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Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to
accumulation of aldehydes, ketones, and α,β-unsaturated carbonyls of various lengths,
known as oxylipins. Oxylipins with α,β-unsaturated carbonyls are reactive electrophile
species and are toxic. Cells have evolved several mechanisms to scavenge reactive
electrophile oxylipins and decrease their reactivity such as by coupling with glutathione,
or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various
substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins
named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope
quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously
shown to reduce the reactive double bond of γ-ketols. In marked difference with
its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward
the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene
13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does
not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH
bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large
ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase.
Positioning of the α,β-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE,
far away from the NADP+ nicotinamide ring, provides a rational for the absence of
activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution
whereas other enzymes from the quinone oxidoreductase family are stable dimers and a
structural explanation of this difference is proposed. A possible in vivo role of ketodienes
and ketotrienes binding to ceQORH is also discussed.

Keywords: chloroplast envelope quinone oxidoreductase homolog, oxylipins, γ-ketols, α, β-unsaturated carbonyls,
X-ray crystallography

INTRODUCTION

Plants lack an immune system like animals. However, they possess mechanisms that recognize
pathogens and initiate defense responses. Some of these mechanisms involve various types
of oxygenated fatty acids, termed “oxylipins.” These molecules are involved in responses to
physical damage by animals or insects, stress, and attack by pathogens. Oxylipins are derived
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from linoleic and α-linolenic acids, released from their lipid
associations by poorly defined acyl hydrolases (lipases) of various
kinds (Figure 1). A first key step in oxidation is the action
of lipoxygenases. For example, depending on the source of
the enzyme, lipoxygenases (e.g., LOX1, a 9-lipoxygenase from
the cytosol, or LOX2, a 13-lipoxygenase from the chloroplast
stroma) catalyze the oxidation of linoleic (C18:2) or linolenic
acids (C18:3) into either 9- or 13-hydroperoxy-octadecatrienoic
acids (HPODE). Such compounds are highly reactive, and they
are quickly metabolized by various enzymes into series of
oxylipins, with a range of distinct biological activities (Blée,
2002; Mosblech et al., 2009; Joyard et al., 2010). Some oxylipins
such as 4-oxononenal, 4-hydroxynonenal, ketodienes [the 9-
oxo-10(E), 12(E)-octadecadienoic acid (9-KODE), and 13-oxo-
9(Z), 11(E)-octadecadienoic acid (13-KODE)], ketotrienes [the
9-oxo-10(E), 12(Z), 15(Z)-octadecatrienoic acid (9-KOTE) and
13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE)], or
the plant specific γ-ketols (Figure 1 and Figure S1) are α,β-
unsaturated carbonyls and reactive electrophile species (RES).
RES can act as signaling molecules (Farmer and Mueller,
2013) and also react with important cellular nucleophiles
such as thiols of proteins and nucleic acids, modifying their
biochemical properties, and are potentially toxic (Esterbauer
et al., 1991; Szweda et al., 1993). Due to this potential
toxicity, cells have developed an armory of defense to
decrease their activity. One class of enzymes involved in
detoxification of reactive electrophile oxylipins are NADPH-
oxidoreductases belonging to the zinc-independent medium-
chain dehydrogenase/reductase (MDR) superfamily and more
specifically to the quinone oxidoreductase (QOR) subfamily
to which alkenal/one reductases belong (Porté et al., 2009).
These enzymes can decrease the activity of reactive electrophile
oxylipins by reducing the unsaturated carbon-carbon bond
located in α,β of the carbonyl group to a single bond (Yamauchi
et al., 2011) (Figure 1).

The chloroplast envelope Quinone Oxidoreductase Homolog
(ceQORH; At4g13010; molecular weight 34,034 Da) from
Arabidopsis thaliana is associated to the inner membrane of
the chloroplast envelope (Figure 1) where it represents 1–2% of
the crude envelope proteins (Miras et al., 2002). It is encoded
by the nuclear genome and is targeted to the chloroplast by
an alternative import pathway, without cleavage of its internal
chloroplast targeting sequence (Miras et al., 2002, 2007). Despite
its original annotation as a “QOR,” ceQORH is inactive on
quinones but preferentially reduces γ-ketols in the presence of
NADPH (Curien et al., 2016) (Figure 1 and Figure S1). γ-ketols
(Figure 1 and Figure S1) are long-chain reactive electrophile
oxylipins and are potentially toxic (Kuga et al., 1993). They
are spontaneously produced in the jasmonate biosynthetic
pathway, downstream of lipoxygenase specific peroxidation by
hydrolysis of an allene oxide intermediate (Grechkin et al.,

Abbreviations: 9-KODE, 9-oxo-10(E), 12(E)-octadecadienoic acid; 13-KODE,
13-oxo-9(Z),11(E)-octadecadienoic acid; 9-KOTE, 9-oxo-10(E), 12(Z), 15(Z)-
octadecatrienoic acid; 13-KOTE, 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic
acid; ceQORH, chloroplast envelope quinone oxidoreductase homolog; AtAER,
alkenal/one reductase from Arabidopsis thaliana (cytosolic enzyme); AtAOR,
alkenone oxidoreductase from Arabidopsis thaliana (chloroplastic enzyme)

