainty (see 

Section 4) that can be quantified in terms of confidence intervals by the bootstrap approach (see 

Sections 5 and 6).  

3. Artificial Neural Networks for nonlinear regression 

Given a finite set of input/output data examples (patterns), D = {(Yn, �(Yn)), n = 1, …, N} where Yn 

is a vector of input variables, Yn = {y1,n, y2,n, …, yj,n, …, yM,n}, and �(Yn) is the output target (assumed 

mono-dimensional for simplicity of illustration), it is possible to perform the task of nonlinear 

regression, i.e., to estimate the nonlinear relationship between the vector of input variables and the 

output target. 

It can be assumed that the target �(��), n ∈ {1, …, N}, is related to the input vector Yn by an unknown 

nonlinear deterministic function μ�(Yn) corrupted by a Gaussian white noise ε(Yn) [Bishop, 1995], i.e,  

�(��) = '((��) + I(��) ;   I(��) ~ N(0, )-*(��))     (3) 

In the present case of damage of a structural system subject to seismic risk, the vector Yn, n ∈ {1, …, 

N}, contains the ground motion IMs, the nonlinear deterministic function '((��) is given by the 

complex long-running FEM code, the variable �(��) represents the maximal structural top 

displacement and the noise ε(Yn) represents the error introduced by the numerical method employed 

to calculate μ�(Yn).  

The objective of the regression task by ANN is to estimate '((��) through a regression function f(Yn, 

w), that depends on the set of ANN parameters w. For the sake of clarity, in the rest of the paper we 

will refer to �JFF and ���� to indicate the ANN and the FEM outputs, respectively. 

 

ANNs are computing devices inspired by the function of the nerve cells in the brain [Bishop, 1995]. 

They are composed of many parallel computing units (called neurons or nodes) arranged in different 

layers and interconnected by weighed connections (called synapses). Each of these computing units 

performs few simple operations and communicates the results to its neighbouring units. From a 

mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis functions with 

adaptable parameters w that are adjusted by a training process on many different input/output data 

examples available in the data set Dtrain = {(Yn, ����(Yn)), n = 1, …, Ntrain}, where Dtrain is a subset 

of the entire data set D, as explained at the end of this Section. The training process is an iterative 

process of regression error minimization [Rumelhart et al., 1986]; it consists in optimizing the 

network performance E computed as, e.g., the average squared error between the network outputs 

�JFF(��) and the targets ����(��), n = 1, …, Ntrain: 
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K = �
FLMNOC

∑ Q�JFF(��) − ����(��)RFLMNOC�G�
*
        (4) 

 

ANNs have been demonstrated to be universal approximants of continuous nonlinear functions (under 

mild mathematical conditions) [Cybenko, 1989], i.e., in principle, an ANN model with a properly 

selected architecture can be a consistent estimator of any continuous nonlinear function. The 

particular type of ANN considered in this paper is the classical feed-forward ANN composed of three 

layers (input, hidden and output, see Figure 1) and trained by the error back-propagation algorithm. 

 

 

Figure 1. Scheme of a three-layered feed-forward Artificial Neural Network. 

The number of nodes in the input layer equals the number of M input variables Yn = {y1,n, y2,n, …, yj,n, 

…, yM,n}, which significantly affect the output; the number of nodes in the output layer is determined 

by the number of quantities of interest to the problem (in this case one: the maximal structural top 

displacement, �(Yn)); the number of nodes in the hidden layer in general is kept as low as possible, 

since the higher the number of hidden nodes, the higher the number of parameters (w) to be estimated 

and the stronger the requirements on the data needed for the estimation. In general, an ANN with too 

few hidden nodes does not succeed in learning the training data set; vice versa, an ANN with too 

many hidden nodes learns the training data set very well, but it does not have generalization 

capability. 

Typically, the entire set of N input-output data is divided into three subsets: 

• a training (input/output) data set (Dtrain = {(Yn, ����(Yn)), n = 1, …, Ntrain}), used to calibrate 

the adjustable parameters (w) of the ANN regression model, for best fitting the FEM data; 

• a validation (input/output) data set (Dval = {(Yn, ����(Yn)), n = 1, …, Nval}, made of patterns 

different from those of the training set), used to monitor the accuracy of the ANN model 

during the training procedure. In practice, the validation error is computed on the validation 

set at different iterative stages of the training procedure: at the beginning of training, this value 
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decreases as does the error computed on the training set; later in the training, if the ANN 

regression model starts overfitting the data, the error calculated on the validation set starts 

increasing and the training process must be stopped [Bishop, 1995]; 

• a test (input/output) data set (Dtest = {(Yn, ����(Yn)), n = 1, …, Ntest}), not used during ANN 

training and validation, needed to evaluate the network generalization capability in the 

presence of new data. 

Further details about ANN regression models are not reported here for brevity; the interested reader 

may refer to the cited references and the copious literature in the field. 

4. Artificial Neural Network uncertainty 

In regression models, there are two types of prediction that are computed in correspondence of a given 

input Yn, n ∈ {1, …, N}: 1) the model structure f(Yn, w), that is the estimate of the deterministic 

function μ�(Yn), and 2) the model output �(Yn) (eq. 3). In this work, we focus on the first one and 

associate to this estimate the corresponding measure of confidence.  

