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PROPAGATION ESTIMATES IN THE ONE-COMMUTATOR THEORY

GOLÉNIA, SYLVAIN AND MANDICH, MARC-ADRIEN

Abstract. Working in the abstract framework of Mourre theory, we derive a pair of propa-
gation estimates for scattering states at certain energies of a Hamiltonian H . The propagation
of these states is understood in terms of a conjugate operator A. A similar estimate has long
been known for Hamiltonians having a good regularity with respect to A thanks to the lim-
iting absorption principle (LAP). We show that in general some propagation estimates still
hold when H has less regularity with respect to A, even in situations where the LAP has not
yet been established. The estimates obtained are further discussed in relation to the RAGE
and Riemann-Lebesgue formulae. Based on several examples, including continuous and discrete
Schrödinger operators, it appears that the derived propagation estimates are a new result for
multi-dimensional Hamiltonians.
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1. Introduction

In quantum mechanics one is often interested in knowing the long-time behavior of a given
state of a system. It is well-known that there exist states that to tend to remain localized in a
region of space, called bound states, while there are states that tend to drift away from all regions
of space, called scattering states. The present article is concerned with the study of the latter.
In particular, a propagation estimate is derived and serves to rigorously describe the long-time
propagation, or behavior of these states. A classical way of obtaining a propagation estimate is
by means of some resolvent estimates, or a Limiting Absorption Principle (LAP). The LAP is a
powerful weighted estimate of the resolvent of an operator which implies a propagation estimate
for scattering states as well as the absence of singular continuous spectrum for the system.
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The theory of Mourre was introduced by E. Mourre in [M] and aims at showing a LAP. Among
others, we refer to [CGH, FH, GGM, HuS, JMP, Sa, G, GJ1] and to the book [ABG] for the
development of the theory. In a nutshell, Mourre theory studies the properties of a self-adjoint
operator H, the Hamiltonian of the system, with the help of another self-adjoint operator A,
referred to as a conjugate operator to H. The standard Mourre theory relies on three hypotheses
on the commutator of H and A which are, loosely speaking, that

(1) [H, iA] be positive,
(2) [H, iA] be H-bounded,
(3) [[H, iA], iA] be H-bounded.

The main theory goes as follows:

(1) + (2)
︸ ︷︷ ︸

+ (3) =⇒ Resolvent estimates (LAP) =⇒ Propagation estimates

w
� =⇒ Absence of singular continuous spectrum.

Absence of eigenvalues.

The purpose of the paper is to show that (1) + (2′) =⇒ Weaker propagation estimates, where
(2′) is slightly stronger than (2).

We set up notation and basic notions. Fix self-adjoint operators H and A on a separable
complex Hilbert space H, with domains D(H) and D(A) respectively. For arbitrary Hilbert spaces
F and G, denote the bounded operators from F to G by B(F ,G) and the compact operators from
F to G by K(F ,G). When F = G, we shall abbreviate B(G) := B(G,G) and K(G) := K(G,G).
When G ⊂ H, denote G∗ the antidual of G, when we identify H to its antidual H∗ by the Riesz
isomorphism Theorem. The state of the art Mourre theory has established a progression of classes
which characterize the degree of regularity of H with respect to A. The most important of these
classes are defined in Section 2, but we mention that they are typically distinct in applications
and always satisfy the following inclusions

(1.1) C2(A) ⊂ C1,1(A) ⊂ C1,u(A) ⊂ C1(A).

Of these, C1(A) is the class with the least regularity, whereas C2(A) is the class with the
strongest regularity. Indeed if H ∈ C1(A), then the commutator [H, iA] extends to an oper-
ator in B(D(H),D(H)∗) and is denoted [H, iA]◦; whereas if H ∈ C2(A), then in addition the
iterated commutator [[H, iA], iA] extends to an operator in B(D(H),D(H)∗) and is denoted by
[[H, iA]◦, iA]◦ (see Section 2). The standard example of operators belonging to each of these
classes is the following. We refer to [ABG].

Example 1.1 (Continuous Schrödinger operators). Let H0 be the self-adjoint realization of the
Laplace operator −∆ in L2(Rd). Let Q be the operator of multiplication by x = (x1, ..., xd) ∈ Rd,
and let P := −i∇. Set

H := H0 + Vsr(Q) + Vlr(Q),

where Vsr and Vlr are bounded real-valued functions on Rd. They are respectively the short-
and long-range perturbations. Suppose that Vsr(x), Vlr(x) = o(1) and also that the distribution
x 7→ x ·∇Vlr(x) is a function. Then Vsr(Q) and Vlr(Q) are H0-form relatively compact operators.
This notably implies that σess(H) = [0,+∞) by the Theorem of Weyl on relative compactness.
Let A := (Q · P + P · Q)/2 be the so-called generator of dilations. It is the standard conjugate
operator to H. Table 1 displays Hamiltonians belonging to each of the classes introduced in (1.1).
The idea is clear: stronger decay conditions on the potential imply stronger regularity.

Let EI(H) be the spectral projector of H on a bounded interval I ⊂ R. Assuming H ∈ C1(A),
we say that the Mourre estimate holds for H on I if there is c > 0 and K ∈ K(H) such that

(1.2) EI(H)[H, iA]◦EI(H) > cEI(H) +K,
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Table 1. The regularity of the Hamiltonian H with respect to the decay on the potential

If 〈x〉Vsr(x) and x · ∇Vlr(x) are Then H belongs to

O(1) C1(A)

o(1) C1,u(A)

o(〈x〉−ε) C1,1(A)

o(〈x〉−1) C2(A)

in the form sense on H×H. The Mourre estimate (1.2) is the precise formulation of the positivity
assumption (1) alluded to at the very beginning. The Mourre estimate is localized in energy,
hence it allows to infer information about the system at specific energies. In [M], Mourre assumes
roughly H ∈ C2(A) and the estimate (1.2) withK = 0 to prove the following LAP on any compact
sub-interval J ⊂ I :

(1.3) sup
x∈J , y>0

‖〈A〉−s(H − x− iy)−1〈A〉−s‖ <∞,

for all s > 1/2. Here 〈A〉 :=
√
1 +A2. This yields the following Kato-type propagation estimate:

(1.4)

∫ ∞

−∞
‖〈A〉−se−itHEJ (H)ψ‖2dt <∞,

uniformly in ψ ∈ H, ‖ψ‖ = 1, which in turn implies the absence of singular continuous spectrum
on J , e.g. [RS4, Section XIII.7]. The main improvement of this result is done in [ABG]. The
same LAP is derived assuming only H ∈ C1,1(A) and the estimate (1.2). It is further shown
that this class is optimal in the general abstract framework. Precisely in [ABG, Appendix 7.B],
there is an example of H ∈ C1,u(A) for which no LAP holds. The question of whether or not
a propagation estimate like the one in (1.4) holds in general for the latter class of operators
has however not yet been studied to our knowledge. The aim of this article is to provide a
propagation estimate for this class of operators.

Let us now present the results of the article. Let H0 be a self-adjoint operator on H, with
domain D(H0). We use standard notation and set H2 := D(H0) and H1 := D(〈H0〉1/2), the form

domain of H0. Also, H−2 := D(〈H0〉)∗ = D(〈H0〉−1), and H−1 := D(〈H0〉1/2)∗ = D(〈H0〉−1/2).
The following continuous and dense embeddings hold:

(1.5) H2 ⊂ H1 ⊂ H = H∗ ⊂ H−1 ⊂ H−2.

These are Hilbert spaces with the appropriate graph norms. The assumptions of this paper are
split into two categories: the spectral and the regularity assumptions. We start with the former.
Spectral Assumptions:

• A1 : H0 is a semi-bounded operator.
• A2 : V defines a symmetric quadratic form on H1.
• A3 : V ∈ K(H1,H−1).

Importantly, these assumptions allow us to define the perturbed Hamiltonian H. Indeed, A1 -
A3 imply, by the KLMN Theorem ([RS2, Theorem X.17]), that H := H0 + V in the form sense
is a semi-bounded self-adjoint operator with domain D(〈H〉1/2) = H1. Furthermore, we have by
Weyl’s Theorem that σess(H) = σess(H0).

Before proceeding with the other assumptions, let us take a moment to recall two well-known
propagation estimates that typically holds under these few assumptions. Let Pc(H) and Pac(H)
respectively denote the spectral projectors onto the continuous and absolutely continuous sub-
spaces of H. The first estimate is the RAGE Theorem due to Ruelle [R], Amrein and Georgescu
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[AG] and Enss [E]. It states that for any self-adjoint operator H and any W ∈ B(H) that is
H-relatively compact,

(1.6) lim
T→±∞

1

T

∫ T

0
‖WPc(H)e−itHψ‖2dt = 0.

This result is fundamental. We refer to the appendix B for an observation on this Theorem.
Let us go back to Example 1.1, the case of the Schrödinger operators. Assuming only that the
short- and long-range potentials be bounded and go to zero at infinity, we see that A1 - A3 hold.
Thus H := H0 + Vsr(Q) + Vlr(Q) is self-adjoint. Moreover 1Σ(Q) is a bounded operator that
is H-relatively compact whenever Σ ⊂ Rd is a compact set. Hence, in this example, the above
spectral assumptions and the RAGE Theorem combine to yield the following very meaningful
propagation estimate:

(1.7) lim
T→±∞

1

T

∫ T

0
‖1Σ(Q)Pc(H)e−itHψ‖2dt = 0.

In words, the scattering state Pc(H)ψ escapes all compact sets averagely in time. The second
standard estimate we wish to recall is the Riemann-Lebesgue Lemma. It states that for any
self-adjoint operator H and any W ∈ B(H) that is H-relatively compact,

(1.8) lim
t→±∞

‖WPac(H)e−itHψ‖ = 0.

Applying this estimate to Example 1.1 gives

(1.9) lim
t→±∞

‖1Σ(Q)Pac(H)e−itHψ‖ = 0.