1991). ceQORH is also active though to a lesser extent on the
highly toxic (Lin et al., 2005) C9 α,β-unsaturated carbonyl 4-
oxononenal (Curien et al., 2016). ceQORH is thus probably
dedicated to detoxification of γ-ketols which can be produced
in plants under normal growth conditions (Theodoulou et al.,
2005), and accumulate in damaged tissues (Buseman et al.,
2006) or at a distance from bite zone when plants are
attacked by caterpillars (Schulze et al., 2007). ceQORH bears
similar characteristics and sequence homology with members
of the MDR superfamily, which includes chloroplastic alkenone
reductase [At1g23740, AtAOR (Yamauchi et al., 2012), Figure 1],
Arabidopsis ζ -crystallin [alkenal reductase, AT5G16970, AtAER
(Mano et al., 2005), Figure 1], yeast ζ -crystallin (Crosas
et al., 2011), human eye ζ -crystallin (Porté et al., 2011),
and Escherichia coli quinone reductase (Thorn et al., 1995)
(Figure S2).

Unlike the chloroplastic AtAOR (Yamauchi et al., 2012)
(Figure 1), which is active on short-chain α,β-unsaturated
carbonyls (C < 5), ceQORH does not reduce short chain
unsaturated carbonyls (C < 9). In addition, compared to
the cytosolic broad specific alkenal/one reductase AtAER
(Figure 1), ceQORH showed a restricted substrate specificity,
being inactive on the ketodienes 9-KODE and 13-KODE,
or on the ketotrienes 9-KOTE and 13-KOTE (Figure S1)
and virtually inactive on 4-hydroxynonenal and traumatin
[12-oxo-10(E) dodecenoate] (Curien et al., 2016). ceQORH
is encoded by the nuclear genome and is targeted to the
chloroplast by an alternative import pathway independent from
the trimeric TOC159/75/34 complex, without cleavage of its
internal chloroplast targeting sequence (Miras et al., 2002,
2007). This peculiarity, together with the ceQORH restricted
substrate specificity, prompted us to carry out crystallographic
studies of ceQORH. No crystal was obtained either in the
presence of γ-ketols or NADPH but the protein crystallized
in the absence of ligands as well as bound to 13-KODE and
NADPH, 13-KOTE and NADP+ and 13-KOTE alone. Structure
comparisons with AtAER (Youn et al., 2006) and the enone
oxidoreductase from Fragaria x ananassa (Schiefner et al.,
2013) provided insights into the molecular basis of substrate
specificity.

MATERIALS AND METHODS

Tryptophan Fluorescence Anisotropy
Measurements
Tryptophan fluorescence anisotropy measurements of ceQORH
were carried out in the same experimental conditions as
in vitro kinetics (Curien et al., 2016). Assays were carried
out with a MOS-450 spectrometer (BioLogic, Inc.) in a
150µL quartz cuvette, under temperature control (25◦C).
Excitation and emission wavelengths were set at 280 and
350 nm respectively. Assay conditions were: 10 mM HEPES
pH 7.5, 150 mM KCl. Protein concentration was 200 nM.
Changes in fluorescence anisotropy were probed following
addition of NADPH (200µM), 13-KODE (50µM), or γ-ketols
(100µM).
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FIGURE 1 | Oxylipin metabolism engenders essential, but also toxic molecules. Color code originates from experimental information about the subplastidial
localization of enzymes (see AT_CHLORO database; Ferro et al., 2010). Yellow enzymes (AOS, AOC, ceQORH) are associated to the chloroplast envelope while
brown ones (LOX2, AtAOR) are found in the chloroplast stroma. Note that AOS is associated with both envelope (yellow) and thylakoid membranes (green).
Non-plastid enzymes (cytosol, peroxisomes), or proteins suspected to interact with the outer surface of chloroplasts, are colored in gray. Due to space constraints,
some specific data are absent from this figure. For example, from the cytosolic 9-LOX (LOX1), derive 9-HPOTE and 9,10-EOT that are not indicated here, and α and
γ-ketols also derive from 9,10-EOT. 13(S)-HPODE and 12,13-EOD derive from linoleic acid (18:2) while 13(S)-HPOTE and 12,13-EOT derive from linolenic acid (18:3).
Note that from 13(S)-HPODE and 13(S)-HPOTE, LOX2 synthesize 13-KODE and 13-KOTE, respectively (black arrow).