In this respect, the uncertainty related to the identification of the parameters w has to be taken into 

account. This is mainly due to three reasons: 

• The set Dtrain adopted to train the network cannot be exhaustive due to the limited number of 

input/output patterns that do not fill all the input volume of interest. As a consequence, 

different training sets Dtrain can give rise to different sets of network parameters w and, then, 

to different sets of regression functions, i.e., to a distribution of regression functions. The 

quantification of the accuracy of the estimate f(Yn, w) of the true deterministic function, μ�(Yn), 

entails the assumption of a distribution for the regression error f(Yn, w) – μ�(Yn). Its variance, 

E[f(Yn, w) – μ�(Yn)]2, with respect to all possible training data set is given by the sum of two 

terms [Bishop, 1995; Zio, 2006]:  

o the square of the bias, {E[f(Yn, w)] – μ�(Yn)}2, that is the square of the difference 

between the expected value of the distribution of the regression functions, E[f(Y, w)], 

and the true deterministic function, μ�(Yn);  

o the variance, )+*(��), of the distribution of the regression functions:  

)+*(��) = {f(Yn, w) – E[f(Yn, w)]}2 .       (5) 

Since the bias can be considered negligible with respect to the second term, the accuracy of 

the estimate f(Yn, w) is given by the variance )+*(��) of the distribution of the regression 

functions [Bishop, 1995; Zio, 2006]: 

E@S(��, T) − '(  (��)A* = )+*(��)         (6) 
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• The choice of the network architecture is inappropriate. If the number of hidden neurons is 

too small or too big, the network may not have the expected generalization capabilities (see 

Section 3). A trade-off can be achieved by controlling the number of parameters, and the 

training procedure, e.g., by early stopping of the training [Bishop, 1995; Zio, 2006]. 

• The global minimum of the error function (eq. 4) is not achieved: the minimization algorithm 

may get stuck in a local minimum and/or the training may be stopped before reaching the 

minimum [Bishop, 1995; Zio, 2006]. 

Thus, due to the uncertainties, for given model input parameters/variables Yn, n ∈ {1, …, N}, the 

model output �(Yn) can vary within a range of possible values (e.g., confidence interval). For N 

vectors Yn, n = 1, …, N, of model inputs (i.e., N seismic events in this case), N model outputs �(��), 

n = 1, …, N, can be computed with the associated N confidence intervals 

�����(��&)%(��),   �̅���(��&)%(��)�, n = 1, …, N, with (1 − U) level of confidence. 

5. Bootstrap approach for ANN uncertainty estimation 

To quantify the model uncertainty introduced by the ANN empirical regression models (see Section 

4), the confidence intervals of the regression error f(Yn, w) – μ�(Yn), where f(Yn, w) is the regression 

function given by the ANN and μ�(Yn) is the deterministic function of the FEM, have to be estimated.  

One method is the bootstrap approach, that is capable of quantifying the model uncertainty by 

considering an ensemble of ANNs built on different data sets that are sampled with replacement 

(bootstrapped) from the original one [Zio, 2006]. From each bootstrap data set, a bootstrapped 

regression model is built and the model output of interest can be computed. Different bootstrap data 

sets give rise to a distribution of regression functions and so to a PDF of the model output. Thus, the 

model uncertainty of the estimates provided by the ANNs can be quantified in terms of confidence 

intervals of the obtained model output PDF by the bootstrap algorithm. An important advantage of 

this approach is that it provides confidence intervals for a given model output, without making any 

model assumption (e.g., normality). However, the computational cost could be high when the training 

data set and the number of parameters in the regression model are large [Pedroni et al., 2010]. 

 

The operative steps to identify the confidence intervals of the distribution of the regression error are 

detailed in the following: 

1) Divide the entire available data set of N input/output patterns into training, validation and test 

data sets, as Dtrain = {(Yn, ����(Yn)), n = 1, …, Ntrain}, Dval = {(Yn, ����(Yn)), n = 1, …, Nval} 
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and Dtest = {(Yn, ����(Yn)), n = 1, …, Ntest}, respectively, where the outputs ����(Yn) are 

generated through the FEM code.  

2) Generate B (e.g., B = 100 in this work) bootstrap training data sets, Dtrain,b, b = 1, …, B, by 

sampling with replacement from the original training data set Dtrain. Each set Dtrain,b, b ∈ {1, 

…, B}, is composed by the same number Ntrain of the original training data set; however, due 

to the sampling with replacement some of the input/output patterns in Dtrain will appear more 

than once in Dtrain,b, b ∈ {1, …, B}, whereas some will not appear at all. 

3) Build the bootstrapped regression models fb(Yn, wb), b = 1, …, B, on the basis of the training 

data sets Dtrain,b, b = 1, …, B, generated at the previous step 2) and the validation data set Dval 

= {(Yn, �FEM(Yn)), n = 1, …, Nval} of step 1) (Figure 2). The training data sets are used to 

calibrate the parameters wb, b = 1, …, B, and the validation data set to monitor the accuracy 

of the network performance (see Section 3). 

4) Use the regression models of step 3) to compute the estimates ��  !"(��), b = 1, …, B, of the 

model output �FEM(Yn) on a new data set Dtest = {(Yn, �FEM(Yn)), n = 1, …, Ntest}. By so doing, 

Ntest bootstrap-based empirical PDFs for the quantity �FEM(Yn), n = 1, …, Ntest, are produced. 