Thus, the scattering state Pac(H)ψ escapes all compact sets in the long run. In contrast, in the
setting of Mourre theory, a basic argument such as the one given in the Appendix A as well as
estimates like (1.4) indicate that the scattering states tend to concentrate in regions where the
conjugate operator A is prevalent. We continue with the assumptions concerning this operator.
Regularity Assumptions: There is a self-adjoint operator A on H such that

• A4 : eitAH1 ⊂ H1 for all t ∈ R.
• A5 : H0 ∈ C2(A;H1,H−1).
• A6 : V ∈ C1,u(A;H1,H−1).
• A6′ : V ∈ C1(A;H1,H−1) and [V, iA]◦ ∈ K(H1,H−1).

First we note that C♯(A;H1,H−1) ⊂ C♯(A) for ♯ ∈ {1; 1,u; 2}. We refer to Section 2 for
a complete description of these classes. While A4 and A5 are standard assumptions to apply
Mourre theory, A6 is significantly weaker. It causes H to have no more than the C1,u(A;H1,H−1)
regularity, in which case one generally does not hope for a LAP, as discussed previously. In many
applications, A6′ is more practical to check than A6. Proposition 2.1 proves the equivalence
between these two items.

We introduce the set of points where a Mourre estimate holds for H, i.e.

µA(H) := {λ ∈ R : ∃c > 0,K ∈ K(H) and I open for which (1.2) holds for H on I and λ ∈ I},
and define similarly µA(H0). The assumptions mentioned above imply that µA(H) = µA(H0),
by Lemma 3.3. In other words, the points where H and H0 satisfy a Mourre estimate are the
same. The propagation estimate derived in this paper is the following:

Theorem 1.2. Suppose A1 through A6. Let E ∈ µA(H) be such that ker(H−E) ⊂ D(A). Then
there exists a bounded open interval I containing E such that for all s > 1/2,

(1.10) lim
T→±∞

sup
ψ∈H
‖ψ‖61

1

T

∫ T

0
‖〈A〉−sPc(H)EI(H)e−itHψ‖2 dt = 0.
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Moreover, for all ψ ∈ H,

(1.11) lim
t→±∞

‖〈A〉−sPac(H)EI(H)e−itHψ‖ = 0.

These formulae are to be compared with (1.4), (1.6) and (1.8). Note that (1.10) contains
a supremum. This is because one can in fact take the supremum in the RAGE formula, see
Appendix B. The parallel with the RAGE formula and the Riemann-Lebesgue formula raises
an important concern however. The novelty of the propagation estimates (1.10) and (1.11)
depend critically on the non-compactness of the operator 〈A〉−sEI(H). This issue is discussed
in Section 5, where we study several examples including continuous and discrete Schrödinger
operators. In all of these examples, it appears that 〈A〉−sEI(H) is compact in dimension one,
but not in higher dimensions. Theorem 1.2 therefore appears to be a new result for multi-
dimensional Hamiltonians. The various propagation estimates discussed in the Introduction are
listed in Table 2 according to the regularity of the potential V . Sufficient regularity for the free
operator H0 is implicit. In this table, question marks indicate open problems. Nonetheless, we
underline that the LAP has been derived for several specific systems where the Hamiltonian H
belongs to a regularity class as low as C1(A), and sometimes even lower (see for example [DMR],
[GJ2], [JM] and [Ma1] to name a few). In all these cases, a strong propagation estimate of type
(1.4) and absence of singular continuous spectrum follow. We also note that the derivation of the
propagation estimate (1.10) is in fact very similar to the derivation of a weighted Mourre estimate
which is used in the proof of a LAP for Hamiltonians with oscillating potentials belonging to the
C1(A) class, see [G] and [GJ2].

Table 2. The estimates for H depending on the regularity of the potential V

V is of RAGE R.-L. Prop. Prop. Kato - type LAP
class formula formula estimate (1.10) estimate (1.11) Prop. estimate

C1(A) X X ? ? ? ?

C1,u(A) X X X X ? ?

C1,1(A) X X X X X X

C2(A) X X X X X X

The article is organized as follows: in Section 2, we review the classes of regularity in Mourre
theory and in particular prove the equivalence between A6 and A6′. In Section 3, we discuss the
Mourre estimate and justify that under the assumptions of Theorem 1.2, H and H0 share the
same set of points where a Mourre estimate holds. In Section 4, we give examples of continu-
ous and discrete Schrödinger operators that fit the assumptions of Theorem 1.2. In Section 5,
we discuss the compactness of the operator 〈A〉−sEI(H). In Section 6, we prove Theorem 1.2.
In Appendix A, we provide a simple argument as to why we expect scattering states to evolve
in the direction where the conjugate operator prevails. Finally, in Appendix C we review facts
about almost analytic extensions of smooth functions that are used in the proof of the main result.

Acknowledgments: We are very thankful to Jean-François Bony, Vladimir Georgescu, and
Thierry Jecko for precious discussions. The authors were partially supported by the ANR project
GeRaSic (ANR-13-BS01-0007-01).
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2. The classes of regularity in Mourre theory

We define the classes of regularity that were introduced in (1.1). Let T ∈ B(H) and A be a
self-adjoint operator on the Hilbert space H. Consider the map

R ∋ t 7→ e−itATeitA ∈ B(H).(2.1)

Let k ∈ N. If the map is of class Ck(R;B(H)), with B(H) endowed with the strong operator
topology, we say that T ∈ Ck(A); whereas if the map is of class Ck(R;B(H)), with B(H) endowed
with the operator norm topology, we say that T ∈ Ck,u(A). Note that Ck,u(A) ⊂ Ck(A) is
immediate from the definitions. If T ∈ C1(A), then the derivative of the map (2.1) at t = 0 is
denoted [T, iA]◦ and belongs to B(H). Also, if T1, T2 ∈ B(H) belong to the C1(A) class, then so
do T1 + T2 and T1T2. We say that T ∈ C1,1(A) if

∫ 1

0

∥
∥
∥[T, eitA]◦, e

itA]◦

∥
∥
∥t−1dt <∞.

The proof that C2(A) ⊂ C1,1(A) ⊂ C1,u(A) is given in [ABG, Section 5]. This yields (1.1).
Now let T be a self-adjoint operator (possibly unbounded), with spectrum σ(T ). Let z ∈

C \ σ(T ). We say that T ∈ C♯(A) if (z − T )−1 ∈ C♯(A), for ♯ ∈ {k; k,u; 1,1}. This definition
does not depend on the choice of z ∈ C \ σ(T ), and furthermore if T is bounded and self-
adjoint then the two definitions coincide, see [ABG, Lemma 6.2.1]. If T ∈ C1(A), one shows that
[T, iA]◦ ∈ B(D(T ),D(T )∗) and that the following formula holds:

(2.2) [(z − T )−1, iA]◦ = (z − T )−1[T, iA]◦(z − T )−1.

These definitions can be refined. Let G and H be Hilbert spaces verifying the following
continuous and dense embeddings G ⊂ H = H∗ ⊂ G∗, where we have identified H with its
antidual H∗ by the Riesz isomorphism Theorem. Let A be a self-adjoint operator on H, and
suppose that the semi-group {eitA}t∈R stabilizes G. Then by duality it stabilizes G∗. Let T be a
self-adjoint operator on H belonging to B(G,G∗) and consider the map

(2.3) R ∋ t 7→ e−itATeitA ∈ B(G,G∗).

If this map is of class Ck(R;B(G,G∗)), with B(G,G∗) endowed with the strong operator topology,
we say that T ∈ Ck(A;G,G∗); whereas if the map is of class Ck(R;B(G,G∗)), with B(G,G∗)
endowed with the norm operator topology, we say that T ∈ Ck,u(A;G,G∗). If T ∈ C1(A;G,G∗),
then the derivative of map (2.3) at t = 0 is denoted by [T, iA]◦ and belongs to B(G,G∗). Moreover,
by [ABG, Proposition 5.1.6], T ∈ C♯(A;G,G∗) if and only if (z − T )−1 ∈ C♯(A;G∗,G) for all
z ∈ C \ σ(T ) and ♯ ∈ {k; k,u}. This notably implies that C♯(A;G,G∗) ⊂ C♯(A).

In the setting of this article, G = H1 := D(〈H0〉1/2), and T stands for H0, V or H. In all cases
T ∈ B(H1,H−1). We also assume that {eitA}t∈R stabilizes H1, see A4. Consider the map

(2.4) R ∋ t 7→ 〈H0〉−1/2e−itATeitA〈H0〉−1/2 ∈ B(H).

The latter operator belongs indeed to B(H) since the domains concatenate as follows:

〈H0〉−1/2

︸ ︷︷ ︸

∈B(H−1,H)

e−itA
︸ ︷︷ ︸

∈B(H−1,H−1)

T
︸︷︷︸

∈B(H1,H−1)

eitA
︸︷︷︸

∈B(H1,H1)

〈H0〉−1/2

︸ ︷︷ ︸

∈B(H,H1)

.

We remark that T ∈ Ck(A;H1,H−1) is equivalent to the map (2.4) being of class Ck(R;B(H)),
with B(H) endowed with the strong operator topology; whereas T ∈ Ck,u(A;H1,H−1) is equiva-
lent to the map being of class Ck(R;B(H)), with B(H) endowed with the norm operator topology.

In many applications, the free operator H0 has a nice regularity with respect to the conjugate
operator A, i.e. H0 ∈ Ck(A;G,G∗) for some k > 2 and for some G ⊂ H. However, the pertur-
bation V typically doesn’t have very much regularity w.r.t. A and showing that V is of class
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C1,u(A;G,G∗) directly from the definition is usually not very practical. To ease the difficulty we
provide the following criterion. Its proof is inspired by [Ge, Lemma 8.5].

Proposition 2.1 (A6 ⇐⇒ A6′). Suppose that V ∈ K(H1,H−1) and V ∈ C1(A;H1,H−1). Then
V ∈ C1,u(A;H1,H−1) if and only if [V, iA]◦ ∈ K(H1,H−1).

