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a b s t r a c t

The presented study introduces the development of the multi-reflection grazing-incidence X-ray
diffraction method (MGIXD) for residual stress determination. The proposed new methodology is aimed
at obtaining more reliable experimental data and increasing the depth of non-destructive stress deter-
mination below the sample surface. To verify proposed method measurements were performed on a
classical X-ray diffractometer (Cu Ka radiation) and using synchrotron radiation (three different wave-
lengths: l ¼ 1.2527 Å, l ¼ 1.5419 Å and l ¼ 1.7512 Å). The Al2017 alloy subjected to three different
surface treatments was investigated in this study. The obtained results showed that the proposed
development of MGIXD method, in which not only different incident angles but also different wave-
lengths of X-ray are used, can be successfully applied for residual stress determination, especially when
stress gradients are present in the sample.
1. Introduction

Residual stress can result from temperature or deformation
gradients which are present in almost every step of material pro-
cessing. They can occur as a consequence of various technological
treatments and manufacturing processes but they can also arise in
the component during its service life. Therefore, both the magni-
tude and the spatial distribution of residual stresses have to be
analysed in detail in order to understand the behaviour of material
subjected either to heat treatment or plastic deformation, espe-
cially in the surface region. The great need for precise and non-
destructive determination of stress has resulted in the
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development of new measuring methods. Among them X-ray
diffraction techniques are common methods for stress determina-
tion in the surface layers of the materials. In fact, in diffraction
stress investigation the interatomic lattice spacing and thus elastic
strain are measured directly. However, stress and strain are tensor
quantities which are related to one another by the elastic stiffness
tensor. One should be aware of the significance of the X-rays ab-
sorption and therefore the information depth on stress determi-
nation. This effect is of particular concern when the gradient of
stress is present in the sample.

The mean lattice strain < εðf;j; zÞ> at information depth z,
calculated over reflecting grains can be related with the mean first
order stress according to the following equation [1,2]:
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e�z=tdz and 〈d(f,j)〉hkl are

interplanar spacings (determined from diffraction peak positions),
Fij(hkl,f,j) are the X-ray Stress Factors (XSF), f is the azimuthal
angle between measuring direction and direction along which the
principal component s is defined, j polar angle describes the
inclination of the diffraction vector with respect to the sample
normal (for strict definition see for example [1,3,4]), t is the sample
thickness, t is the ‘penetration depth’ defined as the distance from
the surface of bulk material (t / ∞), for which (1�1/e) ¼ 0.63 part
of total intensity of the incident beam is absorbed (t depends on
absorption factor and geometry of measurement).

The above average corresponds to so-called ‘information’ or
‘effective’ depth z, which can be understood as the mean value of z-
depth weighted by an attenuation factor [2]:
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Z t

0
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0
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In order to reveal the real depth profile of stress sIijðzÞ, it is

necessary to perform inverse Laplace transformation for the data
gained experimentally sIijðz ¼ tÞ [5e7].

The great need for precise stress determination has involved the
introduction of new measuring methods and devices into the
experimental world. One of them is multi-reflection grazing-inci-
dence X-ray diffraction (MGIXD) geometry [8], also called multiple
{hkl} grazing incidence [9]. This method is characterised by a small
and constant incidence angle a and by different orientations of the
scattering vector DK (variable 2q{hkl} angle for a constant wave-
length; see Fig. 1) given by the equation:

jfhklg ¼ qfhklg � a (3)
Fig. 1. Geometry of the MGIXD-sin2j method. Two different orientations of the scattering v
angle a are shown in figures (a) and (b).
where: 2q{hkl} are the diffraction angles corresponding to those
reflections hkl for which diffraction peaks are measured [8,10,11].

In this geometry the diffraction plane (defined by incident and
diffracted beam) is always perpendicular to the sample surface and
the penetration depth is given by Ref. [10]:

t ¼
�

m

sin a
þ m

sinð2qfhklg � aÞ
��1

(4)

where: m is the linear absorption coefficient of X-rays in the studied
material.

