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h i g h l i g h t s

� An upscaling methodology is proposed to characterize fluid flow in porous media with rough surfaces.
� The no-slip condition on the rough surface is replaced with a tensorial slip condition on a fictive smooth surface.
� The permeability decreases significantly, even for small amplitudes of the roughness.
� The pressure drop is accurately predicted for structured packings used in separation processes.
� Different regimes are identified in the transition from creeping flow to the onset of unsteady inertial flow.
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Understanding and modeling flows in columns equipped with structured packings is crucial to enhance
the efficiency of many processes in chemical engineering. As in most porous media, an important factor
that affects the flow is the presence of rough surfaces, whether this roughness has been engineered as a
texture on the corrugated sheets or is the result of hydrodynamic instabilities at the interface between a
gas and a liquid phase. Here, we develop a homogenized model for flows in generic porous media with
rough surfaces. First, we derive a tensorial form of an effective slip boundary condition that replaces
the no-slip condition on the complex rough structure and captures surface anisotropy. Second, a
Darcy-Forchheimer model is obtained using the volume averaging method to homogenize the pore-
scale equations with the effective slip condition. The advantage of decomposing the upscaling in these
two steps is that the effective parameters at the Darcy-scale can be calculated in a representative volume
with smooth boundaries, therefore considerably simplifying mesh construction and computations. The
approach is then applied to a variety of geometries, including structured packings, and compared with
direct numerical solutions of the flow to evaluate its accuracy over a wide range of Reynolds number.
We find that the roughness can significantly impact the flow and that this impact is accurately captured
by the effective boundary condition for moderate Reynolds numbers. We further discuss the dependance
of the permeability and generalized Forchheimer terms upon the Reynolds number and propose a clas-
sification into distinct regimes.
1. Introduction

Structured packings are widely used in industrial processes for
phase separation such as distillation or post-combustion CO2 cap-
ture. These often consist of parallel corrugated sheets packed
together in a way that maintains a large void fraction and surface
area, therefore maximizing transfers between phases. Prediction of
the pressure drop in columns equipped with such packings is a
major concern for users and manufacturers alike. Recent develop-
ments in computational fluid dynamics (CFD), along with the
advent of high performance computing, are providing the neces-
sary basis to better understand flow in these complex structures
and, ultimately, to optimize their design.

Column-scale computations of the flow at the pore-scale, how-
ever, is still not feasible. Most simulations focus on a restricted part
of the domain, for instance a representative elementary volume
(REV) of structured packings. Calculations over a REV are useful
to understand the micro-scale physics and evaluate effective
parameters that apply to the packing and the column-scale, while
being small enough to allow for accurate simulations resolving the
smallest scales of the flow. This strategy, inspired from approaches
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Nomenclature

Greek symbols
c fluid phase
r solid phase
qc density of the phase c
lc dynamic viscosity of the phase c
k wavelength of the roughness
A amplitude of the roughness
V volume
X domain
/ volume fractions of the domains X
Xwi small domain over a unit rough element
j curvature of the interface Cws

Ccr surface of the rough porous medium
Cws interface between the two sub-domains Xw and Xs

Csmooth
cr surface of the smooth domain Xsmooth positioned at the

mean position of the roughness

Roman symbols
l characteristic length-scale of the pores
lw distance between the rough wall and the effective

surface

L characteristic length associated with the averaging do-
main X

d diameter of the cylinders
H characteristic length for the 2D channel and for struc-

tured packings
pc; ps; pw pressure defined respectively in Xc; Xs; Xw

uc;us;uw fluid velocity defined respectively in the domain
Xc;Xs;Xw

a;A couple of mapping variables for pressure and velocity in
Xwi

bs;Bs couple of mapping variables for pressure and velocity in
Xs

F inertial correction tensors
KH apparent permeability
kH dimensionless permeabilities
g gravitational acceleration
gp global pressure gradient
gs global dissipation rate
Red Reynolds number with d as characteristic length
used in porous media sciences, was first introduced by Petre et al.
(2003), who modeled the gas flow within four REVs in the viscous
and turbulent regimes. Once effective parameters, such as the per-
meability tensor, have been evaluated in this REV, the whole col-
umn can be treated as a homogenized porous medium. For
instance, momentum transport at the column-scale can be
described by Darcy-Forchheimer’s law, which can then be solved
numerically on a coarse mesh. This approach yields results that
are generally more accurate than earlier empirical correlations,
such as those proposed by Brunazzi and Paglianti (1997), Olujic
(1999) and Rocha et al. (1993).

A recent contribution that uses the porous media approach to
study flow and pressure drop in gas-liquid distillation columns is
the work by Mahr and Mewes (2008). The authors introduced a
flow resistance tensor that depends on the velocity magnitude,
which can be used to predict the pressure drop for any flow direc-
tion. Soulaine and Quintard (2014) further investigated anisotropy
generated at the micro-scale by inertial flow and proposed an
upscaling methodology to determine a correction tensor in the
Darcy-Forchheimer’s law. Their conclusion, for 45� inclined corru-
gations, is that the non-diagonal terms in the effective second-
order tensors can be neglected in comparison to the diagonal ones.

In addition to inertial effects and anisotropy, an important fac-
tor that affects the gas pressure drop in these columns is the poten-
tial presence of rough surfaces. For instance, the corrugated sheets
may be textured to increase the efficiency of distillation processes
(McGlamery, 1988) or hydrodynamic instabilities may develop at
the liquid-gas interface as a result of the steep flowing angle of
the film and the high contrast in velocity between the two phases
(Zapke and Kröger, 2000; Dietze and Ruyer-Quil, 2013). Those
instabilities, which can manifest as soliton structures, are likely
to generate dramatic changes of the pressure drop and contribute
to the flooding of the column for a large flow rate of the gas phase
(Trifonov, 2010). Based on the contrasts in density, viscosity and
velocity between the two phases, one often assumes that the gas
flow can be treated as a single-phase flow over a rigid rough sur-
face. For this to be accurate, the velocity in the gas phase must
be much larger than the velocity in the liquid phase so that we
can use a no-slip boundary condition (see also (Vellingiri et al.,
2013) for additional details). The trains of waves can then be
treated as a surface roughness for the pressure drop in the gas-
phase. This is also consistent with previous works that treat the
pressure drop of the gas phase a posteriori, by considering the liq-
uid film hold-up for the calculation of the interstitial gas velocity
(Raynal and Royon-Lebeaud, 2007).