Remark 2.1. The proof actually shows that the compactness of V is necessary for only one
direction. It shows that if V ∈ C1(A;H1,H−1), V ∈ B(H1,H−1) and [V, iA]◦ ∈ K(H1,H−1),
then V ∈ C1,u(A;H1,H−1).

Proof. We start with the easier of the two implications, namely V ∈ C1,u(A;H1,H−1) implies
[V, iA]◦ ∈ K(H1,H−1). Let

R ∋ t 7→ Λ(t) := 〈H0〉−1/2e−itAV eitA〈H0〉−1/2 ∈ B(H).

To say that V ∈ C1,u(A;H1,H−1) is equivalent to Λ being of class C1(R,B(H)), with B(H)
endowed with the norm operator topology. Since

〈H0〉−1/2[V, iA]◦〈H0〉−1/2 = lim
t→0

Λ(t)− Λ(0)

t

holds w.r.t. the operator norm on B(H) and Λ(t)− Λ(0) is equal to

〈H0〉−1/2e−itA〈H0〉1/2
︸ ︷︷ ︸

∈ B(H) by A4

〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A3

〈H0〉1/2eitA〈H0〉−1/2

︸ ︷︷ ︸

∈ B(H) by A4

−〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A3

,

we see that 〈H0〉−1/2[V, iA]◦〈H0〉−1/2 ∈ K(H) as a norm limit of compact operators. Hence
[V, iA]◦ ∈ K(H1,H−1).

We now show the reverse implication. We have to show that the map Λ is of class C1(R,B(H)).
This is the case if and only if Λ is differentiable with continuous derivative at t = 0. Let

ℓ(t) := 〈H0〉−1/2e−itA[V, iA]◦e
itA〈H0〉−1/2 ∈ B(H).

The following equality holds strongly in H for all t > 0 due to the fact that V ∈ C1(A,H1,H−1):

(2.5)
Λ(t)− Λ(0)

t
− ℓ(0) =

1

t

∫ t

0
〈H0〉−1/2

(
e−iτA[V, iA]◦e

iτA − [V, iA]◦
)
〈H0〉−1/2dτ.

Let us estimate the integrand:
∥
∥〈H0〉−1/2

(
e−iτA[V, iA]◦e

iτA − [V, iA]◦
)
〈H0〉−1/2

∥
∥

6
∥
∥〈H0〉−1/2

(
e−iτA[V, iA]◦e

iτA − e−iτA[V, iA]◦
)
〈H0〉−1/2

∥
∥

+
∥
∥〈H0〉−1/2

(
e−iτA[V, iA]◦ − [V, iA]◦

)
〈H0〉−1/2

∥
∥

6

∥
∥
∥ 〈H0〉−1/2e−iτA〈H0〉1/2
︸ ︷︷ ︸

‖·‖61

〈H0〉−1/2[V, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A3

(

〈H0〉1/2eiτA〈H0〉−1/2 − I
)

︸ ︷︷ ︸
s−→0

∥
∥
∥

+
∥
∥
∥

(

〈H0〉−1/2e−iτA〈H0〉1/2 − I
)

︸ ︷︷ ︸
s−→0

〈H0〉−1/2[V, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A3

∥
∥
∥.

(2.6)

Thus the integrand of (2.5) converges in norm to zero as t goes to zero. It follows that the l.h.s.
of (2.5) converges in norm to zero, showing that Λ′(0) = ℓ(0). It easily follows that Λ′(t) = ℓ(t)
for all t ∈ R. Again invoking (2.6) shows that Λ′ is continuous at t = 0, completing the proof. �
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3. A few words about the Mourre estimate

This section is based on the content of [ABG, Section 7.2], where the results are presented for
a self-adjoint operator T ∈ C1(A), which (we recall) contains the C1(A;G,G∗) class. Let T be a
self-adjoint operator on H with domain D(T ) ⊂ H. Let G be a subspace such that

D(T ) ⊂ G ⊂ D(〈T 〉1/2) ⊂ H = H∗ ⊂ D(〈T 〉−1/2) ⊂ G∗ ⊂ D(T )∗.

If T ∈ C1(A,G,G∗), then in particular [T, iA]◦ ∈ B(G,G∗). If I ⊂ R is a bounded interval, then
EI(T ) ∈ B(H,G) and by duality EI(T ) ∈ B(G∗,H). We say that the Mourre estimate holds for
T w.r.t. A on the bounded interval I if there exist c > 0 and K ∈ K(H) such that

(3.1) EI(T )[T, iA]◦EI(T ) > cEI(T ) +K

in the form sense on H×H. Note that both the l.h.s. and r.h.s. of (3.1) are well-defined bounded
operators on H. For reminder, if this estimate holds, then the total multiplicity of eigenvalues of
T in I is finite by [ABG, Corollary 7.2.11], whereas if the estimate holds with K = 0, then I is
void of eigenvalues, as a result of the Virial Theorem [ABG, Proposition 7.2.10]. We let µA(T )
be the collection of points belonging to neighborhood for which the Mourre estimate holds, i.e.

µA(T ) := {λ ∈ R : ∃c > 0,K ∈ K(H) and I open for which (3.1) holds for T on I and λ ∈ I}.
This is an open set. It is natural to introduce a function defined on µA(T ) which gives the best
constant c > 0 that can be achieved in the Mourre estimate, i.e. for E ∈ µA(T ), let

̺AT (E) := sup
I∋E

{
sup{c ∈ R : EI(T )[T, iA]◦EI(T ) > cEI(T ) +K, for some K ∈ K(H)}

}
.

Equivalent definitions and various properties of the ̺AT function are given in [ABG, Section 7.2].
One very useful result that we shall use is the following:

Proposition 3.1. [ABG, Proposition 7.2.7] Suppose that T has a spectral gap and that T ∈
C1(A). Let R(ς) := (ς − T )−1, where ς is a real number in the resolvent set of T . Then

(3.2) ̺AT (E) = (ς − E)2̺AR(ς)((ς − E)−1).

In particular, T is conjugate to A at E if and only if R(ς) is conjugate to A at (ς − E)−1.

As a side note, this Proposition is stated without proof in [ABG], so we indicate to the reader
that it may be proven following the same lines as that of [ABG, Proposition 7.2.5] together with
the following Lemma, which is the equivalent of [ABG, Proposition 7.2.1]. Denote I(E; ε) the
open interval of radius ε centered at E.

Lemma 3.2. Suppose that T ∈ C1(A). If E /∈ σess(H), then ̺AT (E) = +∞. If E ∈ σess(H),

then ̺AT (E) is finite and given by

̺AT (E) = lim
ε→0+

inf{〈ψ, [T, iA]◦ψ〉 : ψ ∈ H, ‖ψ‖ = 1 and EI(E;ε)(T )ψ = ψ}.

Furthermore, there is a sequence (ψn)
∞
n=1 of vectors such that ψn ∈ H, ‖ψn‖ ≡ 1, 〈ψn, ψm〉 = δnm,

EI(E;1/n)ψn = ψn and limn→∞〈ψn, [T, iA]◦ψn〉 = ̺AT (E).

We will be employing formula (3.2) in the proof of the main result of this paper, but for the
moment we apply it to show that under the assumptions of Theorem 1.2, H and H0 share the
same points where a Mourre estimate hold. The remark is done after [ABG, Theorem 7.2.9]. Let
R(z) := (z − T )−1 and R0(z) := (z − T0)

−1.

Lemma 3.3. Let T0, T and A be self-adjoint operators on H. Let T0 have a spectral gap, and
suppose that T, T0 ∈ C1(A). If R(i)−R0(i) ∈ K(H) then µA(T ) = µA(T0).
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Remark 3.1. The assumptions of this article fulfill the requirements of this Lemma, with
(T0, T ) = (H0,H). Indeed, D(〈H〉1/2) = D(〈H0〉1/2) implies the compactness of R(i)−R0(i):

R(i)−R0(i) = R(i)V R0(i) = R(i)〈H〉1/2
︸ ︷︷ ︸

∈B(H)

〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

∈B(H)

〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

∈K(H) by A3

〈H0〉1/2R0(i)
︸ ︷︷ ︸

∈B(H)

.

Proof. Firstly, the assumption that R(i)−R0(i) is compact implies σess(T0) = σess(T ). Because
T0 has a spectral gap, σess(T0) = σess(T ) 6= R, and therefore there exists ς ∈ R \ (σ(T ) ∪ σ(T0)).
For all z, z′ ∈ R \ (σ(T ) ∪ σ(T0)), the following identity holds:

R(z)−R0(z) = [I + (z′ − z)R(z)][R(z′)−R0(z
′)][I + (z′ − z)R0(z)].

Thus R(ς)−R0(ς) is compact. To simplify the notation onwards, let R0 := R0(ς) and R := R(ς).
Secondly, if E ∈ µA(T0), then (ς −E)−1 ∈ µA(R0) by Proposition 3.1, and so there is an open

interval I ∋ (ς − E)−1, c > 0 and a compact K such that

EI(R0)[R0, iA]◦EI(R0) > cEI(R0) +K.

Applying to the right and left by θ(R0), where θ ∈ C∞
c is a bump function supported and equal

to one in a neighborhood of (ς − E)−1, we get

θ(R0)[R0, iA]◦θ(R0) > cθ2(R0) + compact.

By the Helffer-Sjötrand formula and the fact that R(z)−R0(z) is compact for all z ∈ C \ R, we
see that θ(R)− θ(R0) is compact, and likewise for θ2(R)− θ2(R0). Thus exchanging R0 for R,
θ(R0) for θ(R), and θ2(R0) for θ2(R) in the previous inequality, we have

θ(R)[R, iA]◦θ(R) > cθ2(R) + compact.