Stress can be determined from the interplanar spacings
measured in direction of the scattering vector; in this case it means
for different j{hkl} and consequently various q{hkl} angles but for a
constant a angle (Fig. 1). It is convenient to use for the MGIXD
method, instead of <dðf;j; zÞ> fhklg, the so called equivalent lattice
parameters < aðf;j; zÞ> fhklg and to express them with the mac-

rostresses sIijðzÞ and strain free lattice constant a0 [3,4,8,10,11]:

< aðf;j; zÞ> fhklg ¼ ½Fijðhkl;f;jÞsIijðzÞ�a0 þ a0 (5)

where, for cubic crystal structure:

< aðf;j; zÞ> fhklg ¼ <dðf;j; zÞ> fhklg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p
, the j depends

on the diffraction angle for the given reflection hkl (Eq. (3)), while
the f angles should be chosen taking into account symmetry of the
sample.

In the case of the MGIXD method, the measurements of inter-
planar spacings 〈d(f,j,t)〉{hkl} are performed in the near surface
volume, limited by radiation absorption. Using Eq. (5) and
assuming sI33ðtÞ ¼ 0, the other parameters of the stress tensor and
a0 parameter can be determined from the least square fitting pro-
cedure. On the other hand, if the value a0 is known, the full stress
tensor can be found for given t or z. This provides a possibility to
measure a stress gradient as well as the in-depth dependence of a0.
The great advantage of this method is that for a given a angle, the
penetration depth is constant and therefore it is possible to perform
ector with respect to the sample (different j{hkl} and 2q{hkl} angles) for fixed incidence



Table 2
Single crystal elastic constants and Zener anisotropy factor for aluminium [13].

Material Single crystal elastic constants (GPa) Zener factor

C11 C12 C44

Al 106.8 60.4 28.3 1.22

Table 3
Values of surface roughness parameter (Ra) for investi-
gated sample.

Surface treatment Ra (mm)

Al2017
Polishing type I 0.13
Polishing type II 0.27
Grinding 1.18
non-destructive stress measurements for different layers under the
surface of the sample. More detailed information about the pre-
sented method has been widely described for example in the
following references: [3,4,8,10e12].

In this study, attention will be paid to the possibility of
measuring stress evolution vs. depth below the sample surfacewith
the methodology of data interpretation obtained not only for
different incident angles but also using simultaneously different
wavelengths (the ‘multi-reflection’ and also ‘multi-wavelength’
method). The advantage of this approach is that more experimental
data are available for calculating the stresses.

2. Experimental

The MGIXD measurements were performed for mechanically
treated surfaces of Al2017 alloy using firstly a PANalytical e X'Pert
MRDX-ray diffractometer. The results obtained with classical X-ray
diffraction were verified by synchrotron radiation in order to test
the MGIXD method and to precisely designate the variation of
stress in the function of depth. Measurements were performed at
the G3 beamline at the DORIS III (HASYLAB) storage ring. MGIXD
geometry was used to measure stress at different depths below the
surface.

2.1. Sample preparation and characterisation

In this study, the Al2017 alloy exhibiting low crystal anisotropy
was investigated. The composition of this material is given in
Table 1, while the single crystal elastic constants and Zener
anisotropy factor are collated in Table 2 [13]. Three different sam-
ples were prepared by using three different kinds of mechanical
surface treatment:

a) grinding (the speed of rotation of the grinding wheel was
2000 rpm, while the work speed was 9 m/min.; several passes
were carried out and in each pass a layer of 20 mm was
removed);

b) polishing type I (two-directional manual polishing with 5 steps
using emery papers: 800, 1200, 2000, 2500, 4000 grit; next,
polishing paste was used for final treatment);

c) polishing type II (two-directional manual polishing with 1 step
using emery paper 2000 grit).

The surface roughness Ra parameters for all the mechanically
treated samples are presented in Table 3.