Crystallization and Data Collection
Expression, purification, crystallization, and data collection of
apo-ceQORH were described previously (Mas y mas et al.,
2015). ceQORH-13-KOTE (1.45mM 13-KOTE) and ceQORH-
13-KOTE-NADP+ (1.45mM NADP+, 1.45mM 13-KOTE) at
5 mg/ml in 50mM Tris-HCl, pH 7.5, 200mM KCl, 2mM
DTT, 1mM EDTA, 10% (v/v) glycerol were subjected to
crystallization using the sitting-drop vapor-diffusion technique
and high throughput crystallization facility at EMBL, Grenoble,
at 4◦C. Crystallization hits were optimized using Limbro plates,
at 20◦C. Crystals of ceQORH-13-KOTE-NADP+ were obtained
in 0.2M sodium chloride, 0.1M Tris-HCl pH 8.5, 15.5% (w/v)
PEG 4K. Crystals of ceQORH-13-KOTE were obtained in 0.2M
ammonium tartrate pH 7.2, 20% (w/v) PEG3350. Crystals of
ceQORH-NADPH-13-KODE (1.45mM NADPH, 1.45mM 13-
KODE) were also obtained in 0.2M sodium chloride, 0.1M Tris-
HCl pH 7.5, 28% (w/v) PEG3500, but despite all our efforts, it was
not possible to obtain diffraction good enough and the resulting
structure was not used here. All the diffraction data were collected
on FIP-BM30A (Roth et al., 2002) at the European Synchrotron

Radiation Facility, Grenoble, France, at 100 K, using an ADSC
315r detector. The data (Table 1) were processed and scaled using
XDS (Kabsch, 2010).

Phasing and Model Refinement
Phasing was performed by molecular replacement using Phaser
(McCoy et al., 2007) from CCP4 (CCP4, 1994). The structure of
the QOR from Coxiella burnetii (PDB entry: 3TQH) (Franklin
et al., 2015) was used as model and modified based on
sequence alignment with ceQORH using CHAINSAW (Stein,
2008) from CCP4 to calculate the phases for the data of
ceQORH-13-KOTE. The other structures were solved using the
monomer of ceQORH-13-KOTE as search model for molecular
replacement. All the model refinements were performed with
non-crystallographic symmetry. The refinements and rebuilding
were done using PHENIX (Adams et al., 2010) and COOT
(Emsley et al., 2010) respectively. Water molecules were added
in apo-ceQORH using PHENIX. Refinement statistics are
summarized in Table 2. Structure of ceQORH-NADPH-13-
KODE was not used for analyses since statistics of X-ray data
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TABLE 1 | Statistics of data collection.

CeQORH-13-KOTE CeQORH-NADP+-
13-KOTE

Resolution range (Å) 40.21–2.78
(2.94–2.78)

49.58–2.81
(2.98–2.81)

Wavelength (Å) 0.9796 1.04

Space group P1 P21
Unit cell parameters
(Å,◦)

a = 82.87, b = 121.01,
c = 122.94, α = 66.73,
β = 79.10, γ = 79.99

a = 82.16, b = 128.60,
c = 150.12, β = 97.76

Molecules in au 12 8

Number of total
reflections

186,642 (27,138) 283,856 (45,069)

Unique reflections 102,756 (15,212) 75,277 (11,943)

Average multiplicity 1.8 (1.8) 3.8 (3.8)

Data completeness (%) 94.8 (87.0) 99.4 (98.2)

Rsym (%) 14.5 (75.4) 8.6 (62.6)

<I/σ(I)> 6.1 (1.1) 13.7 (2.2)

CC(1/2) ND 99.7 (77.0)

Rsym = ΣΣ |Ii-Im|/ΣΣ Ii, where Ii is the intensity of the measured reflection and Im is

the mean intensity of this reflection. Values indicated in parentheses correspond to the

statistics in the highest resolution shell.

were poor. It is roughly similar to that of ceQORH-NADP+-
13-KOTE and 13-KODE is located at a similar position than
13-KOTE.

Atomic coordinates and X-ray data were deposited in the PDB
with the accession numbers: apo-ceQORH (5A3V), ceQORH-13-
KOTE (5A3J), and ceQORH-NADP+-13-KOTE (5A4D).

RESULTS

Analysis of ceQORH Oligomerization State
The oligomeric forms of ceQORH (i.e., dimers and tetramers,
see later) observed in the different crystals raised the question
of their physiological relevance. Indeed, we previously showed
by analytical ultracentrifugation analyses (AUC) (Mas y mas
et al., 2015) that ceQORH in the presence of NADPH is a
monomer while apo-ceQORH displayed several oligomerization
forms, i.e., monomeric, dimeric, and tetrameric. As NADPH is
always present in vivo, ceQORH is probably a monomer at least
in the absence of the other substrates. To see whether γ-ketols
(substrates) or the ketodiene and ketotriene (ligands) affected
the ceQORH oligomerization state, tryptophan fluorescence
anisotropy measurements of ceQORH were carried out in the
same experimental conditions as in vitro kinetics (Curien et al.,
2016). No change in fluorescence anisotropy was observed
upon addition of NADPH, NADP+, 13-KOD(T)E or substrates,
either alone or in combination. The same results were obtained
when the fluorescence anisotropy was measured with a C-
terminal GFP-fusion form of ceQORH taking opportunity of
the fluorescence of GFP. Since ceQORH-NADPH is a monomer
(Mas y mas et al., 2015) even at high concentration and no
change in fluorescence anisotropy is observed upon addition
of ligands we can conclude that ceQORH is active with its
substrates and binds ligands as a monomer. The oligomeric states

TABLE 2 | Refinement statistics.