Let I ′ ⊂ θ−1({1}). Applying EI′(R) to the left and right of this equation shows that the Mourre
estimate holds for R in a neighborhood of (ς − E)−1. Thus E ∈ µA(T ) by Proposition 3.1, and
this shows µA(T0) ⊂ µA(T ). Exchanging the roles of T and T0 shows the reverse inclusion. �

4. Examples: Continuous and discrete Schrödinger operators

4.1. The case of continuous Schrödinger operators. Our first application is to continuous
Schrödinger operators. The setting has already been described in Example 1.1 for the most
part. For an integer d > 1, let H := L2(Rd). The free operator is the Laplacian, i.e. H0 :=

−∆ = −∑d
i=1 ∂

2/∂x2i with domain the Sobolev space H2(Rd). Then H0 is a positive operator
with purely absolutely continuous spectrum and σ(H0) = [0,+∞). Let Q be the operator of
multiplication by x = (x1, ..., xd) ∈ Rd, and let P := −i∇. Set

H := H0 + Vsr(Q) + Vlr(Q),

where Vsr and Vlr are bounded real-valued functions on Rd. Suppose that Vsr(x), Vlr(x) = o(1)
and also that the distribution x 7→ x ·∇Vlr(x) is a function. Then Vsr(Q) and Vlr(Q) are H0-form
relatively compact operators. This is a direct consequence of the following standard fact:

Proposition 4.1. Let f, g be bounded Borel measurable functions on Rd which vanish at infinity.
Then g(Q)f(P ) ∈ K(L2(Rd)).

Assumptions A1 - A3 are verified. We can add that σess(H) = [0,+∞) by the Theorem of
Weyl on relative compactness. Let A := (Q · P + P ·Q)/2 be the generator of dilations which is
essentially self-adjoint on the Schwartz space S(Rd). The relation

(eitAψ)(x) = etd/2ψ(etx), for all ψ ∈ L2(Rd), x ∈ R
d
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implies that {eitA}t∈R stabilizes H2(Rd), and thus Hθ(Rd) for all θ ∈ [−2, 2] by duality and
interpolation. A straightforward computation gives

[H0, iA]◦ = 2H0

in the sense of operators in B(H1,H−1), thereby implying that H0 ∈ Ck(A;H1,H−1) for all
k ∈ N. The strict Mourre estimate holds for H0 with respect to A on all intervals I verifying
I ⊂ (0,+∞). In particular, µA(H0) = (0,+∞). Thus A4 - A5 are met. In this setting, Theorem
1.2 reads:

Theorem 4.2. Let H := H0 + Vsr(Q) + Vlr(Q) and A be as above. In addition, suppose that
〈x〉Vsr(x) and x ·∇Vlr(x) go to zero as ‖x‖ goes to infinity. Then Vsr(Q)+Vlr(Q) ∈ C1,u(A). Also,
µA(H) = (0,+∞). Let E ∈ µA(H) be such that ker(H − E) ⊂ D(A). Then there is a bounded
open interval I containing E such that for all s > 1/2 and ψ ∈ H, the propagation estimates
(1.10) and (1.11) hold.

By Lemma 3.3, µA(H) = µA(H0). Furthermore, if E ∈ µA(H), then there are finitely many
eigenvalues of H in a neighborhood of E, counting multiplicity, which allows to choose I ∋ E
such that ker(H − λ) ⊂ D(A) for all λ ∈ I . As explained in [GJ2, Remark 4.12], the condition
ker(H −E) ⊂ D(A) holds if the potential Vsr(x)+Vlr(x) has sufficient regularity. The argument
partly uses a result of [FH], namely that ψ ∈ D(〈x〉n) for all n ∈ N whenever ψ ∈ ker(H − E)
and E ∈ µA(H). See [GJ2, Lemma 4.10] as well as [JM, Corollary 5.2] for more results in this
direction.

4.2. The case of discrete Schrödinger operators. Our second application is to discrete
Schrödinger operators. For an integer d > 1, let H := ℓ2(Zd) The free operator is the discrete
Laplacian, i.e. H0 := ∆ ∈ B(H), where

(∆ψ)(n) :=
∑

m:‖m−n‖=1

ψ(n)− ψ(m).

Here we have equipped Zd with the following norm: for n = (n1, ..., nd), ‖n‖ :=
∑d

i=1 |ni|. It
is well-known that ∆ is a bounded positive self-adjoint operator on H with purely absolutely
continuous spectrum, and σ(∆) = σac(∆) = [0, 4d]. Let V be a bounded real-valued function
on Zd such that V (n) → 0 as ‖n‖ → ∞. Then V induces a bounded self-adjoint compact
operator on H as follows, (V ψ)(n) := V (n)ψ(n). Recall that a multiplication operator V on
ℓ2(Zd) is compact if and only if V (n) → 0 as ‖n‖ → ∞. Assumptions A1 - A3 are verified. Set
H := H0 + V . Then H is a bounded self-adjoint operator and σess(H) = [0, 4d].

To write the conjugate operator, we need more notation. Let S = (S1, ..., Sd), where, for
1 6 i 6 d, Si is the shift operator given by

(Siψ)(n) := ψ(n1, ..., ni − 1, ..., nd), for all n ∈ Z
d and ψ ∈ H.

Let N = (N1, ..., Nd), where, for 1 6 i 6 d, Ni is the position operator given by

(Niψ)(n) := niψ(n), with domain D(Ni) :=

{

ψ ∈ H :
∑

n∈Zd

|niψ(n)|2 <∞
}

.

The conjugate operator, denoted by A, is the closure of the following operator

A0 :=
i

2

d∑

i=1

(Si − S∗
i )Ni +Ni(Si − S∗

i ), with domain D(A0) := ℓ0(Z
d),
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the sequences with compact support. The operator A is self-adjoint ([BS], [GGo]). That {eitA}t∈R

stabilizes the form domain of H0 is a triviality, because D(H0) = H. A calculation shows that

(4.1) [∆, iA]◦ =

d∑

i=1

∆i(4−∆i)

as operators in B(H). Here ∆i := 2 − Si − S∗
i . Since H0 is a bounded self-adjoint operator,

(4.1) implies that H0 ∈ C1(A), thanks to a simple criterion for such operators, see [ABG, Lemma
6.2.9] and [ABG, Theorem 6.2.10].

An easy induction shows that H0 ∈ Ck(A) for all k ∈ N. Assumptions A4 - A5 are therefore
met. By (4.1) and [ABG, Theorem 8.3.6], we have that

(4.2) µA(H0) = [0, 4d] \ {4k : k = 0, ..., d}.
Let τiV be the shifted potential acting as follows:

[(τiV )ψ](n) := V (n1, ..., ni − 1, ..., nd)ψ(n), for all ψ ∈ H.
Define τ∗i V correspondingly. In this setting, Theorem 1.2 reads:

Theorem 4.3. Let H := H0 + V and A be as above. In addition suppose that (V − τiV )(n) =
o(‖n‖−1) for all 1 6 i 6 d, so that V ∈ C1,u(A). Then µA(H) = [0, 4d] \ {4k : k = 0, ..., d}, and
for every E ∈ µA(H), there is a bounded open interval containing E, with I ⊂ µA(H) such that
the propagation estimates (1.10) and (1.11) hold for all s > 1/2 and ψ ∈ H.

Proof. A straightforward computation gives

〈ψ, [V, iA0]ψ〉 =
d∑

i=1

〈

ψ,
(

(2−1 +Ni)(V − τ∗i V )S∗ + (2−1 −Ni)(V − τiV )S
)

ψ
〉

,

for all ψ ∈ ℓ0(Z
d). Since (V − τiV )(n) = o(‖n‖−1), we see that V ∈ C1(A) and also that

[V, iA]◦ ∈ K(H). This is equivalent to V ∈ C1,u(A), by Proposition 2.1. Thus A6 is fulfilled.
An application of Lemma 3.3 gives that µA(H) = µA(H0) = [0, 4d] \ {4k : k = 0, ..., d}.

Moreover, ker(H − λ) ⊂ D(A) for all λ ∈ µA(H) by [Ma2, Theorem 1.2], since if ψ ∈ ker(H − λ)
and λ ∈ µA(H), then for all p > 0 there is cp > 0 such that |ψ(n)| 6 cp〈n〉−p, n ∈ Zd. Finally,
applying Theorem 1.2 yields the required propagation estimates. �

5. A discussion about the compactness of operators of the form 〈A〉−sEI(H)

As pointed out in the Introduction, the novelty of formulae (1.10) and (1.11) is conditional
on the non-relative compactness of the operator 〈A〉−sEI(H). First, note that 〈A〉−sEI(H) is
H-relatively compact if and only if it is compact, since I ⊂ R is a bounded interval. Without
loss of generality, we will consider 〈A〉−sχ(H) rather than 〈A〉−sEI(H), where χ is a smooth
function supported on I . Second, note that 〈A〉−sχ(H) is compact if and only if 〈A〉−sχ(H0) is,
by A3. We therefore have the question: Is 〈A〉−sχ(H0) a compact operator? A first result is:

Proposition 5.1. Let H0, A be self-adjoint operators in H. Suppose that H0 has a spectral gap.
Suppose that H0 ∈ C1(A) and that for some µ ∈ R, [(H0 − µ)−1, iA]◦ := C > 0 is an injective
operator. Then A does not have any eigenvalues. In particular, 〈A〉−s 6∈ K(H) for any s > 0.

Remark 5.1. The examples of Section 4 naturally satisfy the hypotheses of this Proposition.

Proof. Let ψ be an eigenvector of A. Since A ∈ C1((H0 − µ)−1), the Virial Theorem ([ABG,

Proposition 7.2.10]) says that 0 = 〈ψ, [(H0 −µ)−1, iA]◦ψ〉 = 〈ψ,Cψ〉 = ‖
√
Cψ‖2. The injectivity

of
√
C forces ψ = 0, i.e. σp(A) = ∅. This implies that A does not have compact resolvent. So

〈A〉−1 6∈ K(H). Applying the spectral mapping theorem finishes off the argument. �
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Unfortunately, this result does not settle the debate because it does not guarantee the non-
compactness of 〈A〉−sχ(H0). In fact, we have examples where this operator is compact. For
lack of a more robust result, we shall spend the rest of this section examining several examples.
Our conclusion is that 〈A〉−sχ(H0) is sometimes compact, sometimes not. Specifically, in each
of our examples, the compactness holds in dimension one but does not in higher dimensions. To
start off, we cook up a simple example that will reinforce the viewpoint that non-compactness is
possible, especially in higher dimensions.

