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UPS IMT, F-31062 Toulouse Cedex 9, France
2Department of Mathematics , Mailstop 3368, Texas A& M University, College

Station, TX 77843-3368

March 23, 2017

Abstract

We study a deep matrix factorization problem. It takes as input a matrix X obtained

by multiplying K matrices (called factors). Each factor is obtained by applying a fixed

linear operator to a short vector of parameters satisfying a model (for instance sparsity,

grouped sparsity, non-negativity, constraints defining a convolution network. . . ). We call

the problem deep or multi-layer because the number of factors is not limited. In the practical

situations we have in mind, we can typically have K = 10 or 100. This work aims at

identifying conditions on the structure of the model that guarantees the stable recovery of

the factors from the knowledge of X and the model for the factors.

We provide necessary and sufficient conditions for the identifiability of the factors (up

to a scale rearrangement). We also provide a necessary and sufficient condition called deep-

Null Space Property (because of the analogy with the usual Null Space Property in the

compressed sensing framework) which guarantees that even an inaccurate optimization al-

gorithm for the factorization stably recovers the factors.

We illustrate the theory with a practical example where the deep factorization is a con-

volutional network.

1 Introduction

1.1 Content of the paper

We consider the following matrix factorization problem: let K ∈ N, m1 . . .mK+1 ∈ N, write

m1 = m, mK+1 = n. We are given a matrix X ∈ Rm×n which is (approximately) the product

of factors Xk ∈Rmk×mk+1 :

X = X1 · · ·XK .

This paper investigates models/constraints imposed on the factors Xk for which we can (up

to obvious scale rearrangement) identify or stably recover the factors Xk from X .
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This question is of paramount importance in many fields including statistics and ma-

chine learning, vision, image processing, information theory and numerical linear algebra.

In practical applications X contains some data or represents a linear operator. It is often

only specified indirectly and/or approximately. Notice that X might be a simple vector.

We now describe the structures imposed on the factors that we investigate in this paper.

The factors are required to be structured matrices defined by a number S ∈ N of unknown

parameters. More precisely, for k = 1 . . .K, let

Mk : RS −→ R
mk×mk+1 , (1)

h 7−→ Mk(h)

be a linear map. This linear map might for instance simply map the values in h to prescribed

locations in the matrix Mk(h). In that case, when S is small, all the factors are S-sparse. An-

other insightful example is when Mk uses h to construct a Toeplitz or Circulant matrix. More

complex examples include those where the matrix Mk(h) is obtained by combining several

smaller Toeplitz or circulant matrices. In the latter case, the product M1(h1) . . .MK(hK) can

be the matrix corresponding to a convolutional network. This example is presented in Sec-

tion 7. Another interesting example is obtained when MK (or M1) is defined by the product

M′
KD (or DM′

1), where the columns of D contain learning samples and M′
K (or M′

1) has the

form (1). In this case, X contains an analysis of the samples.

In addition to the structure induced by the operators Mk, we also consider structure

imposed on the vectors h. We assume that we know a collection of models M = (M L)L∈N
with the property that for every L, M L ⊂ RS×K is a given subset. We will assume that

the parameters h ∈ RS×K defining the factors are such that there exists L ∈ N such that

h ∈ M L. The typical examples we have in mind include models for which M L is the level

set of a function. The function defines a prior on the parameters h. For instance, when

K = 2, M L might contain sparse vectors, impose grouped sparsity or co-sparsity. Still

when K = 2, other examples impose non-negativity constraints, orthogonality (for low rank

approximation), equality (in phase retrieval), an upper-bound on the norm of the columns

of M1(h1) (in dictionary learning). The examples are numerous.

We now precisely state the problem considered in this paper. We assume a collection

of models M is known and that there exists a model M L defined by an unknown L and

parameters (hk)k=1..K ∈ M L, with hk ∈ RS for all k = 1..K, and we only are given the

product of matrices

X = M1(h1) . . .MK(hK)+ e,

for an unknown error term e. Our goal is to establish sharp and, as far as possible, simple

conditions guaranteeing that we can recover the parameters (hk)k=1..K with an accuracy

comparable to ‖e‖. The typical solver we have in mind minimizes

argminL∈N,(hk)k=1..K∈M L ‖M1(h1) . . .MK(hK)−X‖2. (2)

However, following [7], we state stability results that hold for an inaccurate (also called

inexact or approximate) minimizer of (2). Such an inaccurate minimizer (hk)k=1..K is such

that (hk)k=1..K ∈ M L, for some L ∈ N, and

‖M1(h1) . . .MK(hK)−X‖2 is small.

Doing so, the stability results apply to a larger class of solvers. In particular, it can apply to

heuristics or (for instance) to solvers that minimize an approximate objective function or an

objective function that is not based on the Euclidean distance. Our statements say that the
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smaller ‖M1(h1) . . .MK(hK)−X‖2 the smaller the error on the estimate of the parameters

hk.

The stability question boils down to an identifiability issue when the error term e van-

ishes and the minimization is exact. We therefore begin to study necessary and sufficient

conditions for the uniqueness of the factors satisfying both (hk)k=1..K ∈ M L and

M1(h1) . . .MK(hK) = X . (3)

The minimization problem (2) is non-convex because the product M1(h1) . . .MK(hK) is

not (jointly) linear. The constraint ∪L∈NM L might also be non-convex. As a consequence,

solving or even finding an efficient heuristic solving (2) might be difficult or impossible

for some instances of the problem. We do not address the numerical issues related to the

minimization of (2). In this regard, although the identifiability is desired when interpreting

the solution, it implies that the minimizer of (2) is unique. Intuitively, this is expected to

reduce the size of the convergence bassin and complicate the numerical resolution of (2). In

that sense, a sharp condition of identifiability separates identifiable problems and problems

which better lend themselves to global optimization. Outside of this crude intuition and the

fact that, we do not investigate whether (2) can actually be minimized or not (see [21] for

an example of such a result).

When K ≥ 2, (3) and (2) are in general highly non-linear/non-convex (even when L is

known and M L is a Euclidean space), so the uniqueness and stability of the solution is

not easy to characterize. This is due to the product of the factors. However, our results

also apply when K = 1. When K = 1, the questions and results stated in this work are

identical or close to well established existing results in compressed/compressive sensing

[8, 15, 7, 13]. Although it is not our primary interest, for pedagogical reasons, we also

express our definitions and statements in this setting.

The main contributions of this paper are:

• In the absence of noise (see Section 5):

– We establish a simple geometric condition on the intersection of two sets which

are necessary and sufficient to guarantee the identifiability of the parameters hk

defining the factors (Proposition 7).

– We provide simpler conditions which involve the rank of a certain linear operator

(defined in Section 4) such that:

∗ If this rank is larger than another quantity, (3) is almost surely identifiable

(Theorem 3).

∗ If this rank is below a certain constant, (3) is not identifiable (Theorem 4);

– We also provide a simple algorithm to compute this rank that works in many

reasonable cases (Proposition 4).

• In the presence of noise when considering an inaccurate minimizer (see Section 6):

– We define the deep-Null Space Property (Definition 3): a generalization of the

usual Null Space Property [13] that also applies to the deep matrix factorization

problem.

– We establish that when the deep-Null Space Property holds we can recover the

factors with an accuracy bounded above by the sum of the noise level and a

quantity reflecting the minimization inaccuracy (Theorem 5).

– We establish the converse statement: if we are able to recover the factors with

an accuracy upper bounded by the noise level then the deep-Null Space Prop-

erty holds (Theorem 6).
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• We specialize the above results to convolutional networks and establish a simple con-

dition, that can be computed in many contexts, such that

– If the condition is satisfied the convolutional networks can be stably recovered

(see Theorem 7);

– If the condition is not satisfied, the convolutional network is not identifiable (see

Proposition 8).

In order to establish these results, we investigate and recall several results on tensors, tensor

rank and the Segre embedding (see Section 3). In particular, we investigate the Lipschitz

continuity (Theorem 2) and stable recovery (Theorem 1) for the Segre embedding.

1.2 Bibliographical landmarks

Matrix factorization problems are ubiquitous in statistics, information theory and data rep-

resentation. The simplest version consists of a model with one layer (i.e., K = 1) and

M = RS×K . This is the usual linear approximation problem. In this case, X can be vector-

ized to form a column vector and the operator M1 simply multiplies the column vector h1

by a fixed (rectangular) matrix. Typically, in this setting, the latter matrix has more rows

than columns and, when a solution to (3) exists, its uniqueness depends on the column rank

of the matrix.

The above linear approximation is often improved using a “non-linear approximation”

[14]. In this framework, the fixed matrix has more columns than rows and h1 contains a

sparse vector whose support is also optimized to better approximate the data. The identi-

fiability and stable recovery for this problem has been intensively studied and gave rise to

a new application named compressed/compressive sensing (see [8, 15]). Some compressed

sensing statements (especially the ones guaranteeing that any minimizer of the ℓ0 problem

stably recovers the unknown) are special cases (K = 1) of the statements provided in this

paper. We will not perform a complete review on compressed sensing but would like to

highlight the Null Space Property described in [13]. The fundamental limits of compressed

sensing (for a solution of the ℓ0 problem) have been analyzed in detail in [7].