Here, we propose a multi-scale approach to evaluate the impact
of rough surfaces on the macro-scale properties of momentum
transport. We develop a systematic methodology for a generic por-
ous medium, independently of the initial nature of the roughness,
which is based on the idea that the rough surface can be replaced
by an effective boundary condition over a smooth surface, to
reduce computation time and limit issues with the mesh construc-
tion. To this end, we start by describing the pore-scale system of
equations in Section 2, along with the domain decomposition
method leading to the derivation of an effective slip boundary con-
dition that replaces the rough surface. We then go on to upscale
these equations in Section 3 using the volume averaging with clo-
sure technique to obtain the macro-scale equations that describe
momentum transport along with the closure problems that are
used to calculate effective parameters. In Section 4, we apply this
generic approach to a variety of geometries including a representa-
tive element of structured packings. We evaluate the accuracy of
our approach and the impact of the roughness on the effective
parameters. Finally, in Section 5, we discuss the limitations of
the framework and provide ideas for future improvements.
2. Derivation of an effective slip condition

As discussed in Section 1, the goal of this paper is to develop an
upscaling methodology that can be used to evaluate the impact of
rough surfaces in porous media. To this end, we will use the
method of volume averaging with closure, which has been widely
documented since the early work of Whitaker (1986). This method
usually yields a macro-scale model involving effective parameters
that are computed by solving closure problems over a REV. An
important implication of rough surfaces is that computations of
the closure problems over a REV may not be tractable if the char-
acteristic amplitude, A, and wavelength, k, of the roughnesses are
small compared to the pore-scale, l. If this is the case, i.e. if A

l � 1



Fig. 2. Schematics of the multi-domain decomposition. Cws and Xs refer to the
effective surface and domain, respectively. Xw is the subdomain that contains the
rough wall and Xwi

is the local domain over a rough element. lw is the characteristic
distance from the rough pattern to the effective surface and l is the characteristic
length scale of the pore. A and k are the amplitude and wavelength of the
roughness.
and k
l � 1 , we may need an extremely fine mesh to accurately cap-

ture the flow over the roughness, especially if the Reynolds number
is larger than unity. Here, we solve this issue by developing an
alternative formulation of the pore-scale flow problem, transform-
ing the rough surface into a smooth one. The no-slip condition
applying to the complex rough surface is replaced by an effective
boundary condition over a smooth surface, therefore limiting the
need for a very fine mesh in the vicinity of the surface.

2.1. Micro-scale transport equations

We consider the flow of an incompressible fluid c, within a por-
ous structurewith roughwalls, as shown in Fig. 1.Mass andmomen-
tum balance are described via the Navier-Stokes equations as

r � uc ¼ 0; ð1aÞ

qc
@uc

@t
þ uc � ruc

� �
¼ �rpc þr � lc ruc þ ruc

� �T� �h i
þ qcg;

ð1bÞ

uc ¼ 0 on Ccr; ð1cÞ
where uc;pc are the velocity and pressure fields in the rough
domain, Xc. qc and lc are the density and viscosity of the phase c.

The first step of our methodology is to replace Eqs. (1a)–(1c) in
Xc and on Ccr by an effective mathematical system in an effective
domain Xs and Cws, where the subscript s means ‘‘slip”.

2.2. Domain decomposition and effective slip

We consider the domain Xc � Rm, (m ¼ 2 or 3), with the rough
boundary Ccr � Rm�1, as presented in Fig. 2. The roughness is char-
acterized by an amplitude, A, and a wavelength, k. We further use l
to represent a characteristic size of the pores. Similarly to the
approaches of Achdou et al. (1998a,b), Veran et al. (2009) and
Introini et al. (2011), we decompose the fluid domain in two sub-
domains: one close to the rough wall, Xw, and one that represents
the center of the pores, Xs. Therefore, we have Xc ¼ Xw [Xs and
the two subdomains are separated by the surface Cws, as illustrated
in Fig. 2. To derive an effective boundary condition applying to Cws,
Achdou et al. used a technique based on a two-scale asymptotic
expansion (Achdou et al., 1998a). This method is also used in the
works of Barrenechea et al. (2002), Basson and Gérard-Varet
(2008), and Vincent and Andro (2002). Veran et al. and Introïni
et al. used a different method based on the resolution of a local
boundary problem in the small representative domain Xwi

, also
using ideas similar to those of porous media homogenization
Fig. 1. Schematics of a porous medium with rough walls. Xr and Xc are,
respectively, the solid and fluid phases. Ccr is the rough surface of the porous
medium.
approaches. Here, we present briefly the main ideas of this last
approach with a particular focus on the tensor formalism for the
slip length. More detailed developments are described in Veran
et al. (2009) and Introini et al. (2011).

The main assumptions of the effective boundary condition are
as follows:

� The impact of the roughness on the flow is localized to a viscous
boundary layer above the roughness. This is correct when the
Reynolds number is sufficiently low or in the fully turbulent
regime if the roughness is smaller than the viscous sublayer
(Sternberg, 1962).

� The interface Cws is placed sufficiently far above the roughness,
so that the pressure and velocity fluctuations due to the rough-
ness vanish on Cws.

� The roughness is much smaller than the pores, lw � l. This
means that the fields in the sub-domain Xw vary on the length
scale lw, whereas the fields in the bulk domain Xs vary on a
much larger length scale, l. The wavelength, k, of the rough-
nesses is much smaller than the radius of curvature of the
smoothed interface 1=j, so that the closure problem can be
solved once for a flat surface and mapped onto the curved
surface.

� The subdomain Xw can be represented locally by a periodic
structure made of cells denoted Xwi

, as shown in Fig. 2.

The first step of the method consists in building an approximate
solution of the flow close to the rough wall, in the subdomain Xw.
Following ideas of mapping used in porous media sciences and
homogenization techniques for the estimation of spatial or tempo-
ral deviations from averaged quantities, pw;uwð Þ is mapped linearly
to the tangential components of the shear stress vector on Cws as

pw xð Þ ¼ lca xð Þ � n � rus þ rusð ÞT
� �

� I� nnð Þ
���
Cws

	 

in Xwi

;

ð2Þ

uw xð Þ ¼ A xð Þ � n � rus þ rusð ÞT
� �

� I� nnð Þ
���
Cws

	 

in Xwi

; ð3Þ



Fig. 3. Schematics of the rough domain Xc , on the left-hand side, and the effective
domain Xs , on the right-hand side.
where a;Að Þ are solutions of a mathematical problem that is solved
over the representative cell Xwi