Example 5.2. Let H := L2(R2), H0 := −∂2/∂x21 and A := −i(x1∂/∂x1 + ∂/∂x1x1) be a
conjugate operator to H0. The spectrum of H0 is purely absolutely continuous and σ(H0) =
[0,+∞). Also H0 ∈ C∞(A), [H0, iA]◦ = 2H0 and the Mourre estimate holds for all positive
intervals supported away from zero. In addition, {eitA}t∈R stabilizes D(H0). The assumptions
of this paper are therefore thoroughly verified. Moreover 〈A〉−sχ(H0) is clearly not compact in
L2(R2).

To continue with other examples, we set up notation. Let C0(R) be the continuous functions
vanishing at infinity and C∞

c (R) the compactly supported smooth functions.

Example 5.3. Let H := L2(Rd), H0 := x1 + ... + xd and A := i(∂/∂x1 + ... + ∂/∂xd). This
system verifies the Mourre estimate at all energies thanks to commutator relation [H0, iA]◦ = dI,
and H0 ∈ C∞(A) holds. Although this system does not quite fall within the framework of this
article because H0 is not semi-bounded (σ(H0) = R), it conveys the idea that compactness holds
only in dimension one:

Proposition 5.4. Let χ ∈ C0(R) and s ∈ R be given. If d = 1, then 〈A〉−sχ(H0) ∈ K(L2(R)). If
d = 2, then 〈A〉−sχ(H0) 6∈ K(L2(R2)).

Proof. The one-dimensional result is a classic, see Proposition 4.1. We prove the two-dimensional
result. Let I(λ, r) denote the open interval centered at λ ∈ R and of radius r > 0. Fix λ and
r such that I(λ, r) ⊂ supp(χ). Then the function of two variables χ(x1 + x2) has support
containing the oblique strip ∪t∈I(λ,r){(s, t − s) : s ∈ R} ⊂ R2. Let ψ ∈ C∞

c (R) be a bump
function that equals one on I(λ, r) and zero on R \ I(λ, 2r). Let θ ∈ C∞

c (R) be a bump function

that equals one on [−1, 1] and zero on R \ [−2, 2]. Let Ψn(x, y) := n−1/2ψ(x + y)θ(y/n). Then
‖Ψn‖ ≡ ‖ψ‖‖θ‖. Here ‖ · ‖ denotes the norm on L2(R2). Fix ν ∈ N, and let ϕνn := (A + i)νΨn.
For ν = 0, clearly ‖ϕνn‖ = ‖Ψn‖ is uniformly bounded in n and an easy induction proves it for
all fixed values of ν ∈ N. Consider now φn := χ(H0)(A + i)−νϕνn = χ(H0)Ψn. Since χ ∈ C0(R)
and Ψn

w−→ 0, φn
w−→ 0. If χ(H0)(A + i)−ν ∈ K(L2(R2)) for some ν ∈ N, then the image of the

ball B(0, supn>1 ‖ϕνn‖) by this operator is pre-compact in L2(R2), and so there exists φ ∈ L2(R2)

and a subsequence (nk)
∞
k=1 such that lim

k→∞
‖φnk

− φ‖ = 0. Since φnk

w−→ 0, it must be that φ = 0

since the strong and weak limits coincide and are unique. But this contradicts the fact that
‖φnk

‖ > ‖χ1I(λ,r)(·)‖‖θ‖ for all k > 1. So χ(H0)(A + i)−ν 6∈ K(L2(R2)), and this implies that

χ(H0)〈A〉−s 6∈ K(L2(R2)) for all s 6 ν. The result follows by taking adjoints. �

For what it is worth, we tweak Example 5.3 to create a system that fits all the assumptions
of this article. We state a variation of it and leave the details of the proof to the reader.

Example 5.5. Let H := L2(Rd). Let H0 be the operator of multiplication by x1h(x1) + ... +
xdh(xd), where h ∈ C∞(R) is a smooth version of the Heaviside function (which is zero below the
origin, positive above the origin and strictly increasing). Then σ(H0) = [0,+∞). In particular,
H0 is a positive operator. The conjugate operator is still A := i(∂/∂x1 + ... + ∂/∂xd). We have
H0 ∈ C∞(A) and the Mourre estimate holds on all positive bounded intervals. One also verifies
that {eitA}t∈R stabilizes D(H0) (note that {eitA}t∈R is the group of translations on L2(Rd)). As-
sumptions A1 - A5 are verified. With regard to the compactness issue, Proposition 5.4 holds, but
for the two-dimensional result, one must also assume that χ has non empty support in (0,+∞).
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Our next model is the continuous Laplacian. We refer to Example 4.1 for a description of the
model. The situation is the same as with the preceding example: compactness in dimension one,
non-compactness in higher dimensions.

Example 5.6 (Continuous Laplacian with generator of dilations). Let H := L2(Rd), H0 := −∆
be the Laplacian and A := −i(x · ∇ +∇ · x)/2 = −i(2x · ∇ + d)/2 be the generator of dilations.
We will be making use of the Fourier transform on L2(Rd) given by

(5.1) (Fψ)(ξ) = (2π)−d/2
∫

Rd

ψ(x)e−iξ·xdx.

Note that FAF−1 = −A =
∑d

i=1 i(ξi∂/∂ξi + ∂/∂ξiξi)/2 and FH0F−1 = |ξ|2 := ∑d
i=1 ξ

2
i .

Proposition 5.7. We have τ(A)χ(H0) ∈ K(L2(R)) for all τ, χ ∈ C0(R), with χ supported away
from zero.

First proof: Let Q be the operator of multiplication by the variable x and P := −id/dx. Let
χ ∈ C∞

c (R) be supported away from zero. Let (A+i)−1χ(H0) = (A+i)−1χ1(P ), where χ1 := χ◦σ
and σ(ξ) = ξ2. We implement a binary relation ≈ on B(L2(R)) whereby two operators are
equivalent if their difference is a compact operator. We have:

(A+ i)−1χ(H0) = (A+ i)−1χ1(P )(Q+ i)(Q+ i)−1

≈ (A+ i)−1χ1(P )Q(Q+ i)−1

≈ (A+ i)−1Qχ1(P )(Q + i)−1

= (A+ i)−1(QP )χ2(D)(Q+ i)−1

≈ (A+ i)−1(A+ i)χ2(P )(Q+ i)−1 ≈ 0.

Note the use of Proposition 5.4 each time a compact operator was removed. In the third step we
used that [χ1(P ), Q]◦(Q+i)−1 = χ′

1(P )(Q+i)−1 ≈ 0. In the fourth step we took advantage of the
fact that χ1 is supported away from zero to let χ2(P ) := P−1χ1(P ) and thereby allow to recreate
A := (QP +PQ)/2 = QP − i/2. A limiting argument (using the Stone-Weierstrass Theorem for
example) extends the compactness to τ(A)χ(H0) as in the statement of the Proposition. �

Second proof: We see that F(A − i/2)−1χ(H0)F−1 is an integral transform acting in the mo-
mentum space as follows:

L2(R) ∋ ϕ 7→ (F(A− i/2)−1χ(H0)F−1ϕ)(ξ) =
i

ξ

∫ ξ

0
χ(t2)ϕ(t)dt ∈ L2(R).

The fact that χ is supported away from zero is crucial here. Moreover, if χ ∈ C∞
c (R), then this

integral transform is Hilbert-Schmidt and there is c > 0 such that

‖(A− i/2)−1χ(H0)‖2HS =

∫

R

∫

R

1(0,ξ)(t)ξ
−2|χ(t2)|2dtdξ 6 c‖χ‖22.

One extends the compactness to operators of the form τ(A)χ(H0) by a limiting argument. �

To complete the one-dimensional picture, we mention for what it is worth that it is possible
to show that (A+ i)−1χ(H0) 6∈ K(L2(R)) for any χ ∈ C∞

c (R) with χ(0) 6= 0. We now turn to the
multi-dimensional case.

Proposition 5.8. If d > 2, then 〈A〉−sχ(H0) 6∈ K(L2(Rd)) for any χ ∈ C∞
0 (R) whose support is

non-empty in (0,+∞) and for any s ∈ R.

Proof. Let I(λ, r) denote the interval of radius r > 0 centered at λ. There are λ ∈ (0,+∞)
and r > 0 such that I(λ, r) ⊂ (0,+∞) and m := infx∈I(λ,r) |χ(x)| > 0. Consider the constant
energy curves

{(ξ1, ..., ξd) ∈ R
d : E = ξ21 + ...+ ξ2d}.



PROPAGATION ESTIMATES 14

For d = 2, these are just circles centered at the origin. Forth we work in dimension two to keep
the notation clean, but the necessary adjustments are obvious for d > 2. The support of the
function of two variables χ(ξ21 + ξ

2
2) contains the annulus obtained by rotating I(λ′, r′) about the

origin, where

λ′ := (
√
λ+ r +

√
λ− r)/2, r′ := (

√
λ+ r −

√
λ− r)/2.

