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Abstract

We study a deep linear network expressed under the form of a matrix factorization

problem. It takes as input a matrix X obtained by multiplying K matrices (called factors

and corresponding to the action of the layers). Each factor is obtained by applying a fixed

linear operator to a vector of parameters satisfying a constraint. The number of factors is

not limited. In machine learning, the error between the product of the estimated factors and

X (i.e. the reconstruction error) relates to the statistical risk.

In this paper, we provide necessary and sufficient conditions on the network topology

under which stable recovery holds. This means that the error on the parameters defining the

factors (i.e. the stability of the recovered parameters) scales linearly with the reconstruction

error (i.e. the risk). Therefore, under these conditions on the network topology, any success-

ful learning task leads to stably defined features and therefore interpretable layers/network.

In order to do so, we first evaluate how the Segre embedding and its inverse distort

distances. Then, we show that any deep linear network can be cast as a generic multilinear

problem (that uses the Segre embedding). We call this method tensorial lifting. Using

the tensorial lifting, we provide necessary and sufficient conditions for the identifiability of

the factors (up to a scale rearrangement). We finally provide the necessary and sufficient

condition called deep-Null Space Property (because of the analogy with the usual Null

Space Property in the compressed sensing framework) which guarantees that the stable

recovery of the factors holds.

We illustrate the theory with a practical example where the deep linear network is a

convolutional linear network. As expected, the conditions are rather strong but not empty.

A simple test on the network topology can be implemented to test if the condition holds.
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1 Introduction

1.1 Content of the paper

We consider the following matrix factorization problem: let K ∈ N, m1 . . .mK+1 ∈ N, write

m1 = m, mK+1 = n. We are given a matrix X ∈ Rm×n which is (approximately) the product

of factors Xk ∈Rmk×mk+1 :

X = X1 · · ·XK .

This paper investigates models/constraints imposed on the factors Xk for which we can (up

to obvious scale rearrangement) identify or stably recover the factors Xk from X .

This question is of paramount importance in many fields including statistics and ma-

chine learning, vision, signal and image processing, information theory and numerical lin-

ear algebra. As will be detailed in Section 1.2, important problems sharing this structure

include: under-determined linear inverse problems, non-negative matrix factorization, dic-

tionary learning, source separation, blind demixing, phase retrieval, low rank approxima-

tion, self-calibration, etc. In practical applications X contains data or represents a linear

operator. It is often only specified indirectly and/or approximately. Notice that X might be

a simple vector.

The motivation for studying identifiability and stable recovery conditions strongly de-

pends on the application and the semantic attached to the factors. We illustrate it with

two examples. In most applications coming from signal and image processing, one factor

corresponds to an unknown input and the matrix product models an imperfectly known mea-

suring device. In those examples, recovering the factors allows one to calibrate the device

and/or recover the input. In most machine learning examples (for instance non-negative ma-

trix factorization), the columns and rows of X correspond to objects of a different nature;

X contains a function of these two variables. For instance, for a movie recommendation

system, each column correspond to a movie, each row to a person and the corresponding

element in X is the palatability of the person for the movie. When factoring X , we find on

the columns and rows of the factors features that describe each movie and the palatability

of the person for these features. Stable recovery in that context guarantees that the features

are stably defined and reliable. This a strong property that allows the interpretation of the

features and makes it possible to explain the decisions that are based on the factorization.

We now describe the structures imposed on the factors that we investigate in this paper.

The factors are required to be structured matrices defined by a number S∈N of unknown

parameters. More precisely, for k = 1 . . .K, let

Mk : RS −→ R
mk×mk+1 (1)

h 7−→ Mk(h)

be a linear map. Doing so, the product M1(h1) · · ·MK(hK) is a linear network.

For instance, the linear maps Mk might for instance map the values in h to prescribed

entries of the matrix Mk(h). Such a factorization is usually called a feed-forward linear

network. Another insightful example is when Mk uses h to construct a convolution matrix

(either Toeplitz or circulant). More complex examples include those where the matrix Mk(h)
is obtained by combining several smaller Toeplitz or circulant matrices. In the latter case,

the product M1(h1) · · ·MK(hK) applies a convolutional linear network. This example is

presented in Section 7. Another insightful example is obtained when MK (or equivalently

M1) is defined by the product M′
KD (or DM′

1), where M′
K (or M′

1) has the form (1) and the

columns of D and X contain input/output pairs. In this case, the product M1(h1) · · ·M′
K(hK)
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maps D onto X . Finally, we will see in Section 1.3.2 other linear networks that naturally

emerge when considering neural networks using the rectified linear unit activation function

(ReLU)1.

In addition to the structure induced by the operators Mk, we also consider structure

imposed on the vectors h. We assume that we know a collection of models M = (M L)L∈N
with the property that for every L, M L ⊂ RS×K is a given subset. We will assume that

the parameters h ∈ RS×K defining the factors are such that there exists L ∈ N such that

h ∈ M L. For instance, the constraint h ∈ M L might be used to impose sparsity, grouped

sparsity or co-sparsity. One might also use the constraint h ∈ M L to impose non-negativity,

orthogonality, equality (in phase retrieval), compactness, etc.

We now precisely state the problem considered in this paper. Or goal is to obtain a

statement of the form below for linear networks and convolutional linear networks.

Target theorem (informal version). Stable recovery

We assume a collection of models M and the mappings Mk of (1) known. Given a

metric2 d between parameter pairs, we establish a necessary and sufficient condition on M
and the mappings Mk guaranteeing that there is C > 0 such that for any X ∈ Rm×n, any L,

L∗ and any

(hk)k=1..K ∈ M L and (h∗k)k=1..K ∈ M L∗

such that

δ = ‖X −M1(h1) · · ·MK(hK)‖,
and

η = ‖X −M1(h
∗
1) · · ·MK(h

∗
K)‖.

are sufficiently small, we have

d(h,h∗)≤C(δ+η). (2)

The constituents of this statement are : the metric d; the condition on M and the map-

pings Mk; the size condition on δ and η; the constant C. The formal statements for deep

linear networks are in Theorem 5, Theorem 6. The statements for convolutional linear net-

works are in Proposition 8 and Theorem 7.

Let us interpret this statement in the context of signal processing and machine learning.

In signal processing, we usually know that h exists. The difference X −M1(h1) · · ·MK(hK)
is an error: typically the sum of a modeling error and noise. The inequality (2) guarantees

that, when the condition is satisfied, even an approximative minimizer of

argminL∈N,(hk)k=1..K∈M L ‖M1(h1) · · ·MK(hK)−X‖2. (3)

leads to a solution h∗ close h. When δ = 0 (i.e. the data exactly fit the model and is not

noisy) and η = 0 (i.e. (3) is perfectly solved) this is an identifiability guarantee. This is a

necessary condition of stable recovery.

In the machine learning context, the interpretation is slightly different. Considering a

regression problem, the values δ and η can be interpreted as the risk for the parameters h and

h∗. The inequality (2) therefore guarantees that the set made of the parameters leading to

a small risk has a small diameter. The features defined using such parameters are therefore

stably defined. Again, this seems to be the minimal condition allowing the interpretation of

these features.

1ReLU is the most common activation function.
2The metric will take into account layer-wise rescaling.
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The minimization problem (3) is non-convex because the product M1(h1) · · ·MK(hK) is

not (jointly) linear. The constraint ∪L∈NM L might also be non-convex. As a consequence,

solving or even finding an efficient heuristic solving (3) might be difficult or impossible for

some instances of the problem. We do not address the numerical issues related to the mini-

mization of (3). There is significant empirical evidence suggesting that (3) can be minimized

efficiently in a surprisingly large number of situations. However, despite an increasing ac-

tivity related to that question [44, 30, 17, 18, 56], the theory explaining this phenomenon

is still far from satisfactory, in particular when K ≥ 3. Notice that, feed-forward linear net-

works (which are in general not identifiable) have been closely investigated and the success

of the minimization has been explained in that context [7, 8, 35, 63]. In this regard, although

the identifiability is desired to interpret the solution, it implies that the minimizer of (3) is

unique (up to scale invariance). Intuitively, this is expected to reduce the size of the conver-

gence basin and complicate the numerical resolution of (3). In that sense, a sharp condition

of identifiability separates identifiable problems and problems which better lend themselves

to global optimization. Outside of this crude intuition, we do not investigate whether (3)

can actually be minimized or not.

The main contributions of this paper are:

• In Section 4, we describe the tensorial lifting. It expresses any matrix factorization

problem of the above structure in a generic multilinear format. The latter composes a

linear lifting operator and the Segre embedding.

• In the absence of noise (see Section 5):

– We establish a simple geometric condition on the intersection of two sets which

are necessary and sufficient to guarantee the identifiability of the parameters hk

defining the factors (Proposition 7).

– We provide simpler conditions which involve the rank of the Lifting operator

(defined in Section 4) such that:

∗ If the rank of the Lifting operator is large (e.g. larger than 2K(S− 1)+ 2,

when M = RS×K) and the Lifting operator is random, for almost every

Lifting operator, the solution of

M1(h1) · · ·MK(hK) = X

is identifiable (Theorem 3).

∗ If the rank of the Lifting operator is small (e.g. smaller than 2S− 1, when

M = RS×K), the solution of

M1(h1) · · ·MK(hK) = X

is not identifiable (Theorem 4);

– We also provide a simple algorithm to compute the rank of the Lifting operator

(Proposition 4).

• Stable recovery statements for the general problem are in Section 6:

– We define the deep-Null Space Property (Definition 3): a generalization of the

usual Null Space Property [20] that also applies to the deep matrix factorization

problem.

– We establish that when the deep-Null Space Property holds we can recover the

factors with an accuracy bounded above by the sum of δ+η (see the informal

statement above or Theorem 5).
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– We establish the converse statement: if we are able to recover the factors with an

accuracy upper bounded by δ then the deep-Null Space Property holds (Theorem

6).

• We specialize the above results to convolutional linear networks and establish a simple

condition, that can be computed in many contexts, such that

– If the condition is satisfied the convolutional linear networks can be stably re-

covered (see Theorem 7);

– If the condition is not satisfied, the convolutional linear network is not identifi-

able (see Proposition 8).

In order to establish these results, we investigate and recall several results on tensors, tensor

rank and the Segre embedding (see Section 3). In particular, we investigate how the Segre

embedding distort distances.

1.2 Bibliographical landmarks

Matrix factorization problems are ubiquitous in statistics, information theory and data rep-

resentation. It is not possible to give an bibliography on problems fitting the general frame-

work of the paper. We give however an extensive description of the bibliography on the

subject. It shows in particular that the studied framework includes many interesting prob-

lems.

To simplify notations, from now on, the parameters defining the factors are gathered in

a single matrix and are denoted h ∈RS×K (i.e., using bold fonts). The kth vector containing

the parameters for the layer k is denoted hk ∈ R
S.

In this section, we distinguish the cases K = 1, K = 2 and K ≥ 3.

1.2.1 K = 1: Linear inverse problems

The simplest version consists of a model with one layer (i.e., K = 1) and M = RS×K .