. The normal vector n on Cws is uni-
form and oriented from the domain Xw to the domain Xs. In these
equations, we consider that the couple pw;uwð Þ is mapped to the

tangential components, n � rus þ rusð ÞT
� �

� I� nnð Þ of the shear

stress vector n � rus þ rusð ÞT
� �

on Cws, assuming that the normal

component of the velocity can be neglected under the conditions
stated above. We also consider that variations of

n � rus þ rusð ÞT
� �

� I� nnð Þ on Cws occur on a lengthscale that is

much larger than the wavelength of the roughness, k. This is
because the creeping flow in Xw implies that variations induced
by the roughnesses rapidly attenuate away from the wall (see
Kamrin et al., 2010 for analytical solution showing an exponential
decrease). The shear stress vector is therefore treated as approxi-
mately constant over each unit-cell and the point on Cwi

at which
it is evaluated for the mappings Eqs. (2) and (3) is not fundamen-
tally important. As an example, we could map the velocities and
pressures at point x to the shear stress vector evaluated at point
x0, defined so that x� x0 and n are collinear. We could also use
the surface average of the stress vector evaluated at the nearest
point on Cws. In Eqs. (2) and (3) and in the remainder of this work,

we use the generic notation n � rus þ rusð ÞT
� �

� I� nnð Þ
���
Cws

with

the idea that locally, in each unit-cell, the stress vector can be trea-
ted as constant so that the mapping can be done to any point in Xw

and any point on Cws.
The corresponding local problem reads

r � A ¼ 0 in Xwi
; ð4aÞ

0 ¼ �raþr2A in Xwi
; ð4bÞ

A ¼ 0 on Ccr; ð4cÞ

�anþ n � rAþ rAð ÞT
� �

¼ I� nn on Cws; ð4dÞ

aðrÞ ¼ aðrþ keiÞ i ¼ 1;m� 1; ð4eÞ

AðrÞ ¼ Aðrþ keiÞ i ¼ 1;m� 1; ð4fÞ
where k is the wavelength and ei are the two orthonormal unit vec-
tors for directions tangential to the surface Cws. Here, the transpose

of the third-order tensor rAð ÞT is defined as rAð ÞT
h i

ijk
¼ @jAik with

i; j; k 2 s1;mt (m ¼ 2;3 in our calculations). Recalling the mapping
of uw, Eq. (3), we can write at any point on Cws

uw ¼ AjCws
� n � rus þ rusð ÞT

� �
� I� nnð Þ

���
Cws

	 

: ð5Þ

As discussed before, for Cws placed sufficiently far away from the
rough wall, AjCws

is approximately constant in the tangential direc-
tions and may be computed as the surface average of the field A
over the interface Cws of the periodic unit-cell.

Using the continuity of the velocities, us ¼ uw on the interface
Cws, we then have the form of a generalized Navier condition,
where M ¼ AjCws

is a second-order tensor that can be interpreted
in terms of slip coefficients along the directions tangential to the
interface,

uw ¼ M � n � rus þ rusð ÞT
� �

� I� nnð Þ
���
Cws

	 

on Cws: ð6Þ

This parameter is also referred to as the mobility tensor in the work
of Kamrin et al. (2010).

The flow problem in Xs finally reads
r � us ¼ 0 in Xs; ð7aÞ

qs
@us

@t
þ us � rus

� �
¼ �rps þr � lc rus þ rusð ÞT

� �h i
þ qcg;

ð7bÞ
us ¼ M � n � rus þ rusð ÞT
� �

� I� nnð Þ
h i

on Cws: ð7cÞ

Fig. 3 shows the different domains and the change in boundary
condition. We remark that the accuracy of the linear relation
Eq. (7c) between the velocity in the vicinity of the wall and the
shear stress vector on Cws will strongly depend on the type of flow.
The solution is accurate for a Couette flow, but only roughly
approximates the quadratic profile of a Poiseuille flow within Xw.
In general, this implies that the error increases with the distance
to the rough surface and that we must have lw � l in order to min-
imize the part of the flow that is linearly approximated. This aspect
is further detailed in the computations Section 4.2.

Finally, the position of Cws can also be modified a posteriori, as
first discussed by Veran et al. (2009). Consistent with the first-
order closure in Eqs. (4), we write the first-order Taylor series
expansion

us x2ð Þ ¼ us x1ð Þ þ x2 � x1ð Þ � rus þ rusð ÞT
� ����

x1
þO x2 � x1k k2

� �
;

ð8Þ
with x1 � x2 the displacement of the interface and x1 the reference
position corresponding to Eq. (7c). If we move the interface in the
normal direction, x1 � x2 ¼ nDx, and if we consider that us remains
tangential, we can write

us x2ð Þ ’ us x1ð Þ � DxIð Þ � n � rus þ rusð ÞT
� ����

x1
� I� nnð Þ

	 

: ð9Þ

Injecting us x1ð Þ from Eq. (7c) into Eq. (9) yields

us x2ð Þ ’ M� DxIð Þ � n � rus þ rusð ÞT
� �

� I� nnð Þ
h i

: ð10Þ

This step, which is described in detail in Veran et al. (2009) or
Introini et al. (2011), can impact the accuracy of the Navier-slip
boundary condition (see also Veran et al., 2009 or Introini et al.,
2011), as we will demonstrate for a specific example later on. It is
particularly useful in two-dimensional cases or isotropic configura-
tions in order to derive an equivalent effective no-slip condition,
which is obtained by choosing Dx so that M � Dx ¼ 0 in Eq. (10)
(M is a scalar in 2D). This specific position of the effective boundary
is interesting, mostly for its simplicity of implementation in a com-
putational framework. However, we emphasize that such a position
does not exist in three-dimensional cases if the roughness is aniso-
tropic. If this is the case, the slip lengths are different in all direc-
tions and a tensorial form of the Navier-condition is necessary.



3. Upscaling at the Darcy-scale via volume averaging

Now that we have derived an effective smooth condition that
replaces the rough wall, we can further upscale the system of equa-
tions, Eqs. (7), to obtain a homogenized system at the Darcy-scale.
We use the method of volume averaging that has been utilized
before to study this problem in the viscous and inertial regimes.
In this approach, the partial differential equations at the micro-
scale are averaged in space and approximate solutions for the
velocity and pressure perturbations are determined using scaling
arguments. When applied to Stokes equations, this process yields
Darcy’s law with a permeability tensor that can be calculated from
the numerical resolution of a closure problem. Quasi-linearized
Navier-Stokes equations can be treated in a similar manner, lead-
ing to an additional drag and a generalized Darcy-Forchheimer
law (Whitaker, 1996) (generalized in the sense that anisotropy is
included and that inertial terms are not necessarily quadratic).
The development closely follows the early work of Whitaker
(1986) and the more recent work of Lasseux et al. (2014) for the
homogenization of a low-pressure gas phase in porous media with
a similar slip condition on the walls, although tensorial in our case.