2.2. Laboratory classical monochromatic diffractometer

At first, measurements were performed using the MGIXD
method on a classical diffractometer (Cu Ka radiation) in parallel
beam configurationwith a G€obel mirror (incident beam optics) and
soller collimator (diffracted beam optics). Additionally, the orien-
tation distribution functions (ODFs, see Ref. [14]) characterising
crystallographic texture were determined for all the mechanically
treated samples using Cu radiation in the reflection geometry. The
penetration depth in the texture measurement was always larger
than in the case of stress determination (MGIXD) and the gradients
of texture were not considered in this study. It was found that the
Table 1
Composition of the Al2017 alloy (wt%).

Material Components

Al 2017 Al bal. Si 0.5 Fe 0.7 Cu 4.0
initial texture of the Al2017 material was approximately random.
Polishing modifies the size of the crystallites but does not signifi-
cantly change the texture, which remains almost isotropic after
both types of polishing. The grinding process was the only one
which changed the texture significantly. The ODF for the ground
sample is presented in Fig. 2.
2.3. Synchrotron multiwavelength measurements

The results obtained with classical X-ray diffraction for the
polished sample (type II) showed a high depth-dependent stress
gradient and therefore they were verified using synchrotron radi-
ation. The experiment was performed at the DORIS III (HASYLAB)
storage ring, on beamline G3 spectrometer, equipped with a soller
collimator (equatorial divergence 0.15�) and scintillation detector. A
double-crystal germanium monochromator was used. The beam
dimension at the monochromator was about 5 mm per 10 mm. All
the monochromator movements were driven by stepper motors. A
tilted gold mirror was used for suppression of the higher harmonics
of the synchrotron radiation waves. The penetration depth during
this experiment was changed by proper selection of the incident
angle and wavelength. Three different wavelengths (l ¼ 1.2527 Å,
l ¼ 1.5419 Å and l ¼ 1.7512 Å) were chosen and the corresponding
incidence angles (a) for given penetration depths (t) were calcu-
lated. The sets of incident angles andwavelengths corresponding to
the assumed depths are presented in Table 4. The important
question verifying the proposed methodology is: do we determine
equal stresses for the combination of wavelengths and incident
angles corresponding to the same penetration depth?
3. Results and discussion

3.1. Stress profile determined using laboratory diffractometer

The diffraction peak profiles obtained for different orientations
of the scattering vector, as described by azimuthal angle f and polar
angle j, were successfully fitted by two pseudo-Voigt functions
corresponding to Ka1 and Ka2 lines. Then, the 〈a(f,j)〉{hkl} lattice
parameters were determined from the Bragg's law and using
crystallographic relation between lattice parameter and interplanar
Mn 0.65 Mg 0.6 Cr 0.1 Zn 0.25 Ti 0.15



Fig. 2. Orientation distribution functions (ODF) determined using Cu Ka radiation for
the ground Al2017 sample. The sections through Euler space [14] with the step of 5�

are presented along the f2 axis: 0� � f1, F, 42 � 90� .
spacing (see Eq. (5)). Fig. 3 shows examples of 〈a(f,j)〉{hkl} vs. sin2j
plots measured for the polished (type II) and ground surfaces of the
Al2017 alloy. The 〈a(f,j)〉{hkl} vs. sin2j plots were fitted using the
procedure based on Eq. (5), with the XSF calculated by Eshelby-
Kr€oner method [15] from the single crystal elastic constants given
in Table 2. The influence of texture (cf. Fig. 2) on the XSF values was
taken into account, but it was verified that this effect is not sig-
nificant because of the low elastic anisotropy of the aluminium
crystals. As shown in Fig. 3, in the ground sample a significant
difference of the plot slopes was found for the two azimuth angles
f ¼ 0� and 90�, contrary to the polished sample for which the
slopes are almost equal.