Problem (3) is then a linear inverse problem. The data X can be vectorized to form a column

vector and the operator M1 simply multiplies the column vector h1 by a fixed (rectangular)

matrix. Typically, when the linear inverse problem is over-determined, the latter matrix has

more rows than columns, the uniqueness of a solution to (3) depends on the column rank of

the matrix and the stable recovery constant depends on the smallest singular value of M1.

When the matrix is not full colum rank, the identifiability and stable recovery for this

problem has been intensively studied for many constraints M . In particular, for sparsity

constraints this is the compressed/compressive sensing problem (see the seminal articles

[10, 23]). Some compressed sensing statements (especially the ones guaranteeing that any

minimizer of the ℓ0 problem stably recovers the unknown) are special cases (K = 1) of the

statements provided in this paper. We will not perform a complete review on compressed

sensing but would like to highlight the Null Space Property described in [20]. The funda-

mental limits of compressed sensing (for a solution of the ℓ0 problem) have been analyzed

in detail in [9].

Although the main novelty of the paper is to investigate stable recovery properties for

any K ≥ 1, we will always specialize the statements made for K ≥ 1 in the case K = 1. The

goal is to illustrate the new statements and to provide a way of comparison with well known

results.
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1.2.2 K = 2: Bilinear inverse problems and bilinear parameterizations

When k ≥ 2, the problem becomes non-linear because of the product in (3). This signif-

icantly complicates the analysis. Let us describe below the main instances studied in the

literature when K = 2.

Non-negative Matrix factorization (NMF) and low rank prior: In Non-negative

matrix factorization [39], the mapping M1 and M2 maps the entries in h1 and h2 at pre-

scribed locations in the factors (say, one column after another). The constraints M imposes

that all the entries in h1 and h2 are non-negative. The (NMF) has been widely used for

many applications.

Conditions guaranteeing that the factors provided by the (NMF) identify (not stably

recover) the correct factors (up to rescaling and permutation) were first established in the

pioneering work [22]. To the best of our knowledge, this is the first paper addressing re-

covery guarantees for a problem of depth K = 2. It emphasizes a separability condition

that guarantees identifiability. The proof is purely geometric and relies on the analysis of

inclusions of simplicial cones. This result is significantly extended in [38]. In this paper,

the continuity of the NMF estimator is established. Concerning computational aspects, the

(NMF) is NP-complete [62]. However, under the separability hypothesis of [22], the solu-

tion of the (NMF) problem can be computed in polynomial time [4].

Notice that, if we slightly generalize3 the problem and introduce a linear degradation

operator

H : Rm×n −→R
m×n.

Using the same mapping M1 and M2 as for the (NMF), with M = RS×K , but with a small

number of lines (resp columns) in M2(h2) (resp. M1(h1)). Any solution of the problem

(h∗
1,h

∗
2) ∈ argminh∈RS×K ‖H(M1(h1)M2(h2))−X‖2.

leads to a low rank approximation M1(h
∗
1)M2(h

∗
2) of an inverse of H, at X . Again, a large

corpus of literature exists on the low rank prior [52, 12, 25, 14].

Phase Retrieval: Phase retrieval fits the framework described in the present paper when

we take

M1(h1) = diag(F h1) M2(h2) = (F h2)
∗

and

M = {(h,h) ∈R
S×K | h ∈R

S}
where S is the size of the signal, F computes N linear measurements of any element in R

S

(typically Fourier measurements), diag(.) creates an N×N diagonal matrix whose diagonal

contains the input and ∗ is the (entry-wise) complex conjugate.

The tensorial lifting at the core of the present paper generalizes the lifting used in the

inspiring work on PhaseLift [41, 13, 11]. As is often the case when K = 2, PhaseLift is a

semidefinite program that can be efficiently solved when the unknown is of moderate size.

Also, these papers provide conditions on the measurements guaranteeing that the phases are

stably recovered by PhaseLift.

The benefit of the generalization introduced with the tensorial lifting is that it applies to

any multilinear inverse problem.

3The interested readers can check that this generalization only leads to a small change of the Lifting operator

introduced in Section 4. It is therefore done at no cost.
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Self-calibration and de-mixing Measuring operators often depend linearly on param-

eters that are not perfectly known. The estimation of these parameters is crucial to restore

the data measured by the device. This is the self-calibration problem. This naturally fits the

setting of this article: - we let h1 be the parameters defining the sensing matrix and M1(h1)
be the sensing matrix. The parameter h2 then defines the signal (or signals) contained in the

column(s) of M2(h2).
Many instances of this problem have been studied and much progress has been made to

obtain algorithms that can be applied to problems of larger and larger size. This leads to a

very interesting line of research.

To the best of our knowledge, the first stable recovery statements concern the blind-

deconvolution problem. In [2], the authors use a lifting to transform the blind-deconvolution

problem into a semidefinite program with an unknown whose size is the product of the

sizes4 of h1 and h2. Such problems can be solved for unknowns of moderate size. The

authors of [2] provide explicit conditions guaranteeing the stable recovery with high prob-

ability. This idea has been generalized and applied to other similar problems in [19, 6].

The authors of [43] consider a significantly more general calibration model. In this model,

M1(h1) is diagonal and its diagonal contains the entries of h1. M2(h2) simply multiplies h2

by a fixed known matrix (the theorems consider a random matrix). The constraint on the pa-

rameters imposes h2 to be sparse. For this problem, they prove that with high probability the

numerical method called SparseLift is stable with a controlled accuracy. SparseLift returns

the left and right singular vectors of the solutions of an ℓ1 optimization problem whose un-

known is the same as in [2]. However, solving an ℓ1 minimization problem is much simpler

than a semi-definite problem. This is a very significant practical improvement.

As emphasized in [40] in order to motivate its non-convex approach, the only drawback

of the numerical methods described in [2, 43] is their complexity. The extra complexity is

due to the fact that they optimize a variable in the product space RS×S and then deduce an

approximate solution of the ”un-lifted” problem. This is what motivates the authors of [40]

to propose a non-convex approach. The constructed algorithm provably stably recovers the

sensing parameters and the signals with a geometric onvergence rate.

Sparse coding and dictionary learning: Sparse coding and dictionary learning is an-

other kind of bilinear problem (see [53] for an overview on the subject). In that framework,

the columns of X contain the data. Most often, people consider two layers: K = 2. The

layer M1(h1) is an optimized dictionary of atoms defined by the parameters h1 and each

column of M2(h2) contains the code (or coordinates) of the corresponding column in X .

Most often, h2 is assumed sparse.

The identifiability and stable recovery of the factors has been studied in many dictionary

learning contexts and provides guarantees on the approximate recovery of both an incoher-

ent dictionary and sparse coefficients when the number of samples is sufficiently large (i.e.,

n is large, in our setting). In [29], the authors developed local optimality conditions in the

noiseless case, as well as sample complexity bounds for local recovery when M1(h1) is

square and M2(h2) are iid Bernoulli-Gaussian. This was extended to overcomplete dictio-

naries in [26] (see also [57] for tight frames) and to the noisy case in [34]. The authors

of [59] provide exact recovery results for dictionary learning, when the coefficient matrix

has Bernoulli-Gaussian entries and the dictionary matrix has full column rank. This was

extended to overcomplete dictionaries in [1] and in [5] but only for approximate recovery.

Finally, [28] provides such guarantees under general conditions which cover many practical

4With our notations this is simply S×S but this can be much more favorable.
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settings.

Contributions in these frameworks The present article considers the identifiability

and stability of the recovery for any K ≥ 1 in a general and unifying framework. As was

already mentioned, we do not investigate the possibility to build proved algorithms. As will

appear in the sequel of the paper, the analogue of the lifting at the core of the algorithms de-

scribed in the above papers (in particular the papers on phase retrieval and self-calibration)

is a tensorial lifting (see Section 4) and involves tensors that cannot be manipulated in prac-

tice. Also, even when we are able to manipulate the tensors, the computation of the best

rank 1 approximation of such tensors is an open non-convex problem. Therefore, there is

no numerically efficient and reliable way to extract the ”un-lifted” parameters from an op-

timized tensor. Because of that, we have not yet pursued the construction of a numerical

scheme based on the tensorial lifting when K ≥ 3. As was already mentioned, at this writ-

ing, the success of algorithms for K ≥ 3 is mostly supported by empirical evidence. Proving

their efficiency is a wide open problem (see [44, 30, 35, 17, 18, 56, 8, 63]). The purpose

of the paper is rather to provide guarantees on the stability of the solution when such an

empirical success occurs.

The specialization of the presented results to problems with K = 2 leads to necessary

and sufficient conditions for the stable recovery. This is slightly different from the usual

approach. Usually, authors provide sufficient conditions and argue their sharpness by com-

paring the number of samples required by their method and the information theoretic limit

(typically, the number of independent variables of the problem).

It would of course be interesting to see how far it is possible to unify the different

problems with K = 2 using the framework of this paper. We have however not pursued this

route and instead focused on the situation K ≥ 3.

1.2.3 K ≥ 3.

To the best of our knowledge, little is known concerning the identifiability and the stability

of matrix factorization when K ≥ 3. The uniqueness of the factorization corresponding to

the Fast Fourier Transform was proved in [46]. Other results consider the identifiability

of the factors which are sparse and random [51] and might even consider the presence of

non-linearities between the layers to include the deep classification architectures [3]. The

authors of the present paper have announced preliminary versions of the results described

here in [49]. They are significantly extended here.

The difficulties, when K ≥ 3, come from the fact that some of the tools used for problems

with K = 2 cannot be used. In particular, we cannot use the usual lifting, the singular

value decomposition, the sin-θ theorem in [21]. Often, these tools need to be replaced by

analogous objects involving tensors. This complicates the analysis and prohibits the use of

numerical schemes that manipulate lifted variables.

1.3 Motivations

1.3.1 Motivating examples with K ≥ 3

The use of deep matrix factorization is classical. In particular handcrafted deep matrix fac-

torization of a few particular matrices are used in many fields of mathematics and engineer-

ing. Most fast transforms, such as the Cooley-Tukey Fast Fourier Transform, the Discrete

8



Cosine Transform and the Wavelet transform, are matrix products involving a large number

of factors.

The construction of deep matrix factorization only started recently (see [15, 16] and

references therein). In [15, 16, 48], the authors consider compositions of sparse convolu-

tions organized according to a convolutional tree. In the simplified case studied in [15],

X is a vector, the vectors hk define the convolution kernels and each operator Mk maps hk

to a circulant (or block-circulant) matrix. The convolutional networks studied in Section 7

include this example. The first layer corresponds to the coordinates/code of X in the frame

obtained by computing the compositions of convolutions along the unique branch of the

tree. In [48], the authors consider a factorization involving several sparse layers. In that

work, the authors simultaneously estimate the support and the coefficients of each sparse

factor. They use this factorization to define an analogue of the Fast Fourier Transform for

signals living on graphs [47] and latter reworked on this application using compositions

of Given’s rotations [27]. In [36], the authors consider a (deep) multi-resolution matrix

factorization, inspired by the wavelet decomposition, where the factors are orthogonal and

sparse. In [54, 55], the authors consider factors based on householder reflectors and Givens

rotation. In [45], the authors study a multi-layer Non-negative matrix factorization. Finally,

deep factorizations based on Kroneker products have been considered in [61].