3.1. Notations

For a tensor wi, where i is the phase, we define the superficial
average of wi at point x as

wih i x; tð Þ ¼ 1
Vj j

Z
Vi xð Þ

wi r; tð Þdr; ð11Þ

where Vi xð Þ (i can be s, c or w for each corresponding domain) is the
averaging volume centered at x and Vi xð Þ ¼ V xð Þ \Xi. The intrinsic
average is defined as

wih ii ¼ 1
Vij j

Z
Vi

wi dr; ð12Þ

so that the two definitions are related by

wih i ¼ /i wih ii; ð13Þ
where the volume fraction of the domain Xi;/i, is defined as

/i ¼
Vij j
Vj j : ð14Þ

We use the perturbation decomposition (see Whitaker, 1969; Gray
and Majid Hassanizadeh, 1998)

wi ¼ wih ii þ ~wi; ð15Þ
where the deviation ~wi varies on a length scale l and the intrinsic

average wih ii varies on a length scale L, such that l � r0 � L . We fur-
ther require that (see e.g. Whitaker, 1999)

~wi

D E
’ 0: ð16Þ
3.2. Temporal averaging

For sufficiently high Reynolds numbers, when the flow becomes
fully unsteady, a macroscopic formulation of momentum transport
generally requires both spatial and temporal averaging. In theory,
the order in which these operators are applied is unimportant.
The process should lead to the exact same results, whether the
equations are first averaged in space or time. In practice, however,
the combination of approximations that are used during upscaling
often depends on the averaging order (see de Lemos, 2006;
Nakayama and Kuwahara, 2008 for further details). Here, we start
by averaging the pore-scale equations in time.
When unsteady flow develops, we use a time averaging opera-
tor for the field / x; tð Þ defined as

�/ x; tð Þ ¼ 1
DT

Z tþDT=2

t�DT=2
/ x; sð Þds; ð17Þ

where DT is the integration interval. We also use a standard average
plus perturbation decomposition as

/ ¼ �/þ /0: ð18Þ
With these, we can average Eqs. (7) in time and obtain Reynolds
stresses in the equations, a detailed analysis of this operation is
given in de Lemos (2006). In this study, we primarily concentrate
on regimes for which the time fluctuations are of low amplitude.
Therefore, we neglect terms involving the product u0u0. In the fully
turbulent regime, further theoretical developments should account
for transient effects at the macro-scale. One way to deal with this
issue could be an approach similar to that in Soulaine and
Quintard (2014), where the system is first averaged in time using
a standard closure for the Reynolds stress to model the turbulence
at the micro-scale, before averaging the model in space.

With our approximations, the time-averaged mathematical
problem is then

r � �us ¼ 0 in Xs; ð19aÞ

qc
@�us

@t
þ �us � r�us

� �
¼ �r�ps þ lcr2�us þ qcg in Xs; ð19bÞ

�us ¼ M � n � r�us þ r�usð ÞT
� �

� I� nnð Þ
h i

on Cws: ð19cÞ

For simplicity, we remove the overline notation in the remainder of
the paper, with the pressure and velocity fields implicitly under-
stood as averaged in time.

3.3. Spatial averaging

In this section, the system of equations Eqs. (19) is upscaled
using the method of volume averaging. Since the method is similar
to the original work of Whitaker (1986) leading to Darcy’s law (see
also Quintard and Whitaker, 1994c,b,a), the details of the develop-
ments are in Appendix A. The Darcy-scale mass and momentum
balance equations read

r � ush i ¼ 0; ð20Þ

ush i ¼ �KH
s

lc
� r psh is � qcg
� �

; ð21Þ

where KH
s is the apparent permeability (Edwards et al., 1990), which

is computed from the resolution of a closure problem. This equation
is obtained using an approximate form of the pressure and velocity
perturbations, ~ps and ~us, which are mapped linearly to ush is as
~us ¼ Bs � ush is; ð22Þ

~ps ¼ lcbs � ush is; ð23Þ

where bs;Bsð Þ are closure/mapping variables. KH
s can be computed

from bs and Bs as

KH�1
s /s ¼ � 1

Vsj j
Z
V\Cws

n � �bsIþ rBs þ rBsð ÞT
� �h i

dr: ð24Þ

For a viscous incompressible flow, it is well established that the
flow at the macro-scale is described by Darcy’s law. The presence
of inertial effects at the micro-scale, as is the case in this study,
yields an additional drag and a deviation from the classical Darcy’s
law. A correction, usually termed the Forchheimer correction



(Whitaker, 1996), can be used to approximate the additional drag.
The form of this correction has been widely studied in the literature,
both numerically and experimentally. It is now known that differ-
ent regimes can be distinguished for increasing Reynolds numbers
(Firdaouss et al., 1997; Lage and Antohe, 2000; Skjetne and
Auriault, 1999), even though the transition and the form of the cor-
rections most likely depend on the porous structure (Lasseux et al.,
2011). To recover a generalized form of the Darcy-Forchheimer
equation, we decompose the tensor KH

s as

KH
s ¼ Ks � Iþ Fsð Þ�1

; ð25Þ
where Ks is the intrinsic permeability of the effective domain and
the second part, Fs, is the inertial correction. We then obtain

ush i ¼ �Ks

lc
� r psh is � qcg
� �

� Fs � ush i: ð26Þ

Here, we emphasize that the permeability KH
s corresponds to the

permeability of the effective smooth domain, Xs, not to the initial
domain, Xc. To recover the exact velocity field in Xc and the corre-
sponding permeability, consider the following expression of the
velocity field,

uc ¼ vwuw þ vsus; ð27Þ
where vw and vs are phase indicator functions of the domains Xw

and Xs respectively, so that we have

uc
� � ¼ /w uwh iw þ /s ush is: ð28Þ
We can simplify this expression using the fact that the domain Xw is
a relatively small subdomain close to the no-slip wall, Ccr. There-
fore, we have /w � /s and consider that uwh iw � ush is, so that

uc
� � ’ /s ush is: ð29Þ
For the pressure, we assume that there is a small perturbation of the
pressure within Xs so that

pc
D Ec

’ psh is: ð30Þ

With these, we can write

uc
� � ¼ �Ks

lc
� r pc

D Ec
� qcg

� �
� Fs � uc

� �
: ð31Þ

The impact of these approximations is illustrated and discussed in
the results of the next section.

4. Validation and application to structured packings

In this section, we compare our methodology to direct numeri-
cal simulations in various geometries of rough porous media. Our
primary objective is to answer the following questions:

� Is our method efficient for a wide range of Reynolds number?
� How does the apparent permeability of the porous medium
depend on the Reynolds number?

� What is the impact of different classes of roughness on the
permeability?

In order to validate the method, we first focus on a creeping
flow in a two-dimensional channel with rough walls. We discuss
the impact of the roughness and of the position of the slip condi-
tion on the results, a study that is reminiscent of the analysis by
Veran et al. (2009). We then go on to investigate the case of an
inertial flow in a 2D array of cylinders with sinusoidal roughness,
assessing the impact of the roughness on the permeability for
Stokes and inertial flows. The methodology is finally applied to
an element of structured packing with different classes of rough-
ness and a tensorial slip.