The depth-dependent stress and a0 lattice parameter profiles as
a function of penetration depth (t) were determined for different
incident angles (a) for all the studied Al2017 samples. In Fig. 4, the
obtained results were comparedwithmeasurements performed for
the reference stress free Al powder. As was expected for the
reference sample (Al powder), the stress was equal to zero (within
the range of experimental uncertainty). In the ground sample, a
tensile stress was generated due to the temperature gradient which
is present during surface processing. The stress along direction of
grinding (sI11) is higher than in the transverse direction (sI22). On
Table 4
Wavelengths l, incident angles a and corresponding penetration depths used in
synchrotron experiment.

l ¼ 1.2527 Å l ¼ 1.5419 Å l ¼ 1.7512 Å

a (�) t (mm) a (�) t (mm) a (�) t (mm)

1.6 3.74 3 3.7 3 2.57
2.6 5.94 5 5.91 4.4 3.66
4.9 10.64 10 10.68 7.6 5.93
8.7 17.42 15 14.49 16 10.71
15 26.28 20 17.46
20 31.42
the other hand, compressive stress sI11zsI22 was found in the
polished samples. No significant depth-dependent evolution of
stress was found for the samples after polishing type I or grinding,
but a stress gradient occurred after polishing type II. No significant
depth-dependent evolution of a0 lattice parameter was observed
for all the measured samples.
3.2. Stress profile using synchrotron radiation with different
wavelengths

As it was mentioned earlier, for the sample having a significant
gradient of stress (polishing type II), further investigation was
performed using synchrotron radiation. Three different wave-
lengths (l¼ 1.2527 Å, l¼ 1.5419 Å and l¼ 1.7512 Å) were used and
theMGIXDmethodwas applied, thereby extending the penetration
depth (t) for which the stress was determined. In order to check the
agreement of the depth-dependent profiles obtained for different
absorption of synchrotron radiation (depending on energy), the
stress and a0 parameter as the functions of penetration depth (t)
were determined for each wavelength, independently. The posi-
tions of the peaks were found by pseudo-Voigt function fitting or
calculating the centre of gravity and next the fitting procedure,
based on Eq. (5) with Eshelby-Kr€oner XSF, was applied to calculate
the values of the stress sI11 ¼ sI22 (this assumption was previously
confirmed by X-ray measurements) and a0 parameter. When peaks
were fitted by pseudo-Voigt function (Fig. 5a), a very good agree-
ment was achieved between the data obtained using synchrotron
radiation (for three different wavelengths) and classical diffrac-
tometer. If the peak positions are calculated as the centre of gravity
(Fig. 5b), the agreement was not as good as in the case of pseudo-
Voigt fitting but the stress was still equal, in the margin of uncer-
tainty, for different wavelengths and classical diffractometer. Both
methods (pseudo-Voigt and centre of gravity) gave very similar
results.

It can be concluded that equal stress was determined for the
combinations of wavelengths and incident angles corresponding to
the same penetration depths. Therefore, our hypothesis that the
measured mean interplanar spacings are weighted by absorption
dependent factor (cf. Eq. (1)) was positively verified and the MGIXD
method can be used to determine stress profile under sample
surface. The agreement between stresses measured with different
wavelengths of X-rays opened up the opportunity for MGIXD
method development. The idea was to collect 〈a(f,j)〉{hkl} values
corresponding to the same penetration depth t on the same sin2j
plot. Hence, 〈a(f,j)〉{hkl} vs. sin2j curves (containing information
obtained using different wavelengths) were presented on separate
plots corresponding to the chosen penetration depths (Fig. 6).
Subsequently, the MGIXD method based on Eq. (5) was simulta-
neously applied for all 〈a(f,j)〉{hkl} values measured at the same
penetration depth, as determined by a combination of chosen
wavelength and incident angle. The XSF calculated by Eshelby-
Kr€oner method were used for stress determination. As can be seen
in Fig. 6, the experimental points are close to the fitted lines and a
systematic decrease of the negative slope of the 〈a(f,j)〉{hkl} vs.
sin2j plot (representing compressive stress) with penetration
depth can be seen for both the experimental and fitted results. The
stress depth-dependent profile obtained with the developed
method is presented in Fig. 7a. The advantage of this approach is
that each point on the depth-dependent profile was obtained not
only with different reflections hkl corresponding to different inci-
dent angles (multi-reflection), but also with different wavelengths
(multi-wavelengths). In consequence, the results are statistically
more reliable because they are obtained as an average over a great
number of polycrystalline grains.