The questions we are studying are mostly relevant (and new) when K ≥ 2. In the case of

such models, the non-linearity comes from the multiplicative nature of (3) and the identifia-

bility and stable recovery are not easily guaranteed. Recently, sparse coding and dictionary

learning has been introduced (see [40] for an overview on the subject). In that framework,

X contains the data and (most of the time) people consider two layers: K = 2. The layer

M1(h1) is an optimized dictionary of atoms and each column of M2(h2) contains the code

(or coordinates) of the corresponding column in X . In this case, the mapping M2 maps a

vector from a small vector space into a sparse matrix. The identifiability and stable recovery

of the factors has been studied in many dictionary learning contexts and provides guaran-

tees on the approximate recovery of both an incoherent dictionary and sparse coefficients

when the number of samples is sufficiently large (i.e., n is large, in our setting). In [20],

the authors developed local optimality conditions in the noiseless case, as well as sample

complexity bounds for local recovery when M1(h1) is square and M2(h2) are iid Bernoulli-

Gaussian. This was extended to overcomplete dictionaries in [17] (see also [43] for tight

frames) and to the noisy case in [25]. The authors of [45] provide exact recovery results

for dictionary learning, when the coefficient matrix has Bernoulli-Gaussian entries and the

dictionary matrix has full column rank. This was extended to overcomplete dictionaries in

[1] and in [5] but only for approximate recovery. Finally, [19] provides such guarantees

under general conditions which cover many practical settings.
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Factorizations with K = 2 have also been considered for the purpose of phase retrieval

[9], blind deconvolution [2, 12, 30], blind deconvolution in random mask imaging [6], blind-

deconvolution and blind-de-mixing [31], self-calibration [32] and Non-negative matrix fac-

torization [29, 16, 28, 4]. Most of these papers use the same lifting property we are using.

They further propose to convexify the problem and provide sufficient conditions for obtain-

ing identifiability and stability. A more general bilinear framework is considered in [12],

where the analysis shares similarities with the results presented here but is restricted to

identifiability when K = 2.

When compared to these results, the scope of the present study is to consider the iden-

tifiability and the stability of the recovery for any K ≥ 1, in a general context. The authors

have announced preliminary versions of the results described here in [37]. They are sig-

nificantly extended here. To the best of our knowledge, little is known concerning the

identifiability and the stability of matrix factorization when K ≥ 3. The uniqueness of the

factorization corresponding to the Fast Fourier Transform was proved in [34]. Other results

consider the identifiability of the factors which are sparse and random [39] and might even

consider the presence of non-linearities between the layers to include the deep classification

architectures [3].

The use of deep matrix factorization is classical. In particular handcrafted deep ma-

trix factorization of a few particular matrices are used in many fields of mathematics and

engineering. Most fast transforms, such as the Cooley-Tukey Fast Fourier Transform, the

Discrete Cosine Transform and the Wavelet transform, are deep matrix products.

The construction of optimized deep matrix factorization only started recently (see [10,

11] and references therein). In [10, 11, 36], the authors consider compositions of sparse

convolutions organized according to a convolutional tree. In the simplified case studied in

[10], X is a vector, the vectors hk are the convolution kernels and each operator Mk maps hk

to a circulant (or block-circulant) matrix. The first layer corresponds to the coordinates/code

of X in the frame obtained by computing the compositions of convolutions along the unique

branch of the tree. In [36], the authors consider a factorization involving several sparse

layers. In that work, the authors simultaneously estimate the support and the coefficients

of each sparse factor. They use this factorization to define an analogue of the Fast Fourier

Transform for signals living on graphs [35] and latter reworked on this principle using old

ideas [18]. In [26], the authors consider a (deep) multi-resolution matrix factorization,

inspired by the wavelet decomposition, where the factors are orthogonal and sparse. In

[41, 42], the authors consider factors based on householder reflectors and Givens rotation.

In [33], the authors study a multi-layer Non-negative matrix factorization.

2 Notation and summary of the hypotheses

We continue to use the notation introduced in the introduction. For an integer k ∈ N, set

Nk = {1, . . . ,k}.

We consider K ≥ 1 and S ≥ 2 and real valued tensors of order K whose axes are of size

S, denoted by T ∈ RS×...×S. The space of tensors is abbreviated RSK
. The entries of T are

denoted by Ti1,...,iK , where (i1, . . . , iK) ∈ (NS)
K . The index set is simply denoted NK

S . For

i ∈NK
S , the entries of i are i = (i1, . . . , iK) (for j ∈NK

S we let j = ( j1, . . . , jK) etc.). We either

write Ti or Ti1,...,iK .

A collection of vectors is denoted h ∈ RS×K (i.e., using bold fonts). Our collections are

composed of K vectors of size S and the kth vector is denoted hk ∈RS. The ith entry of the

kth vector is denoted hk,i ∈ R. A vector not related to a collection of vectors is denoted by
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h ∈ RS (i.e., using a light font). Throughout the paper we assume

M = (M L)L∈N, with M L ⊂ R
S×K .

We also assume that, for all L ∈N, M L 6= /0. They can however be equal or constant after a

given L′.
All the vector spaces RSK

, RS×K , RS etc. are equipped with the usual Euclidean norm.

This norm is denoted ‖.‖ and the scalar product 〈., .〉. In the particular case of matrices, ‖.‖
corresponds to the Frobenius norm. We also use the usual p norm, for p ∈ [1,∞], and denote

it by ‖.‖p.

Set

R
S×K
∗ = {h ∈ R

S×K ,∀k ∈ NK ,‖hk‖ 6= 0}. (4)

Define an equivalence relation in RS×K
∗ : for any h, g ∈ RS×K , h ∼ g if and only if there

exists (λk)k∈NK
∈ RK such that

K

∏
k=1

λk = 1 and ∀k ∈ NK ,hk = λkgk.

Denote the equivalence class of h ∈ RS×K
∗ by [h].

We say that the zero tensor is of rank 0. We say that a non-zero tensor T ∈ RSK
is of

rank 1 (or decomposable) if and only if there exists a collection of vectors h ∈ RS×K
∗ such

that T is the outer product of the vectors hk, for k ∈ NK , that is, for any i ∈ NK
S ,

Ti = h1,i1 . . .hK,iK .

Let Σ1 ⊂ RSK
denote the set of tensors of rank 0 or 1.

The rank of any tensor T ∈RSK
is defined to be

rk(T ) = min{r ∈ N| there exists T1, . . . ,Tr ∈ Σ1 such that T = T1 + . . .+Tr}.

For r ∈ N, let

Σr = {T ∈ R
SK

, rk(T )≤ r}.
The ∗ superscript refers to optimal solutions. A set with a ∗ subscript means that 0 is

ruled out of the set. In particular, Σ1,∗ denotes the non-zero tensors of rank 1. Attention

should be paid to RS×K
∗ since its definition is not straightforward (see (4)).

3 Facts on the Segre embedding and tensors of rank 1 and

2

Parametrize Σ1 ⊂ RSK
by the map

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1 h2,i2 . . .hK,iK )i∈NK
S

(5)

The map P is called the Segre embedding and is often denoted by Ŝeg in the algebraic

geometry literature.

Standard Facts:

6



1. Identifiability of [h] from P(h): For h and g ∈ RS×K
∗ , P(h) = P(g) if and only if

[h] = [g].

2. Geometrical description of Σ1,∗: Σ1,∗ is a smooth (i.e., C∞) manifold of dimension

K(S− 1)+ 1 (see, e.g., [27], chapter 4, pp. 103).

3. Geometrical description of Σ2: When K ≥ 2, the singular locus (Σ2)sing has dimen-

sion strictly less than that of Σ2, and Σ2\(Σ2)sing is a smooth manifold. This smooth

manifold is of dimension 2K(S−1)+2 when K > 2, and of dimension 4(S−1) when

K = 2 (see, e.g., [27], chapter 5).

We can improve Standard Fact 1 and obtain a stability result guaranteeing, that if we

know a rank 1 tensor sufficiently close to P(h), we approximately know [h]. In order to state

this, we need to define a metric on RS×K
∗ / ∼. This has to be considered with care since,

whatever h ∈RS×K
∗ , the subset {h | h ∈ [h]} is not compact. In particular, considering

h′
k =

{
λ hk , if k = 1

λ− 1
K hk , otherwise

when λ goes to infinity, we easily construct examples that make the standard metric on

equivalence classes useless1.

This leads us to consider

R
S×K
diag = {h ∈R

S×K
∗ ,∀k ∈ NK ,‖hk‖∞ = ‖h1‖∞}.

The interest in this set comes from the fact that, whatever h ∈ RS×K
∗ , the set [h]∩R

S×K
diag is

finite. Indeed, if g ∈ [h]∩R
S×K
diag the (λk)k∈NK

∈RK such that, for all k ∈NK , hk = λkgk must

all satisfy |λk|= 1, i.e. λk =±1.

Definition 1. For any p ∈ [1,∞], we define the mapping dp : (RS×K
∗ / ∼ ×RS×K

∗ / ∼)→ R

by

dp([h], [g]) = inf
h′∈[h]∩RS×K

diag

g′∈[g]∩RS×K
diag

‖h′− g′‖p ,∀h, g ∈ R
S×K
∗ .