4.1. Methods

4.1.1. Boundary conditions
Here, we describe the different boundary conditions used for

applications. We have the rough, Xc, and effective, Xs, domains.
We also introduce the smooth domain Xsmooth, which is similar to

Xc, but with smooth walls Csmooth
cr positioned at the averaged posi-

tion of the roughnesses. Fig. 4 shows these three configurations.
A no-slip condition applies to the boundaries Ccr and Csmooth

cr

uc ¼ 0; ð32Þ
while the effective condition Eq. (6) applies at the smooth wall Cws

us ¼ M � n � rus þ rusð ÞT
� �

� I� nnð Þ
h i

on Cws: ð33Þ

Recall that Cws can be placed arbitrarily using the Taylor series
approximation with the conditions detailed in Section 2.2.

4.1.2. General algorithm
We summarize here the methodology used for the different

geometries considered in this section. Our goal is to compare
results obtained with the upscaling methods with those of direct
numerical simulations. The different steps are as follows:

1. Direct numerical simulations in the domains Xc and Xsmooth.
2. Upscaling approach:

(a) Definition of a representative element for the roughness,
Xwi

.
(b) Determination of the effective condition via the resolution

of a local boundary value problem over Xwi
.

(c) Computation of the velocity field us in Xs.
(d) Resolution of the closure problem for the determination of

KH
s .

3. Comparison of the permeabilities KH
c and KH

smooth computed

from point 1 to KH
s computed from point 2.

4.1.3. Numerical schemes
Two different methods are applied for the resolution of the clo-

sure problems. For the creeping flow in the two-dimensional rough
channel, the boundary value problem Eqs. (4) and the closure prob-
lem Eqs. (65) (in Appendix A) are solved using standard finite ele-
ment methods. Stokes equations are discretized using Lagrange
quadratic elements for the velocity and linear elements for the
pressure (P2/P1). A stabilization term is also added in the equa-
tions to fix the constant part of the pressure. We use the generic
solver FreeFem++ (Hecht, 2013), which provides a flexible environ-
ment where the grid and the rough geometry can be easily
modified.

More demanding simulations in the inertial regimes, for both
the two-dimensional array of cylinders and the three-
dimensional structured packings, are performed using the standard
finite volume methods in OpenFoam�. The closure problem Eqs.
(65) was implemented using the solver simpleFoam (SIMPLE algo-
rithm, Patankar, 1980) with the tensorial Navier condition derived
from the slip boundary conditions (named slip in OpenFoam�, see
Ferrás et al., 2013 for more detail).

As required for the resolution of the closure problem, the veloc-
ity field is determined using direct numerical simulations of the
flow via the solver icoFoam (PISO algorithm, Issa, 1986), with a vol-
ume source term and periodic boundary conditions. All calcula-
tions were performed using the HPC resources of CALMIP
supercomputing center with 160 cores for the most demanding



Fig. 4. Schematics of the different domains considered for comparison. KH
smooth, K

H
c and KH

s are, respectively, the permeability in the smooth, rough and effective domains.
simulations. The CPU time (number of cores�computing time)
required up to 105 h for all calculations.

4.1.4. Assessing the accuracy of the three-dimensional direct numerical
simulations

Three-dimensional direct numerical simulations are carried out
from the creeping flow until the onset of unsteady flow. To esti-
mate the accuracy of our solutions on a fixed grid, we use an
approach similar to that described by Jin et al. (2015), who intro-
duced the following quantity D,

D ¼ gp � gs

gp
; ð34Þ

where gp and gs are two ways of defining the pressure gradient. gp

corresponds to the global pressure gradient across the simulated
geometry, whereas gs is determined by integrating the local dissipa-
tion rate over the fluid domain,

gs ¼
lc

2 Vsj j ush is 
Z
Vs

rus : rus dr: ð35Þ

Note that the same definition also holds for the domains Xc and
Xsmooth, and the corresponding averaging volumes Vc and Vsmooth.

In theory, D ¼ 0. However, if the grid size does not resolve the
smallest scales of the flow, the global dissipation rate is underval-
ued and D > 0. Therefore, the accuracy of the calculations can be
evaluated by calculating D and, following studies in Jin et al.
(2015), we consider that the calculations are accurate when D is
below 10% (see Jin et al., 2015 for further detail).

4.1.5. Definition of the REV and boundary conditions
A precise definition of the REV and whether or not it should

consist of one or several periodic unit-cells for turbulent flows is
a delicate issue. For instance, the idea that the porous medium fil-
ters the longest length scales of the turbulence has been widely
used for simulations in structured packings (Raynal and Royon-
Lebeaud, 2007; Ahmadi et al., 2012; Soulaine and Quintard,
2014). Few results of large scale simulations are available in the lit-
erature (see Owens et al., 2013; Nikou and Ehsani, 2008) and most
of the simulations are limited to steady state. For arrays of squares,
Jin et al. (2015) have recently shown that the porous structure does
indeed impose a cut-off in the characteristic length scales of the
flow. They further study the spatial correlations of the velocity field
while changing the number of unit-cells included in the REV,
showing that the largest possible structures of the flow are about
the size of the pores, even for large values of the porosity. This sug-
gests that calculations over a single unit-cell with periodic bound-
ary conditions recover most of the flow features for a broad range
of porosities. This question of the size of the REV is addressed fur-
ther by the results presented in Agnaou et al. (2016) about the flow
stability and Hopf bifurcation in arrays of cylinders. Their results
indicate that the transition to unsteady flow is sensitive to the
number of unit cells included in the REV for porosities larger than
� 50% (>55% in Fig. 10 in Agnaou et al. (2016), arrays of squares).
These two studies seem to indicate that:

1. for values of the porosity less than 50%, a single unit-cell with
periodic conditions captures both the stability and the structure
of the flow,

2. for larger values of the porosity, a single unit-cell captures most
of the features of the flow but may fail to accurately describe its
stability and the transition to unsteady flow.

In this section, we will study a variety of porous media includ-
ing ones with porosities larger than 50%. In all cases, we chose to
limit our computations to a single unit-cell with periodic boundary
conditions to minimize the computational cost. This is because our
primary objective is not to study stability and transitions, but the
ability of our models to recover the spatial structure of the flow.