Apo-ceQORH CeQORH-13-
KOTE

CeQORH-NADP+-
13-KOTE

Resolution (Å) 42.26–2.34
(2.42–2.34)

40.21–2.78
(2.81–2.78)

49.58–2.81
(2.84–2.81)

Rcryst (σF = 0) (%) 18.14 (22.19) 20.03 (32.28) 18.82 (32.46)

Rfree (σF = 0) (%) 25.05 (32.92) 25.75 (36.90) 22.47 (38.87)

Number of atoms 5,275 28,354 19,576

Water molecules 387 0 0

B average (Å2) 25.64 45.46 72.36

Rmsd bonds (Å) 0.011 0.011 0.008

Rmsd angle (◦) 1.350 1.286 1.214

Ramachandran
favored (%)

98.04 97.02 97.80

Ramachandran
outliers (%)

1.06 1.05 0.42

Values indicated in parentheses correspond to the statistics in the highest resolution shell.

Rcryst =Σ ||Fobs|-|Fcalc||/Σ |Fobs|. Rfree (Brünger, 1992) is the same as Rcryst but

calculated for 5% data omitted from the refinement.

observed in AUC and in crystals (see after) thus result from
the use of high ceQORH concentrations (17.5 and 174.9µM
in AUC and 145.8µM in crystallogenesis) and probably do
not have any physiological significance. The oligomerization
state is however described and discussed in the context
of structure comparison with other QORs that form stable
dimers.

The ceQORH Oligomers
In crystals of apo-ceQORH, the asymmetric unit contains
two monomers related by a non-crystallographic two-fold
axis (Figures 2A,B) that form a dimer. The monomers are
very similar with a value of root mean square deviation
(rmsd) of 0.25 Å between monomers. The buried area in
the dimer interface is 2,410 Å2. The dimer of apo-ceQORH
crystallized whereas monomers and tetramers observed in
AUC did not. No crystallization could be observed with
the following complexes, ceQORH-NADPH, ceQORH-γ-ketol,
and ceQORH-NADP+-γ-ketols using either 18:1 or 18:2 γ-
ketols. We could obtain crystals with 13-KODE and 13-KOTE
without and with NADPH or NADP+. In the crystals of the
binary and ternary complexes ceQORH-13-KOTE and ceQORH-
NADP+-13-KOTE, the asymmetric unit contains 12 and 8
ceQORH molecules, respectively. They assemble into tetramers
(Figures 3A,B). As indicated above the tetramers observed in the
crystals do not have any physiological significance. The structure
of the tetramers is similar as characterized by low values of rmsd
when the tetramers are superimposed, in a range from 0.62 to
1.19 Å. The monomers of the three ceQORH structures can be
superimposed with low rmsd going from 0.03 to 0.80 Å. The
highest differences in rmsd are observed between the monomers
of apo-ceQORH and those in complexes. The dimer of apo-
ceQORH does not superimpose on any dimers of the tetramers
(Figure 4). The interactions between monomers are therefore
the main differences between the apo-ceQORH dimer and the
tetramers.
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FIGURE 2 | (A) view of the ceQORH dimer (apo-ceQORH) with each
monomer in a different color. The β-strands are drawn in arrows and the
α-helices are represented in ribbons. (B) crystal packing of the apo-ceQORH
in the space group C2221. Two molecules are in the asymmetric unit.

Comparison of apo-ceQORH and ceQORH
Bound to Ligands
Overall Description of the Monomers
The ceQORH monomer is formed of two domains (Figure 5)
with (i) the catalytic domain including residues from Gly3
to Pro132 and from Leu277 to Pro329 and (ii) the cofactor
binding domain (Val133 to Leu276) showing the classical motif
of Rossmann fold. No major overall conformational change is
observed in monomers following ligand binding, as shown by
the low values of rmsd between monomers. Minor local changes
could be observed following ligands binding, as described
below.

Description of the Ligand Binding Sites
Figure 6 shows that NADP+ is well-defined in the electron
density map of the ternary complex (ceQORH-NADP+-
13-KOTE). NADP+ is bound at the interface of the two
domains and the nicotinamide ring is in the vicinity of the

FIGURE 3 | (A) view of ceQORH-NADP+-13-KOTE tetramer. Each monomer
is displayed with a different color. The β-strands are drawn in arrows and the
α-helices are represented in ribbons. NADP+ and 13-KOTE are drawn in
sticks. (B) crystal packing of the ceQORH-NADP+-13-KOTE in the space
group P21. Eight molecules of ceQORH-NADP+-13-KOTE are in the
asymmetric unit.

catalytic site. Comparison of apo-ceQORH and ceQORH-
NADP+-13-KOTE monomers shows that NADP+ binding
introduces local changes in the vicinity of the cofactor.
The orientation of the Arg190 side chain is modified,
stabilizing the 2′-phosphate of the NADP+ adenosine
moiety. The loop containing Thr251 in the Rossmann
fold shifts and stabilizes the ribose group of the NADP+

nicotinamide moiety by interacting with the Thr251 hydroxyl
group.