Proposition 1. For any p ∈ [1,∞], dp is a metric on RS×K
∗ /∼.

Proof. Notice that, the sets [h]∩R
S×K
diag and [g]∩R

S×K
diag are finite and therefore the infimum

in the definition of d is reached. We also have whatever h, g ∈ RS×K
∗

dp([h], [g]) = inf
h′∈[h]∩RS×K

diag

(
inf

g′∈[g]∩RS×K
diag

‖h′− g′‖p

)
. (6)

1For instance, if h and g ∈ RS×K
∗ are such that (for instance) h1 = g1, we have

inf
h′∈[h],g′∈[g]

‖h′−g′‖p = 0

even though we might have h2 6= g2 (and therefore [h] 6= [g]). This does not define a metric.

Also, when h and g are such that hk 6= gk, whatever k ∈ NK , we have

sup
h′∈[h]

inf
g′∈[g]

‖h′−g′‖p =+∞.

Therefore, the Hausdorff distance between [h] and [g] is infinite for almost every pair (h,g). This metric is therefore

not very useful in the present context.
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Moreover, whatever h∈RS×K
∗ and h′ and h′′ ∈ [h]∩RS×K

diag there exist (sk)k∈NK
∈{−1,1}K

such that ∏k∈NK
sk = 1 and

h′
k = skh′′

k ,∀k ∈NK .

Using the above two properties, we can check that

inf
g′∈[g]∩RS×K

diag

‖h′− g′‖p = inf
g′∈[g]∩RS×K

diag

‖h′′− g′‖p

As a consequence, the outer infimum in (6) is irrelevant and we have

dp([h], [g]) = inf
g′∈[g]∩RS×K

diag

‖h′− g′‖p ,∀h, g ∈R
S×K
∗ and h′ ∈ [h]∩R

S×K
diag .

Using this last property, we easily check that dp is a metric on RS×K
∗ /∼.

Using this metric, we can state, not only [h] is uniquely determined by P(h), but this

operation is stable.

Theorem 1. Stability of [h] from P(h)
Let h and g ∈RS×K

∗ be such that ‖P(g)−P(h)‖∞ ≤ 1
2

max(‖P(h)‖∞,‖P(g)‖∞). For all

p,q ∈ [1,∞],

dp([h], [g])≤ 7(KS)
1
p min

(
‖P(h)‖

1
K −1
∞ ,‖P(g)‖

1
K −1
∞

)
‖P(h)−P(g)‖q. (7)

Proof. Notice first that when K = 1 the inequality is a straightforward consequence of the

usual inequalities between lp norms. We therefore assume from now on that K ≥ 2.

All along the proof, we consider h and g ∈ RS×K
∗ and assume that ‖P(h)‖∞ ≥ ‖P(g)‖∞.

We also assume that ‖P(g)− P(h)‖∞ ≤ 1
2
‖P(h)‖∞. We first prove the inequality when

p = q =+∞.

In order to do so, we consider

i ∈ argmaxj∈NK
S
|P(h)j|

and assume, without lost of generality (otherwise, we can multiply one vector of h and g by

−1 to get this property and multiply back once the inequality have been established), that

P(h)i ≥ 0. We therefore have P(h)i = ‖P(h)‖∞. Notice also that we have, under the above

hypotheses,

‖P(g)‖∞ ≥ P(g)i ≥ P(h)i −‖P(g)−P(h)‖∞ ≥ 1

2
‖P(h)‖∞ > 0. (8)

Moreover, we consider the operator Ei that extracts the K signals of size S that are

obtained when freezing, at the index i in a tensor T , all coordinates but one. Formally, we

denote

Ei : RSK −→ R
S×K

T 7−→ Ei(T )

where for all k ∈ NK and all j ∈ NS

Ei(T )k, j = Ti1,...,ik−1, j,ik+1,...,iK .
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We consider

h′ = (P(h)i)
−1+ 1

K Ei(P(h)) and g′ = (P(g)i)
−1+ 1

K Ei(P(g)).

We have for all j ∈N
K
S

P(h′)j = (P(h)i)
−K+1 P(Ei(P(h)))j ,

= (P(h)i)
−K+1

K

∏
k=1

P(h)i1,...,ik−1,jk ,ik+1,...,iK

= (P(h)i)
−K+1

K

∏
k=1

h1,i1 . . .hk−1,ik−1
hk,jk

hk+1,ik+1
. . .hK,iK

=
K

∏
k=1

hk,jk
= P(h)j.

We therefore have P(h′) = P(h). This can be written h′ ∈ [h]. Similarly, we have g′ ∈ [g].
Also, because of the definition of i and h′, we are guaranteed that, whatever k ∈ NK ,

‖h′
k‖∞ = (P(h)i)

−1+ 1
K ‖Ei(P(h))‖∞

= ‖P(h)‖−1+ 1
K

∞ ‖P(h)‖∞ = ‖P(h)‖
1
K
∞

The latter being independent of k, we have h′ ∈ R
S×K
diag . Unfortunately, unless for instance

i ∈ argmaxj∈NK
S
|P(g)j|, it might occur that g′ 6∈ R

S×K
diag . However, if we consider

g′′ ∈ argmin
f∈[g]∩RS×K

diag
‖f− g′‖∞,

we have since h′ ∈ [h]∩R
S×K
diag and g′′ ∈ [g]∩R

S×K
diag

d∞([h], [g]) ≤ ‖h′− g′′‖∞

≤ ‖h′− g′‖∞ + ‖g′− g′′‖∞. (9)

In the sequel we will successively calculate upper bounds of ‖h′− g′‖∞ and ‖g′− g′′‖∞ in

order to find an upper bound of d∞([h], [g]).

Upper bound of ‖h′− g′‖∞:

We have

‖h′− g′‖∞ = ‖(P(h)i)
−1+ 1

K Ei(P(h))− (P(g)i)
−1+ 1

K Ei(P(g))‖∞

≤ ‖(P(h)i)
−1+ 1

K (Ei(P(h))−Ei(P(g)))‖∞

+‖
(
(P(h)i)

−1+ 1
K − (P(g)i)

−1+ 1
K

)
Ei(P(g))‖∞

≤ ‖P(h)‖−1+ 1
K

∞ ‖Ei(P(h))−Ei(P(g))‖∞ + ‖P(g)‖∞|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K |

≤ ‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞+ ‖P(h)‖∞|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K |

9



But we also have using the mean value theorem and (8)

|(P(h)i)
−1+ 1

K − (P(g)i)
−1+ 1

K | ≤
(

1− 1

K

)
P(g)

−2+ 1
K

i |P(h)i −P(g)i|

≤
(

1− 1

K

)(
1

2
‖P(h)‖∞

)−2+ 1
K

‖P(h)−P(g)‖∞

≤ 4 ‖P(h)‖−2+ 1
K

∞ ‖P(h)−P(g)‖∞

We therefore finally obtain that

‖h′− g′‖∞ ≤ 5‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞. (10)

Upper bound of ‖g′− g′′‖∞:

First, since g′′ ∈ [g] = [g′], we know that there exists (λk)k∈NK
∈ RK such that

K

∏
k=1

λk = 1 (11)

and

g′′k = λkg′k , for all k ∈ NK .

Furthermore, we have for all k ∈ NK

‖g′k − g′′k‖∞ = |1−λk| ‖g′k‖∞. (12)

Also, if there is k′ such that λk′ < 0, since (11) holds, there necessarily exist another k′′ such

that λk′′ < 0. If we replace g′′
k′ by −g′′

k′ and replace g′′
k′′ by −g′′

k′′ we remain in [g]∩R
S×K
diag

and can only make ‖g′− g′′‖∞ decrease. Repeating this process until all the λk’s are non-

negative, we can assume without loss of generality that

λk ≥ 0 , whatever k ∈ NK .

This being said, we establish two other simple facts that motivate the structure of the

proof. First, in order to find an upper bound for (12), we easily establish (using (8)) that

‖g′k‖∞ = (P(g)i)
−1+ 1

K ‖Ei(P(g))‖∞

≤ (
1

2
‖P(h)‖∞)

−1+ 1
K ‖P(h)‖∞

≤ 2‖P(h)‖
1
K
∞ . (13)

Second, the value λk appearing in (12), can be bounded by using bounds on ‖g′k‖∞ and the

identity

‖g′′k‖∞ = ‖P(g)‖
1
K
∞ = λk ‖g′k‖∞. (14)

Qualitatively, the latter identity indeed guarantees that, as ‖P(g)−P(h)‖∞ goes to 0, λk

goes to 1. Let us now establish this quantitatively.

Recalling that

g′ = (P(g)i)
−1+ 1

K Ei(P(g)),

10



and using (8) again, we obtain

‖g′k‖∞ ≤
(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)−1+ 1
K

‖P(g)‖∞.

We also have (again, using (8))

‖g′k‖∞ ≥ (P(g)i)
−1+ 1

K |P(g)i|
= (P(g)i)

1
K

≥
(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

) 1
K

.