Let ψ1, ψ2 ∈ C∞
c (R) be any bump functions verifying : a) ψ1(0) 6= 0, b) supp(ψ1) = [−1, 1], c)

supp(ψ2) ⊂ I(λ′, r′/2), and d) ‖ψi‖ = 1, where ‖ · ‖ denotes the L2 norm. Now let Ψn(ξ1, ξ2) :=√
nψ1(ξ1n)ψ2(ξ2). Then ‖Ψn‖ = 1 for all n > 1, and Ψn

w−→ 0. Also, for n sufficiently large,
Ψn is supported in the aforementioned annulus. Now fix ν ∈ N and let ϕνn := F(A+ i)νF−1Ψn.
Then for ν = 0, ‖ϕνn‖ = ‖Ψn‖ ≡ 1, while for ν = 1,

ϕνn(ξ1, ξ2) = −2n3/2iξ1ψ
′
1(ξ1n)ψ2(ξ2)− 2n1/2iψ1(ξ1n)ξ2ψ

′
2(ξ2)− iΨn(x),

and we see that ‖ϕνn‖ is uniformly bounded in n. A simple induction on ν shows that for every
fixed value of ν ∈ N, ‖ϕνn‖ is uniformly bounded in n. Consider φn := Fχ(H0)(A+i)−νF−1ϕνn =
Fχ(H0)F−1Ψn. If Fχ(H0)(A+ i)−νF−1 ∈ K(L2(R2)) for some value of ν, the image of the ball
B(0, supn>1 ‖ϕνn‖) by this operator is pre-compact in L2(R2), and so there exists φ ∈ L2(R2)

and a subsequence (nk)
∞
k=1 such that limk→∞ ‖φnk

− φ‖ = 0. Since φnk

w−→ 0, it must be that
φ = 0 since the strong and weak limits coincide and are unique. But this contradicts the fact
that ‖φnk

‖ > m‖Ψnk
‖ = m > 0 for all k > 1. So χ(H0)(A + i)−ν 6∈ K(L2(R2)) and this implies

that χ(H0)〈A〉−s 6∈ K(L2(R2)) for all s 6 ν. The result follows by taking adjoints. �

A nice corollary of Proposition 5.8 that deserves a mention is the following. It uses Proposition
4.1. The result can also be proven to hold in dimension one.

Corollary 5.9. Let d > 2. Then for all (s, ε) ∈ R × (0,+∞), 〈A〉−s〈Q〉ε 6∈ B(L2(Rd)).

Example 5.10 (Continuous Laplacian with Nakamura’s conjugate operator). In [N], Nakamura
presents an alternate conjugate operator to the continuous Laplacian H0. Let β > 0. In momen-
tum space it reads

FAF−1 :=
i

2β

d∑

i=1

(

sin(βξi)
∂

∂ξi
+

∂

∂ξi
sin(βξi)

)

.

Under some conditions on the potential V , it is shown that the Mourre theory holds for H :=
H0+V with respect to A on the interval (0, (π/β)2/2). We refer also to [Ma] for a generalization
of this conjugate operator and a more in-depth discussion. An argument as in Propositions 5.8
and 5.13 shows that, for d > 2, 〈A〉−sχ(H0) 6∈ K(L2(Rd)) for all χ ∈ C0(R) and s ∈ R.

Our last example is the discrete Laplacian on Zd. We refer to Example 4.2 for the details on
the model.

Example 5.11 (Discrete Schrödinger operators). Let H := ℓ2(Zd), H0 := ∆ be the discrete
Laplacian and A be its conjugate operator as in Example 4.2. Let

ℓ2(Zd) ∋ u 7→ (Fu)(θ) = (2π)−d/2
∑

n∈Zd

u(n)eiθ·n ∈ L2([−π, π]d)

be the Fourier transform. We recall that H0 is unitarily equivalent to the operator of multiplication

by
∑d

i=1(2 − 2 cos(θi)) and that A is unitarily equivalent to the self-adjoint realization of the

operator i
∑d

i=1(sin(θi)∂/∂θi + ∂/∂θi sin(θi)), which we denote by AF .

Proposition 5.12. If d = 1, then τ(A)χ(H0) ∈ K(ℓ2(Z)) for all τ ∈ C0(R) and χ ∈ C([0, 4])
supported away from zero and four.
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Proof. Using simple techniques from the theory of first order differential equations, we see that
χ(H0)(A+ i)−1 is a Hilbert-Schmidt integral transform acting as follows:

L2([−π, π]) ∋ ψ 7→ (Fχ(H)(A + i)−1F−1ψ)(θ) =
1

2i sin(θ/2)

∫ θ

0

sin(t/2)

sin(t)
χ (2− 2 cos(t))ψ(t)dt.

Note that it is crucial that χ(2− 2 cos(t)) be supported away from zero and ±π. �

−π −π
2

π
2

π

−π

−π
2

π
2

π

0
θ1

θ2

Figure 1. Level curves {(θ1, θ2) ∈ [−π, π]2 : E = 2 − 2 cos(θ1) + 2 − 2 cos(θ2)}
of constant energy for d = 2

Proposition 5.13. If d > 2, then 〈A〉−sχ(H0) 6∈ K(ℓ2(Zd)) for all χ ∈ C([0, 4d]) with non-empty
support in (0, 4d), and for all s ∈ R.

Proof. Let λ ∈ (0, 4d) and r > 0 be such that I(λ, r) ⊂ (0, 4d) and m := infx∈I(λ,r) |χ(x)| > 0.
Fix an energy E ∈ I(λ, r). Consider the constant energy curves

{(θ1, ..., θd) ∈ [−π, π]d : E = 2− 2 cos(θ1) + ...+ 2− 2 cos(θd)}.

For d = 2, these level curves are drawn in Figure 1 for various energies in [0, 8]. Let us proceed
in dimension two to keep things simple. The aim is to show that Fχ(H0)F−1(AF + i)−ν is
not compact for every fixed value of ν ∈ N. Now Fχ(H0)F−1 is equal to the operator of
multiplication by χ(2− 2 cos(θ1) + 2− 2 cos(θ2)). The support of this function of two variables
contains a neighborhood of a portion of the following vertical axes : θ1 = −π, 0 or π. Let N be
such a neighborhood. Let T be one of these three values depending on the situation. We can
then create a sequence Ψn(θ1, θ2) =

√
nψ1((θ1 − T )n)ψ2(θ2) that is supported in N , converges

weakly to zero and ‖Ψn‖ ≡ 1. Now let ϕνn := (AF +i)νΨn. Then for every fixed value of ν, ‖ϕνn‖
is uniformly bounded in n. The rest of the proof follows the guidelines as that of Proposition
5.8. �

Finally, as in the continuous case, we have:

Corollary 5.14. Let d > 2. Then for all (s, ε) ∈ R × (0,+∞), 〈A〉−s〈N〉ε 6∈ B(ℓ2(Zd)).
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6. Proof of Theorem 1.2

To prove the result, we will need the following two facts:

Lemma 6.1. [GJ1] For ψ,ϕ ∈ D(A), the rank one operator |ψ〉〈ϕ| : φ 7→ 〈ϕ, φ〉ψ is of class
C1(A).

Lemma 6.2. Let T be a self-adjoint operator with T ∈ C1(A). Let E ∈ µA(T ) and suppose that
ker(T − E) ⊂ D(A). Then there is an interval I ⊂ µA(T ) containing E such that P⊥

c (T )EI(T )
and Pc(T )η(T ) are of class C1(A) for all η ∈ C∞

c (R) with supp(η) ⊂ I.

Proof. Since there are finitely many eigenvalues of T in a neighborhood of E, there is a bounded
interval I containing E such that ker(T − λ) ⊂ D(A) for all λ ∈ I . Then P⊥

c (T )EI(T ) is a
finite rank operator and belongs to the class C1(A) by Lemma 6.1. Moreover T ∈ C1(A) implies
η(T ) ∈ C1(A), by the Helffer-Sjöstrand formula. So P⊥

c (T )EI(T )η(T ) ∈ C1(A) as the product
of two bounded operators in this class. Finally, Pc(T )η(T ) = η(T ) − P⊥

c (T )EI(T )η(T ) is a
difference of two bounded operators in C1(A), so Pc(T )η(T ) ∈ C1(A). �

Proof of Theorem 1.2. Since H0 is semi-bounded and σess(H) = σess(H0), there is ς ∈ R \
(σ(H) ∪ σ(H0)). Denote the resolvents of H and H0 respectively by R(z) := (z − H)−1 and
R0(z) := (z −H0)

−1. Also denote the spectral projector of R(z) onto the continuous spectrum
by Pc(R(z)). We split the proof into four parts. First we translate the problem in terms of the
resolvent R(ς). Second we show the following formula:

Pc(R(ς))θ(R(ς))[R(ς), iϕ(A/L)]◦θ(R(ς))Pc(R(ς)) >

L−1Pc(R(ς))θ(R(ς))
(

C〈A/L〉−2s +K
)

θ(R(ς))Pc(R(ς)),
(6.1)

where θ is a smooth function compactly supported about (ς−E)−1, ϕ is an appropriately chosen
smooth bounded function, L ∈ R+ is sufficiently large, K is a compact operator uniformly
bounded in L, C > 0, and s ∈ (1/2, 1). θ, ϕ,C and s are independent of L. This formula is
expressed in terms of the resolvent R(ς). Third, we look to convert it into a formula for H. We
show that the latter formula implies the existence of an open interval J containing E such that

Pc(H)EJ(H)[R(ς), iϕ(A/L)]◦EJ(H)Pc(H) >

L−1Pc(H)EJ (H)
(

C〈A/L〉−2s +K
)

EJ(H)Pc(H).
(6.2)

Fourth, we enter the dynamics into the previous formula and average over time. We notably use
the RAGE Theorem to derive the desired formula, i.e.

(6.3) lim
T→±∞

sup
‖ψ‖61

1

T

∫ T

0
‖〈A〉−se−itHPc(H)EJ (H)ψ‖2dt = 0.

Fifth, we apply (6.2) to e−itHPac(H)ψ and apply the Riemann-Lebesgue Lemma to derive the
other formula, i.e.

(6.4) lim
t→±∞

‖〈A〉−se−itHPac(H)EJ(H)ψ‖ = 0.