1.3.2 Connections with deep neural networks

In order to clearly express the links between deep neural networks and the deep linear

networks considered in (3), we introduce samples (xl ,yl)1≤l≤L according to a distribution

law. The regression task aims at constructing a function that predicts y from x for a new

realization (x,y) of the same random variable. As usual, we take X whose columns contain

the samples yl . We also use the samples xl to define the columns of a matrix D and define

MK(hK) = M′
K(hK)D

where M′
k is a matrix describing the linear part of the first layer of the network. Practically,

for any layer k= 1..K, a feed-forward layers is defined by a mapping Mk that writes the entry

of hk corresponding to an edge of the network in the corresponding entry in Mk(hk). For

convolutional layerss, Mk and M′
K concatenate convolution matrices 5 defined by a portion

of the entries in hk. Each convolution matrix is at the location corresponding to a prescribed

edge.

However, in addition to this linear structure, deep neural networks usually include a non-

linear mapping at each layer. Many non-linearities have been tested and implemented (addi-

tion of a constant term, non-linear poolings, activation functions. . . ). These non-linearities

and in particular non-linear activation functions are at the core of the efficiency and versa-

tility/expressiveness of deep neural networks (see [24] which nicely illustrates this fact).

In the deep learning community, networks that do not include non-linearities are called

deep linear networks. They are sometimes studied in place of neural networks [17, 18, 35].

To support this fact, the authors use a moderately convincing argument (see [18]) based on

the independence of the action of the activation function to the input.

The main argument for studying deep linear networks comes from a remark in [56].

For the rectified linear unit activation function (ReLU)6, the action of the ReLU activation

5Depending on the situation: Toeplitz, block-Toeplitz, circulant or block-circulant matrices. The matrices often

involve a subsampling.
6ReLU is the most common activation function.
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function at the layer k treats every entry independently of the other entries and multiplies

by either 1 or 0. More precisely, the action of the Relu activation function on the layer k

applies the mapping Ak : Rmk×n 7−→ Rmk×n (where mk × n is the size of the layer k) is such

that :

(AkM)i, j = ak(h)i, jMi, j, for (i, j) ∈ [mk]× [n]

where ak(h) ∈ {0,1}mk×n is defined by

ak(h)i, j =

{
1 if

(
Mk+1(hk+1)Ak+1Mk+2(hk+2) · · ·AK−1MK(hK)

)
i, j

≥ 0

0 otherwise

The function

ak : RS×K −→ {0,1}mk×n

h 7−→ ak(h)

is piecewise constant because {0,1}mk×n is finite. As a consequence, RS×K is partitioned

into subsets and on every subset all the functions ak are constant. As a consequence, on ev-

ery subset the action of the non-linear network coincides with the action of a linear network

that groups at every layer Ak and Mk+1. Further, the landscape of the objective function

of the neural network that uses ReLU coincides, on every part of the partition, with the

landscape of a linear network.

This is a strong argument in favor of the study deep linear networks. Indeed, it seems

impossible to establish properties of the objective function for neural network if we do not

already understand them for deep linear networks.

2 Notation and summary of the hypotheses

We continue to use the notation introduced in the introduction. For an integer k ∈ N, set

[k] = {1, · · · ,k}.

We consider K ≥ 1 and S ≥ 2 and real valued tensors of order K whose axes are of size

S, denoted T ∈ RS×···×S. The space of tensors is abbreviated RSK
. The entries of T are

denoted Ti1,··· ,iK , where (i1, · · · , iK) ∈ [S]K. For i ∈ [S]K , the entries of i are i = (i1, · · · , iK)
(for j ∈ [S]K we let j = ( j1, · · · , jK), etc). We either write Ti or Ti1,··· ,iK .

We recall that parameters are denoted h ∈ RS×K (i.e., using bold fonts). They gather K

vectors of size S and the kth vector is denoted hk ∈ RS. The ith entry of the kth vector is

denoted hk,i ∈ R. A vector not related to an element in R
S×K is denoted h ∈ R

S (i.e., using

a light font). Throughout the paper we assume

M = (M L)L∈N, with M L ⊂ R
S×K .

We also assume that, for all L ∈N, M L 6= /0. They can however be equal or constant after a

given L′.
All the vector spaces RSK

, RS×K , RS etc. are equipped with the usual Euclidean norm.

This norm is denoted ‖.‖ and the scalar product 〈., .〉. In the particular case of matrices, ‖.‖
corresponds to the Frobenius norm. We also use the usual p norm, for p ∈ [1,∞], and denote

it by ‖.‖p. In particular, for h ∈ RS×K and T ∈ RSK
, we have for p <+∞

‖h‖p =

(
K

∑
k=1

S

∑
i=1

|hk,i|p
)1/p

, ‖T‖p =


 ∑

i∈[S]K
|Ti|p




1/p
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and

‖h‖+∞ = max
k∈[K]
i∈[S]

|hk,i| , ‖T‖+∞ = max
i∈[S]K

|Ti|

Set

R
S×K
∗ = {h ∈ R

S×K | ∀k ∈ [K],‖hk‖ 6= 0}. (4)

Define an equivalence relation in RS×K
∗ : for any h, g ∈RS×K , h ∼ g if and only if there exist

(λk)k∈[K] ∈ RK such that

K

∏
k=1

λk = 1 and hk = λkgk,∀k ∈ [K]. (5)

Denote the equivalence class of h ∈ RS×K
∗ by 〈h〉.

We say that the zero tensor is of rank 0. We say that a non-zero tensor T ∈R
SK

is of rank

1 (or decomposable) if and only if there exists h ∈ RS×K
∗ such that T is the outer product of

the vectors hk, for k ∈ [K]. That is, for any i ∈ [S]K ,

Ti = h1,i1 · · ·hK,iK .

Let Σ1 ⊂ RSK
denote the set of tensors of rank 0 or 1.

The rank of any tensor T ∈R
SK

is defined to be

rk(T ) = min{r ∈ N | there exists T1, · · · ,Tr ∈ Σ1 such that T = T1 + · · ·+Tr}.

For r ∈ N, let

Σr = {T ∈ R
SK | rk(T )≤ r}.

The ∗ superscript refers to optimal solutions. A set with a ∗ subscript means that 0 is

ruled out of the set. In particular, Σ1,∗ denotes the non-zero tensors of rank 1. Attention

should be paid to RS×K
∗ (see (4)).

3 Facts on the Segre embedding and tensors of rank 1 and

2

Parametrize Σ1 ⊂ RSK
by the map

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 · · ·hK,iK )i∈[S]K
(6)

The map P is called the Segre embedding and is often denoted Ŝeg in the algebraic

geometry literature.

Standard Facts:

1. Identifiability of 〈h〉 from P(h): For h and g ∈ R
S×K
∗ , P(h) = P(g) if and only if

〈h〉= 〈g〉.
2. Geometrical description of Σ1,∗: Σ1,∗ is a smooth (i.e., C∞) manifold of dimension

K(S− 1)+ 1 (see, e.g., [37], chapter 4, pp. 103).

11



3. Geometrical description of Σ2: We recall that the singular locus (Σ2)sing of (Σ2) has

dimension strictly less than that of Σ2 and that Σ2\(Σ2)sing is a smooth manifold. The

dimension of Σ2\(Σ2)sing is 2K(S− 1)+ 2 when K > 2, and is 4(S− 1) when K = 2

(see, e.g., [37], chapter 5).

We can improve Standard Fact 1 and obtain a stability result guaranteeing, that if we

know a rank 1 tensor sufficiently close to P(h), we approximately know 〈h〉. In order to

state this, we need to define a metric on RS×K
∗ / ∼ (where ∼ is defined by (5)). This has to

be considered with care since, whatever h ∈ RS×K
∗ , the subset {h | h ∈ 〈h〉} is not compact.

In particular, considering

h′
k =

{
λ hk if k = 1

λ− 1
K−1 hk otherwise

when λ goes to infinity, we easily construct examples that make the standard metric on

equivalence classes useless7.

This leads us to consider

R
S×K
diag = {h ∈ R

S×K
∗ | ∀k ∈ [K],‖hk‖∞ = ‖h1‖∞}.

The interest in this set comes from the fact that, whatever h ∈ RS×K
∗ , the set 〈h〉∩R

S×K
diag is

finite. Indeed, if g ∈ 〈h〉 ∩R
S×K
diag the (λk)k∈[K] ∈ RK such that, for all k ∈ [K], hk = λkgk

must all satisfy |λk|= 1, i.e. λk =±1.

Definition 1. For any p ∈ [1,∞], we define the mapping dp : (RS×K
∗ / ∼ ×RS×K

∗ / ∼)→ R

by

dp(〈h〉,〈g〉) = inf
h′∈〈h〉∩RS×K

diag

g′∈〈g〉∩RS×K
diag

‖h′− g′‖p ,∀h, g ∈R
S×K
∗ .

Proposition 1. For any p ∈ [1,∞], dp is a metric on RS×K
∗ /∼.

The proof is in Appendix 9.1.

Using this metric, we can state that not only 〈h〉 is uniquely determined by P(h), but

this operation is stable.

Theorem 1. Stability of 〈h〉 from P(h)
Let h and g ∈RS×K

∗ be such that ‖P(g)−P(h)‖∞ ≤ 1
2

max(‖P(h)‖∞,‖P(g)‖∞). For all

p,q ∈ [1,∞],

dp(〈h〉,〈g〉)≤ 7(KS)
1
p min

(
‖P(h)‖

1
K −1
∞ ,‖P(g)‖

1
K −1
∞

)
‖P(h)−P(g)‖q. (7)

7For instance, if h and g ∈ RS×K
∗ are such that h1 = g1, we have

inf
h′∈〈h〉,g′∈〈g〉

‖h′−g′‖p = 0

even though we might have h2 6= g2 (and therefore 〈h〉 6= 〈g〉). This does not define a metric.

Also, when h and g are such that hk 6= gk, whatever k ∈ [K], we have

sup
h′∈〈h〉

inf
g′∈〈g〉

‖h′−g′‖p =+∞.

Therefore, the Hausdorff distance between 〈h〉 and 〈g〉 is infinite for almost every pair (h,g). This metric is therefore

not very useful in the present context.
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The theorem is proved in Appendix 9.2.

In the final result, the bound established in Theorem 1 plays a role similar to the sin−θ
Theorem of [21] in [43, 13, 2].

The following proposition shows that the upper bound in (7) cannot be improved by a

significant factor, in particular when q is large.

Proposition 2. There exist h and g∈RS×K
∗ such that ‖P(g)‖∞ ≤‖P(h)‖∞, ‖P(g)−P(h)‖∞ ≤

1
2
‖P(h)‖∞ and

7(KS)
1
p ‖P(h)‖

1
K −1
∞ ‖P(h)−P(g)‖q ≤Cq dp(〈h〉,〈g〉),

where

Cq =

{
28(KS)

1
q if q <+∞,

28 if q =+∞.

The proposition is proved in Appendix 9.3.

As stated in the following theorem, we have a more valuable upper bound in the general

case.