4.1.6. Definition of the Reynolds number
To analyze the effect of inertial flow, we define here a set of

dimensionless Reynolds numbers. The difficulty in doing so is
mostly the choice of the characteristic length scale. In isotropic
porous media, a common choice is the square root,

ffiffiffiffi
K

p
, of the

intrinsic permeability, K, so that

Rek ¼
qc uc

� �  ffiffiffiffi
K

p

lc
: ð36Þ

This length scale has several advantages over the average pore-size
l. First, when the variance of the pore-size distribution is large and
the porous medium consists of large voids and small pore-throats,
defining a unique length scale that characterizes the flow at large
Reynolds number is difficult.

ffiffiffiffi
K

p
is an evaluation of such a unique

length scale, but one that characterizes the flow at small Reynolds
number and is directly connected to distribution of viscous dissipa-
tion inside the porous structure (Zami-Pierre et al., 2016). Second, it
has been shown that this definition of the Reynolds number cap-
tures more accurately the transition to the inertial regime
(Lasseux et al., 2011; Andrade et al., 1999). For comparison with
the literature in chemical engineering, we also define the following
Reynolds number

Reh ¼
qc uc

� � h
lc

; ð37Þ

where h is a geometrical length scale. We will use h ¼ d with d the
diameter of the cylinder in the case of the rough cylinder and h ¼ H
for the structured packings.

4.2. Application to a channel with sinusoidal walls

The methodology is first applied to a creeping flow within a
two-dimensional channel with sinusoidal walls. In a two-
dimensional configuration, the effective boundary condition, Eq.
(6), reads



Fig. 5. Permeability Ks of the effective domain non-dimensionalized with the
permeability Kc from the exact geometry, as a function of the distance y from the
effective surface to the sinusoïdal wall, normalized with H, the height of the
channel. The effective surface is positioned from A yH ¼ 0ð Þ to G yH ¼ 0:25ð Þ.
Accurate results are obtained for the equivalent ‘‘no-slip” position (line B). Line A
corresponds to the mean position of the sinusoid, Csmooth

cr .
usex ¼ Mxx
@us

@y
ex; ð38Þ

where Mxx is the Navier coefficient (or equivalently the slip length).
In order to assess the effect of the distance of the effective surface to
the rough wall on the accuracy of the method, we apply the
methodology for multiple positions (A–G in Fig. 5). The effective
condition corresponding to each position is derived from Eq. (38)
using the Taylor series Eq. (10). Position B corresponds to the effec-
tive no-slip position, i.e. the displacement of the interface that leads
to Mxx � Dx ¼ 0. The permeability Ks, normalized to the exact per-
meability Kc of the rough channel, is given in Fig. 5 along with
the different positions considered. It is shown that displacing the
effective boundary closer to the rough wall improves the accuracy,
and that the effective no-slip condition (line B) is the most accurate
configuration, as previously discussed in Veran et al. (2009).

We then fix the position of the effective boundary at the no-slip
position and vary the amplitude and wavelength of the sinusoid.
The effective and exact permeabilities, normalized to the intrinsic

permeability of a Poiseuille flow, K ¼ H2

12, are presented in Fig. 6.
We observe several limit cases. First, when the amplitude tends
to zero, we recover the permeability of the flat case. Second, when
the wavelength tends to zero, we recover the permeability of an
equivalent flat surface positioned on top of the sinusoid. Third,
when the wavelength is much larger than the height of the channel
H, two different situations are observed. If both sinusoids are in
phase (blue curve in Fig. 6), we have kc ! 1 , whereas if there is
a phase shift of p

2 (red1 curve in Fig. 6) another limit is attained,
kc�shift < 1. This is because, for a fixed value of the amplitude, this
geometry generates a bottleneck effect with flow focusing and defo-
cusing even in the limit of large wavelengths. The effective condition
accurately captures the large variations in the permeability (about
25–50%) induced by the roughness, except in the specific case of
the asymmetry between both boundaries. In this case, there is a
strong coupling between the pore flow and the boundaries and the
approximations needed for the derivation of the slip boundary con-
dition, in particular the constraint lw=l � 1, are not valid.

4.3. Application to an array of rough cylinders

We now apply the effective boundary approach to a two-
dimensional array of rough cylinders, as shown in Fig. 7, both in
the Stokes and inertial regimes. In order to minimize the error
induced by the effective surface theory, the boundary Cws is placed
at the no-slip position. Example 2D meshes used for the effective
and rough domains are given in Appendix B.

4.3.1. Flow regimes
Results are presented in Figs. 8 and 9 for a cylinder of diameter

d ¼ 0:6H /c 	 0:72
� �

, where H is the unit-cell width. As discussed

previously in Lasseux et al. (2011), the transition between the Dar-
cean and the fully turbulent regime is complex and strongly
depends on the geometry of the porous structure. Here, we identify
five different regimes as follows.

� For Rek K0:3 (Red K1:7), the flow is Darcean and the apparent
permeability is constant (velocity field in Fig. 10a).

� For 0:3 < Rek < 2 1:7 < Red < 11:5ð Þ, we observe a weakly iner-
tial regime where F scales in Re2k . This regime has been widely
referenced in the literature (Firdaouss et al., 1997; Lage and
Antohe, 2000).
1 For interpretation of color in ‘Fig. 6’, the reader is referred to the web version of
this article.
� For 3 < Rek < 20 17 < Red < 114ð Þ, a strongly inertial regime
develops (velocity field in Fig. 10c), which is characterized by
a slowdown in the growth of F, see (Lasseux et al., 2011).

� For Rek ’ 25 Red ’ 172ð Þ, there is a steep increase in the correc-
tion F that reflects the transition from steady to unsteady flow.
A plot of the volume averaged velocity ush i without time-
averaging is given in Fig. 12 and velocity fields at different times
are presented in Fig. 11, highlighting the cyclic behavior of two
large vortices. This transition is described in detail by Koch and
Ladd (1997) for a similar two-dimensional geometry where
they show that the pressure drag exhibits a sudden increase.

� For large Reynolds numbers, Rek > 50 Red > 285ð Þ, the flow is
completely unsteady (velocity field in Figs. 10c and f). For the
few points that we computed, we observe that F scales linearly

with Rek and the pressure drag, � R
Ccr

n � pcI
� �

dr, dominates

over the viscous drag. To further understand the unsteady regime
and the impact of temporal fluctuations on the results, additional
computations for larger values of the Reynolds number are
needed. Such simulations should also be performed in three-
dimensional configurations since two-dimensional computations
usually fail to recover important features of turbulent flows.