Part 1: Let E ∈ µA(H) be such that ker(H − E) ⊂ D(A). Then there are finitely many
eigenvalues in a neighborhood of E including multiplicity. We may find an interval I = (E0, E1)
containing E such that I ⊂ µA(H) and for all λ ∈ I , ker(H − λ) ⊂ D(A). Define

(6.5) f : R \ {ς} 7→ R, f : λ 7→ 1/(ς − λ).

Since eigenvalues of H located in I are in one-to-one correspondence with the eigenvalues of R(ς)
located in f(I) = (f(E0), f(E1)), it follows that f(I) is an interval containing f(E) such that
f(I) ⊂ µA(R(ς)) and ker(R(ς)− λ) ⊂ D(A) for all λ ∈ f(I). Note the use of Proposition 3.1.
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To simplify the notation in what follows, we let R := R(ς), R0 := R0(ς) and Pc := Pc(R(ς)),
as ς is fixed. Also let RA(z) := (z −A/L)−1, where L ∈ R+.
Part 2: Let θ, η, χ ∈ C∞

c (R) be bump functions such that f(E) ∈ supp(θ) ⊂ supp(η) ⊂
supp(χ) ⊂ f(I), ηθ = θ and χη = η. Let s ∈ (1/2, 1) be given. Define

ϕ : R 7→ R, ϕ : t 7→
∫ t

−∞
〈x〉−2sdx.

Note that ϕ ∈ S0(R). The definition of S0(R) is given in (C.1). Consider the bounded operator

F := Pcθ(R)[R, iϕ(A/L)]◦θ(R)Pc =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)[R, iA]◦RA(z)θ(R)Pc dz ∧ dz.

By Lemma 6.2 with T = R, Pcη(R) ∈ C1(A), so

[Pcη(R), RA(z)]◦ = L−1RA(z)[Pcη(R), A]◦RA(z).

Next to Pcθ(R) we introduce Pcη(R) and commute it with RA(z):

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)

(

RA(z)Pcη(R) + [Pcη(R), RA(z)]◦

)

[R, iA]◦×
(

η(R)PcRA(z) + [RA(z), Pcη(R)]◦

)

θ(R)Pc dz ∧ dz

=
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)Pcη(R)[R, iA]◦η(R)PcRA(z)θ(R)Pc dz ∧ dz

+ L−1Pcθ(R) (I1 + I2 + I3) θ(R)Pc,

where

I1 =
i

2π

∫

C

∂ϕ̃

∂z
(z)[Pcη(R), RA(z)]◦[R, iA]◦η(R)PcRA(z) dz ∧ dz,

I2 =
i

2π

∫

C

∂ϕ̃

∂z
(z)[Pcη(R), RA(z)]◦[R, iA]◦ dz ∧ dz,

I3 =
i

2π

∫

C

∂ϕ̃

∂z
(z)RA(z)Pcη(R)[R, iA]◦[RA(z), Pcη(R)]◦ dz ∧ dz.

Applying (C.5) and Lemma C.4, and recalling that s < 1, we have for some operators Bi
uniformly bounded with respect to L that

Ii =
〈A

L

〉−sBi
L

〈A

L

〉−s
, for i = 1, 2, 3.

Next to η(R) we insert χ(R). So far we have:

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)Pcχ(R) η(R)[R, iA]◦η(R)

︸ ︷︷ ︸

to be developed

χ(R)PcRA(z)θ(R)Pc dz ∧ dz

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.

Now write

η(R)[R, iA]◦η(R) = η(R)R[H, iA]◦Rη(R) = η(R)R[H0, iA]◦Rη(R) + η(R)R[V, iA]◦Rη(R).
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Let us start with the second term on the r.h.s. of this equation. It decomposes into

η(R)R[V, iA]◦Rη(R) = η(R) R〈H〉
︸ ︷︷ ︸

bounded

〈H〉−1/2 〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

bounded

〈H0〉−1/2[V, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

compact by A6′

×

× 〈H0〉1/2〈H〉−1/2

︸ ︷︷ ︸

bounded

〈H〉−1/2 〈H〉R
︸ ︷︷ ︸

bounded

η(R).

It is therefore compact. As for the first term on the r.h.s., it decomposes as follows

η(R)R[H0, iA]◦Rη(R) = η(R0)R0[H0, iA]◦R0η(R0) + Ξ1 +Ξ2,

where

Ξ1 := (η(R)R − η(R0)R0)[H0, iA]◦Rη(R) and Ξ2 := η(R0)R0[H0, iA]◦(Rη(R)−R0η(R0)).

We show tht Ξ1 is compact, and similarly one shows that Ξ2 is compact. We have

Ξ1 = (η(R)R − η(R0)R0)〈H0〉1/2
︸ ︷︷ ︸

compact

〈H0〉−1/2[H0, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

bounded by A5

〈H0〉1/2〈H〉−1/2

︸ ︷︷ ︸

bounded

〈H〉−1/2 〈H〉R
︸ ︷︷ ︸

bounded

η(R).

Let us justify that (η(R)R − η(R0)R0)〈H0〉1/2 is compact. Let κ : λ 7→ λη(λ). By the Helffer-
Sjöstrand formula,

(η(R)R − η(R0)R0)〈H0〉1/2 =
i

2π

∫

C

∂κ̃

∂λ
(λ)

(
(λ−R)−1 − (λ−R0)

−1
)
〈H0〉1/2 dλ ∧ dλ

=
i

2π

∫

C

∂κ̃

∂λ
(λ)(λ−R)−1RV R0(λ−R0)

−1〈H0〉1/2 dλ ∧ dλ

=
i

2π

∫

C

∂κ̃

∂λ
(λ)(λ−R)−1R〈H〉1/2

︸ ︷︷ ︸

bounded

〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

bounded

×

× 〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

compact by A3

〈H0〉1/2R0〈H0〉1/2
︸ ︷︷ ︸

bounded

(λ−R0)
−1 dλ ∧ dλ.

The integrand of this integral is compact for all λ ∈ C \ R, and moreover the integral converges

in norm since κ has compact support. It follows that (η(R)R − η(R0)R0)〈H0〉1/2, and thus Ξ1,
is compact. Thus we have shown that

(6.6) η(R)[R, iA]◦η(R) = η(R0)[R0, iA]◦η(R0) + compact.

Therefore there is a compact operator K1 uniformly bounded in L such that

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)MRA(z)θ(R)Pc dz ∧ dz

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.

Here M := Pcχ(R)η(R0)[R0, iA]◦η(R0)χ(R)Pc. Since Pcχ(R), η(R0) and [R0, iA]◦ belong to
C1(A), it follows by product that M ∈ C1(A) and we may commute RA(z) with M :

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)

2Mθ(R)Pc dz ∧ dz

+
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)[M,RA(z)]◦θ(R)Pc dz ∧ dz

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.
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We apply (C.8) to the first integral (which converges in norm), while for the second integral we
use the fact that M ∈ C1(A) to conclude that there exists an operator B4 uniformly bounded in
L such that

F = L−1Pcθ(R)ϕ
′(A/L)Mθ(R)Pc

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4

L2

)〈A

L

〉−s
θ(R)Pc.

Now ϕ′(A/L) = 〈A/L〉−2s. As a result of the Helffer-Sjöstrand formula, (C.5) and (C.10),

[〈A/L〉−s,M ]◦〈A/L〉s = L−1B5

for some operator B5 uniformly bounded in L. Thus commuting 〈A/L〉−s and M gives

F = L−1Pcθ(R)
〈A

L

〉−s
M

〈A

L

〉−s
θ(R)Pc

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc

> cL−1Pcθ(R)
〈A

L

〉−s
Pcχ(R)η(R0)

2χ(R)Pc

〈A

L

〉−s
θ(R)Pc

+ Pcθ(R)
K1 +K2

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc,

where c > 0 and K2 come from applying the Mourre estimate (3.1) to R0 on f(I). Exchanging
η(R0)

2 for η(R)2, we have a compact operator K3 uniformly bounded in L such that

F > cL−1Pcθ(R)
〈A

L

〉−s
Pcχ(R)η(R)

2χ(R)Pc

〈A

L

〉−s
θ(R)Pc + Pcθ(R)

K1 +K2 +K3

L
θ(R)Pc

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc.

We commute Pcχ(R)η(R)
2χ(R)Pc = Pcη(R)

2Pc with 〈A/L〉−s, and see that

[Pcη(R)
2Pc, 〈A/L〉−s]◦〈A/L〉s = L−1B6

for some operator B6 uniformly bounded in L. Thus

F > cL−1Pcθ(R)
〈A

L

〉−2s
θ(R)Pc + Pcθ(R)

K1 +K2 +K3

L
θ(R)Pc

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5 +B6

L2

)〈A

L

〉−s
θ(R)Pc.

Taking L large enough gives C > 0 such that c+(B1+B2+B3+B4+B5+B6)/L > C. Denoting
K := K1 +K2 +K3 yields formula (6.1).
Part 3: For all open intervals (e1, e2) located strictly above or below ς we have the identity

(6.7) E(e1,e2)(H) = E(f(e1),f(e2))(R(ς)),

where f is the function defined in (6.5). Now let J := int(θ−1{1}). This is an open interval and
we have EJ (R)θ(R) = EJ (R). Thus applying EJ (R) to (6.1) gives

PcEJ (R)[R, iϕ(A/L)]◦EJ (R)Pc > CL−1PcEJ (R)〈A/L〉−2sEJ (R)Pc+L
−1PcEJ (R)KEJ (R)Pc.

We have that PcEJ (R) := Pc(R)EJ (R) is a spectral projector of R onto a finite disjoint union
of open intervals. Let {λi} be the (finite) collection of eigenvalues of R located in J . Then
{f−1(λi)} are the eigenvalues of H located in f−1(J ), and by (6.7),

Pc(R)EJ (R) =
∑

i

EJi
(R) =

∑

i

Ef−1(Ji)(H) = Pc(H)Ef−1(J )(H),
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where the Ji are the open intervals such that ∪iJi ∪ {λi} = J . Denoting the open interval
J := f−1(J ) proves formula (6.2). Note that E ∈ J .
Part 4: Let F ′ be the r.h.s. of (6.2), i.e.