In correspondence of a new input Yn, n ∈ {1, …, Ntest}, the bootstrap estimate ��̅  !(��) is 

given by the average of the B regression functions ��  !"(��), b = 1, …, B, n ∈ {1, …, Ntest}: 

��̅  !(��) = S(��, VTW , X = 1, 2, … , [\) = ∑ +"(�C,T")]"^_
� = ∑ (]``L"(�C)]"^_

�     (7) 

and the bootstrap estimate )�  !* (��) of the variance )+*(��) in equation (5) is given by: 

)�  !* (��) = ∑ �(]``L"(�C)�(a]``L(�C)�b]"^_
��� , n ∈ {1, …, Ntest}      (8) 

as illustrated in Figure 3. 

5) Identify the confidence intervals (with confidence level (1 − U)) from the bootstrap-based 

empirical PDF for the quantity �FEM(Yn), n ∈ {1, …, Ntest}, obtained in step 4) as follows. For 

each test n ∈ {1, …, Ntest} compute the two-sided 100(1 – γ)% confidence intervals for the 

estimates ��  !"(��), b = 1, …, B, by ordering the estimates ��  !"(��), b = 1, …, B, in 

increasing values and identifying the (100γ/2)th and 100(1– γ/2)th quantiles of the bootstrap-

based empirical PDF of the quantity �FEM(Yn) as the closest values to the (Bγ/2)th and B(1 – 

γ/2)th elements, respectively. In the following, the confidence interval of �FEM(Yn), n ∈ {1, 

…, Ntest}, are referred to as �����(��&)%(��),   �̅���(��&)%(��)�. 
 

To determine the quality of the confidence intervals identified in step 5), two quantitative measures 

can be taken into account [Ak et al., 2013]: the coverage probability (CP) and the normalized mean 
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width (NMW). The former represents the probability that the true values �FEM(Yn), n = 1, …, Ntest, are 

included in the corresponding confidence intervals, whereas the latter quantify the extension of the 

confidence intervals and it is usually normalized with respect to the minimum and maximum values 

of �FEM(Yn), n = {1, …, Ntrain}. They are conflicting measures since the wider NMW the larger CP, 

and in practice it is important to have large coverage and small width.  

The CP is given by [Ak et al., 2013]:  

c/ = �
FLdeL

∑ f�FLdeL�G� ,            (9) 

where f� = 1 if �FEM(Yn) ∈ �����(��&)%(��),   �̅���(��&)%(��)�; otherwise f� = 0, for n = 1, …, 

Ntest. 

The NMW is computed as [Ak et al., 2013]: 

hij = �
FLdeL

∑ �(a_kk(_lm)%(�C) � (_kk(_lm)%(�C)�
(nNo  � (nOC

FLdeL�G�         (10) 

where �max and �min are the maximum and minimum values of the FEM outputs, respectively. 

 

The estimates given by the bootstrapped ANNs, ��̅  !(��), are in general more accurate than the 

estimate of the best ANN, �JFF(��), in the bootstrap ensemble of ANNs (that is the one trained with 

the original data set, Dtrain, as shown in step 1) above) [Zio, 2006; Zio and Pedroni, 2011]. Actually, 

the ANNs ensemble has diverse (higher) generalization capabilities than the best ANN. This can be 

verified through the estimation of the Root Mean Square Error (RMSE) for the bootstrap ensemble 

of ANNs (RMSEBoot) and the best ANN (RMSEANN) with respect to the true output ����(��) of the 

FEM, as follows: 

piqK�  ! = r �
FLdeL

∑ Q��̅  !(��) − ����(��)R* FLdeL�G�       (11) 

piqKJFF = r �
FLdeL

∑ (�JFF(��) − ����(��))* FLdeL�G�       (12) 
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Figure 2: Exemplification of step 3 of the bootstrap method of Section 5: construction of the bootstrapped regression 

models given the training and validation data sets. 

 

 

Figure 3: Exemplification of step 4 of the bootstrap method of Section 5: construction of the bootstrap-based empirical 

PDF of the model output for a new input Yn of the test data set. 

6. Bootstrapped ANN-based estimation of fragility curves in the presence of uncertainties 

The complete procedure is as follows (Figure 4): 

1) given an ensemble of B properly trained ANNs VS(�� |sW): X = 1, 2, … , [\, for N randomly 

generated vectors ��, n = 1, 2, …, N, of model inputs (i.e., N seismic events), evaluate the 

corresponding model outputs ��  !"(��), b = 1, 2, …, B, n = 1, 2, …, N (see Section 5); 

2) for each ANN b = 1, 2, …, B, of the ensemble, evaluate the parameters ��W and ��W of the 

fragility curves and the corresponding CIs, [�W���(���)%(��), ��W���(���)%(��)A and 

[�W���(���)%(��), �̅W���(���)%(��)A, respectively, by MLE (see Section 2); 
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3) for each ANN of the ensemble, letting parameters α and β range within the corresponding CIs 

[�W���(���)%(��), ��W���(���)%(��)A and [�W���(���)%(��), �̅W���(���)%(��)A (step 2 above), 

generate a family of fragility curves (under the lognormal assumption) and identify the 

corresponding upper and lower bounds,  	 W and 	�W, respectively; 

4) identify the extreme upper and lower fragility curves, 	 and   	�, respectively, that envelop all 

the bootstrapped fragility curves V(	 W, 	�W): X = 1, 2, … , [\ thereby obtained. 

The curves produced at step 4) represent bounds that describe and take into account the epistemic 

uncertainty due to 

1) the data for the extrapolation of the distribution parameters α and β of the seismic capacity 

(step (c) of Section 2) and 

2) the model (the ANN) for the estimation of the model output � (step (b) of Section 2). 