The quality of the electron density map for 13-KOTE
differs depending on the monomers in the binary and ternary
complexes, suggesting flexibility of the 13-KOTE aliphatic
chain (Figure 6). The 13-KOTE binding site is large and
solvent accessible (Figure 7). Upon 13-KOTE binding, the
loop from Leu97 to Gly103 moves, thus stabilizing the ligand
(Figure S3).

13-KOTE is not a substrate of ceQORH (Curien et al.,
2016) though it displays an unsaturated double bond in α,β
of a carbonyl group. Analyses of the ceQORH structures
provide a possible explanation for this absence of activity.
In the ceQORH-NADP+-13-KOTE structure, the aliphatic
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FIGURE 4 | View of the superimposition of apo-ceQORH (blue) onto
ceQORH-NADP+-13-KOTE (purple). For clarity a single dimer of the
tetramer was drawn.

chain of 13-KOTE is observed in electron density up to
the C11 atom of the α,β-unsaturated carbon-carbon bond
(C11 = C12) (Figure 6). The distance average between the
C11 atom and the C4 atom of the NADP+ nicotinamide
ring bearing the hydride is 6.84 Å. The flexibility of 13-
KOTE and the large distance between the α,β-unsaturated
carbon-carbon bond (C11 = C12) and the C4 atom of
NADP+ nicotinamide ring are not compatible with a hydride
transfer.

Changes in the ceQORH Oligomerization States
We previously showed (Mas y mas et al., 2015) that addition of
NADPH to apo-ceQORH changes the oligomerization state of
ceQORH from amixture of monomers, dimers and tetramers to a
solution of monomers. NADPH is always present in vivo and the
dimeric apo-ceQORH probably never forms in cell. In the apo-
ceQORH dimer, interactions between monomers mainly involve
residues in the α-helix Pro254-Met267 belonging to the cofactor
binding domain. Each α-helix in the dimer contributes for 723
Å2 to the buried area, being 60% of the overall buried area at the
dimer interface. When the apo-ceQORH structure is compared
either to the ceQORH-13-KOTE or ceQORH-NADP+-13-KOTE
structure, the main chain from Asn46 to Leu61 and from Ile250
to Lys269, containing the α-helix Pro254-Met267 involved in
the dimer interface, are shifted. The shift of the main chain
from Ile250 to Lys269 is even larger in the ceQORH-NADP+-13-
KOTE structure compared to the ceQORH-13-KOTE complex
due to the NADP+ binding. The new position of the α-helix
Pro254-Met267 observed in ceQORH-NADP+-13-KOTE could
prevent the dimer formation when ceQORH binds NADPH
(Figure S3) and may explain why ceQORH-NADPH behaves as
a monomer in solution (Mas y mas et al., 2015).

As our results suggest that the tetrameric forms of
ceQORH in the presence of 13-KOTE or 13-KOTE with
NADP+ are non-physiological (see first paragraph), we briefly

FIGURE 5 | View of the ceQORH monomer from
ceQORH-NADP+-13-KOTE. The catalytic domain (Gly3-Pro132,
Leu277-Pro329) is colored in blue. The cofactor binding domain
(Val133-Leu276) is colored in magenta. The internal chloroplast targeting
sequence peptide (Pro59-Leu100) is colored in green. NADP+ and 13-KOTE
are drawn in sticks.

describe the structures. In the complexes ceQORH-13-KOTE
and ceQORH-NADP+-13-KOTE complexes, residues of three
ceQORH monomers interact with 13-KOTE by hydrogen bonds
and van der Waals interactions. The 13-KOTE carboxylate
group from one monomer is hydrogen bonded to the Arg58
guanidinium group and Tyr14 hydroxyl group from another
monomer (Figure 8). Thus, the 13-KOTE carboxylate group is
an anchoring point allowing for oligomerization in the crystals.

Comparisons with Other Quinone
Oxidoreductases (QORs)
The apo-ceQORH monomer was used for searching homolog
and comparisons with structures from the PDB using
PDBefold (Krissinel and Henrick, 2004). When monomers are
superimposed the values of rmsd go from 1.42 Å (comparison
with the QOR from C. burnetii, PDB entry: 3TQH) (Franklin
et al., 2015) to 2.65 Å (comparison with a putative NADPH
quinone reductase from Mesorhizobium loti, PDB entry: 3PI7).
The sequence identity based on structure comparison goes from
20 to 32%. The fold of QORs is roughly conserved and also
similar to that of alcohol dehydrogenases belonging to the MDR
family.

Comparison of Oligomeric State
Proteins in the QOR family display two different oligomeric
states, being either monomers (such as the QOR from C.
burnetii) or dimers [E. coli QOR (Thorn et al., 1995), A. thaliana
alkenal reductase AtAER (Youn et al., 2006), Saccharomyces
cerevisiae ζ -crystallin (Zta1) (Guo et al., 2011)]. Structure
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FIGURE 6 | View of the 2Fo-Fc electron density omit map (blue) at 2.8 Å
resolution contoured at 1.2 σ level, calculated using PHENIX,
surrounding 13-KOTE and NADP+. The β-strands are drawn in arrows and
the α-helices are represented in ribbons. 13-KOTE until the carbon C11 and
NADP+ are drawn in stick.