F ′ := Pc(H)EJ (H)[R(ς), iϕ(A/L)]◦EJ(H)Pc(H).

Formula (6.2) implies that for all ψ ∈ H and all T > 0:

L

T

∫ T

0
〈e−itHψ,F ′e−itHψ〉dt > C

T

∫ T

0

∥
∥
∥〈A/L〉−sEJ(H)Pc(H)e−itHψ

∥
∥
∥

2
dt+

+
1

T

∫ T

0
〈EJ(H)Pc(H)e−itHψ,KEJ (H)Pc(H)e−itHψ〉 dt.

First, for all L > 1,

L

T

∫ T

0
eitHF ′e−itH dt =

L

T

[
eitHPc(H)EJ (H)R(ς)ϕ(A/L)R(ς)EJ (H)Pc(H)e−itH

]T

0
−−−−−→
T→±∞

0.

Second, by the RAGE Theorem (B.1),

sup
‖ψ‖61

1

T

∫ T

0
〈EJ(H)Pc(H)e−itHψ,KEJ (H)Pc(H)e−itHψ〉 dt

6 sup
‖ψ‖61

1

T

∫ T

0
‖KEJ(H)e−itHPc(H)ψ‖ dt

6 sup
‖ψ‖61

(
1

T

∫ T

0
‖KEJ (H)e−itHPc(H)ψ‖2 dt

)1/2

−−−−−→
T→±∞

0.

It follows that for L sufficiently large (but finite),

lim
T→±∞

sup
‖ψ‖61

1

T

∫ T

0

∥
∥
∥
∥

〈A

L

〉−s
e−itHPc(H)EJ (H)ψ

∥
∥
∥
∥

2

dt = 0.

Finally (6.3) follows by noting that 〈A〉−s〈A/L〉s is a bounded operator.
Part 5: Let ψ ∈ H. Taking the inner product with e−itHPac(H)ψ in (6.2) gives

q(t) := 〈e−itHPac(H)ψ,F ′e−itHPac(H)ψ〉 > C‖〈A/L〉−sEJ(H)e−itHPac(H)ψ〉‖2

+ 〈EJ(H)e−itHPac(H)ψ,KEJ (H)e−itHPac(H)ψ〉.
By the Riemann-Lebesgue Lemma, the second term on the r.h.s. of the previous inequality goes
to zero as t goes to infinity. As for the l.h.s. of this inequality, we note that

q′(t) = 〈e−itHPac(H)ψ, iHEJ (H)[R(ς), iϕ(A/L)]◦EJ (H)e−itHPac(H)ψ〉
− 〈e−itHPac(H)ψ,EJ (H)[R(ς), iϕ(A/L)]◦EJ(H)iHe−itHPac(H)ψ〉.

As J is a bounded interval, q is uniformly continuous on R. Moreover, for all s, t ∈ R,
∫ t

s
|q(τ)|dτ 6 2‖R(ς)ϕ(A/L)R(ς)‖‖ψ‖2 .

Hence,
∫

R
|q(τ)|dτ < ∞. In particular limt→±∞ q(t) = 0. Thus (6.4) follows and the proof is

complete. �
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Appendix A. Argument as to why scattering states evolve where A is prevalent

This appendix is based on [Go, Section 3.2]. We give an idea why it is not unreasonable to
expect both purely absolutely continuous spectrum and a propagation estimate under the only
assumptions H ∈ C1(A) and the Mourre estimate (1.2) on I , when I is void of eigenvalues.
Without loss of generality, we may assume that the Mourre estimate for H is strict over the
interval I . Given a state f and ft := e−itHf its evolution at time t ∈ R under the dynamics
generated by the operator H, one looks at the Heisenberg picture:

(A.1) Af (t) := 〈ft, Aft〉.
This is the time-evolution of the expectation value of the observable A. Since we are localized in
energy in I , and A is generally an unbounded operator, we take f := ϕ(H)g, with g ∈ D(A) and
ϕ ∈ C∞

c (I), the smooth functions compactly supported on the interval I . In addition to imply
that [H, iA]◦ ∈ B(D(H),D(H)∗), the assumption H ∈ C1(A) implies that e−itHϕ(H) stabilizes
the domain of A, ensuring that Af (t) is well defined. Differentiating (A.1) gives

(A.2) A′
f (t) := 〈ft, [H, iA]◦ft〉 = 〈ft, EI(H)[H, iA]◦EI(H)ft〉.

By using the strict Mourre estimate and the boundedness of [H, iA]◦ we get

c‖f‖2 6 A′
f (t) 6 k‖f‖2,

where k := ‖[H, iA]◦‖B(D(H),D(H)∗). Integrating this equation yields

ct‖f‖2 6 Af (t)−Af (0) 6 kt‖f‖2, for all t > 0.

The transport of the particle is therefore ballistic with respect to A. This is characteristic of
purely absolutely continuous states and propagation estimates are usually obtained in these
circumstances.

Appendix B. A few words about the RAGE Theorem

We would like to make a relevant observation about the RAGE Theorem that appears to be
absent from the literature. A small modification of the proof of [CFKS, Theorem 5.8] leads to:

Theorem B.1 (RAGE). Let H be a self-adjoint operator on H. Let I be a bounded interval.
(1) If W ∈ K(H),

sup
ψ∈H,‖ψ‖=1

1

T

∫ T

0
‖We−itHPc(H)ψ‖2 dt → 0 as T → ∞.(B.1)

(2) If W ∈ B(H) is H-relatively compact, then for all ψ ∈ H,

1

T

∫ T

0
‖We−itHPc(H)ψ‖2 dt → 0 as T → ∞.

and

sup
ψ∈H,‖ψ‖=1

1

T

∫ T

0
‖We−itHPc(H)EI(H)ψ‖2 dt → 0 as T → ∞.

(3) If W ∈ K(H), then
∥
∥
∥
∥

1

T

∫ T

0
eitHWe−itHPc(H) dt

∥
∥
∥
∥
→ 0 as T → ∞.

The improvement relies in the supremum which is absent in the standard version of the The-
orem. In [CFKS], they prove (3). They also prove a weaker version of (1) but the proof gives
in fact (1). The first line of (2) is proven in [CFKS]. For the second part, apply (1) with

ψ̃ := (H + i)EI(H)ψ and conclude by noticing that (H + i)EI(H) is a bounded operator.
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Appendix C. Overview of almost analytic extension of smooth functions

We refer to [D], [DG], [GJ1], [GJ2], [HS] and [M] for more details. We review basic results
that are spread out in the mentioned literature. Let ρ ∈ R and denote by Sρ(R) the class of
functions ϕ in C∞(R) such that

(C.1) |ϕ(k)(x)| 6 Ck〈x〉ρ−k, for all k ∈ N.

For the purpose of this article we only need the class S0(R). This class consists of the smooth
bounded functions having derivatives with suitable decay.

Lemma C.1. [D] and [DG] Let ϕ ∈ Sρ(R), ρ ∈ R. Then for every N ∈ Z+ there exists a smooth
function ϕ̃N : C → C, called an almost analytic extension of ϕ, satisfying:

(C.2) ϕ̃N (x+ i0) = ϕ(x) ∀x ∈ R;

(C.3) supp (ϕ̃N ) ⊂ {x+ iy : |y| 6 〈x〉};

(C.4) ϕ̃N (x+ iy) = 0 ∀y ∈ R whenever ϕ(x) = 0;

(C.5) ∀ℓ ∈ N ∩ [0, N ],

∣
∣
∣
∣
∣

∂ϕ̃N
∂z

(x+ iy)

∣
∣
∣
∣
∣
6 cℓ〈x〉ρ−1−ℓ|y|ℓ for some constants cℓ > 0.

Lemma C.2. [GJ1] Let ρ > 0 and ϕ ∈ Sρ(R). Let ϕ(A) with domain D(ϕ(A)) ⊃ D(〈A〉ρ) be
the operator whose existence is assured by the spectral theorem. Then for f ∈ D(〈A〉ρ),

(C.6) ϕ(A)f = lim
R→∞

i

2π

∫

C

∂( ˜ϕθR)N
∂z

(z)(z −A)−1f dz ∧ dz,

where θR(x) := θ(x/R) and θ ∈ C∞
c (R) is a bump function such that θ(x) = 1 for x ∈ [−1/2, 1/2]

and θ(x) = 0 for x ∈ R \ [−1, 1].

Lemma C.3. For ρ > 0 and ϕ ∈ Sρ(R), the following limit exists:

(C.7) ϕ(k)(A)f = lim
R→∞

i(k!)

2π

∫

C

∂( ˜ϕθR)N
∂z

(z)(z −A)−1−kf dz ∧ dz, for all f ∈ D(〈A〉ρ),

where θ is the same as in Lemma C.2. Moreover, if 0 6 ρ < k and ϕ(k) is a bounded function,
then ϕ(k)(A) is a bounded operator and

(C.8) ϕ(k)(A) =
i(k!)

2π

∫

C

∂ϕ̃N
∂z

(z)(z −A)−1−k dz ∧ dz

holds with the integral converging in norm.

Lemma C.4. [GJ2] Let s ∈ [0, 1] and D := {(x, y) ∈ R2 : 0 < |y| 6 〈x〉}. Then there exists
c > 0 independent of A such that for all z = x+ iy ∈ D :

(C.9) ‖〈A〉s(A− z)−1‖ 6 c · 〈x〉s · |y|−1.

Proposition C.5. [GJ1] Let T be a bounded self-adjoint operator satisfying T ∈ C1(A). Then
for any ϕ ∈ Sρ(R) with ρ < 1, T ∈ C1(ϕ(A)) and

(C.10) [T, ϕ(A)]◦ =
i

2π

∫

C

∂ϕ̃N
∂z

(z −A)−1[T,A]◦(z −A)−1 dz ∧ dz.
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