 

Notice that in this case the runs of the (bootstrapped) ANNs are only needed to generate a set of 

model outputs ��  !"(��), b = 1, 2, …, B, n = 1, 2, …, N, for each bootstrapped ANN. Then, on the 

basis of these new sets of data (produced by each ANN b of the ensemble), the parameters ��W and ��W 

of the fragility curves and the associated CIs, [�W���(���)%(��), ��W���(���)%(��)A and 

[�W���(���)%(��), �̅W���(���)%(��)A, can be estimated by MLE. Notice that for each given ANN b = 

1, 2, …, B, of the bootstrap, the CIs [�W���(���)%(��), ��W���(���)%(��)A and 

[�W���(���)%(��), �̅W���(���)%(��)A mentioned above reflect the (epistemic) uncertainty related to 

the scarcity of the data available for the extrapolation of the distribution parameters ��W and ��W. 

Moreover, it is worth stressing again that the need to resort to ANNs (and in general to metamodels) 

derives from the very high computational cost required by each FEM run (i.e., several hours), which 

would impair further, more thorough uncertainty and sensitivity analyses on the system model of 

interest, if needed. Also, the additional advantage of adopting bootstrapped ANNs instead of a single 

ANN is represented by the possibility of computing CIs �����(��&)%(��),   �̅���(��&)%(��)� for the 

model outputs, in order to take into account also the epistemic (model) uncertainty associated with 

the use of ANN regression functions trained with a finite-sized set of data (see Section 5). 

A final remark is in order with respect to step (2) of the algorithm above. The fact that here we adopt 

a parametric approach, i.e., we assume a lognormal probability distribution for the fragility curve and 

use the MLE method for the estimation of the corresponding parameters, does not absolutely impair 

the effectiveness and general applicability of our bootstrapped ANN-based approach. Actually, once 

the metamodels are properly trained and validated, (i) they enable detailed uncertainty and sensitivity 
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analyses of computationally expensive FEMs for structural risk assessment (if required); and (ii) they 

could be used to build the fragility curves of interest according to any other method available in the 

open literature (e.g., non-parametric approaches relying on repeated Monte Carlo-based pointwise 

estimations of the conditional failure probability for many different values of the selected earthquake 

intensity measure). 
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Figure 4: Exemplification of the procedure for the bootstrapped ANN-based estimation of fragility curves in presence of 

uncertainty. 
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7. Case study 

The case study is taken from [Lopez-Caballero et al., 2011]. It deals with the non-linear soil influence 

on the seismic response of a two-story masonry structure founded on a rigid shallow foundation. 

In Section 7.1, the description of the specific system studied is given; in Section 7.2, the results of the 

uncertainty analysis are provided, together with some critical considerations. 

7.1. Case study description 

The masonry building analyzed in this work is illustrated in Figure 5. The total height of the building 

is 5.4 m, the width is 5.0 m and the thickness is 0.16 m. With these characteristics, the fundamental 

period of the structure (Tstr) is equal to 0.19 s. This structure is modelled using three different kinds 

of elements: beam-columns and diagonal struts describing the structural behavior, and strengthless 

solid elements to represent the masonry mass. The frame structural elements are modelled by plastic 

hinge beam-column elements. The behavior of this structure is simulated on the basis of non-linear 

dynamic FE analysis. Further details about the masonry characteristics and the FEM used are not 

reported here for brevity sake; the interested reader is referred to [Lopez-Caballero et al., 2011]. 

 

Figure 5: Building scheme. 

In order to define appropriate ground motions for the non-linear dynamical analysis, a selection of N 

= 168 recorded accelerograms from the Pacific Earthquake Engineering Research Center (PEER) 

database have been used as input to the model. The events range between 5.2 and 7.6 in magnitude 

and the recordings have site-to-source distances from 15 to 50 km, and dense-to-firm conditions (i.e., 

360 m/s < Vs30 < 800 m/s, where Vs30 is the average shear wave velocity in the upper 30 m). 

The information carried by each single earthquake signal has been synthetized by thirteen IM 

parameters [Lopez-Caballero et al., 2011]. In this work, we take into account just the five IM 

parameters reported in Table 1 that have been selected by the authors in [Ferrario et al., 2015] by 

performing a Genetic Algorithm (GA)-based wrapper feature selection aimed at identifying the subset 
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of important inputs that maximize the ANN performance. These selected parameters form the input 

vector Yn = {y1,n, y2,n, …, yM = 5,n}, n ∈ {1, …, N = 168}. 

Table 1: IM earthquake parameters (model inputs: Y = y1, y2, …, yM = 5). 

Y 

y1 IArias Arias intensity 

y2 PSA(Tstr) Spectral acceleration at the first-mode period of the structure 

y3 Tm Mean period 

y4 Tp Predominant period 

y5 SI Spectral intensity 

 

In the following, we refer to the model inputs by their numbers (i.e., y1, y2, y3 …) instead of their 

name (IArias, PSA(Tstr), Tm, …) for brevity. 

7.2. Results 

ANNs are used in order to approximate the nonlinear seismic response of the masonry building of 

interest. A data set composed by N = 168 input/output patterns is available for the analysis. In order 

to train, validate and test the ANN, the N data are partitioned as follows: 70% in the training set (i.e., 

Ntrain = 118 data), 15% in the validation set (i.e., Nval = 25 data) and 15% in the test set (i.e., Ntest = 25 

data). 