Theorem 2. ”Lipschitz continuity” of P

We have for any q ∈ [1,∞] and any h and g ∈ RS×K
∗ ,

‖P(h)−P(g)‖q ≤ S
K−1

q K
1− 1

q max

(
‖P(h)‖1− 1

K
∞ ,‖P(g)‖1− 1

K
∞

)
dq(〈h〉,〈g〉). (8)

The theorem is proved in Appendix 9.4.

Notice that, considering h and g ∈ RS×K such that hk,i = 1 and gk,i = ε, for all k ∈ [K]
and i ∈ [S] and for a 0 < ε ≪ 1, we easily calculate

S
K−1

q K
1− 1

q max

(
‖P(h)‖1− 1

K
∞ ,‖P(g)‖1− 1

K
∞

)
dq(〈h〉,〈g〉)≤ K‖P(h)−P(g)‖q.

As a consequence, the upper bound in Theorem 2 is tight up to at most a factor K.

4 The tensorial lifting

The following proposition is clear (it can be shown by induction on K):

Proposition 3. The entries of the matrix

M1(h1)M2(h2) · · ·MK(hK)

are multivariate polynomials whose variables are the entries of h ∈RS×K . Moreover, every

entry is the sum of monomials of degree K. Each monomial is a constant times h1,i1 · · ·hK,iK ,

for some i ∈ [S]K.

Notice that any monomial h1,i1 · · ·hK,iK is the entry P(h)i in the tensor P(h). Therefore

every polynomial in the previous proposition takes the form ∑i∈[S]K ciP(h)i for some con-

stants (ci)i∈[S]K independent of h. In words, every entry of the matrix M1(h1)M2(h2) · · ·MK(hK)
is obtained by applying a linear form to P(h). Moreover, the polynomial coefficients defin-

ing the linear form are uniquely determined by the linear maps M1, · · · , MK . This leads to

the following statement.
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Corollary 1. Tensorial Lifting

Let Mk, k ∈ [K] be as in (1). The map

(h1, . . . ,hK) 7−→ M1(h1)M2(h2) · · ·MK(hK),

uniquely determines a linear map

A : RSK −→ R
m×n,

such that for all h ∈RS×K

M1(h1)M2(h2) · · ·MK(hK) = AP(h). (9)

We call (9) and its use the tensorial lifting. When K = 1, we simply have A = M1.

When K = 2 it corresponds to the usual lifting already exploited to establish stability results

for phase recovery, blind-deconvolution, self-calibration, sparse coding, etc. Notice that,

when K ≥ 2, it may be difficult to provide a closed form expression for the operator A .

We can however determine simple properties of A . In most reasonable cases, A is sparse.

If the operators Mk simply embed the values of h in a matrix, the matrix representing A
only contains zeros and ones. Also, since the operators Mk are known, we can compute

AP(h), whatever h ∈ RS×K , using (9). Said differently, we can compute A for any rank 1

tensor. Therefore, since A is linear, we can compute AT for any low rank tensor T . If the

dimensions of the problem permit, one can manipulate A in a basis of RSK
.

Since rk(A) is an important quantity, let us emphasize that we always have rk(A) ≤
mn. It is also possible to compute rk(A), when mn is not too large, using the following

proposition.

Proposition 4. If we consider R independent random hr, with r = 1..R, according to the

normal distribution in RS×K , we have (with probability 1)

dim(Span((AP(hr))r=1..R)) =

{
R if R ≤ rk(A)
rk(A) otherwise.

(10)

The proof is provided in Appendix 9.5

Using Corollary 1, when (3) has a minimizer, we rewrite in the form

h∗ ∈ argminL∈N,h∈M L ‖AP(h)−X‖2. (11)

We now decompose this problem into two sub-problems: A least-squares problem

T ∗ ∈ argmin
T∈RSK ‖AT −X‖2 (12)

and a non-convex problem

h′∗ ∈ argminL∈N,h∈M L ‖A(P(h)−T∗)‖2. (13)

Proposition 5. For any X, A , when (3) has a minimizer:

1. Let h∗ be a solution of (11). Then, for any solution T ∗ of (12), h∗ also minimizes

(13).

2. Let T ∗ be a solution of (12) and h′∗ a solution of (13). Then, h′∗ also minimizes (11).

The Proposition is proved in Appendix 9.6.

From now on, because of the equivalence between solutions of (13) and (11), we stop

using the notation h′∗ and write h∗ ∈ argminL∈N,h∈M L ‖A(P(h)−T∗)‖2.
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5 Identifiability (error free case)

Throughout this section, we assume that X is such that there exists L and h ∈ M L such that

X = M1(h1) · · ·MK(hK). (14)

Under this assumption, X = AP(h), so

P(h) ∈ argmin
T∈RSK ‖AT −X‖2.

Moreover, we trivially have P(h) ∈ Σ1 and therefore h minimizes (13), (3) and (11). As a

consequence, (3) has a minimizer.

We ask whether there exist guarantees that the resolution of (3) allows one to recover h

(up to the usual uncertainties).

In this regard, for any h ∈ 〈h〉, we have P(h) = P(h) and therefore AP(h) = AP(h) =
X . Thus unless we make further assumptions on h, we cannot expect to distinguish any

particular element of 〈h〉 using only X . In other words, recovering 〈h〉 is the best we can

hope for.

Definition 2. Identifiability

We say that 〈h〉 is identifiable if the elements of 〈h〉 are the only solutions of (3).

We say that M is identifiable if for every L ∈N and every h ∈ M L, 〈h〉 is identifiable.

Proposition 6. Characterization of the global minimizers

For any L∗ ∈N and any h∗ ∈ M L∗ , (L∗,h∗)∈ argminL∈N,h∈M ‖AP(h)−X‖2 if and only

if

P(h∗) ∈ P(h)+Ker(A) .

The Proposition is proved in Appendix 9.7.

In order to state the following proposition, we define for any L and L′ ∈ N

P(M L)−P(M L′) :=
{

P(h)−P(g) | h ∈ M L and g ∈ M L′
}
⊂ R

SK

.

Proposition 7. Necessary and sufficient conditions of identifiability

1. For any L and h ∈ M L: 〈h〉 is identifiable if and only if for any L ∈ N

(
P(h)+Ker(A)

)
∩P(M L) ⊂ {P(h)}.

2. M is identifiable if and only if for any L and L′ ∈ N

Ker(A)∩
(
P(M L)−P(M L′)

)
⊂ {0}. (15)

The Proposition is proved in Appendix 9.8.

In the context of the usual compressed sensing (i.e., when K = 1, M contains L-sparse

signals, A is a rectangular matrix with full row rank and X is a vector), the proposition is

already stated in Lemma 3.1 of [20].

In reasonably small cases and when P(M ) is algebraic, one can use tools from numer-

ical algebraic geometry such as those described in [32, 33] to check whether the condition

(15) holds or not. The drawback of Proposition 7 is that, given a factorization model de-

scribed by A , the condition (15) might be difficult to verify.
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We therefore establish simpler conditions related to the identifiability of M . First we

establish a condition such that for almost every A satisfying it, M is identifiable. The main

benefit of this condition is that its constituents can be computed in many practical situations.

Before that, we recall a few facts of algebraic geometry, for X ,Y ⊂ RN , the join of X

and Y (see, e.g., [31, Ex. 8.1]) is

J(X ,Y ) := {sx+ ty | x ∈ X , y ∈ Y, s, t ∈R}Zar
.

If for all L ∈N, M L is Zariski closed and invariant under rescaling (e.g., if they are all linear

spaces), then P(M L)−P(M L′) is a Zariski open subset of J(P(M L),P(M L′)). In general,

it is contained in this join.

Recall the following fact (*): for complex algebraic varieties X ,Y ⊂CN , any component

Z of X ∩Y has dim(Z) ≥ dim(X)+ dim(Y )−N, and equality holds generically (we make

“generically” precise in our context below). Moreover, if X ,Y are invariant under rescaling,

since 0 ∈ X ∩Y , we have X ∩Y 6= /0. (See, e.g., [58, §I.6.2].)

This intersection result indicates that if there exists L,L′ such that

rk(A)< dim
(

P(M L)−P(M L′)
)

we expect to have non-identifiability; and if the rank is larger, for all pair L,L′, we expect

identifiability.

It is straightforward to make the identifiability assertion precise:

Theorem 3. Almost surely sufficient condition for Identifiability

For almost every A such that

rk(A)≥ dim
(

J(P(M L),P(M L′))
)
, for all L,L′,

M is identifiable.

The theorem is proved in Appendix 9.9.

Since dim
(

J(P(M L),P(M L′))
)
≤ dim

(
P(M L)

)
+dim

(
P(M L′)

)
, if Dmax is the max-

imum dimension of P(M L) over all L, one has the same conclusion if rk(A)≥ 2Dmax.

When K = 1, we illustrate this result by interpreting it in the context of compressive

sensing, where h is a vector, X is a vector, A is a rectangular sampling matrix of full

row rank and Ker(A) is large. The statement analogous to Theorem 3 in the compressive

sensing framework takes the form: “For almost every sampling matrix, any L sparse signal

h can be recovered from Ah as soon as 2L ≤ rk(A).” Moreover, the constituent of the ℓ0

minimization model used to recover the signal are also the constituents of (11). Again, the

main novelty is to extend this result to the identifiability of the factors of a deep matrix

products.

In order to establish a necessary condition for identifiability, first note that if we ex-

tend P(M L)− P(M L′) to be scale invariant, this will not affect whether or not it inter-

sects ker(A) outside of the origin. We immediately conclude that in the complex setting

where M L,M L′ are both Zariski closed, that M is non-identifiable whenever rk(A) <

dim
(

P(M L)−P(M L′)
)

. This indicates that we should always expect non-identifiability

whenever rk(A) < dim
(

P(M L)−P(M L′)
)

but is not adequate to prove it because real

algebraic varieties need not satisfy (*). However it is true for real linear spaces, so we

immediately conclude the following weak result:
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Theorem 4. Necessary condition for Identifiability

Let C(P(M L)− P(M L′)) be the set of all points on all lines through the origin in-

tersecting P(M L)− P(M L′), and let q be the maximal dimension of a linear space on

C(P(M L)−P(M L′)). Then if q > rk(A), M is not identifiable. In particular when the

M L’s contain linear space and if we let S′ the be the largest dimension of these vector

space, if 2S′ > rk(A), then M is not identifiable.

6 Stable recovery in the noisy case

In this section, we consider errors of different natures. More precisely, we assume that we

know a collection M = (M L)L∈N of models M L ⊂ RS×K , for L ∈ N. We also assume that

there exists L and L∗ ∈ N, h ∈ M L and h∗ ∈ M L∗ , such that

‖M1(h1) · · ·MK(hK)−X‖ ≤ δ, (16)

and

‖M1(h
∗
1) · · ·MK(h

∗
K)−X‖ ≤ η, (17)

for δ and η typically small.

Again, in signal processing applications, this correspond to existing unknown parame-

ters h that we estimate from a noisy observation X , using an inaccurate solution h∗ of (3)

(as in [9] where the case K = 1 is studied). In machine learning application, h and h∗ shall

be interpreted as different learned parameters; δ and η are the corresponding risks.