Plugging the upper bound of ‖g′k‖∞ in (14), using successively (8), the mean value

theorem and the hypothesis on the size of P(h)−P(g) gives:

λk − 1 =
‖P(g)‖

1
K
∞

‖g′k‖∞
− 1

≥ ‖P(g)‖−1+ 1
K

∞

(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)1− 1
K

− 1

≥
(

1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)1− 1
K

− 1

≥ −(1− 1

K
)

(
1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≥ −
(

1− 1

4

)− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≥ − ‖P(h)−P(g)‖∞

‖P(h)‖∞
.

Similarly, plugging the lower bound of ‖g′k‖∞ in (14), we obtain using successively (8), the

mean value theorem and the hypothesis on the size of P(h)−P(g):

λk − 1 ≤ ‖P(g)‖
1
K
∞

(
‖P(h)‖∞ − 1

2
‖P(h)−P(g)‖∞

)− 1
K

− 1

≤
(

1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)− 1
K

− 1

≤ 1

K

(
1− ‖P(h)−P(g)‖∞

2‖P(h)‖∞

)−1− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≤ 1

K

(
1− 1

4

)−1− 1
K ‖P(h)−P(g)‖∞

2‖P(h)‖∞

≤ 42

2K32

‖P(h)−P(g)‖∞

‖P(h)‖∞

≤ ‖P(h)−P(g)‖∞

‖P(h)‖∞
.
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Finally, we get

|λk − 1| ≤ ‖P(h)−P(g)‖∞

‖P(h)‖∞
. (15)

By combining (12), (13) and (15), we obtain

‖g′k − g′′k‖∞ ≤ 2 ‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞.

Combining the latter inequality with (9) and (10) provides

d∞([h], [g])≤ 7‖P(h)‖−1+ 1
K

∞ ‖P(h)−P(g)‖∞,

and concludes the proof when p = q =+∞.

In order to establish the property when 1 ≤ p ≤+∞ and 1 ≤ q ≤+∞, we simply use the

fact that

dp([h], [g])≤ (KS)
1
p d∞([h], [g])

and

‖P(h)−P(g)‖∞ ≤ ‖P(h)−P(g)‖q.

The following proposition shows that the upper bound in (7) cannot be improved by a

significant factor.

Proposition 2. There exist h and g∈RS×K
∗ such that ‖P(g)‖∞ ≤‖P(h)‖∞, ‖P(g)−P(h)‖∞ ≤

1
2
‖P(h)‖∞ and

7(KS)
1
p ‖P(h)‖

1
K −1
∞ ‖P(h)−P(g)‖q ≤Cq dp([h], [g]),

where

Cq =

{
28(KS)

1
q , if q <+∞,

28 , if q =+∞.

Proof. In the example, we consider h and g such that for all k ∈ NK and all i ∈ NS

hk,i =

{
1 , if i = 0,
0 , otherwise,

and gk,i =

{ (
1
2

) 1
K , if i = 0,

εq , otherwise,

where ε+∞ =
(

1
2

) 1
K and εq = min



(

1−( 1
2 )

q
K

S−1

) 1
q

,
(

1
2

) 1
K


, if q < +∞. We immediately

obtain

‖P(h)‖∞ = 1, ‖P(g)‖∞ =
1

2
and ‖P(h)−P(g)‖∞ =

1

2
.

We also have,

dp([h], [g])
p = ‖h− g‖p

p ≥ K(S− 1) εp
q ≥ KS

2
εp

q .
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Decomposing the sum necessary to the calculation of the lq norm of a tensor according to

number of index different from 0 (which corresponds to l in the sum below), we obtain

‖P(h)−P(g)‖q
q =

K

∑
l=0

(
l

K

)
(S− 1)lεlq

q

(
1

2

) (K−l)q
K

,

=

((
1

2

) q
K

+(S− 1)εq
q

)K

≤ 1.

We then easily obtain that

7‖P(h)‖−1+ 1
K

∞ (KS)
1
p ‖P(h)−P(g)‖q ≤ 7(KS)

1
p ,

≤ 7
dp([h], [g])

εq

2
1
p . (16)

(17)

We first calculate a lower bound of εq when εq =

(
1−( 1

2 )
q
K

S−1

) 1
q

(which, in particular, rules

out q =+∞). Using the mean value theorem, we obtain

1−
(

1

2

) q
K

≥ min
t∈[ 1

2 ,1]

( q

K
t

q
K −1
)
(1− 1

2
).

Distinguishing, whether q ≤ K or not, we find after a short calculation that, since q ≥ 1,

1−
(

1

2

) q
K

≥ min

(
1

2K
,

1

K

(
1

2

) q
K

)
=

1

K
min

((
1

2

) 1
q

,

(
1

2

) 1
K

)q

≥ 1

K2q
.

We then deduce

εq ≥
1

2(KS)
1
q

.

Of course, when εq =
(

1
2

) 1
K (which includes q =+∞), we immediately obtain

εq ≥
1

2
.

Using this lower bound in (16) leads to the bounds stated in the proposition.

When interpreting this proposition one has to remember that, in many practical cases,

the product KS is not very large. Also, the bound is sharp when q is large.

As stated in the following theorem, we have a more valuable upper bound in the general

case.

Theorem 2. Lipschitz continuity of P

We have for any q ∈ [1,∞] and any h and g ∈ RS×K
∗ ,

‖P(h)−P(g)‖q ≤ S
K−1

q K
1− 1

q max

(
‖P(h)‖1− 1

K
∞ ,‖P(g)‖1− 1

K
∞

)
dq([h], [g]). (18)
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Proof. Before starting the proof, we define for any k ∈ {0, . . . ,K}

Pk(h,g)i = g1,i1 . . .gk,ik hk+1,ik+1
. . .hK,iK , for all h,g ∈ R

S×K and all i ∈ N
K
S .

We consider g and h ∈ RS×K . Let us first assume that ‖g‖∞ ≤ ‖h‖∞ = 1. We have for

any i ∈NK
S , using this hypothesis and standard inequalities between lp norms, when q<+∞

|P(g)i −P(h)i|q =

∣∣∣∣∣
K−1

∑
k=0

(Pk+1(h,g)i −Pk(h,g)i)

∣∣∣∣∣

q

≤ Kq−1
K−1

∑
k=0

|Pk+1(h,g)i −Pk(h,g)i|q

≤ Kq−1
K−1

∑
k=0

∣∣gk+1,ik+1
−hk+1,ik+1

∣∣q

The same calculation when q =+∞ leads to

|P(g)i −P(h)i| ≤ K max
k=1..K

∣∣gk,ik −hk,ik

∣∣ .

Therefore, we have when q <+∞

‖P(h)−P(g)‖q
q = ∑

i∈NK
S

|P(h)i −P(g)i|q

≤ Kq−1
K

∑
k=1

∑
i∈NK

S

∣∣gk,ik −hk,ik

∣∣q

= Kq−1
K

∑
k=1

SK−1‖gk −hk‖q
q

= Kq−1SK−1‖g−h‖q
q

and therefore

‖P(h)−P(g)‖q ≤ K
1− 1

q S
K−1

q ‖g−h‖q.

Again, a similar calculus for q =+∞ leads to

‖P(h)−P(g)‖+∞ ≤ K‖g−h‖+∞.

Remember that the two last inequalities hold for g and h∈RS×K such that ‖g‖∞ ≤‖h‖∞ = 1.

Let us now consider any g′ and h′ ∈R
S×K and any g ∈R

S×K
diag ∩ [g′] and h ∈R

S×K
diag ∩ [h′].

We denote δ = max(‖g‖+∞,‖h‖+∞). Notice first that ‖g‖+∞ = ‖P(g′)‖
1
K
+∞ and ‖h‖+∞ =

‖P(h′)‖
1
K
+∞. Therefore

δ = max(‖P(g′)‖+∞,‖P(h′)‖+∞)
1
K . (19)

We can apply the above inequality to h
δ

and
g
δ

(we might need to switch h and g but it

does not change the final inequality) and obtain when q <+∞

‖P(
h

δ
)−P(

g

δ
)‖q ≤ K

1− 1
q S

K−1
q ‖g

δ
− h

δ
‖q.

This leads to

‖P(h)−P(g)‖q ≤ K
1− 1

q S
K−1

q δK−1‖g−h‖q.
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Similarly, when q =+∞, we obtain

‖P(h)−P(g)‖+∞ ≤ KδK−1‖g−h‖+∞.

The fact that these two last inequalities hold for any g∈R
S×K
diag ∩ [g′] and any h∈R

S×K
diag ∩ [h′],

together with (19), leads to the statement provided in Theorem 2.

Notice that, considering h and g ∈ RS×K such that hk,i = 1 and gk,i = ε, for all k ∈ NK

and i ∈NS and for a 0 < ε ≪ 1, we easily calculate

S
K−1

q K
1− 1

q max

(
‖P(h)‖1− 1

K
∞ ,‖P(g)‖1− 1

K
∞

)
dq([h], [g])≤ K‖P(h)−P(g)‖q.

As a consequence, the upper bound in Theorem 2 is tight up to at most a factor K. This factor

is not significant since, in the present context, K is not intended to become significantly

large.

4 The lifting Principle

The following proposition is clear (it can be shown by induction on K):

Proposition 3. The entries of the matrix

M1(h1)M2(h2) . . .MK(hK)

are multivariate polynomials whose variables are the entries of h ∈RS×K . Moreover, every

entry is the sum of monomials of degree K. Each monomial is a constant times h1,i1 . . .hK,iK ,

for some i ∈ N
K
S .