In Section 7.2.1, the results of the estimation of the accuracy of the ANN by the bootstrap approach 

(Section 5) is reported; then, in Section 7.2.2 the computation of the structure fragility curves under 

uncertainty (Section 6) is illustrated. 

7.2.1. ANN accuracy 

To estimate the ANN accuracy, the bootstrap approach of Section 5 has been applied. The analysis 

has been performed with respect to four different sizes of the training and validation sets, to evaluate 

the network accuracy in cases where smaller data sets are available. Indeed, the seismic fragility 

analysis and the estimation of confidence bounds based on recorded ground motions is usually 

performed with a number of analyses that is smaller than or comparable to 168 (for critical 

infrastructures), also due to limitations in the number of suitable recorded ground motions available. 

In Table 2, the total number N of input/output data adopted, and the number of those used in the 

training (Ntrain), validation (Nval) and test (Ntest) are reported, with respect to the four cases analyzed. 

Case 1 considers all the N = 168 data available, so it is composed by the largest training and validation 

sets (Ntrain = 118, Nval = 25); cases 2, 3 and 4 halve the training and validation sets of their previous 

case, e.g., the training and validation sets of case 2 are the rounded half of those of case 1 (i.e., Ntrain 

= 59, Nval = 13). The size of the test data set is kept constant for all the four cases (Ntest = 25 data), in 

order to perform a comparison of the network accuracy. All the networks have been trained with a 
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number h of hidden nodes optimized with respect to the training and validation procedures for each 

network (Table 2). 

Table 2: Number of patterns in the training (Ntrain), validation (Nval), and test (Ntest) data sets for the four different cases 

evaluated; N is the total number of data and h is the optimal number of hidden neurons adopted to train and validate a 

single network.  

 Case 1 Case 2 Case 3 Case 4 

Ntrain 118 59 30 15 

Nval 25 13 6 3 

Ntest 25 25 25 25 

N 168 97 61 43 

h 5 2 2 2 

 

As a first general analysis to evaluate the accuracy of the regression estimate of '((��), we have 

computed the following performance indicator that represents the average standard deviation )��  !ua  

on the mean value: 

)��  !ua = �
FLdeL

∑ rv]``Lb (�C)
�

FLdeL�G� ,         (13) 

where )�  !* (��) is the bootstrap variance given in equation (8) and B is the number of bootstrapped 

networks considered (B = 100 in this study). The results are reported in Figure 6 with respect to the 

test data set, i.e., Yn = 1, …, Ntest, for the four cases of interest of Table 2, where Ntrain takes values 

equal to 118, 59, 30 and 15 data. For each case, several (i.e., 50) simulations (represented by the dots 

in the Figure) are run in order to account for the variability associated with the (randomly sampled) 

initial training and validation data sets, and to the random sampling with replacement implied by the 

bootstrap. Notice that in the reference case where Ntrain = 118, the training and validation data sets 

are the same for all the 50 simulations (since they correspond to the whole training data set); then, 

the variability in these results is due only to the bootstrap sampling. It can be seen that the lower the 

size of the training and validation data sets, the lower the network accuracy: the average of the )��  !ua  

values (depicted by the squares in the Figure) increases from 0.0111 in case 1 (Ntrain = 118) to 0.0233 

in case 4 (Ntrain = 15). 
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Figure 6: Dots: )��  !ua  computed on the test data set with respect to different sizes of the training data set (Ntrain). 

Squares: average of )��  !ua  for a given size of the training data set. 

Some of the )��  !ua  values in Figure 6 are far from their average. From the analysis of the 

corresponding box plot (Figure 7), these points (represented by a plus sign) are outliers since they are 

outside the box and the whiskers (in this case, the edges of the box represent the 25th and 75th 

percentiles and those of the whiskers the 99.3 coverage, if the data are normally distributed).  

The presence of outliers can be explained by the fact that some of the bootstrapped networks may not 

be well trained because of: (i) “unlucky” configurations of the initial training and validation data sets 

due to random sampling with replacement implied by the bootstrap (for example, a too large number 

of repeated samples may be contained in the design of experiments), or (ii) inefficient calibration of 

the ANN weights during training (for example, the back-propagation algorithm may get stuck in a 

local optimum). In this case, some biased network components of the bootstrap ensemble may not be 

able to estimate the model output with a satisfactory level of accuracy and may significantly degrade 

the estimate of the average of the bootstrapped regression functions ��̅  ! , thus providing an 

overestimate of the variance )�  !* . As suggested in [Zio, 2006], a possible way to tackle this issue is 

to actually train a large number of bootstrap networks and then retain only those which are regarded 

as well trained. In this light, for illustration purposes, we remove the outliers from Figure 6 and we 

compute again the average of the remaining )��  !ua  values (squares in Figure 8) with the sole aim of 

highlighting the general “trend” of the ANN accuracy with respect to the size of available training 

data set. It can be seen that without outliers it is more evident that the smaller the size of the training 

data set, the larger the value of the average of )��  !ua , so the smaller the network accuracy.  

For completeness, the average standard deviation values σaxyyz{a  computed on the training data set 

(i.e., by replacing Ntest with Ntrain in equation (13)) is reported in Figure 9. The same considerations 

can be drawn on the average trend: the smaller the training data set, the higher the standard deviation. 
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Figure 7: Box plot of )��  !ua  computed on the test data set with respect to different sizes of the training data set (Ntrain). 

 

Figure 8: Dots: )��  !ua  computed on the test data set with respect to different sizes of the training data set (Ntrain). 