Independently from the slip condition, we emphasize several
important results from these direct numerical simulations. First,
although we observe a decrease in the slope of F in the strongly
inertial regime 3 < Rek < 20ð Þ, we did not recover a scaling where
the correction F is linear with Rek. This was already observed for
simple arrays of cylinders in Lasseux et al. (2011), and they also
found that the introduction of disorder favors the emergence of a
quadratic regime. Second, we observe that the standard Forch-
heimer correction, where the drag scales with Re2k (F is linear with
Rek), seems to be valid for the onset of the unsteady regime when
Rek is just above 50. This may suggest that the Darcy-Forchheimer
formulation actually corresponds to a time-averaged macro-scale
equation, although further analysis and simulations at larger Rey-
nolds numbers are necessary. This slow transition from the Darcy
to the Forchheimer regime is in contrast with some previous works
in the literature (Firdaouss et al., 1997; Lage and Antohe, 2000)
where the transition regime is neglected and the drag rapidly
becomes quadratic. These effects have been considered negligible
for practical applications in previous works (see Lage, 1998;
Bejan and Nield, 2013). However, our results on this simple unit
cell show that the drag is not quadratic for a significant range of



Fig. 6. Plots of the dimensionless permeabilities with the effective slip, ks ¼ Ks
K , and with the rough boundary, kc ¼ Kc

K . K ¼ H2

12 is the permeability of a Poiseuille flow in the
smooth channel. On the left-hand side, permeabilities are functions of the amplitude of the roughnesses AH for a fixed value of the wavelength, kH ¼ 0:5. On the right-hand
side, permeabilities are functions of the wavelength kH for a fixed value of the amplitude, AH ¼ 0:1.
Reynolds numbers (about a decade). As previously mentioned, the
introduction of disorder in arrays of squares favors the emergence
of a quadratic regime (Lasseux et al., 2011), which may explain
why Forchheimer corrections can be used with good accuracy for
disordered media over a broad range of Reynolds number (see dis-
cussion in Lage et al. (1997) and Clavier et al. (2015)). This empha-
sizes the importance of the pore space topology on these results,
which should be revisited for more complex and disordered
three-dimensional structures.
Fig. 8. Dimensionless apparent permeability kH along the x-axis as a function of the
Reynolds number for the effective condition kHs ¼ KH

s

d2
, the rough kHc ¼ KH

c

d2
and smooth

kHsmooth ¼ KH
smooth

d2
cylinders.
4.3.2. Impact of the slip condition
For the slip condition, we see that the effective approach accu-

rately captures the impact of the roughness on the permeability for
Rek K40. For larger Reynolds number, however, the roughness
generates additional inertial effects and viscous dissipation that
are not captured by the effective condition; a difference that is
expected to be further amplified for larger Reynolds numbers for
various reasons. First, the effective boundary condition, as pre-
sented in this paper, uses a creeping flow approximation within
the boundary layer and is therefore limited to moderate Reynolds
numbers. In addition, unless the roughness is so small as to be
included in the viscous sublayer, the flow perturbations induced
by the wall in the turbulent regime will propagate to the center
of the pores, a phenomenon lying outside the domain of validity
of the model. Finally, the closure problem is quasi-stationary,
which is only true for Rek < 25. Beyond this point, the velocity field
us is time-averaged for the resolution of the closure problem and
further theoretical developments are required to accurately cap-
Fig. 7. Illustration of a unit-cell for a 2D array of rough cylinders.

Fig. 9. Correction coefficient Fxx as a function of the Reynolds number for the
effective, rough, and smooth domains.
ture the effects of fluctuations in time. For instance, macro-scale
equations involving time convolutions have been used previously
to capture high-frequency temporal fluctuations of the average
fields (see discussion in Davit and Quintard (2012) regarding dis-
persion effects).



Fig. 10. Norm of the velocity fields in the domains Xs (top) and Xc(bottom).

Fig. 11. Velocity streamlines in the domains Xs for Rek ¼ 56 at three different times. The oscillation motion of the vortices is seen from left to right.
To evaluate the effect of the ratio lw=l, we further study the
impact of the porosity, and therefore the size of the pores, on the
accuracy of the slip boundary condition for a viscous flow. Results
are plotted in Fig. 13. Consistent with the case of the sinusoidal
Fig. 12. Volume averaged velocity ush i as a function of time for Rek ¼ 29
Red ¼ 168ð Þ.
wall, we see that the accuracy of the slip boundary condition
decreases as the porosity decreases and lw=l increases.
4.4. Application to structured packings

We now consider a geometry representative of structured pack-
ings used in separation processes. The flow of the gas phase in such
packings is the focus of a number of studies in the literature (see
Raynal and Royon-Lebeaud, 2007; Ahmadi et al., 2012; Soulaine
and Quintard, 2014; Owens et al., 2013), using primarily computa-
tional fluid dynamics. Recently, Soulaine and Quintard (2014) pro-
posed a detailed analysis of the upscaling procedure for
momentum transport and derived a generalized Darcy-
Forchheimer law at the macro-scale for the gas phase that can be
used, theoretically, for relatively high Reynolds numbers. They
showed that the permeability tensor, KH, has a null row and col-
umn describing the absence of flow in the direction orthogonal
to the corrugated sheets. They also found that the amplitude of
the non-diagonal terms is negligible compared to diagonal ones
and that the diagonal terms on KH are identical. This was also



Fig. 13. Error between exact and effective intrinsic permeabilities for three porosity
levels. Cylinder diameters from left to right: d=H ¼ 0:8, lw=l ¼ 0:0250ð Þ d=H ¼ 0:7,
lw=l ¼ 0:0167ð Þ, and d=H ¼ 0:6 lw=l ¼ 0:0125ð Þ.

Fig. 14. Geometries considered in the simulations. The first line shows the unit-
cells of structured packings, while the second and third lines are the rough elements
Xwi

on the surface. Roughness types a and b correspond to typical wall-textures that
can be engineered on the surface. Roughness c represents a traveling train of soliton
waves along the column axis.
assumed in earlier works by Mahr and Mewes (2007) and Raynal
and Royon-Lebeaud (2007). The tensor KH is therefore written as

KH ¼ KH

1 0 0
0 1 0
0 0 0

0
B@

1
CA; ð39Þ

with the z-axis normal to the corrugated sheets. This form of the
tensor KH, however, is only valid for specific symmetries of the local
structure. The surface roughness, either generated by a traveling
train of waves at the liquid-gas interface (Alekseenko et al., 2009;
Vellingiri et al., 2013) or engineered as a textured corrugated sheet,
may break symmetries of the unit-cell. We therefore consider a
more general form of the tensor as

KH ¼
KH

xx KH
yx 0

KH
xy KH

yy 0
0 0 0

0
B@

1
CA: ð40Þ

In this section, we explore the impact of three different orientations
and profiles of rough patterns on the coefficients of KH (see Fig. 14).

The geometries are now three-dimensional, so that we need the
full slip tensor M of the Navier condition

us ¼ M � n � rus þ rusð ÞT
� �

� I� nnð Þ
h i

: ð41Þ

In order to limit the error introduced by the linear approximation,
the effective surface is positioned on the top of the roughness for
all the cases treated in this section. The geometry a describes a wall
texture that can be found in structured packings (McGlamery, 1988)
to control the liquid phase dispersion. The rough pattern b is iden-
tical to the profile a, but rotated 45� to study the impact of an
inclined pattern on the isotropy of the permeability tensor. The
geometry c represents a train of soliton waves propagating on the
surface of a thin liquid film along the axis of the column.