Fig. 3. An example of the 〈a(f,j)〉{hkl} vs. sin2j plots for different penetration depths in the polished-type II (a) and ground (b) samples. A significant difference between the plots
for f ¼ 00 and f ¼ 900 is observed in the case of the ground sample.
Finally, the stress profile in the function of real depth z was
determined using inverse Laplace transformation (for details, see
Refs. [5,6]). To do this, the experimentally determined dependence
of stress sI11 vs. penetration depth t was approximated by second
and third order polynomials. Then, the stress evolution in function
of the real depth sI11ðzÞ was determined assuming a bulk material
for which the experimental values are defined as the averages of
the sI11ðzÞ function calculated from the surface to the infinite depth

(i.e. t / ∞ in Eqs. (1) and (2)). In Fig. 7b, the sI11ðzÞ functions
determined from both polynomials are presented with the calcu-
lated upper and lower uncertainty bounds. Almost identical solu-
tions were obtained for both orders of polynomials.

3.3. Analysis of the diffraction peak asymmetry caused by the stress
gradient

In the context of the stress profile sI11ðzÞ presented in Fig. 7b,
two important issues should be considered. Firstly, the function
sI11ðzÞ must be truncated at some depth z. Due to exponential
attenuation of the X-ray beam, the influence of the stresses on the
measured mean values sI11ðtÞ decreases with increasing depth.
Although, the stresses at a great depth can be determined from the
inverse Laplace transform, their relative contribution on the
experimental values becomes negligible due to relatively low in-
tensity of the reflected X-ray beam. Therefore, the z-threshold over
which the sI11ðzÞ function looses its physical meaning should be
estimated.

Secondly, it should be considered whether the determined
stress gradient explains the asymmetry of the diffraction peak
measured using synchrotron radiation. It should be noted that in
the case of synchrotron radiation having a better resolution
(FWHM2q¼90� z 0.1�) in comparison with the used classical
diffractometer configuration (FWHM2q¼90� z 0.3�), the diffraction
data showed the peak profiles more accurately. Consequently, the
peak asymmetry was clearly seen when the peaks were fitted by
symmetrical pseudo-Voigt function. The above-mentioned prob-
lems can be solved applying inverse analysis i.e. by recalculating
the stress distribution sI11ðtÞ from the determined sI11ðzÞ and
comparing the results with the experimental function.

To begin with, the first issue - the sensitivity of the stress at
different depths z on the measured function sI11ðtÞ - was studied.

For this purpose the mean stress sI11ðtÞ was computed using the
equation:

sIijðtÞ ¼
Zx
0

sIijðzÞe�z=tdz

,Zx
0

e�z=tdz (6)

where the integral was calculated up to different limits x and sI11ðzÞ
is the dependence of stress vs. real depth (z), shown in Figs. 7b and
8.

In Fig. 8 the continues lines represents the sIijðtÞ dependence

fitted to the experimental results approximated by second (a) and
third order polynomials (b). According to definition (Eqs. (1) and (2)
for t/∞ ), these functions are equal to the weighted integral
calculated from function sI11ðzÞ, up to infinity for a bulk sample
(consequently also x / ∞ in Eq. (6)). The results of Eq. (6)
computed for different limits x are compared with the measured
stress sI11ðtÞ represented in Fig. 8 by points and fitted continuous
line. It was found that the recalculated profiles do not change



Fig. 4. The depth-dependent profiles of stress (sI11) and a0 parameter vs. penetration depth t for mechanically polished (type I and II) and ground Al2017 samples, as well as the
reference powder sample. The results obtained by MGIXD method with Cu Ka radiation are shown.
significantly and agree with the experiment if the integration is
performed at least up to x ¼ 40 mm, i.e. the stress over 40 mm does
not significantly influence the measured values due to a low
exponential weight in Eq. (6). Therefore, the sI11ðzÞ dependence
determined using the inverse Laplace method shows the real dis-
tribution of stress up to the approximate depth of 40 mm,while over
this threshold the function sI11ðzÞ has not physical meaning and the
stress state is unknown. Finally, it should be also stated that it re-
mains unproven that the obtained solution is unique.