Also, notice that the above hypothesis does not even require (3) to have a solution. Also,

algorithms which do not come with a guarantee sometimes manage to reach small δ and η
values. In those cases, the analysis we conduct in this section permits to guarantee the

stable recovery of h despite the lack of a guarantee of the algorithm. Finally, the hypotheses

(16)and (17) permit to obtain guarantees for algorithms that, instead of minimizing (3),

minimize an objective function which approximates the one in (3). This is particularly

relevant for machine learning applications when (3) can be an empirical risk that need to be

regularized or is not truely minimized (for instance, when using dropout [60]).

A necessary and sufficient condition for the identifiability of M is stated in Proposition

7. The condition is on the way Ker(A) and P(M L)−P(M L′) intersect. In order to guaran-

tee the stable recovery of the elements of M , we need a stronger condition on the geometry

of this intersection to hold for every L and L′ ∈ N. This condition is provided in the next

definition.

Definition 3. Deep-Null Space Property

Let γ > 0 and ρ > 0, we say that Ker(A) satisfies the deep-Null Space Property (deep-

NSP) with respect to the collection of models M with constants (γ,ρ) if for any L and

L′ ∈ N, any T ∈ P(M L)−P(M L′) satisfying ‖AT‖ ≤ ρ and any T ′ ∈ Ker(A), we have

‖T‖ ≤ γ‖T −T ′‖. (18)

The deep-NSP implies that, for T ∈ P(M L)−P(M L′) close to Ker(A) in the sense that

‖AT‖ ≤ ρ we must have, by decomposing T = T ′+T ′′, with T ′ ∈ Ker(A) and T ′′ in its

orthogonal complement

‖T‖ ≤ γ‖T −T ′‖= γ‖T ′′‖ ≤ γ

σmin

‖AT ′′‖ ≤ γ

σmin

ρ,
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where σmin is the smallest non-zero singular value of A . In words, ‖T‖ must be small. We

can conclude that under the deep-NSP, P(M L)−P(M L′) and {T ∈ RSK | ‖AT‖ ≤ ρ} only

intersect in the vicinity of 0.

Additionally, (18) implies that in the vicinity of 0, Ker(A) and P(M L)−P(M L′) are

not tangential. Their intersection is transverse.

Let us mention that if Ker(A) satisfies the deep-NSP with respect to the collection of

models M with constants (γ,ρ), we have for all T ′ ∈ Ker(A) and all T ∈ P(M L)−P(M L′)
satisfying ‖AT‖ ≤ ρ

‖T ′‖ ≤ ‖T‖+ ‖T ′−T‖ ≤ (γ+ 1)‖T ′−T‖.

Therefore,

∀T ′ ∈ Ker(A) , ‖T ′‖ ≤ (γ+ 1)dloc(T
′,P(M L)−P(M L′)) (19)

where we have set for any C ⊂ RSK

dloc(T
′,C) = inf

T∈C,‖AT‖≤ρ
‖T ′−T‖.

The converse is also true, if Ker(A) satisfies (19), it satisfies the deep-NSP with respect to

the collection of models M with appropriate constants. In the context of the usual com-

pressed sensing (i.e., when K = 1, M L contains L-sparse signals, A is a rectangular matrix

with full row rank and X is a vector), the localization appearing in dloc can be discarded

since the inequality must hold when T ′ is small and since in this case this localization has

no effect. Therefore, in the compressed sensing context, (19) (and therefore deep-NSP) is

the usual Null Space Property with respect to L-sparse vectors, as defined in [20]. However,

deep-NSP is generalized to take into account deep factorization problems. This motivates

the name.

In the general case, the deep-NSP can be understood as a local version of the generalized-

NSP for A relative to P(∪L∈NM L)−P(∪L∈NM L), as defined in [9]. Our interest for the

locality (as imposed by the constraint ‖AT‖ ≤ ρ) is motivated by the fact that we want to

use the deep-NSP when the signal to noise ratio is controlled (i.e., the hypotheses of Theo-

rem 1 are satisfied). Our stable recovery property therefore includes such hypotheses. Such

locality hypotheses are needed to obtain Theorem 6.

Also, we have not adapted the robust-NSP defined in [9]. The benefit not to use this

definition is to obtain a simpler definition for deep-NSP. In particular (18) does not involve

the geometry of A in the orthogonal complement of Ker(A). Looking in detail at the benefit

of this adaptation is of course, of a great interest.

Finally, notice that we trivially have the following two facts:

• If Ker(A) = {0}, then Ker(A) satisfies the deep-NSP with respect to the model RS×K

with constant (1,+∞).

• For any γ′ ≥ γ: If Ker(A) satisfies the deep-NSP with respect to the collection of

models M with constants (γ,ρ), then Ker(A) satisfies the deep-NSP with respect to

the collection of models M with constant γ′.

• For any M
′ ⊂ M : If Ker(A) satisfies the deep-NSP with respect to the collection

of models M with constant (γ,ρ), then Ker(A) satisfies the deep-NSP with respect

to the collection of models M
′

with constant (γ,ρ). In particular, if Ker(A) satisfies

the deep-NSP with respect to the model RS×K with constant (γ,ρ), it satisfies the

deep-NSP with respect to any collection of models, with constant (γ,ρ).
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Theorem 5. Sufficient condition for stable recovery

Assume Ker(A) satisfies the deep-NSP with respect to the collection of models M and

with the constant (γ,ρ). For any h∗ as in (17) with η and δ (see (17) and (16)) such that

δ+η ≤ ρ, we have

‖P(h∗)−P(h)‖ ≤ γ

σmin

(δ+η),

where σmin is the smallest non-zero singular value of A . Moreover, if h ∈ RS×K
∗ and

γ
σmin

(δ+η)≤ 1
2

max
(
‖P(h)‖∞,‖P(h∗)‖∞

)
then

dp(〈h∗〉,〈h〉)≤ 7(KS)
1
p γ

σmin

min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
(δ+η). (20)

The first part of the proof is very similar to usual proofs in the Compressed Sensing and

stable recovery literature. The second part simply uses Theorem 1. The detailed proof of

the theorem is provided in Appendix 9.10.

When K = 2, the first upper bound obtained in Theorem 5 is similar to the bound in

Theorem 2 of [2] and Theorem 3.3 in [42]. Notice that the existing bounds in [2, 42]

are degraded because the estimator is numerically realistic. The second bound is to be

compared with the bound in Corollary 1 of [2] and Corollary 3.4 of [42].

This theorem provides a sufficient condition to get stable recovery. The only significant

hypothesis made on the factorization problem is that Ker(A) satisfies the deep-NSP with

respect to the collection of models M . One might ask whether this hypothesis is sharp or

not. As expressed in the next theorem, the answer to this question is positive.

Theorem 6. Necessary condition for stable recovery

Assume the stable recovery property holds: There exists C and δ > 0 such that for any

L ∈N, h ∈ M L, any X = AP(h)+e, with ‖e‖ ≤ δ, any L∗ ∈N and any h∗ ∈ M L∗ such that

‖AP(h∗)−X‖2 ≤ ‖e‖

we have

d2(〈h∗〉,〈h〉)≤C min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
‖e‖.

Then, Ker(A) satisfies the deep-NSP with respect to the collection of models M with

constants

(γ,ρ) = (CS
K−1

2

√
K σmax,δ)

where σmax is the spectral radius of A .

The first part of the proof is inspired by and close to the proof of the analogous converse

statement in [20]. The second part simply uses Theorem 2. The detailed proof of the

theorem is provided in Appendix 9.11.

The sharpness of the known results when K = 2 is usually argued by comparing the

number of samples necessary for the recovery and the information theoretic limit of the

problem. As far as the authors know, the above theorem is therefore new even when K = 2.

7 Application to convolutional linear network

We consider a convolutional linear network as depicted in Figure 1. The network typically

aims at performing a linear analysis or synthesis of a signal living in RN . The considered
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Figure 1: Example of the considered convolutional linear network. To every edge is attached a

convolution kernel. The network does not involve non-linearities or sampling.

convolutional linear network is defined from a rooted directed acyclic graph G(E ,N ) com-

posed of nodes N and edges E . Each edge connects two nodes. The root of the graph is

denoted by r and the set containing all its leaves is denoted by F . We denote by P the set

of all paths connecting the leaves and the root. We assume, without loss of generality, that

the length of any path between any leaf and the root is independent of the considered leaf

and equal to some constant K ≥ 0. We also assume that, for any edge e ∈ E , the number

of edges separating e and the root is the same for all paths between e and r. It is called the

depth of e. We also say that e belongs to the layer k. For any k ∈ [K], we denote the set

containing all the edges of depth k, by E(k).
Moreover, to any edge e is attached a convolution kernel of support Se ⊂ [N]. We assume

(without loss of generality) that ∑e∈E(k) |Se| is independent of k (|Se| denotes the cardinality

of Se). We take

S = ∑
e∈E(1)

|Se|.

For any edge e, we consider the mapping Te : RS −→ RN that maps any h ∈ RS into the

convolution kernel he, attached to the edge e, whose support is Se. It simply writes at the

right location (i.e. those in Se) the entries of h defining the kernel on the edge e.

At each layer k, the convolutional linear network computes, for all e ∈ E(k), the convo-

lution between the signal at the origin of e; then, it attaches to any ending node the sum of

all the convolutions arriving at that node. Examples of such convolutional linear networks

includes wavelets, wavelet packets [50] or the fast transforms optimized in [15, 16]. It is

clear that the operation performed at any layer depends linearly on the parameters h ∈ RS

and that its results serves as inputs for the next layer. The convolutional linear network

therefore depends on parameters h ∈ RS×K and takes the form

X = M1(h1) · · ·MK(hK),

where the operators Mk satisfy the hypothesis of the present paper.

This section aims at identifying conditions such that any unknown parameters h ∈RS×K

can be identified or stably recovered from X = M1(h1) · · ·MK(hK) (possibly corrupted by

an error).

In order to do so, let us define a few notations. Notice first that, we apply the con-

volutional linear network to an input x ∈ RN|F |, where x is the concatenation of the sig-
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nals x f ∈ RN for f ∈ F . Therefore, X is the (horizontal) concatenation of |F | matrices

X f ∈ RN×N such that

Xx = ∑
f∈F

X f x f , for all x ∈ R
N|F |.

Let us consider the convolutional linear network defined by h ∈RS×K as well as f ∈ F and

n ∈ [N]. The column of X corresponding to the entry n in the leaf f is the translation by n

of

∑
p∈P ( f )

T p(h) (21)

where P ( f ) contains all the paths of P starting from the leaf f and

T p(h) = Te1(h1)∗ · · ·∗TeK (hK) , with p = (e1, · · · ,eK),

is the composition of convolutions along the path p.

Moreover, we define for any k ∈ [K] the mapping ek : [S]−→ E(k) which provides for

any i ∈ [S] the unique edge of E(k) such that the ith entry of h ∈RS contributes to Tek(i)(h).

Also, for any i ∈ [S]K , we denote pi = (e1(i1), · · · ,eK(iK)) and

I =
{

i ∈ [S]K |pi ∈ P
}
.