FIGURE 7 | View of the ligand binding site of ceQORH. 13-KOTE until
the carbon C11 and NADP+ are drawn in stick.

analysis provides an explanation for these differences. The
main difference is observed when dimeric QORs are compared
with apo-ceQORH. The analysis of dimeric QORs of known
structures showed that interactions between themonomers occur
by involving a β-strand of the Rossmann fold leading to the
formation of a QOR dimer displaying a 12 stranded β-sheet. In
ceQORH, the residues (Thr251-Lys269) are folded in a loop-α-
helix(Pro254-Met267)-loop. This α-helix interacts with the non-
crystallographic symmetry related α-helix in the apo-ceQORH
dimer, as described above. Thr251-Lys269 from ceQORH do
not superimpose onto the corresponding residues (Gly239 to
Ser258) of QOR from E. coli (PDB entry: 1QOR) (Thorn et al.,
1995) (Figure 9). The orientation of the α-helix (Pro254-Met267)
prevents the monomer of ceQORH to interact with another
monomer to form a dimer similar to that observed in dimeric
QORs. When bound to NADP+ or NADPH, dimeric QORs
remain in the dimeric state while AUC studies (Mas y mas et al.,
2015) and tryptophan fluorescence anisotropy measurements
showed that ceQORH is a monomer. Thus, dimeric QORs are
stable dimers, which is not the case of ceQORH.

FIGURE 8 | View of residues stabilizing the first atoms of 13-KOTE in
the ceQORH-13-KOTE. 13-KOTE tetramer, Arg63 and Leu100 from one
monomer, and Ile265, Thr266 from a second monomer are represented in van
der Waals spheres. Arg58 and Tyr14 from a third monomer are drawn in stick.
Hydrogen bonds between the 13-KOTE carboxylate group and Tyr14 and
Arg58 are drawn in dashed lines and distances are given in Å.

Comparison of the Binding Sites
When the cofactor binding site of other QORs is compared
with that of ceQORH several interactions between these proteins
and NADP+ are observed in the ceQORH-NADP+-13-KOTE
structure. However, the residues in the catalytic site are not
conserved at the exception of Asn46 which was proposed
for substrate stabilization in S. cerevisiae ζ -crystallin (Zta1)
(Guo et al., 2011). Ile50, Tyr59, and Leu131 proposed for
quinone orientation in catalytic site of Zta1 correspond to the
hydrophobic amino acids Val47, Ile56, and Val132 in ceQORH.

Insights into the Discrimination of Substrate Length

of the Alkenal/Alkenone Reductases
To gain a deeper understanding of the ligand specificity at the
molecular level, structures of theArabidopsis alkenal double bond
reductase At5g16970 (AtAER) bound to p-coumaryl aldehyde or
4-hydroxy-2-nonenal (PDB entries: 2J3J and 2J3K, respectively)
(Youn et al., 2006), of the enone oxidoreductase from Fragaria
x ananassa (PDB entry: 4IDF) (Schiefner et al., 2013) and
of ceQORH were compared. The enone oxidoreductase from
Fragaria x ananassa (PDB entry: 4IDF) (Schiefner et al., 2013)
displays 70.8% sequence identity with AtAOR (Figure S4).
ceQORH shares 33% sequence identity with AtAOR and 32%
with the enone oxidoreductase from Fragaria x ananassa. The
rmsd values between the monomers of ceQORH-NADP+-
13KOTE and the enone oxidoreductase from Fragaria x ananassa
(PDB code: 4IDF) are between 1.48 and 1.52 Å. Analysis of
the structures shows that the enzymes have a large substrate
binding site. In 4IDF, the loop Leu104-Glu120 (Val112-Glu128
in AtAOR), corresponding to Leu97-Glu107 in ceQORH or
Ile103-Glu108 in AtAER, is located in the vicinity of the
binding site and is larger than in ceQORH and AtAER. In
the six structures of enone oxidoreductase from Fragaria x
ananassa, the conformation of this loop (B average of 13.3 Å2)
does not change upon ligand binding and the loop protrudes
inside the ligand binding site. Superimposition of the enone
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FIGURE 9 | Superimposition of the monomer from E. coli 1QOR (green)
(Thorn et al., 1995) onto that of A. thaliana ceQORH (cyan). Gly239 to
Ser258 in 1QOR is colored in yellow and the corresponding zone
(Thr251-Lys269) in ceQORH is colored in pink.

oxidoreductase from Fragaria x ananassa with the structures of
AtAER and ceQORH shows clashes between the loop Leu104-
Glu120 (Val112-Glu128 in AtAOR) and 13-KOTE of ceQORH-
NADP+-13-KOTE (Figure 10), or with the p-coumaryl aldehyde
in 2J3J and 4-hydroxy-2-nonenal in 2J3K of AtAER. The
substrate specificity of AtAOR, restricted to small chain α,β-
unsaturated carbonyl (C < 5), could therefore result from the
length of the loop (Val112-Glu128) which could prevent binding
of large substrates.