For a deeper insight into the second mentioned problem, the
experimental diffraction peak profiles were simulated. Each peak
was modelled as the superposition of pseudo-Voigt functions
having positions corresponding to the interplanar spacings modi-
fied by different stresses sI11ðzÞ at different depths z. The XSF
Fig. 5. The depth-dependent profiles of stress (sI11) and a0 lattice parameter vs. penetrati
determined by pseudo-Voigt function fitting (a) and using the centre of gravity method (b). T
compared.
(Kr€oner method) were used in the calculation of lattice strains. The
main problem of such modeling is that both FWHM and h param-
eter describing the contribution of the Lorentz component [16] are
unknown and they can depend on the depth z. Only the depen-
dence of peak intensity is known and described by absorption law.
In this work the h parameter was assumed to be constant for
different depths and it was determined by fitting pseudo-Voigt
function to experimental peak for given hkl reflection (and corre-
sponding 2q). In the simulation, the superposed pseudo-Voigt
profiles were weighted by intensity depending on absorption
(corresponding to the depth z). Moreover, different dependences of
FWHMon the depth were assumed in order to reproduce one of the
most asymmetric peaks (l ¼ 1.5419 Å, 2qz 38.6� and a ¼ 15�). The
following in-depth profile of FWHM ¼ b was assumed:
on depth t for the polished (type II) sample. In the analysis the peak positions were
he results for different wavelengths of synchrotron radiation and for Cu Ka radiation are



Fig. 6. The example of 〈a.f,j)〉{hkl} vs. sin2j plots for the polished (type II) sample obtained with three wavelengths (l) and different incident angles (a). In each figure the
experimental data corresponding to the same penetration depth are shown, together with the fitted theoretical line.
b ¼ b0 þ b1 expð � z=xÞ (7)

where: b0 is the FWHM for z /∞ and x, b1 describes the evolution
of FWHM for decreasing depth z, caused by microstructure varia-
tion due to polishing.

It was found that the experimental asymmetrical peak
(l ¼ 1.5419 Å, 2q z 38.6� and a ¼ 15�) is correctly modelled for
x ¼ 10 mm and b0 ¼ b1. In the calculations, the determined sI11ðzÞ
dependence was used and the model peak profiles were compared
with the experimental points as well as with the calculations
assuming zero stress (cf. Fig. 9a). In Fig. 9b, a similar comparison,
Fig. 7. The stress profile for the polished (type II) sample for all the experimental points obta
real depth in sample (b). The uncertainty bounds are given for polynomial of 2nd degree.
but assuming constant FWHM, is shown. An important question is
whether the other peaks (at different a, 2q and for different l) are
also correctly reproduced for the FWHM evolution described by
x ¼ 10 mm. With this aim in mind, different peaks were modelled
assuming the same variation of microstructure (corresponding to
x ¼ 10 mm in Eq. (7)) and the stress dependence sI11ðzÞ shown in
Fig. 7a. Only the values of b0 (assuming b0 ¼ b1) were adjusted
individually for each diffraction peak (cf. Table 5). In Fig. 10 the
experimental profiles were compared with the modelled ones
assuming stress variation sI11ðzÞ or stress equal to zero. The very
good agreement between the experimental and theoretical peaks
ined for the three different wavelengths as a function of t - penetration depth (a) and z -



Fig. 8. The stress profiles for the polished (type II) sample: sI11ðzÞ calculated from inverse Laplace transform, sI11ðtÞmeasured or recalculated from sI11ðzÞ using Eq. (6). Polynomial of
2nd (a) and 3rd (b) degree were applied to fit the sI11ðtÞ experimental values.