Notice that any monomial h1,i1 . . .hK,iK is the entry P(h)i in the tensor P(h). Therefore

every polynomial in the previous proposition takes the form ∑i∈NK
S

ciP(h)i for some con-

stants (ci)i∈NK
S

independent of h. In words, every entry of the matrix M1(h1)M2(h2) . . .MK(hK)

is obtained by applying a linear form to P(h). Moreover, the polynomial coefficients defin-

ing the linear form are uniquely determined by the linear maps M1,. . . ,MK . This leads to

the following statement.

Corollary 1. Let Mk, k ∈ NK be as in (1). The map

(h1, . . . ,hK) 7−→ M1(h1)M2(h2) . . .MK(hK),

uniquely determines a linear map

A : RSK −→ R
m×n,

such that for all h ∈R
S×K

M1(h1)M2(h2) . . .MK(hK) = AP(h). (20)

When K = 1, we simply have A = M1. When K ≥ 2, it may be difficult to provide a

closed form expression for the operator A . We can however determine simple properties

of A . In most reasonable cases, A is sparse. If the operators Mk simply embed the values

of h in a matrix, the matrix representing A only contains zeros and ones. Also, since the
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operators Mk are known, we can compute AP(h), whatever h ∈ RS×K , using (20). Said

differently, we can compute A for any rank 1 entry. Therefore, since A is linear, we can

compute AT for any low rank tensor T . If the dimensions of the problem permit, one can

manipulate A in a basis of RSK
.

We also have a way to compute rk(A), when mn is not too large, using the following

proposition.

Proposition 4. If we consider R independent random collections of vectors hr, with r =
1...R, according to the normal distribution in RS×K , we have (with probability 1)

dim(Span((AP(hr))r=1..R)) =

{
R , if R ≤ rk(A)
rk(A) , otherwise.

(21)

Proof. The span of the Segre variety P(RS×K) is the full ambient space RSK
, so there exists

sets of R ≤ SK points on it that are linearly independent. The set of R-tuples of points on

P(RS×K) that fail to be linearly independent is a proper subvariety of the variety of sets

of R-tuples of points on P(RS×K) because being a linearly independent set of points is

an open condition and there exists sets of points that are linearly independent. Therefore

R ≤ SK independent and randomly chosen points according to a continuous distribution on

P(RS×K) will be linearly independent.

The intersection P(RS×K)∩Ker(A) is a proper subvariety of P(RS×K), so with prob-

ability one, R ≤ SK independent randomly chosen points according to a continuous distri-

bution will not intersect it and be linearly independent. This is indeed the intersection of

two non-empty open conditions. Therefore, all spans of subsets of the points will intersect

Ker(A) transversely (in particular, the span of fewer than rk(A) points will not intersect

it). Thus there image under A will have dimension as large as possible. The same argument

works if R > SK.

Using Corollary 1, when (2) has a minimizer, we rewrite the problem (2) in the form

h∗ ∈ argminL∈N,h∈M L ‖AP(h)−X‖2. (22)

We now decompose this problem into two sub-problems: A least-squares problem

T ∗ ∈ argmin
T∈RSK ‖AT −X‖2 (23)

and a non-convex problem

h′∗ ∈ argminL∈N,h∈M L ‖A(P(h)−T∗)‖2. (24)

Proposition 5. When (2) has a minimizer, for any X, A :

1. Let h∗ be a solution of (22). Then, for any solution T ∗ of (23), h∗ also minimizes

(24).

2. Let T ∗ be a solution of (23) and h′∗ a solution of (24). Then, h′∗ also minimizes (22).

Proof. The proof relies on the fact that for any T ∗ ∈ argmin
T∈RSK ‖AT −X‖2, we have

A t(AT ∗−X) = 0,

where A t : Rn×m → RSK
is the adjoint linear map. This implies that for any

T ∗ ∈ argmin
T∈RSK ‖AT −X‖2,
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any L ∈N and any h ∈ M L

‖AP(h)−X‖2 = ‖A(P(h)−T∗)+ (AT∗−X)‖2,

= ‖A(P(h)−T∗)‖2 + ‖AT∗−X‖2 + 2〈A(P(h)−T∗),AT ∗−X〉,
= ‖A(P(h)−T∗)‖2 + ‖AT∗−X‖2.

In words, ‖AP(h)−X‖2 and ‖A(P(h)−T ∗)‖2 only differ by an additive constant. More-

over, since the value of the objective function ‖AT ∗−X‖2 is independent of the particular

minimizer T ∗ we are considering, this additive constant is independent of T ∗. As a conse-

quence, a minimizer of ‖AP(h)−X‖2 also minimizes ‖A(P(h)−T ∗)‖2 and vice versa.

From now on, because of the equivalence between solutions of (24) and (22), we stop

using the notation h′∗ and write h∗ ∈ argminL∈N,h∈M L ‖A(P(h)−T∗)‖2.

5 Identifiability in the noise free case

Throughout this section, we assume that X is such that there exists L and h ∈ M L such that

X = M1(h1) . . .MK(hK). (25)

Under this assumption, X = AP(h), so

P(h) ∈ argmin
T∈RSK ‖AT −X‖2.

Moreover, we trivially have P(h) ∈ Σ1 and therefore h minimizes (24), (2) and (22). As a

consequence, (2) has a minimizer.

We ask whether there exist guarantees that the resolution of (2) allows one to recover h

(up to the usual uncertainties).

In this regard, for any h ∈ [h], we have P(h) = P(h) and therefore AP(h) = AP(h) =
X . Thus unless we make further assumptions on h, we cannot expect to distinguish any

particular element of [h] using only X . In other words, recovering [h] is the best we can

hope for.

Definition 2. Identifiability

We say that [h] is identifiable if the elements of [h] are the only solutions of (2).

We say that M is identifiable if for every L ∈N and every h ∈ M L, [h] is identifiable.

Proposition 6. Characterization of the global minimizers

For any L∗ ∈N and any h∗ ∈ M L∗ , (L∗,h∗)∈ argminL∈N,h∈M ‖AP(h)−X‖2 if and only

if

P(h∗) ∈ P(h)+Ker(A) .

Proof. Write T = P(h) and let L∗ and h∗ be a minimizer of (2). Proposition 5 and the

fact that T minimizes (23) implies that (L∗,h∗) ∈ argminL∈N,h∈M L ‖A(P(h)−T )‖2. As a

consequence,

‖A(P(h∗)−T)‖2 = 0

and

P(h∗) ∈ T +Ker(A) ,

proving the first implication.
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Conversely, let L∗ ∈ N and h∗ ∈ M L∗ be such that P(h∗) ∈ T +Ker(A), then

‖A(P(h∗)−T )‖2 = 0 = min
L∈N,h∈M L

‖A(P(h)−T)‖2.

As a consequence, (L∗,h∗) ∈ argminL∈N,h∈M L ‖A(P(h)−T )‖2 and, using Proposition 5,

h∗ is a minimizer of (2).

In order to state the following proposition, we define for any L and L′ ∈ N

P(M L)−P(M L′) :=
{

P(h)−P(g)| h ∈ M L and g ∈ M L′
}
⊂ R

SK

.

Proposition 7. Necessary and sufficient conditions of identifiability

1. For any L and h ∈ M L: [h] is identifiable if and only if for any L ∈ N

(
P(h)+Ker(A)

)
∩P(M L) ⊂ {P(h)}.

2. M is identifiable if and only if for any L and L′ ∈ N

Ker(A)∩
(
P(M L)−P(M L′)

)
= {0}. (26)

Proof. • Proof of the first statement of Proposition 7:

We first assume that [h] is identifiable. We consider L∗ and h∗ such that there is L∗

such that P(h∗) ∈ (P(h) +Ker(A))∩ P(M L∗). We know from Proposition 6 that

h∗ ∈ argminL∈N,h∈M L ‖AP(h)−X‖2. Using that [h] is identifiable, [h∗] = [h] and,

from Standard Fact 1 (at the beginning of Section 3), we get P(h∗)=P(h). Finally, we

can conclude, that if [h] is identifiable we have (P(h)+Ker(A))∩P(M )⊂ {P(h)}.

Let us assume now that for all L ∈ N, (P(h)+Ker(A))∩P(M L)⊂ {P(h)} and con-

sider

(L∗,h∗) ∈ argminL∈N,h∈M ‖AP(h)−X‖2.

Using Proposition 6, we know that P(h∗) ∈ (P(h)+Ker(A))∩P(M L∗). Using the

hypothesis, we have P(h∗) = P(h) and using Standard Fact 1, we finally conclude

that [h∗] = [h]. This completes the proof of the first statement.

• Proof of the second statement of Proposition 7:

If we assume that there is L and L′ ∈N such that Ker(A)∩
(
P(M L)−P(M L′)

)
6= {0}

then there exist h ∈ M L and h ∈ M L′ such that P(h) 6= P(h) and P(h)− P(h) ∈
Ker(A). Using the first statement of the proposition, we obtain that h is not identifi-

able. As a conclusion, M is not identifiable.

Conversely, if we assume that there exists L′ and some non-identifiable h ∈ M L′ .