ceQORH Import Sequence
ceQORH has the peculiar property to possess an internal signal
sequence (Pro59-Leu100), for its import into the chloroplast,
which is not cleaved after import (Miras et al., 2002, 2007). In the
ceQORH structure, the internal chloroplast targeting sequence
is folded as a two anti-parallel β-strands (Thr71 to Gly81 and
Asp91 to Leu97) connected by a long loop (Ser82 to Gly90)
(Figure 5). The chloroplast targeting sequence is partially solvent
exposed and forms part of a larger 4-stranded β-sheet with the
catalytic domain. Clearly, cleavage of this sequence would affect
the active site and obviously had to be retained for the protein to
be active. The internal chloroplast targeting sequence described
for ceQORH has a similar fold in the other QORs. Therefore, the
information for the ceQORH targeting likely does not rely on the

FIGURE 10 | Superimposition of the monomer from
ceQORH-NADP+-13-KOTE (green) onto the enone reductase from
Fragaria x ananassa (pink) (Schiefner et al., 2013). The cofactors and
ligands are drawn in sticks. 4-hydroxy-5-methylfuran-3(2H)-one and NADPH
from enone oxidoreductase are colored in pink. NADP+ and 13-KOTE from
ceQORH are colored in green.

structure of its internal chloroplast targeting sequence but rather
on its primary structure.

DISCUSSION

9,12 γ-ketols are plant specific reactive electrophile oxylipins
produced spontaneously in chloroplasts (Grechkin et al., 1991).
Until recently, no enzyme able to detoxify γ-ketol in the
chloroplast could be identified. Previously, we showed that
ceQORH, a chloroplast inner envelope membrane associated
protein, efficiently reduces γ-ketol but is inactive with the
ketodienes 13-KODE and 13-KOTE and small reactive aldehydes
(less than 9 carbon atoms) (Curien et al., 2016). Structure
analyses of ceQORH crystallized bound to ligands showed that
the ligand binding site is large and solvent exposed. These
features are consistent with the binding of medium-sized (C >

9) molecules such as 1,3-diphenyl-2-propenone or 4-oxononenal
but also with the binding of the long-chain molecules 9,12 γ-
ketols (18 carbon atoms) (Curien et al., 2016). The structure
analysis of the ternary complex ceQORH-NADP+-13-KOTE
provides a structural explanation for the absence of activity
with 13-KOTE with a positioning inconsistent with a hydride
transfer from NADPH to the C=C bond positioned in α,β of
the ketone. This observation also suggests that positioning of γ-
ketol in the ligand binding site of ceQORH is different from that
observed for 13-KOTE, γ-ketol being necessarily closer from the
C4 of NADPH to be reduced. Structure comparisons and kinetic
studies revealed that ceQORH shares structural similarities and
overlapping substrate specificity with the cytoplasmic NADPH-
dependent 2-alkenal reductase (AtAER) from A. thaliana (PDB
entries: 2J3J and 2J3K) (Mano et al., 2005; Youn et al., 2006).
AtAER is able to reduce the same substrates as ceQORH with
similar efficiencies. However, AtAER substrate specificity is much
larger than that of ceQORH, being active on ketodiene and
ketotriene and showing much higher affinity for 4-hydroxy-2-
nonenal and the C12 molecule traumatin (Curien et al., 2016).
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The structure comparison shows that both enzymes have a
large ligand binding site. More generally, structure comparison
with QORs and sequence alignments showed that the residues
of ceQORH binding site are not well-conserved. Only co-
crystallization of ceQORH and other QORs with substrates
would allow understanding the basis of ceQORH restricted
substrate specificity. Unfortunately we could not obtain crystals
in the presence of γ-ketols. Nonetheless, by comparing different
structures of QORs we could highlight a molecular basis allowing
selection of the substrate length in the soluble stromal AtAOR, an
enzyme that only reduces short-chain α,β unsaturated carbonyls.
The AtAOR specificity for small compounds probably results
from the presence of a long loop located in the vicinity of the
binding site of AtAOR, which could prevent the binding of large
molecules.

By comparison with other QORs that are stable dimers, all
our results indicate that ceQORH is a monomer in solution
and is active as a monomer. Oligomerization observed in
crystals and in AUC experiments only occurs at high protein
concentrations under conditions that are probably irrelevant of
physiological conditions. Comparison of ceQORH structure with
other dimeric QORs shows that the ceQORH dimer is different
from the stable dimer of QORs due to structural differences
in the Rossmann fold. A dimerization mode similar to that of
AtAER is prevented in ceQORH by the orientation of the α-
helix Pro254-Met267. Analysis of QOR from C. Burnetii (PDB
entry: 3TQH) (Franklin et al., 2015) bound to NADPH, which
is also a monomeric QOR supports this explanation as an α-
helix equivalent to the ceQORH Pro254-Met267 α-helix is also
observed. As ceQORH is associated to the inner membrane of
chloroplast envelope (Miras et al., 2007), amonomeric state could
increase its catalytic efficiency (higher mobility, better dispersion
on the membrane surface) and might have been selected during
evolution as this would favor the detoxification rate.