The latter contains all the indices corresponding to a valid path in the network. For any set

of parameters h ∈ RS×K and any path p ∈ P , we also denote by hp the restriction of h to

its indices contributing to the kernels on the path p. We also denote 1 ∈ RS a vector of size

S with all its entries equal to 1. For any edge e, 1e ∈ RS consists of zeroes except for the

entries corresponding to the edge e which are equal to 1. For any p = (e1, · · · ,eK) ∈ P , the

support of M1(1
e1) · · ·MK(1

eK ) is denoted by Supp(p).
Finally, we recall that because of Corollary 1, there exists a unique mapping

A : RSK −→ R
N×N|F |

such that

AP(h) = M1(h1) · · ·MK(hK) , for all h ∈ R
S×K ,

where P is the Segre embedding (defined in (6)).

Proposition 8. Necessary condition of identifiability of convolutional linear network

• Either all the entries of M1(1) · · ·MK(1) belong to {0,1} and then

1. for any distinct p and p′ ∈ P , we have Supp(p)∩Supp(p′) = /0.

2. Ker(A) = {T ∈ RSK |∀i ∈ I,Ti = 0}.
• or some of the entries of M1(1) · · ·MK(1) do not belong to {0,1} and then RS×K is

not identifiable.

The proof of the proposition is in Appendix 9.12.

The interest of the condition in Proposition 8 is that it can easily be computed when

N ×N|F | is not too large. Notice that, beside the known examples in blind-deconvolution

(i.e. when K = 2 and |P | = 1) [2, 6], there are known (truly deep) convolutional linear

networks that satisfy the condition of the first statement of Proposition 8. For instance, the
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convolutional linear network corresponding to the un-decimated Haar (wavelet)8 transform

is a tree and for any of its leaves f ∈ F , |P ( f )| = 1. Moreover, the support of the kernel

living on the edge e, of depth k, on this path is {0,2k}. It is therefore not difficult to check

that the first condition of Proposition 8 holds.

We also have the following proposition.

Proposition 9. If |P | = 1 and all the entries of M1(1) · · ·MK(1) belong to {0,1}, then

Ker(A) = {0} and Ker(A) satisfies the deep-NSP with respect to any model collection M
with constant (γ,ρ) = (1,+∞). Moreover, we have σmin =

√
N.

The proof of the proposition is in Appendix 9.13.

In the sequel, we establish stability results for a convolutional linear network estimator.

In order to do so, we consider a convolutional linear network of known structure G(E ,N )
and (Se)e∈E but defined by unknown parameters h ∈RS×K . We consider the noisy situation

where

‖M1(h1) · · ·MK(hK)−X‖ ≤ δ,

and an estimate h∗ ∈ RS×K such that

‖M1(h
∗
1) · · ·MK(h

∗
K)−X‖ ≤ η.

We say that two networks sharing the same structure and defined by h and g ∈ RS×K are

equivalent if and only if

∀p ∈ P ,∃(λe)e∈p ∈ R
p, such that ∏

e∈p

λe = 1 and ∀e ∈ p,Te(g) = λeTe(h).

The equivalence class of h ∈ R
S×K is denoted by {h}. For any p ∈ [1,+∞], we define

δp({h},{g}) =
(

∑
p∈P

dp(〈hp〉,〈gp〉)p

) 1
p

,

where we recall that hp (resp gp) denotes the restriction of h (resp g) to the path p and dp

is defined in Definition 1. Since dp is a metric, we easily prove that δp is a metric between

network classes.

Theorem 7. Sufficient condition of stable recovery of convolutional linear network

If all the entries of M1(1) · · ·MK(1) belong to {0,1}, if there exists ε > 0 such that for

all e ∈ E , ‖Te(h)‖∞ ≥ ε, and if δ+η ≤
√

NεK

2
then

δp({h∗},{h})≤ 7(KS′)
1
p ε1−K δ+η√

N

where

S′ = max
e∈E

|Se|

The proof of the Theorem is in Appendix 9.14.

8Un-decimated means computed with the ”Algorithme à trous”, [50], Section 5.5.2 and 6.3.2. The Haar wavelet

is described in [50], Section 7.2.2, p. 247 and Example 7.7, p. 235
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8 Conclusion and perspectives

In this paper, we have established necessary and sufficient conditions for the identifiability

and stable recovery of deep linear networks. They rely on the lifting of the problem in a

tensor space. The technique is called tensorial lifting. The main results are proved using

compressed sensing technics and properties of the Segre embedding (the embedding that

maps the parameters in the tensor space). The general results are then particularized to

establish necessary and sufficient conditions for the stable recovery of a convolutional linear

network of any depth K ≥ 1.

To the best of our knowledge, this is the first time stable recovery statements are ob-

tained for a ”deep factorization” problem (i.e. a problem with K ≥ 3). It paves the way

for the study of deep factorization problems (a list is in Section 1.3) and promises to be an

essential step towards the theoretical understanding of deep neural networks.
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9 Appendices

9.1 Proof of Proposition 1

Notice that, the sets 〈h〉∩R
S×K
diag and 〈g〉∩R

S×K
diag are finite and therefore the infimum in the

definition of d is reached. We also have whatever h, g ∈ RS×K
∗

dp(〈h〉,〈g〉) = inf
h′∈〈h〉∩RS×K

diag

(
inf

g′∈〈g〉∩RS×K
diag

‖h′− g′‖p

)
. (22)

Moreover, whatever h∈RS×K
∗ and h′ and h′′ ∈ 〈h〉∩RS×K

diag there exist (sk)k∈[K] ∈{−1,1}K

such that ∏k∈[K] sk = 1 and

h′
k = skh′′

k ,∀k ∈ [K].

Using the above two properties, we can check that

inf
g′∈〈g〉∩RS×K

diag

‖h′− g′‖p = inf
g′∈〈g〉∩RS×K

diag

‖h′′− g′‖p

As a consequence, the outer infimum in (22) is irrelevant and we have

dp(〈h〉,〈g〉) = inf
g′∈〈g〉∩RS×K

diag

‖h′− g′‖p ,∀h, g ∈R
S×K
∗ and h′ ∈ 〈h〉∩R

S×K
diag .

Using this last property, we easily check that dp is a metric on RS×K
∗ /∼. �
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9.2 Proof of Theorem 1

Notice first that when K = 1 the inequality is a straightforward consequence of the usual

inequalities between lp norms. We therefore assume from now on that K ≥ 2.

All along the proof, we consider h and g ∈ RS×K
∗ and assume that ‖P(h)‖∞ ≥ ‖P(g)‖∞.

We also assume that ‖P(g)− P(h)‖∞ ≤ 1
2
‖P(h)‖∞. We first prove the inequality when

p = q =+∞.

In order to do so, we consider

i ∈ argmaxj∈[S]K |P(h)j|

and assume, without lost of generality (otherwise, we can multiply one vector of h and g by

−1 to get this property and multiply back once the inequality have been established), that

P(h)i ≥ 0. We therefore have P(h)i = ‖P(h)‖∞. Notice also that we have, under the above

hypotheses,

‖P(g)‖∞ ≥ P(g)i ≥ P(h)i −‖P(g)−P(h)‖∞ ≥ 1

2
‖P(h)‖∞ > 0. (23)

Moreover, we consider the operator Ei that extracts the K signals of size S that are

obtained when freezing, at the index i in a tensor T , all coordinates but one. Formally, we

denote

Ei : RSK −→ R
S×K

T 7−→ Ei(T )

where for all k ∈ [K] and all j ∈ [S]

Ei(T )k, j = Ti1,...,ik−1, j,ik+1,...,iK .

We consider

h′ = (P(h)i)
−1+ 1

K Ei(P(h)) and g′ = (P(g)i)
−1+ 1

K Ei(P(g)).

We have for all j ∈ [S]K

P(h′)j = (P(h)i)
−K+1 P(Ei(P(h)))j ,

= (P(h)i)
−K+1

K

∏
k=1

P(h)i1,...,ik−1,jk ,ik+1,...,iK

= (P(h)i)
−K+1

K

∏
k=1

h1,i1 . . .hk−1,ik−1
hk,jk

hk+1,ik+1
. . .hK,iK

=
K

∏
k=1

hk,jk
= P(h)j.

We therefore have P(h′) = P(h). This can be written h′ ∈ 〈h〉. Similarly, we have g′ ∈ 〈g〉.
Also, because of the definition of i and h′, we are guaranteed that, whatever k ∈ [K],

‖h′
k‖∞ = (P(h)i)

−1+ 1
K ‖Ei(P(h))‖∞

= ‖P(h)‖−1+ 1
K

∞ ‖P(h)‖∞ = ‖P(h)‖
1
K
∞
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The latter being independent of k, we have h′ ∈ R
S×K
diag . Unfortunately, unless for instance

i ∈ argmaxj∈[S]K |P(g)j|, it might occur that g′ 6∈ R
S×K
diag . However, if we consider

g′′ ∈ argmin
f∈〈g〉∩RS×K

diag
‖f− g′‖∞,

we have since h′ ∈ 〈h〉∩R
S×K
diag and g′′ ∈ 〈g〉∩R

S×K
diag

d∞(〈h〉,〈g〉) ≤ ‖h′− g′′‖∞

≤ ‖h′− g′‖∞ + ‖g′− g′′‖∞. (24)

In the sequel we will successively calculate upper bounds of ‖h′− g′‖∞ and ‖g′− g′′‖∞ in

order to find an upper bound of d∞(〈h〉,〈g〉).

Upper bound of ‖h′− g′‖∞:

We have

‖h′− g′‖∞ = ‖(P(h)i)
−1+ 1

K Ei(P(h))− (P(g)i)
−1+ 1

K Ei(P(g))‖∞

≤ ‖(P(h)i)
−1+ 1

K (Ei(P(h))−Ei(P(g)))‖∞

+‖
(
(P(h)i)

−1+ 1
K − (P(g)i)

−1+ 1
K

)
Ei(P(g))‖∞

≤ ‖P(h)‖−1+ 1
K

∞ ‖Ei(P(h))−Ei(P(g))‖∞ + ‖P(g)‖∞|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K |

≤ ‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞+ ‖P(h)‖∞|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K |

But we also have using the mean value theorem and (23)

|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K | ≤
(

1− 1

K

)
P(g)

−2+ 1
K

i |P(h)i −P(g)i|

≤
(

1− 1

K

)(
1

2
‖P(h)‖∞

)−2+ 1
K

‖P(h)−P(g)‖∞

≤ 4 ‖P(h)‖−2+ 1
K

∞ ‖P(h)−P(g)‖∞

We therefore finally obtain that

‖h′− g′‖∞ ≤ 5‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞. (25)

Upper bound of ‖g′− g′′‖∞:

First, since g′′ ∈ 〈g〉= 〈g′〉, we know that there exists (λk)k∈[K] ∈RK such that

K

∏
k=1

λk = 1 (26)

and

g′′k = λkg′k , for all k ∈ [K].