Using the first statement of the proposition, we know that there exists L ∈ N and

h ∈ M L such that P(h) 6= P(h) and P(h)− P(h) ∈ Ker(A). Therefore Ker(A)∩(
P(M )−P(M )

)
6= {0}.

In the context of the usual compressed sensing (i.e., when K = 1, M contains L-sparse

signals, A is a rectangular matrix with full row rank and X is a vector), the proposition is

already stated in Lemma 3.1 of [13].

In reasonably small cases and when P(M ) is algebraic, one can use tools from numer-

ical algebraic geometry such as those described in [23, 24] to check whether the condition
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(26) holds or not. The drawback of Proposition 7 is that, given a factorization model de-

scribed by A , the condition (26) might be difficult to verify.

We therefore establish simpler conditions related to the identifiability of M . First we

establish a condition such that for almost every A satisfying it, M is identifiable. The main

benefit of this condition is that its constituents can be computed in many practical situations.

Before that, we recall a few facts of algebraic geometry, for X ,Y ⊂ RN , the join of X

and Y (see, e.g., [22, Ex. 8.1]) is

J(X ,Y ) := {sx+ ty | x ∈ X , y ∈ Y, s, t ∈R}Zar
.

If for all L ∈N, M L is Zariski closed and invariant under rescaling (e.g., if they are all linear

spaces), then P(M L)−P(M L′) is a Zariski open subset of J(P(M L),P(M L′)). In general,

it is contained in this join.

Recall the following fact (*): for complex algebraic varieties X ,Y ⊂CN , any component

Z of X ∩Y has dim(Z) ≥ dim(X)+ dim(Y )−N, and equality holds generically (we make

“generically” precise in our context below). Moreover, if X ,Y are invariant under rescaling,

since 0 ∈ X ∩Y , we have X ∩Y 6= /0. (See, e.g., [44, §I.6.2].)

This intersection result indicates that if there exists L,L′ such that

rk(A)< dim
(

P(M L)−P(M L′)
)

we expect to have non-identifiability; and if the rank is larger, for all pair L,L′, we expect

identifiability.

It is straightforward to make the identifiability assertion precise:

Theorem 3. Almost surely sufficient condition for Identifiability

For almost every A such, for all L,L′, that rk(A) ≥ dim
(

J(P(M L),P(M L′))
)

, M is

identifiable.

Proof. We first make the “equality holds generically” statement precise in our context. Fix

any variety X and assume Y is a linear space, say of dimension y. Let G(y,CN) denote the

Grassmannian of y-planes through the origin in CN . The Grassmannian is both a smooth

manifold and an algebraic variety. We can interpret “equality holds generically” in this

context as saying for a Zariski open subset of G(y,CN), equality will hold. In our situation,

if we fix rk(A) and allow ker(A) to vary as a point in the Grassmannian, with probability

one, it will intersect J(P(M L),P(M L′)) only in the origin, and this assertion is also true

over R because complex numbers are only needed to assure existence of intersections, not

non-existence.

Since dim
(

J(P(M L),P(M L′))
)
< dim

(
P(M L)

)
+ dim

(
P(M L′)

)
+ 1, if Dmax is the

maximum dimension of P(M L) over all L, one has the same conclusion if rk(A)≥ 2Dmax+
1.

When K = 1, we illustrate this result by interpreting it in the context of compressive

sensing, where h is a vector, X is a vector, A is a rectangular sampling matrix of full

row rank and Ker(A) is large. The statement analogous to Theorem 3 in the compressive

sensing framework takes the form: “For almost every sampling matrix, any L sparse signal

h can be recovered from Ah as soon as 2L ≤ rk(A).” Moreover, the constituent of the ℓ0

minimization model used to recover the signal are also the constituents of (22). Again, the

main novelty is to extend this result to the identifiability of the factors of a deep matrix

products.
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In order to establish a necessary condition for identifiability, first note that if we ex-

tend P(M L)− P(M L′) to be scale invariant, this will not effect whether or not it inter-

sects ker(A) outside of the origin. We immediately conclude that in the complex setting

where M L,M L′ are both Zariski closed, that M is non-identifiable whenever rk(A) <

dim
(

P(M L)−P(M L′)
)

. This indicates that we should always expect non-identifiability

whenever rk(A) < dim
(

P(M L)−P(M L′)
)

but is not adequate to prove it because real

algebraic varieties need not satisfy (*). However it is true for real linear spaces, so we

immediately conclude the following weak result:

Theorem 4. Necessary condition for Identifiability

Let C(P(M L)− P(M L′)) be the set of all points on all lines through the origin in-

tersecting P(M L)− P(M L′), and let q be the maximal dimension of a linear space on

C(P(M L)−P(M L′)). Then if q > rk(A), M is not identifiable. In particular when the

M Ls contain linear space and if we let S′ the be the largest dimension of these vector

space, if 2S′ > rk(A), then M is not identifiable.

6 Stable recovery in the noisy case

In this section, we significantly complexify the problem by considering a noisy situation

and by considering an inaccurate optimization. More precisely, we assume that we know a

sequence M = (M L)L∈N made of models M L ⊂ RS×K , for L ∈ N. Of course, if the true

model M is known, we simply take M L = M for all L ∈ N. This should simplify the

construction of the solver without modifying the statements below.

In this section, we assume that there exists L ∈ N and h ∈ M L. Our goal is to estimate

h from the noisy matrix product

X = M1(h1) . . .MK(hK)+ e

for some error e satisfying

‖e‖ ≤ δ, (27)

for δ > 0.

This can equivalently be written

X = AP(h)+ e.

We consider an inexact minimization as considered in [7]. More precisely, we assume

that we have a way to find L∗ and h∗ ∈ M L∗ such that

‖AP(h∗)−X‖ ≤ η, (28)

for some parameter η > 0. We will see in Theorem 5 that smaller values of η improve the

estimate accuracy.

Typically, this can be achieved by approximatively solving the optimization problem:

argminL∈N,h∈M L ‖AP(h)−X‖2. (29)

The hypothesis h∗ ∈ M L∗ might give the false impression that the results described

below are restricted to heuristics imposing the constraint. It is not. Indeed, even if h′ ∈RS×K

is such that

‖AP(h′)−X‖ ≤ η1,
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it is possible to find L∗ and h∗ ∈ M L∗ such that d2([h
′], [h∗])≤ η2, where η2 quantifies how

much h′ deviates from the model. Using Theorem 2, we immediately have

‖AP(h∗)−X‖ ≤ η1 +σmaxS
K−1

2

√
K max

(
‖P(h′)‖1− 1

K
∞ ,‖P(g∗)‖1− 1

K
∞

)
η2,

where σmax is the spectral radius of A . The analysis below can be applied using this bound

in place of η.

However, we need not solve this optimization problem (which is in general difficult or

impossible to solve). What matters is just to satisfy (28) for a small value of η. Notice that,

if we efficiently solve the above problem, we can reach η ≤ δ. Getting a value of η whose

order of magnitude is comparable to δ is what one should aim at.

Also, notice that dealing with inexact minimization is important since it permits one to

avoid the use of the coercivity hypothesis (which might be difficult to certify in practical

applications). More generally, it permits one to consider the case when (29) does not have

a solution. Moreover, the above inequality always holds when h∗ is the solution returned

by a heuristic algorithm and η = ‖AP(h∗)−X‖2. Algorithms which do not come with a

guarantee sometimes manage to reach small objective function values. In those cases, the

analysis we conduct in this section permits one to conclude the stable recovery of h despite

the lack of a guarantee of the algorithm. Finally, considering an inaccurate minimization

permits one to obtain guarantees for algorithms that, instead of minimizing (29), minimize

an objective function which approximates the one in (29). The goal of the approximation

would be to consider an objective function that better lends itself to optimization or that is

accessible using the available data.

A necessary and sufficient condition for the identifiability of M is stated in Proposition

7. The condition is on the way Ker(A) and P(M L)−P(M L′) intersect. In order to guaran-

tee the stable recovery of the elements of M , we need a stronger condition on the geometry

of this intersection to hold for every L and L′ ∈ N. This condition is provided in the next

definition.

Definition 3. Deep-Null Space Property

Let γ > 0, we say that Ker(A) satisfies the deep-Null Space Property (deep-NSP ) with

respect to the model collection M with constant γ if there exists ε > 0 such that for any L

and L′ ∈N, any T ∈ P(M L)−P(M L′) satisfying ‖AT‖ ≤ ε and any T ′ ∈ Ker(A), we have

‖T‖ ≤ γ‖T −T ′‖. (30)

The deep-NSP implies that, for T ∈ P(M L)−P(M L′) close to Ker(A) in the sense that

‖AT‖ ≤ ε we must have, by decomposing T = T ′ + T ′′, with T ′ ∈ Ker(A) and T ′′ in its

orthogonal complement

‖T‖ ≤ γ‖T −T ′‖= γ‖T ′′‖ ≤ γ

σmin

‖AT ′′‖ ≤ γ

σmin

ε,

where σmin is the smallest non-zero singular value of A . In words, ‖T‖ must be small. We

can conclude that under the deep-NSP , P(M L)−P(M L′) and {T ∈ RSK |‖AT‖ ≤ ε} only

intersect in the vicinity of 0.