The successful crystallization of ceQORH in the presence of
ketotriene and ketodiene raised the question of the physiological
significance of this property. Kinetic experiments showed
that ceQORH could be inhibited by 13-KODE. However, the
inhibition was a slow process taking 400 s to reach completion
A IC50 of 36µM for 13-KODE could be determined in the
presence of 25µM substrate (Figures S5). 13-KODE and 13-
KOTE are molecules that are produced during the hypersensitive
response (HR) of plants attacked by a pathogen (Andersson
et al., 2006). This response leads to local destruction of the plant
tissues, preventing the spreading of the pathogen. Ketodiene
and ketotriene can accumulate to 2.5–5 nmol per g fresh
weight several hours after the hypersensitive response is initiated
(Andersson et al., 2006). This value corresponds to 2.5–5µM
assuming a homogeneous distribution in the cell. As these
compounds could be concentrated locally, they could reached
concentration close to ceQORH IC50 and a first hypothesis
might be that ceQORH sequesters ketodi(tri)enes quantitatively.
However, this does not seem to be the case for the following
reason: ceQORH is a low abundant protein at the cellular
level. ceQORH represents about 1% of the chloroplast envelope
proteins corresponding to about 50,000 copies per chloroplast,
i.e., ∼1µM assuming the protein is soluble. This is barely

compatible with an efficient sequestering of sub-micromolar
concentrations of ketodiene and ketotriene. Another model
can be proposed. Some RES oxylipins are signaling molecules
(Farmer and Mueller, 2013). Upon increase of the ketodiene and
ketotriene levels, following the triggering of the HR (Andersson
et al., 2006), ceQORH would become inactivated by these
molecules and would then be unable to metabolize γ-ketols.
γ-ketols would in turn accumulate and contribute either to
signaling or to an additional chemical defense of the plant.
ceQORH may thus have a dual function, detoxification of γ-
ketols under normal conditions and indirect contribution to
chemical defense/signaling after pathogen attack. This would be
reminiscent of the “floodgate” hypothesis proposed for H2O2

signaling where inhibition of 2-Cys peroxiredoxins occurs at high
concentration of H2O2 (Wood et al., 2003).

More work is required to determine how ceQORHhandles 13-
KODE, 13-KOTE and γ-ketols in vivo, and whether ceQORH is
involved during the HR response to pathogen attacks.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.
00329/full#supplementary-material
Figure S1 | Skeletal formulas of γ-ketol 18:1, 13-KOTE, 13-KODE and
drawing of the reaction catalyzed by ceQORH.

Figure S2 | Sequence alignment between ceQORH from Arabidopsis

thaliana, and QORs from Coxiella burnetii (3TQH) (Franklin et al., 2015),
Escherichia coli (1QOR) (Thorn et al., 1995), and Saccharomyces

cerevisiae (3QWA) Guo et al., 2011. The ceQORH secondary structure is
drawn. The β-strands are represented by arrows and the α-helices by curls. The
conserved residues are highlighted in red. The sequences were aligned using
Multalin (Corpet, 1988) and the drawing was generated using ESPript (Gouet
et al., 1999).

Figure S3 | Superimposition of apo-ceQORH (green), ceQORH-13-KOTE
(cyan), and ceQORH-NADP+-13-KOTE (magenta) displaying
conformational changes which occur upon binding of 13-KOTE and
13-KOTE + NADP+.
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Figure S4 | Sequence alignment between ceQORH, AtAER (Mano et al.,
2002), AtAOR from Arabidopsis thaliana (Yamauchi et al., 2012), and the
enone oxidoreductase from Fragaria x ananassa (4IDF) (Schiefner et al.,
2013). The conserved residues are highlighted in red. The sequences were
aligned using Multalin (Corpet, 1988) and the drawing was generated using
ESPript (Gouet et al., 1999).

Figure S5 | Inhibition of ceQORH by the ketodiene 13-KODE; (A) activity
(1Abs340 nm/s) was measured after different preincubation time of the enzyme
with 13-KODE. 50 nM enzyme was pre-incubated in the presence of 10 mM
HEPES-KOH pH 7.5, 150 mM KCl, 160 µM NADPH and 55 µM 13-KODE. The

reaction was initiated by the addition of 25 µM trans-1,3 diphenyl-2-propenone.
The kobs value was obtained by nonlinear least-square fitting of the progress
curves using the following equation: At = At0–vs.t + (vs–vi). (1-exp(-kobs.t))/kobs,
where At is the absorbance at time t, At0 is the absorbance at t0, vi is the initial
velocity of the reaction, vs. is the steady-state velocity of the reaction, and kobs is
an exponential decay constant. A kobs value of 0,01 s-1 was obtained by curve
fitting and t1/2 (i.e., ln2/kobs) was 70 s. (B) The enzyme
(50 nM) was preincubated 400 s in the presence of 160 µM NADPH and
13-KODE at different concentrations as indicated in the graph before addition of
the 25 µM trans-1,3 diphenyl-2-propenone. An IC50 of 36 µM (±3) µM was
measured.
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