Squares: average of )��  !ua  for a given size of the training data set. The outliers highlighted in Figure 6 have been 

removed. 

 

Figure 9: Dots: )��  !ua  computed on the training data set with respect to different sizes of the training data set, (Ntrain). 

Squares: average of )��  !ua  for a given size of the training data set. 

The 50% confidence intervals ��|�%(��),   �̅|�%(��)� for the quantity �FEM(Yn) on the test data set, 

n = 1, …, Ntest = 25, obtained by the bootstrap approach (Section 5) are illustrated by the box plots of 
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Figures 10 – 13, with respect to the four cases of Table 2, where the edges of the box represent the 

25th and 75th percentiles and those of the whiskers the 99.3 coverage if the data are normally 

distributed. The estimates of the best ANN, �ANN, (light dots) and of the bootstrap ensemble of ANNs, 

��̅  !  (plus signs), are reported together with the true output, �FEM (dark dots). 

 

Figure 10: Confidence intervals of the quantity �FEM(Yn) (dark dots) given by the bootstrap approach with respect to the 

test data set for the case 1 of Table 2. The estimates of the best ANN, �ANN, (light dots) and of the bootstrap ensemble of 

ANNs, ��̅  !, (plus signs) are also reported. 
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Figure 11: Confidence intervals of the quantity �FEM(Yn) (dark dots) given by the bootstrap approach with respect to the 

test data set for the case 2 of Table 2. The estimates of the best ANN, �ANN, (light dots) and of the bootstrap ensemble of 

ANNs, ��̅  !, (plus signs) are also reported. 

 

Figure 12: Confidence intervals of the quantity �FEM(Yn) (dark dots) given by the bootstrap approach with respect to the 

test data set for the case 3 of Table 2. The estimates of the best ANN, �ANN, (light dots) and of the bootstrap ensemble of 

ANNs, ��̅  !, (plus signs) are also reported. 
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Figure 13: Confidence intervals of the quantity �FEM(Yn) (dark dots) given by the bootstrap approach with respect to the 

test data set for the case 4 of Table 2. The estimates of the best ANN, �ANN, (light dots) and of the bootstrap ensemble of 

ANNs, ��̅  !, (plus signs) are also reported. 

In Table 3, the rankings of the standard deviation values )�  !(��), n = 1, …, Ntest, computed from 

equation (8) for the model outputs ��  !"(��), b = 1, …, 100, n = 1, …, Ntest, are reported with respect 

to the different amount of data available for the training and validation processes. In general, the 

smaller the number of input/output patterns used to train (and validate) the network, the larger the 

probability to find standard deviation values, )�  !(��), n = 1, …, Ntest, higher than a given threshold. 

For example, with respect to a threshold equal to 0.1, this probability is equal to 13/25 ~ 0.5 in case 

1 and doubles up to 25/25 = 1 in case 4. 

From Table 3 it can be seen also that the highest values of )�  !(��) (at the top of the ranking) are 

registered in correspondence of the inputs Yn, n = 6, 13, 14, 25, for all the four cases considered. Thus, 

the outputs associated with these inputs are affected by high uncertainty. This can be explained by 

looking to Figure 14, where the Ntest input/output test patterns (circle) are illustrated together with the 

N input/output data (dots) with respect to IM y1 (IArias). The regression model may not fit well the test 

points 6, 13, 14 and 25 since they are at the border of the data cloud and, in addition, they are (except 

for test point 6) at the top of the Figure characterized by a plastic force-displacement behavior that is 

more difficult to predict. 
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Table 3: Bootstrap standard deviation estimates )�  !(��) , n = 1, …, Ntest = 25, of the model outputs ��  !", b = 1, …, 

100. 

 

 

  

Figure 14: Input/output patterns with respect to the logarithm of the intensity measure y1 (IArias). 

To estimate the quality of the 50% confidence intervals, ��|�%(��),   �̅|�%(��)�, for the quantity 

�FEM(Yn) shown in Figures 10 – 13, the CP (CP) with respect to the output given by the FEM and the 

n σ Boot n σ Boot n σ Boot n σ Boot

13 0.40 13 0.55 13 0.43 13 0.46

25 0.29 14 0.47 14 0.32 14 0.41

6 0.19 6 0.22 25 0.24 6 0.34

14 0.19 12 0.22 6 0.22 12 0.31

17 0.15 5 0.18 2 0.18 25 0.31

2 0.15 19 0.15 5 0.18 2 0.30

7 0.14 15 0.13 19 0.17 22 0.26

11 0.12 25 0.13 12 0.16 7 0.24

5 0.12 8 0.13 15 0.15 18 0.24

19 0.11 2 0.12 8 0.15 5 0.23

15 0.11 7 0.12 20 0.15 19 0.22

20 0.11 22 0.12 22 0.14 4 0.19

9 0.10 20 0.12 11 0.14 15 0.19

8 0.09 11 0.11 4 0.14 20 0.17

12 0.08 4 0.10 18 0.14 21 0.16

1 0.08 17 0.09 7 0.13 1 0.15

22 0.07 18 0.08 21 0.11 17 0.14

18 0.06 1 0.08 1 0.10 8 0.13

16 0.06 21 0.07 17 0.09 11 0.12

10 0.06 9 0.07 3 0.08 23 0.12

4 0.06 16 0.06 9 0.07 10 0.11

21 0.05 3 0.05 10 0.07 24 0.11

3 0.04 23 0.05 16 0.06 3 0.11

23 0.03 10 0.05 23 0.06 16 0.10

24 0.03 24 0.04 24 0.06 9 0.10

Case 1 Case 2 Case 3 Case 4
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NMW (NMW) (eqs. 9 and 10, respectively) are illustrated in Figure 15 for the four cases under 

analysis. Notice that to compare the estimates of the NMW, the normalization has been performed 

with respect to the max and min values of the test data set, i.e., in equation 10, �}:B =
max� (����(��)) and �}�� = min� (����(��)), n = 1, …, Ntest, that is the same for all the cases 

analyzed.  