Additionally, (30) implies that in the vicinity of 0, Ker(A) and P(M L)−P(M L′) are

not tangential. Their intersection is transverse (which was the name used in [37], the pre-

liminary release concerning these results).
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Let us mention that if Ker(A) satisfies the deep-NSP with respect to the collection of

models M with constant γ, we have for all T ′ ∈ Ker(A) and all T ∈ P(M L)− P(M L′)
satisfying ‖AT‖ ≤ ε

‖T ′‖ ≤ ‖T‖+ ‖T ′−T‖ ≤ (γ+ 1)‖T ′−T‖.

Therefore,

∀T ′ ∈ Ker(A) , ‖T ′‖ ≤ (γ+ 1)dloc(T
′,P(M L)−P(M L′)) (31)

where we have set for any C ⊂ RSK

dloc(T
′,C) = inf

T∈C,‖AT‖≤ε
‖T ′−T‖.

The converse is also true, if Ker(A) satisfies (31), it satisfies the deep-NSP with respect to

the collection of models M with an appropriate constant. In the context of the usual com-

pressed sensing (i.e., when K = 1, M L contains L-sparse signals, A is a rectangular matrix

with full row rank and X is a vector), the localization appearing in dloc can be discarded

since the inequality must hold when T ′ is small and since in this case this localization has

no effect. Therefore, in the compressed sensing context, (31) (and therefore deep-NSP ) is

the usual Null Space Property with respect to L-sparse vectors, as defined in [13]. However,

deep-NSP is generalized to take into account deep factorization problems. This motivates

the name.

In the general case, the deep-NSP can be understood as a local version of the generalized-

NSP for A relative to P(∪L∈NM L)−P(∪L∈NM L), as defined in [7]. Our interest for the

locality (as imposed by the constraint ‖AT‖ ≤ ε) is motivated by the fact that we want to

use the deep-NSP when the signal to noise ratio is controlled (i.e., the hypotheses of Theo-

rem 1 are satisfied). Our stable recovery property therefore includes such hypotheses. Such

locality hypotheses are needed to obtain Theorem 6.

Also, we have not adapted the robust-NSP defined in [7]. The benefit not to use this

definition is to obtain a simpler definition for deep-NSP . In particular (30) does not involve

the geometry of A in the orthogonal complement of Ker(A). Looking in detail at the benefit

of this adaptation is of course, of a great interest.

Finally, notice that we trivially have the following two facts:

• For any γ′ ≥ γ: If Ker(A) satisfies the deep-NSP with respect to the collection of

models M with constant γ, then Ker(A) satisfies the deep-NSP with respect to the

collection of models M with constant γ′.

• For any M
′ ⊂ M : If Ker(A) satisfies the deep-NSP with respect to the collection of

models M with constant γ, then Ker(A) satisfies the deep-NSP with respect to the

collection of models M
′

with constant γ. In particular, if Ker(A) satisfies the deep-

NSP with respect to the model RS×K with constant γ, it satisfies the deep-NSP with

respect to any collection of models, with constant γ.

Theorem 5. Sufficient condition for stable recovery

Assume Ker(A) satisfies the deep-NSP with respect to the collection of models M and

with the constant γ > 0. For any h∗ as in (28) with η and δ (see (28) and (27)) sufficiently

small, we have

‖P(h∗)−P(h)‖ ≤ γ

σmin

(δ+η),
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where σmin is the smallest non-zero singular value of A . Moreover, if h ∈RS×K
∗

dp([h
∗], [h])≤ 7(KS)

1
p γ

σmin

min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
(δ+η). (32)

Proof. We have

‖A(P(h∗)−P(h))‖ ≤ ‖AP(h∗)−X‖+ ‖AP(h)−X‖
≤ δ+η

Geometrically, this means that P(h∗) belongs to a cylinder centered at P(h) whose direc-

tion is Ker(A) and whose section is defined using the operator A . If we further decompose

(the decomposition is unique)

P(h∗)−P(h) = T +T ′,

where T ′ ∈ Ker(A) and T is orthogonal to Ker(A), we have

‖A(P(h∗)−P(h))‖= ‖AT‖ ≥ σmin‖T‖, (33)

where σmin is the smallest non-zero singular value of A . We finally obtain

‖P(h∗)−P(h)−T ′‖= ‖T‖ ≤ δ+η

σmin

.

The term on the left-hand side corresponds to the distance between a point in P(M L∗)−
P(M L) (namely P(h∗)−P(h)) and a point in Ker(A) (namely T ′).

Since Ker(A) satisfies the deep-NSP with constant γ, when δ+η ≤ ε, we obtain the

first inequality of the theorem

‖P(h∗)−P(h)‖ ≤ γ
δ+η

σmin

.

When h ∈ RS×K
∗ , for δ+η small, we can apply Theorem 1 and obtain (32).

This proposition provides a sufficient condition to get stable recovery. The only signif-

icant hypothesis made on the factorization problem is that Ker(A) satisfies the deep-NSP

with respect to the collection of models M . One might ask whether this hypothesis is sharp

or not. As expressed in the next theorem, the answer to this question is positive.

Theorem 6. Necessary condition for stable recovery

Assume the stable recovery property holds: There exists C and δ > 0 such that for any

L ∈N, h ∈ M L, any X = AP(h)+e, with ‖e‖ ≤ δ, any L∗ ∈N and any h∗ ∈ M L∗ such that

‖AP(h∗)−X‖2 ≤ ‖e‖

we have

d2([h
∗], [h])≤C min

(
‖P(h)‖

1
K −1
∞ ,‖P(h∗)‖

1
K −1
∞

)
‖e‖.

Then, Ker(A) satisfies the deep-NSP with respect to the collection of models M with

constant

γ =CS
K−1

2

√
K σmax

(and ε = δ), where σmax is the spectral radius of A .
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Proof. Let L and L
′ ∈ N and h ∈ M L and h

′ ∈ M L
′

be such that ‖A
(

P(h)−P(h
′
)
)
‖ ≤ δ.

We also consider throughout the proof T ′ ∈ Ker(A). We assume that ‖P(h)‖∞ ≤ ‖P(h
′
)‖∞.

If it is not the case, we simply switch h and h
′
in the definition of X and e below. We denote

X = AP(h) and e = AP(h)−AP(h
′
).

We have X = AP(h
′
)+ e and ‖e‖ ≤ δ. Therefore, the hypothesis of the theorem (applied

with h∗ = h and L∗ = L) guarantees that

d2([h], [h
′
])≤C ‖P(h

′
)‖

1
K −1
∞ ‖e‖.

Using the fact that e = AP(h)−AP(h
′
) and T ′ ∈ Ker(A) we obtain

‖e‖= ‖A(P(h)−P(h
′
)−T ′)‖ ≤ σmax ‖P(h)−P(h

′
)−T ′‖.

where σmax is the spectral radius of A . Therefore

d2([h], [h
′
])≤C‖P(h

′
)‖

1
K −1
∞ σmax ‖P(h)−P(h

′
)−T ′‖.

Finally, using Theorem 2 and the fact that ‖P(h)‖∞ ≤ ‖P(h
′
)‖∞, we obtain

‖P(h
′
)−P(h)‖ ≤ S

K−1
2 K1− 1

2 ‖P(h
′
)‖1− 1

K
∞ d2([h

′
], [h])

≤ CS
K−1

2

√
K σmax ‖P(h)−P(h

′
)−T ′‖

= γ‖P(h)−P(h
′
)−T ′‖

for γ =CS
K−1

2

√
K σmax .

Summarizing, we conclude that under the hypothesis of the theorem: For any T ∈
P(M L)−P(M L

′
) such that ‖AT‖ ≤ δ we have for any T ′ ∈ Ker(A)

‖T‖ ≤ γ‖T −T ′‖.

7 Application to convolutional network

We consider a convolutional network as depicted in Figure 1. The network typically aims

at performing a linear analysis or synthesis of a signal living in RN . The considered con-

volutional network is defined from a rooted directed acyclic graph G(E ,N ) composed of

nodes N and edges E . Each edge connects two nodes. The root of the graph is denoted by

r and the set containing all its leaves is denoted by F . We denote by P the set of all paths

connecting the leaves and the root. We assume, without loss of generality, that the length

of any path between any leaf and the root is independent of the considered leaf and equal

to some constant K ≥ 0. We also assume that, for any edge e ∈ E , the number of edges

separating e and the root is the same for all paths between e and r. It is called the depth of

e. We also say that e belongs to the layer k. For any k ∈ NK , we denote the set containing

all the edges of depth k, by E(k).
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Figure 1: Example of the considered convolutional network. To every edge is attached a convo-

lution kernel. The network does not involve non-linearities or sampling.

Moreover, to any edge e is attached a convolution kernel of support Se ⊂NN . We assume

(without loss of generality) that ∑e∈E(k) |Se| is independent of k (|Se| denotes the cardinality

of Se). We take

S = ∑
e∈E(1)

|Se|.

For any edge e, we consider the mapping Te : RS −→ RN that maps any h ∈ RS into the

convolution kernel he, attached to the edge e, whose support is Se. It simply writes at the

right location (i.e. those in Se) the entries of h defining the kernel on the edge e.