Furthermore, we have for all k ∈ [K]

‖g′k − g′′k‖∞ = |1−λk| ‖g′k‖∞. (27)
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Also, if there is k′ such that λk′ < 0, since (26) holds, there necessarily exist another k′′ such

that λk′′ < 0. If we replace g′′
k′ by −g′′

k′ and replace g′′
k′′ by −g′′

k′′ we remain in 〈g〉∩R
S×K
diag

and can only make ‖g′− g′′‖∞ decrease. Repeating this process until all the λk’s are non-

negative, we can assume without loss of generality that

λk ≥ 0 , whatever k ∈ [K].

This being said, we establish two other simple facts that motivate the structure of the

proof. First, in order to find an upper bound for (27), we easily establish (using (23)) that

‖g′k‖∞ = (P(g)i)
−1+ 1

K ‖Ei(P(g))‖∞

≤ (
1

2
‖P(h)‖∞)

−1+ 1
K ‖P(h)‖∞

≤ 2‖P(h)‖
1
K
∞ . (28)

Second, the value λk appearing in (27), can be bounded by using bounds on ‖g′k‖∞ and the

identity

‖g′′k‖∞ = ‖P(g)‖
1
K
∞ = λk ‖g′k‖∞. (29)

Qualitatively, the latter identity indeed guarantees that, as ‖P(g)−P(h)‖∞ goes to 0, λk

goes to 1. Let us now establish this quantitatively.

Recalling that

g′ = (P(g)i)
−1+ 1

K Ei(P(g)),

and using (23) again, we obtain

‖g′k‖∞ ≤
(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)−1+ 1
K

‖P(g)‖∞.

We also have (again, using (23))

‖g′k‖∞ ≥ (P(g)i)
−1+ 1

K |P(g)i|
= (P(g)i)

1
K

≥
(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

) 1
K

.

Plugging the upper bound of ‖g′k‖∞ in (29), using successively (23), the mean value
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theorem and the hypothesis on the size of P(h)−P(g) gives:

λk − 1 =
‖P(g)‖

1
K
∞

‖g′k‖∞
− 1

≥ ‖P(g)‖−1+ 1
K

∞

(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)1− 1
K

− 1

≥
(

1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)1− 1
K

− 1

≥ −(1− 1

K
)

(
1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≥ −
(

1− 1

4

)− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≥ − ‖P(h)−P(g)‖∞

‖P(h)‖∞
.

Similarly, plugging the lower bound of ‖g′k‖∞ in (29), we obtain using successively (23),

the mean value theorem and the hypothesis on the size of P(h)−P(g):

λk − 1 ≤ ‖P(g)‖
1
K
∞

(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)− 1
K

− 1

≤
(

1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)− 1
K

− 1

≤ 1

K

(
1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)−1− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≤ 1

K

(
1− 1

4

)−1− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≤ 42

2K32

‖P(h)−P(g)‖∞

‖P(h)‖∞

≤ ‖P(h)−P(g)‖∞

‖P(h)‖∞
.

Finally, we get

|λk − 1| ≤ ‖P(h)−P(g)‖∞

‖P(h)‖∞
. (30)

By combining (27), (28) and (30), we obtain

‖g′k − g′′k‖∞ ≤ 2 ‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞.

Combining the latter inequality with (24) and (25) provides

d∞(〈h〉,〈g〉) ≤ 7‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞,

and concludes the proof when p = q =+∞.
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In order to establish the property when 1 ≤ p ≤+∞ and 1 ≤ q ≤+∞, we simply use the

fact that

dp(〈h〉,〈g〉) ≤ (KS)
1
p d∞(〈h〉,〈g〉)

and

‖P(h)−P(g)‖∞ ≤ ‖P(h)−P(g)‖q.

�

9.3 Proof of Proposition 2

In the example, we consider h and g such that for all k ∈ [K] and all i ∈ [S]

hk,i =

{
1 if i = 0,
0 otherwise,

and gk,i =

{ (
1
2

) 1
K if i = 0,

εq otherwise,

where ε+∞ =
(

1
2

) 1
K and εq = min



(

1−( 1
2 )

q
K

S−1

) 1
q

,
(

1
2

) 1
K


, if q < +∞. We immediately

obtain

‖P(h)‖∞ = 1, ‖P(g)‖∞ =
1

2
and ‖P(h)−P(g)‖∞ =

1

2
.

We also have,

dp(〈h〉,〈g〉)p = ‖h− g‖p
p ≥ K(S− 1) εp

q ≥ KS

2
εp

q .

Decomposing the sum necessary to the calculation of the lq norm of a tensor according to

number of index different from 0 (which corresponds to l in the sum below), we obtain

‖P(h)−P(g)‖q
q =

K

∑
l=0

(
l

K

)
(S− 1)lεlq

q

(
1

2

) (K−l)q
K

,

=

((
1

2

) q
K

+(S− 1)εq
q

)K

≤ 1.

We then easily obtain that

7‖P(h)‖−1+ 1
K

∞ (KS)
1
p ‖P(h)−P(g)‖q ≤ 7(KS)

1
p ,

≤ 7
dp(〈h〉,〈g〉)

εq

2
1
p . (31)

(32)

We first calculate a lower bound of εq when εq =

(
1−( 1

2 )
q
K

S−1

) 1
q

(which, in particular, rules

out q =+∞). Using the mean value theorem, we obtain

1−
(

1

2

) q
K

≥ min
t∈[ 1

2 ,1]

( q

K
t

q
K −1
)
(1− 1

2
).
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Distinguishing, whether q ≤ K or not, we find after a short calculation that, since q ≥ 1,

1−
(

1

2

) q
K

≥ min

(
1

2K
,

1

K

(
1

2

) q
K

)
=

1

K
min

((
1

2

) 1
q

,

(
1

2

) 1
K

)q

≥ 1

K2q
.

We then deduce

εq ≥
1

2(KS)
1
q

.

Of course, when εq =
(

1
2

) 1
K (which includes q =+∞), we immediately obtain

εq ≥
1

2
.

Using this lower bound in (31) leads to the bounds stated in the proposition. �

9.4 Proof of Theorem 2

Before starting the proof, we define for any k ∈ {0, . . . ,K}

Pk(h,g)i = g1,i1 . . .gk,ik hk+1,ik+1
. . .hK,iK , for all h,g ∈ R

S×K and all i ∈ [S]K .

We consider g and h ∈ RS×K . Let us first assume that ‖g‖∞ ≤ ‖h‖∞ = 1. We have

for any i ∈ [S]K , using this hypothesis and standard inequalities between lp norms, when

q <+∞

|P(g)i −P(h)i|q =

∣∣∣∣∣
K−1

∑
k=0

(Pk+1(h,g)i −Pk(h,g)i)

∣∣∣∣∣

q

≤ Kq−1
K−1

∑
k=0

|Pk+1(h,g)i −Pk(h,g)i|q

≤ Kq−1
K−1

∑
k=0

∣∣gk+1,ik+1
−hk+1,ik+1

∣∣q

The same calculation when q =+∞ leads to

|P(g)i −P(h)i| ≤ K max
k=1..K

∣∣gk,ik −hk,ik

∣∣ .

Therefore, we have when q <+∞

‖P(h)−P(g)‖q
q = ∑

i∈[S]K
|P(h)i −P(g)i|q

≤ Kq−1
K

∑
k=1

∑
i∈[S]K

∣∣gk,ik −hk,ik

∣∣q

= Kq−1
K

∑
k=1

SK−1‖gk −hk‖q
q

= Kq−1SK−1‖g−h‖q
q
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and therefore

‖P(h)−P(g)‖q ≤ K
1− 1

q S
K−1

q ‖g−h‖q.

Again, a similar calculus for q =+∞ leads to

‖P(h)−P(g)‖+∞ ≤ K‖g−h‖+∞.

Remember that the two last inequalities hold for g and h∈R
S×K such that ‖g‖∞ ≤‖h‖∞ = 1.

Let us now consider any g′ and h′ ∈RS×K and any g∈R
S×K
diag ∩〈g′〉 and h ∈R

S×K
diag ∩〈h′〉.

We denote δ = max(‖g‖+∞,‖h‖+∞). Notice first that ‖g‖+∞ = ‖P(g′)‖
1
K
+∞ and ‖h‖+∞ =

‖P(h′)‖
1
K
+∞. Therefore

δ = max(‖P(g′)‖+∞,‖P(h′)‖+∞)
1
K . (33)

We can apply the above inequality to h
δ

and
g
δ

(we might need to switch h and g but it

does not change the final inequality) and obtain when q <+∞

‖P(
h

δ
)−P(

g

δ
)‖q ≤ K

1− 1
q S

K−1
q ‖g

δ
− h

δ
‖q.

This leads to

‖P(h)−P(g)‖q ≤ K
1− 1

q S
K−1

q δK−1‖g−h‖q.

Similarly, when q =+∞, we obtain

‖P(h)−P(g)‖+∞ ≤ KδK−1‖g−h‖+∞.

The fact that these two last inequalities hold for any g ∈ R
S×K
diag ∩〈g′〉 and any h ∈ R

S×K
diag ∩

〈h′〉, together with (33), leads to the statement provided in Theorem 2. �

9.5 Proof of Proposition 4

The span of the Segre variety P(RS×K) is the full ambient space RSK
, so there exists sets of

R ≤ SK points on it that are linearly independent. The set of R-tuples of points on P(RS×K)
that fail to be linearly independent is a proper subvariety of the variety of sets of R-tuples of

points on P(RS×K) because being a linearly independent set of points is an open condition

and there exists sets of points that are linearly independent. Therefore R ≤ SK independent

and randomly chosen points according to a continuous distribution on P(RS×K) will be

linearly independent.

The intersection P(RS×K)∩Ker(A) is a proper subvariety of P(RS×K), so with prob-

ability one, R ≤ SK independent randomly chosen points according to a continuous distri-

bution will not intersect it and be linearly independent. This is indeed the intersection of

two non-empty open conditions. Therefore, all spans of subsets of the points will intersect

Ker(A) transversely (in particular, the span of fewer than rk(A) points will not intersect

it). Thus there image under A will have dimension as large as possible. The same argument

works if R > SK. �
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9.6 Proof of Proposition 5

The proof relies on the fact that for any T ∗ ∈ argmin
T∈RSK ‖AT −X‖2, we have

A t(AT ∗−X) = 0,

where A t : Rn×m → RSK
is the adjoint linear map. This implies that for any

T ∗ ∈ argmin
T∈RSK ‖AT −X‖2,

any L ∈N and any h ∈ M L

‖AP(h)−X‖2 = ‖A(P(h)−T∗)+ (AT∗−X)‖2,

= ‖A(P(h)−T∗)‖2 + ‖AT∗−X‖2 + 2〈A(P(h)−T∗),AT ∗−X〉,
= ‖A(P(h)−T∗)‖2 + ‖AT∗−X‖2.

In words, ‖AP(h)−X‖2 and ‖A(P(h)−T ∗)‖2 only differ by an additive constant. More-

over, since the value of the objective function ‖AT ∗−X‖2 is independent of the particular

minimizer T ∗ we are considering, this additive constant is independent of T ∗. As a conse-

quence, a minimizer of ‖AP(h)−X‖2 also minimizes ‖A(P(h)−T∗)‖2 and vice versa. �

9.7 Proof of Proposition 6

Write T = P(h) and let L∗ and h∗ be a minimizer of (3). Proposition 5 and the fact that T

minimizes (12) implies that (L∗,h∗)∈ argminL∈N,h∈M L ‖A(P(h)−T )‖2. As a consequence,

‖A(P(h∗)−T)‖2 = 0

and

P(h∗) ∈ T +Ker(A) ,

proving the first implication.