As expected, the smaller the number of data used to train and validate the network, the higher both 

the CP and the NMW of the intervals. The complement to 1 of CP has been plotted on the horizontal 

axis to highlight the conflict between these two measures (that are in fact on a Pareto frontier). 

Actually, an estimate is considered satisfactory if the corresponding confidence interval is 

characterized by high coverage and small width. 

 

 Case 1 Case 2 Case 3 Case 4 

Ntrain 118 59 30 15 

Nval 25 13 6 3 

CP 0.280 0.320 0.480 0.600 

NMW 0.067 0.080 0.094 0.123 

 

Figure 15: Coverage probability (CP) with respect to the true output given by the FEM and Normalized Mean Width 

(NMW). 

A comparison between the estimates given by the bootstrap ensemble of ANNs and the best ANN 

computed is given by the computation of the RMSEs, i.e., by RMSEBoot (eq. 11) and RMSEANN (eq. 

12), respectively, as reported in Table 4 for the four cases of interest. As expected, the smaller the 

training data set, the higher the RMSEs. In addition, RMSEBoot is always lower than RMSEANN. This 

confirms the findings reported in the literature with respect to the superior estimation accuracy of the 
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bootstrap aggregation procedure. In particular, the smaller the training data set, the higher the 

accuracy of the bootstrap ensemble compared to that of the best ANN: the percentage difference 

between the RMSEBoot and RMSEANN is around 5% for case 1 and 38% for case 4. 

Table 4: Percentage of the Root Mean Square Errors (RMSEs) of the best ANN (RMSEANN) and of the bootstrap 

ensemble of ANNs (RMSEBoot) with respect to the true output given by the FEM. 

 Case 1 Case 2 Case 3 Case 4 

Ntrain 118 59 30 15 

Nval 25 13 6 3 

RMSEANN (%) 13.6 20.7 33.6 26.4 

RMSEBoot (%) 12.9 13.7 20.5 16.4 

 

7.2.2. Fragility curves 

As recalled in Section 2, the fragility curve is the probability of exceeding a damage threshold of 

interest, �*, for a given ground motion level. For illustration purposes, we assume a damage threshold 

�* equal to 0.63 cm (that corresponds to a slight damage of the structure) and we build the fragility 

curve on the test data set, where Ntest = 25. The following evaluations are carried out with respect to 

an ANN trained with Ntrain = 118 data (case 1 of Table 2).  

The α and β parameters estimated by the maximum likelihood method with respect to the ANN output 

(i.e., the displacement �ANN) assume values equal to 1.02 and 1.17, respectively. The corresponding 

estimates of the 95% confidence intervals are ���|%,   ���|%� = [0.32, 1.73] and ���|%,   �̅�|%� = 

[0.88, 1.96], respectively. In Figure 16, the fragility curve F (solid line) is illustrated together with its 

lower,  	 (dotted line), and upper,   	� (dashed line), bounds: these bounds represent the epistemic 

uncertainty on the estimates of the α and β parameters due to the paucity of data (Ntest = 25); actually, 

such bounds are intended to envelop all the fragility curves that can be generated by all the possible 

combinations of α and β values ranging in their corresponding CIs. It can be noticed a discontinuity 

when the fragility is equal to 0.5. This is due to the properties of the lognormal distributions: the 

CDFs characterized by the same value of α and different values of β intersect in 0.5. In Figure 17, the 

intersections of the CDFs obtained by combining the highest and lowest values of the confidence 

intervals of α and β are illustrated. It can be seen that the upper bound is given by α equal to the 

minimum value (� = ��|%) and β equal to the maximum value (� = �̅�|%) if the fragility is lower 

than 0.5, and to the minimum value (� = ��|%) otherwise; vice versa, the lower bound is identified 

by α equal to the maximum value (� = ���|%) and β equal to the minimum value (� = ��|%) if the 

fragility is lower than 0.5, and to the maximum value (� = �̅�|%) otherwise. 
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Figure 16: Estimated fragility curve F (solid line) with the corresponding upper, 	� (dashed line), and lower, F (dotted 

line), bounds representing the epistemic uncertainty due to the data. 

 

Figure 17: Intersections of the fragility curves in correspondence of the combinations of the highest and lowest values 

of the parameters α and β. 

In order to include also the model uncertainty due to ANN regression, the bootstrap approach of 

Section 5 is carried out. For each bootstrapped regression models b, the outputs ��  !"(��), b ∈ {1, 

…, B}, n = 1, …, Ntest, are computed. Then, a fragility curve F and its lower F and upper 	� bounds are 

estimated, as illustrated in Sections 2 and 6. Repeating this procedure for all the B bootstrapped 

regression models, a family of fragility curves Fb, b = 1, …, B, is obtained (Figure 18, left) and the 

corresponding families of the lower Fb and upper 	�W bounds, b = 1, …, B, are determined (Figure 18, 

right). These results are combined in Figure 19 where the solid lines envelope all the possible fragility 

curves Fb, b = 1, …, B, and represent the epistemic uncertainty due to the ANN model; the dotted and 

dashed lines represent the extreme lower (	) and upper (	�) bounds of all the fragility curves, and they 

account both for the uncertainties due to the ANN model and to the data. 
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Figure 18: Left: fragility curves Fb, b = 1, …, B, estimated from the B bootstrapped networks; right: corresponding 

upper, 	�W, (dashed lines) and lower , Fb,(dotted lined) bounds of the fragility curves, b = 1, …, B. 