At each layer k, the convolutional network computes, for all e ∈ E(k), the convolution

between the signal at the origin of e; then, it attaches to any ending node the sum of all

the convolutions arriving at that node. Examples of such convolutional networks includes

wavelets, wavelet packets [38] or the fast transforms optimized in [10, 11]. It is clear that

the operation performed at any layer depends linearly on the parameters h ∈ RS and that its

results serves as inputs for the next layer. The convolutional network therefore depends on

parameters h ∈ RS×K and takes the form

X = M1(h1) . . .MK(hK),

where the operators Mk satisfy the hypothesis of the present paper.

This section aims at identifying conditions such that any unknown parameters h ∈RS×K

can be identified of stably recovered from X = M1(h1) . . .MK(hK) (possibly corrupted by

an error).

In order to do so, let us define a few notations. Notice first that, we apply the convolu-

tional network to an input x ∈ RN|F |, where x is the concatenation of the signals x f ∈ RN

for f ∈ F . Therefore, X is the (horizontal) concatenation of |F | matrices X f ∈ RN×N such

that

Xx = ∑
f∈F

X f x f , for all x ∈ R
N|F |.

Let us consider the convolutional network defined by h∈RS×K as well as f ∈F and n∈NN .

The column of X corresponding to the entry n in the leaf f is the translation by n of

∑
p∈P ( f )

T p(h) (34)
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where P ( f ) contains all the paths of P starting from the leaf f and

T p(h) = Te1(h1)∗ . . .∗TeK (hK) , where p = (e1, . . . ,eK).

Moreover, we define for any k ∈ NK the mapping ek : NS −→ P (k) which provides for

any i ∈NS the unique edge of P (k) such that the ith entry of h ∈RS contributes to Tek(i)(h).

Also, for any i ∈ NK
S , we denote pi = (e1(i1), . . . ,eK(iK)) and

I =
{

i ∈ N
K
S |pi ∈ P

}
.

The latter contains all the indices corresponding to a valid path in the network. For any set

of parameters h ∈ RS×K and any path p ∈ P , we also denote by hp the restriction of h to

its indices contributing to the kernels on the path p. We also denote 1 ∈ RS a vector of size

S with all its entries equal to 1. For any edge e, 1e ∈ RS consists of zeroes except for the

entries corresponding to the edge e which are equal to 1. For any p = (e1, . . . ,eK) ∈ P , the

support of M1(1e1) . . .MK(1eK ) is denoted by Dp.

Finally, we remind that because of Corollary 1, there exists a unique mapping

A : RSK −→ R
N×N|F |

such that

AP(h) = M1(h1) . . .MK(hK) , for all h ∈ R
S×K ,

where P is the Segre embedding (defined in (5)).

Proposition 8. Necessary condition of identifiability of a network

• Either all the entries of M1(1) . . .MK(1) belong to {0,1} and then

1. for any distinct p and p′ ∈ P , we have Dp ∩Dp′ = /0.

2. Ker(A) = {T ∈ RSK |∀i ∈ I,Ti = 0}.
• or some of the entries of M1(1) . . .MK(1) do not belong to {0,1} and then RS×K is

not identifiable.

Proof. Throughout the proof, we define, for any i ∈NK
S , hi ∈ RS×K by

hi
k, j =

{
1 , if j = ik
0 otherwise

, for all k ∈NK and j ∈ NS. (35)

This notation shall not be confused with hp, with p ∈ P .

• Let us first prove the first statement:

We can easily check that (P(hi))i6∈I forms a basis of {T ∈RSK |∀i ∈ I,Ti = 0}. We can

also easily check using (34) that, for any i 6∈ I,

AP(hi) = M1(h
i
1) . . .MK(h

i
K) = 0.

Therefore, {T ∈ R
SK |∀i ∈ I,Ti = 0} ⊂ Ker(A).

Conversely, for any i ∈ I, we can deduce from (34) and the hypotheses of the propo-

sition that all the entries of AP(hi) are in {0,1}. We denote Di = {(i, j) ∈ NN ×
NN|F ||AP(hi)i, j = 1}. Using (again) the hypothesis of the proposition and (34), we
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can prove that, for any distinct i and j ∈ I, we have Di ∩Dj = /0. This easily leads to

the item 1 of the first statement. We also deduce that

rk(A)≥ |I|= SK − dim({T ∈ R
SK |∀i ∈ I,Ti = 0}).

Finally, we deduce that dim(Ker(A))≤ dim({T ∈RSK |∀i ∈ I,Ti = 0}) and therefore

Ker(A) = {T ∈R
SK |∀i ∈ I,Ti = 0}.

• Let us now prove the second statement:

Using the hypothesis of the second statement and (34), we know that there is f ∈ F
and n ∈ NN such that

∑
p∈P ( f )

T p(1)n ≥ 2.

As a consequence, there is i and j ∈ NK
S with i 6= j and

T pi(hi)n = T pj(hj)n = 1.

Therefore,

AP(hi) = AP(hj)

and the network is not identifiable.

The interest of the condition in Proposition 8 is that it can easily be computed when N×
N|F | is not too large. Notice that, beside the known examples in blind-deconvolution (i.e.

when K = 2 and |P | = 1) [2, 6], there are known (truly deep) convolutional networks that

satisfy the condition of the first statement of Proposition 8. For instance, the convolutional

network corresponding to the un-decimated Haar (wavelet)2 transform is a tree and for any

of its leaves f ∈ F , |P ( f )|= 1. Moreover, the support of the kernel living on the edge e, of

depth k, on this path is {0,2k}. The first condition of Proposition 8 therefore holds.

We also have the following proposition.

Proposition 9. If |P | = 1 and all the entries of M1(1) . . .MK(1) belong to {0,1}, then

Ker(A) = {0} and Ker(A) satisfies the deep-NSP with respect to any model collection M
with constant γ = 1. Moreover, we have σmin =

√
N.

Proof. The fact that, under the hypotheses of the proposition, Ker(A) = {0} is a direct

consequence of Proposition 8. The deep-NSP property and the value of γ also immediately

follow from the definition of the deep-NSP .

To calculate σmin, let us consider T ∈RSK
and express it under the form T =∑i∈I TiP(h

i),
where hi is defined (35). Let us also remind that, applying Proposition 8, the supports of

AP(hi) and AP(hj) are disjoint, when i 6= j. Let us finally add that, since AP(hj) is the

matrix of a convolution with a Dirac mass, its support is of size N. We finally have

‖AT‖2 = ‖∑
i∈I

TiAP(hi)‖2,

= N ∑
i∈I

T 2
i = N‖T‖2,

from which we deduce the value of σmin.

2Un-decimated means computed with the ”Algorithme à trous”, [38], Section 5.5.2 and 6.3.2. The Haar wavelet

is described in [38], Section 7.2.2, p. 247 and Example 7.7, p. 235
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In the sequel, we establish stability results for a convolutional network estimator. In or-

der to do so, we consider a convolutional network of known structure G(E ,N ) and (Se)e∈E

but defined by unknown parameters h ∈ RS×K . We consider the noisy situation where

X = M1(h1) . . .MK(hK)+ e,

with ‖e‖ ≤ δ and an estimate h∗ ∈RS×K such that

‖M1(h
∗
1) . . .MK(h

∗
K)−X‖ ≤ η.

We say that two networks sharing the same structure and defined by h and g ∈ RS×K are

equivalent if and only if

∀p ∈ P ,∃(λe)e∈p ∈ R
p, such that ∏

e∈p

λe = 1 and ∀e ∈ p,Te(g) = λeTe(h).

The equivalence class of h ∈ RS×K is denoted by {h}. For any p ∈ [1,+∞], we define

δp({h},{g}) =
(

∑
p∈P

dp([h
p], [gp])p

) 1
p

,

where we remind that hp (resp gp) denotes the restriction of h (resp g) to the path p and dp

is defined in Definition 1. Since dp is a metric, we easily prove that δp is a metric between

network classes.

Theorem 7. If all the entries of M1(1) . . .MK(1) belong to {0,1} and if there exists ε > 0

such that for all e ∈ E , ‖Te(h)‖∞ ≥ ε then

δp({h∗},{h})≤ 7(KS)
1
p ε1−K δ+η√

N
.

Proof. Let us consider a path p ∈ P , using (34), since all the entries of M1(1) . . .MK(1)
belong to {0,1}, all the entries of M1(1p) . . .MK(1p) belong to {0,1}. Therefore, we can

apply Proposition 9 and Theorem 5 to the restriction of the convolutional network to p and

obtain

dp([(h
∗)p], [h

p
])≤ 7(KS)

1
p

√
N

min

(
‖P(h

p
)‖

1
K −1
∞ ,‖P((h∗)p)‖

1
K −1
∞

)
(δp +ηp),

where δp and ηp are the restrictions of the errors on Dp.

We therefore have

dp([(h
∗)p], [h

p
])≤ 7(KS)

1
p

√
N

ε1−K(δp +ηp),

and finally

δp({h∗},{h}) ≤ 7(KS)
1
p ε1−K

√
N

(
∑

p∈P

(δp +ηp)p

) 1
p

,

≤ 7(KS)
1
p ε1−K

√
N

(δ+η).
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