Conversely, let L∗ ∈ N and h∗ ∈ M L∗ be such that P(h∗) ∈ T +Ker(A), then

‖A(P(h∗)−T )‖2 = 0 = min
L∈N,h∈M L

‖A(P(h)−T)‖2.

As a consequence, (L∗,h∗) ∈ argminL∈N,h∈M L ‖A(P(h)−T )‖2 and, using Proposition 5,

h∗ is a minimizer of (3). �

9.8 Proof of Proposition 7

• Proof of the first statement of Proposition 7:

We first assume that 〈h〉 is identifiable. We consider L∗ and h∗ such that there is

L∗ such that P(h∗) ∈ (P(h)+Ker(A))∩P(M L∗). We know from Proposition 6 that

h∗ ∈ argminL∈N,h∈M L ‖AP(h)−X‖2. Using that 〈h〉 is identifiable, 〈h∗〉 = 〈h〉 and,

from Standard Fact 1 (at the beginning of Section 3), we get P(h∗)=P(h). Finally, we

can conclude, that if 〈h〉 is identifiable we have (P(h)+Ker(A))∩P(M )⊂ {P(h)}.
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Let us assume now that for all L ∈ N, (P(h)+Ker(A))∩P(M L)⊂ {P(h)} and con-

sider

(L∗,h∗) ∈ argminL∈N,h∈M ‖AP(h)−X‖2.

Using Proposition 6, we know that P(h∗) ∈ (P(h)+Ker(A))∩P(M L∗). Using the

hypothesis, we have P(h∗) = P(h) and using Standard Fact 1, we finally conclude

that 〈h∗〉= 〈h〉. This completes the proof of the first statement.

• Proof of the second statement of Proposition 7:

Assume that there is L and L′ ∈N such that Ker(A)∩
(
P(M L)−P(M L′)

)
6⊂ {0} then

there exist h ∈ M L and h ∈ M L′ such that P(h) 6= P(h) and P(h)−P(h) ∈ Ker(A).
Using the first statement of the proposition, we obtain that h is not identifiable. As a

conclusion, M is not identifiable.

Conversely, assume that there exists L′ and some non-identifiable h ∈ M L′ . Using

the first statement of the proposition, we know that there exists L ∈ N and h ∈ M L

such that P(h) 6= P(h) and P(h)−P(h) ∈ Ker(A). Therefore Ker(A)∩
(
P(M )−

P(M )
)
6⊂ {0}.

�

9.9 Proof of Theorem 3

We first make the “equality holds generically” statement precise in our context. Fix any

variety X and assume Y is a linear space, say of dimension y. Let G(y,CN) denote the

Grassmannian of y-planes through the origin in CN . The Grassmannian is both a smooth

manifold and an algebraic variety. We can interpret “equality holds generically” in this con-

text as saying for a Zariski open subset of G(y,CN), equality will hold. In our situation,

if we fix rk(A) and allow ker(A) to vary as a point in the Grassmannian, with probability

one, it will intersect J(P(M L),P(M L′)) only in the origin, and this assertion is also true

over R because complex numbers are only needed to assure existence of intersections, not

non-existence. �

9.10 Proof of Theorem 5

We have

‖A(P(h∗)−P(h))‖ ≤ ‖AP(h∗)−X‖+ ‖AP(h)−X‖
≤ δ+η

Geometrically, this means that P(h∗) belongs to a cylinder centered at P(h) whose direc-

tion is Ker(A) and whose section is defined using the operator A . If we further decompose

(the decomposition is unique)

P(h∗)−P(h) = T +T ′,

where T ′ ∈ Ker(A) and T is orthogonal to Ker(A), we have

‖A(P(h∗)−P(h))‖= ‖AT‖ ≥ σmin‖T‖, (34)
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where σmin is the smallest non-zero singular value of A . We finally obtain

‖P(h∗)−P(h)−T ′‖= ‖T‖ ≤ δ+η

σmin

.

The term on the left-hand side corresponds to the distance between a point in P(M L∗)−
P(M L) (namely P(h∗)−P(h)) and a point in Ker(A) (namely T ′).

Since Ker(A) satisfies the deep-NSP with constants (γ,ρ), when δ+η ≤ ρ, we obtain

the first inequality of the theorem

‖P(h∗)−P(h)‖ ≤ γ
δ+η

σmin

.

When h ∈RS×K
∗ , for

γ
σmin

(δ+η)≤ 1
2

max
(
‖P(h)‖∞,‖P(h∗)‖∞

)
, we can apply Theorem 1

and obtain (20). �

9.11 Proof of Theorem 6

Let L and L
′ ∈N and h ∈ M L and h

′ ∈ M L
′
be such that ‖A

(
P(h)−P(h

′
)
)
‖ ≤ δ. We also

consider throughout the proof T ′ ∈ Ker(A). We assume that ‖P(h)‖∞ ≤ ‖P(h
′
)‖∞. If it is

not the case, we simply switch h and h
′

in the definition of X and e below. We denote

X = AP(h) and e = AP(h)−AP(h
′
).

We have X = AP(h
′
)+ e and ‖e‖ ≤ δ. Therefore, the hypothesis of the theorem (applied

with h∗ = h and L∗ = L) guarantees that

d2(〈h〉,〈h′〉)≤C ‖P(h
′
)‖

1
K −1
∞ ‖e‖.

Using the fact that e = AP(h)−AP(h
′
) and T ′ ∈ Ker(A) we obtain

‖e‖= ‖A(P(h)−P(h
′
)−T ′)‖ ≤ σmax ‖P(h)−P(h

′
)−T ′‖.

where σmax is the spectral radius of A . Therefore

d2(〈h〉,〈h′〉)≤C‖P(h
′
)‖

1
K −1
∞ σmax ‖P(h)−P(h

′
)−T ′‖.

Finally, using Theorem 2 and the fact that ‖P(h)‖∞ ≤ ‖P(h
′
)‖∞, we obtain

‖P(h
′
)−P(h)‖ ≤ S

K−1
2 K1− 1

2 ‖P(h
′
)‖1− 1

K
∞ d2(〈h′〉,〈h〉)

≤ CS
K−1

2

√
K σmax ‖P(h)−P(h

′
)−T ′‖

= γ‖P(h)−P(h
′
)−T ′‖

for γ =CS
K−1

2

√
K σmax .

Summarizing, we conclude that under the hypothesis of the theorem: For any T ∈
P(M L)−P(M L

′
) such that ‖AT‖ ≤ δ we have for any T ′ ∈ Ker(A)

‖T‖ ≤ γ‖T −T ′‖.
�
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9.12 Proof of Proposition 8

Throughout the proof, we define, for any i ∈ [S]K , hi ∈ RS×K by

hi
k, j =

{
1 if j = ik
0 otherwise

, for all k ∈ [K] and j ∈ [S]. (35)

This notation shall not be confused with hp, with p ∈ P .

• Let us first prove the first statement:

We can easily check that (P(hi))i6∈I forms a basis of {T ∈ RSK | ∀i ∈ I,Ti = 0}. We

can also easily check using (21) that, for any i 6∈ I,

AP(hi) = M1(h
i
1) . . .MK(h

i
K) = 0.

Therefore, {T ∈ RSK | ∀i ∈ I,Ti = 0} ⊂ Ker(A).

Conversely, for any i ∈ I, we can deduce from (21) and the hypotheses of the proposi-

tion that all the entries of AP(hi) are in {0,1}. We denote Di = {(i, j)∈ [N]× [N|F |] |
AP(hi)i, j = 1}. Using (again) the hypothesis of the proposition and (21), we can

prove that, for any distinct i and j ∈ I, we have Di ∩Dj = /0. This easily leads to the

item 1 of the first statement. We also deduce that

rk(A)≥ |I|= SK − dim({T ∈ R
SK | ∀i ∈ I,Ti = 0}).

Finally, we deduce that dim(Ker(A))≤ dim({T ∈RSK | ∀i ∈ I,Ti = 0}) and therefore

Ker(A) = {T ∈ R
SK | ∀i ∈ I,Ti = 0}.

• Let us now prove the second statement:

Using the hypothesis of the second statement and (21), we know that there is f ∈ F
and n ∈ [N] such that

∑
p∈P ( f )

T p(1)n ≥ 2.

As a consequence, there is i and j ∈ [S]K with i 6= j and

T pi(hi)n = T pj(hj)n = 1.

Therefore,

AP(hi) = AP(hj)

and the network is not identifiable.

�

9.13 Proof of Proposition 9

The fact that, under the hypotheses of the proposition, Ker(A)= {0} is a direct consequence

of Proposition 8. The deep-NSP property and the value of γ also immediately follow from

the definition of the deep-NSP.
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To calculate σmin, let us consider T ∈RSK
and express it under the form T =∑i∈I TiP(h

i),
where hi is defined (35). Let us also remind that, applying Proposition 8, the supports of

AP(hi) and AP(hj) are disjoint, when i 6= j. Let us finally add that, since AP(hj) is the

matrix of a convolution with a Dirac mass, its support is of size N. We finally have

‖AT‖2 = ‖∑
i∈I

TiAP(hi)‖2,

= N ∑
i∈I

T 2
i = N‖T‖2,

from which we deduce the value of σmin. �

9.14 Proof of Theorem 9

Let us consider a path p ∈ P , using (21), since all the entries of M1(1) . . .MK(1) belong

to {0,1}, all the entries of M1(1
p) . . .MK(1

p) belong to {0,1}. Therefore, we can apply

Proposition 9 and Theorem 5 to the restriction of the convolutional linear network to p and

obtain

dp(〈(h∗)p〉,〈hp〉)≤ 7(KS′)
1
p

√
N

min

(
‖P(h

p
)‖

1
K −1
∞ ,‖P((h∗)p)‖

1
K −1
∞

)
(δp +ηp),

where δp and ηp are the restrictions of the errors on Supp(p).
We therefore have

dp(〈(h∗)p〉,〈hp〉)≤ 7(KS′)
1
p

√
N

ε1−K(δp +ηp),

and finally

δp({h∗},{h}) ≤ 7(KS′)
1
p ε1−K

√
N

(
∑

p∈P

(δp +ηp)p

) 1
p

,

≤ 7(KS′)
1
p ε1−K

√
N

(δ+η).

�
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[50] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, Boston,

1998.

[51] Behnam Neyshabur and Rina Panigrahy. Sparse matrix factorization. arXiv preprint

arXiv:1311.3315, 2013.

[52] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank

solutions of linear matrix equations via nuclear norm minimization. SIAM review,

52(3):471–501, 2010.

[53] Ron Rubinstein, Alfred Bruckstein, and Michael Elad. Dictionaries for sparse repre-

sentation modeling. Proc. IEEE - Special issue on applications of sparse representa-

tion and compressive sensing, 98(6):1045–1057, 2010.

38
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