 

Figure 19: Uncertainty due to the network and the data of the fragility curves. Solid lines: upper and lower bounds of 

the fragility curves Fb, b = 1, …, B, estimated from the B bootstrapped networks (network uncertainty). Dashed and 

dotted lines: corresponding upper and lower bounds, 	�, and 	,respectively (network and data uncertainty). 

8. Conclusions 

In the context of seismic risk analysis, FEMs are typically employed to simulate the structural 

response of a system; however, the computational burden associated with this analysis is 

impracticable, at times. This is due to the presence of large (aleatory and epistemic) uncertainties 

affecting the system. As a consequence, to explore their wide range of variability, a very large number 

(e.g., several thousands) of FEM simulations is required for an accurate assessment of the system 

behavior under different seismic conditions. In addition, long calculations (hours of even days) are 

necessary for each run of the FEM.  

For these reasons, in [Ferrario et al., 2015] the authors have explored the possibility of replacing the 

FEM by a fast-running regression model, i.e., the ANN, to reduce the computational costs. The results 

showed a satisfactory capability of ANNs to approximating the FEM output in less than a second. 
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In this paper, the authors have extended the previous analysis to account for the accuracy of ANNs. 

Actually, this issue is essential for the confident and reliable use of ANNs in safety critical systems 

as NPPs. The bootstrap method has been adopted to estimate confidence intervals on the quantity of 

interest, since in the scientific literature it has been proven that it provides accurate uncertainty 

estimates; a drawback of the approach can be found in the computational time that may be long due 

to the elaborate training algorithm for building the structurally complex neural model. 

As case study, we have looked at the structural behavior of a masonry structure under the occurrence 

of a seismic event. In particular, we have identified the structure fragility curves representing the 

conditional probability of damage of the structure for any given ground motion level.  

ANNs have been built on the basis of sets of data of limited, varying sizes, which represent examples 

of the nonlinear relationships between five uncertain inputs (representing the seismic characteristics 

of a single earthquake) and one output (the maximal structural top displacement). 

The following analyses have been performed to analyze the uncertainty on the ANN regression 

function: 

• Computation of an indicator of network precision, based on the bootstrap standard deviation. 

As expected, this analysis has shown a reduction of the network accuracy when the size of the 

training and validation data sets decreases. 

• Determination of the 50% confidence intervals by the bootstrap approach for the output of 

interest. It can be seen that the number of patterns in the data sets for training and validating 

the networks is relevant to its performance. In addition, this analysis has led to: 

o the identification of those patterns that are not well-fitted by the ANN (i.e., those 

characterized by a large confidence interval). More training data close to these patterns 

should be employed to reduce the error of the regression function. 

o the identification of the Pareto front of the CP and the NMW that allows understanding 

a satisfactory tradeoff between these conflicting measures with respect to the size of 

the training and validation data sets.  

• Comparison between the accuracy of the bootstrapped ANNs and the best ANN in the 

bootstrap ensemble of ANNs by the computation of the RMSE. The accuracy of the ensemble 

of ANNs is always better than that of the best ANN [Zio, 2006], then the bootstrap aggregation 

procedure provides more accurate estimates of the model output and a better “reproduction” 

of the behavior of the underlying physical process itself. The smaller the training data sets, 

the higher the difference between the accuracy of the ensemble and the best ANN. 
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Finally, the fragility curve of the masonry building and its uncertainties have been estimated for a 

given damage threshold. First, only the epistemic uncertainty due to the paucity of data in inferring 

the fragility parameters has been considered. Then, the epistemic uncertainty due to the ANN 

metamodel has been added to the analysis. As a result, a family of fragility curves accounting for the 

uncertainty in the ANN and in the data has been obtained. 

 

Bootstrapped ANNs, properly trained and validated to reproduce the behavior of the original, long-

running system model code, represent a tool that can be used in general for carrying out thorough 

uncertainty and sensitivity analyses of computationally expensive FEMs for structural risk 

assessment. The adopted approach represents a fast and effective tool for the quantification of the 

epistemic uncertainty associated with the estimates of the system response, since it produces a family 

of (epistemic) probability distributions for the output, without making any underlying assumptions 

about the model structure (actually, it is a non-parametric method). Moreover, the quantification of 

epistemic uncertainty by means of probability distributions allows its straightforward propagation 

through computer codes (which is not always the case when using confidence intervals). 

In conclusion, the adopted approach allows a robust quantification of the uncertainty due to the (few) 

available data, which provides reliable and conservative results that are essential for safety-critical 

applications and risk-informed decisions (like those of interest to the present paper). 

 

Future work will extend the application of the approach to the KAshiwazaki-Kariwa Research 

Initiative for Seismic Margin Assessment (KARISMA) benchmark (IAEA 2014) that refers to the 

real case of a NPP (unit 7 of the site Kashiwazaki Kariwa) affected, in 2007, by a strong earthquake 

(beyond the design criteria) and for which a rich data set (measurements and analytical methods) is 

available. 
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