Fig. 9. A comparison of the diffraction peak profiles: experimental, simulated for sI11ðzÞ stress function and assuming zero stress (l ¼ 1.5419 Å, 2 q z 38.6� and a ¼ 15�). The results
for FWHM variation described by Eq. (7) with x ¼ 10 mm (a) and for constant FWHM (b) are shown.

Table 5
Values of b0 (assuming b0¼ b1) used in modeling of the peaks for different 2q�angles
and wavelengths.

l ¼ 1.5419 Å l ¼ 1.7512 Å l ¼ 1.2527 Å

2q (�) 38.6 82.7 138.2 44.0 91.6 151.5 31.15 84.8 132.7
b0 (�) 0.12 0.20 0.75 0.12 0.26 0.90 0.115 0.22 0.65
confirms that the sI11ðzÞ function correctly describes the stress
depth-dependence. Moreover, it can also be seen that the stress
gradient differently influences the diffraction peaks measured
for different penetration depth. If the penetration depth t is rela-
tively small (in comparison with stress variation distance),
compressive stress causes a significant shift of the diffraction peak
(t ¼ 3.7 mm, in Fig. 10), while for deeper penetration depth
(t ¼ 14.5 mm, in Fig. 10) the peak is not much shifted but significant
asymmetry appears due to the superposition of the intensities from
regions where compressive stress decreases and, next, changes to a
tensile one.

It can be concluded that the inverse analysis (integration of
stress sI11ðzÞwith intensity weight) resulted in the determination of
the maximum depth for which the stress influences diffraction
results (about 40 mm). Consequently, for this depth the sI11ðzÞ
profile can be determined. Moreover, the inverse analysis applied
for the peak profiles confirmed the stress distribution given by
sI11ðzÞ. In the latter calculation, the increase of FWHM for the peak
components coming from the regions closer to the surface was
assumed. This effect is due to microstructure change caused by
mechanical polishing (an increase of defects density and a decrease
of crystallite size in the deformedmaterial). It should be mentioned
that a similar simulation of peak profile was also conducted by
Genzel et al. [2] in order to explain the influence of stress gradient
on the profile asymmetry. However, in that work the calculations
were performed for one peak in the case of the deposited coating
i.e. when constant FWHM can be assumed.



Fig. 10. A comparison of the diffraction peak profiles: experimental, simulated for sI11ðzÞ stress function and assuming zero stress. For all the peaks (l ¼ 1.5419 Å), the same variation
of FWHM described by Eq. (7) with x ¼ 10 mm was used in the calculations (b0 ¼ b1 is given in Table 5).
4. Summary

The MGIXD method was successfully verified and developed in
order to increase the depth for which the stress gradient can be
determined, therefore in the direction of more accurate residual
stress determination. Not only different incident angles but also
different wavelengths of X-ray radiationwere used for this purpose.
As a result, almost the same depth-dependent stress profiles
were obtained for all the applied wavelengths, while the deter-
mined values of ao did not vary significantly under the sample
surface. Due to the very good resolution of the applied synchrotron
radiation, it was possible to observe the diffraction peak
asymmetry caused by the stress gradient, which was not possible to
be investigated on the classical diffractometer. The stress depth-
dependent distribution vs. real depth z was determined from the
stress profile measured as the function of the information (or
penetration) depth using the inverse Laplace transform. It should
be stressed that it was not proven that the result of the Laplace
transform is unique.

A deeper insight into the presented analysis, based on stress
profile determined from inverse Laplace transform, resulted in the
determination of the maximum depth for which the stress varia-
tion can be determined. Furthermore, the asymmetry of the ob-
tained diffraction peaks measured by synchrotron radiation was
explained by the determined stress gradient.
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