4.4.1. Flow regimes
Direct numerical computations are performed in all cases (see

Fig. 15) with the quality of the numerics evaluated as described
in Section 4.1.4 (see Table 1 for the unit-cell a) and the mesh of
the geometry a in Appendix B. Results are presented in Fig. 16
for the permeability and Fig. 17 for the Forchheimer term. Similarly
to the rough cylinder, different regimes can be identified depend-
ing on the Reynolds number. We recover weak and strong inertial
regimes, with a scaling of F in Re2k in the weak regime
0:8 < Rek < 4ð Þ. The transition to unsteady flow occurs for
Rek � 40 leading to a significant loss in permeability, both in the
smooth and rough domains. Consistent with the two-
dimensional observations for the rough cylinders, the effective
domain method accurately captures the pressure drop, until the
transition for Rek � 40 ReH � 500ð Þ. As discussed previously, this
regime cannot be captured by the effective boundary condition
developed in this paper. This is particularly true for the geometry
c, which generates an important reduction of permeability, even
in the Stokes regime, and yields strong inertial effects. These effects
are shown in Fig. 17, where we observe a correction in the effective
domain that is similar to the smooth case, further suggesting that
the slip boundary does not recover the perturbations of the flow
generated at the small scale by the rough wall and propagating
to the center of the pores.

4.4.2. Impact of the slip condition
We now compare the exact permeabilities for the smooth and

rough geometries, KH
smooth and KH

c , to the permeability resulting

from the up-scaling analysis KH
s . Results of the simulations in a

large range of Reynolds numbers are presented in Fig. 16 for the
permeability coefficients KH

sa and KH
sc along the axis of the column,

y, non-dimensionalized with the characteristic length H ¼ 0:01.
For the geometry a, the slip coefficients of the effective tensor M
are identical along the x and y axis, Mxx ¼ Myy ¼ 7:9� 10�5m. The
consequence of this symmetry in the slip tensor is a symmetry in
the intrinsic permeability tensor Ksa , with Kxx

sa ¼ Kyy
sa . The coeffi-

cients Kxx
sa ¼ Kyy

sa ’ 7:1� 10�7m2 are of the same order of magnitude
as those in Soulaine and Quintard (2014). In agreement with
(Soulaine and Quintard, 2014), the non-diagonal terms are negligi-
ble compared to diagonal ones, which indicates that this specific
structure of packings does not generate anisotropic effects. For
the geometry b, we have Mxx > Myy, with Mxx ¼ 1:2� 10�4 m and

Myy ¼ 7:5� 10�5 m, leading to different permeability coefficients

along x and y, with Kxx
sb
’ 7:1� 10�7 m2 and Kyy

sb
¼ 6:9� 10�7 m2.

For the geometry c, the tensor M also exhibits different diagonal
coefficients, Mxx ¼ 8:1� 10�5 m and Myy ¼ 1:8� 10�5, which lead

to Kxx
sc ’ 7:1� 10�7 m2 and Kyy

sc ¼ 6:5� 10�7 m2 in the permeability
tensor Ksc . For the geometry b, comparison between the exact and



Fig. 15. Norm of the velocity fields in the domains Xs (top) and Xc (bottom).
effective permeabilities are shown in Fig. 18 for the stationary
regime. We find that the roughnesses a and b reduce the perme-
ability of about 12%, while the roughness c induces a change of
about 18%. These results concur with the experimental data of
Tsai (2010), who compared the dry pressure drop for a packing
with and without roughness at the surface. For the geometry b,
the effective domain method recovers the anisotropy with a lower
permeability in the x-direction than in the y-direction in Fig. 18.

The primary reason for using the effective boundary condition,
rather than the no-slip condition on the rough surface, was to
make computations tractable. To evaluate the gain, we show a
mesh convergence plot for simulations in the Stokes regime for
the soliton case (geometry c) in Fig. 19. We see that we obtain a
similar accuracy for both calculations only for a much finer mesh
in the case of the rough surface. This is because the rough structure
is composed of sharp soliton waves and we need a fine mesh to
Table 1
Numerical accuracy of the results for the unit-cell a.

Mesh � 1203 cells Accuracy

r pc
D Ec Rek ReH gp gs D

5 18 220 5 4.99 0.18
10 34 402 10 9.93 0.62
15 46 541 15 14.82 1.19
20 48 574 20 19.71 1.47
30 58 693 30 29.43 1.89
50 79 940 50 47.37 5.22
100 118 1401 100 91.28 8.72
capture the flow over these structures. The consequences are two-
fold. First, obtaining a good quality mesh is much more difficult in
the rough surface than in the smooth case. Second, the simulation
times are longer for the rough case. For instance, the finest simula-
tion (last point on Fig. 19) represents over 500 h of CPU time with
the rough surface, whereas the equivalent simulation in the effec-
tive domain only represents about 120 h of CPU time.
Fig. 16. Dimensionless permeability kH;yy along the y-axis for the geometries a and c
as a function of the Reynolds number. The exact permeabilities of the smooth
kHsmooth ¼ KH

smooth

H2 and rough kHc ¼ KH
c

H2 domains are compared to the permeability kHs ¼ KH
s

H2

obtained with the tensorial slip condition.



Fig. 17. Correction coefficient along the y-axis Fyy for the geometries a and c as a
function of the Reynolds number. The exact corrections of the smooth Fsmooth and
rough Fc domains are compared to the correction Fs obtained with the tensorial slip
condition.

Fig. 18. Dimensionless permeability kH coefficients in the x and y directions as
functions of the Reynolds number for the geometry b. Results show good agreement
between the exact and effective permeabilities with the anisotropy kxxHs > kyyHs .

Fig. 19. Plot of the error as a function of the average number of mesh elements per

direction, H
Dx. The error is defined 100 uxh i� uxh ijR

uxh ijR

 � �
where uxh ijR is a reference average

velocity obtained with an extremely fine mesh, H
Dx ¼ 180 for the smooth surface and

H
Dx ¼ 285 for the rough surface
5. Conclusion

In this work, we provide a generic two-step methodology for
the estimation of macro-scale properties in porous media with
rough surfaces. The rough surface is first replaced by an effective
smooth one with a slip boundary condition, which considerably
simplifies computations in large domains. In three-dimensional
configurations, the slip condition has a tensorial form that can cap-
ture surface anisotropy. Second, the micro-scale flow problem is
upscaled at the Darcy-scale to obtain a generalized Darcy-
Forchheimer formulation.

In applying our approach to a variety of geometries, we identi-
fied a number of fundamental aspects of flow in porous media with
rough surfaces:

� even a small roughness can induce a significant decrease in per-
meability, suggesting that those complex surfaces, often treated
as smooth ones, should be considered carefully in a multi-scale
analysis.

� in the smooth, slip and rough cases, we have studied the evolu-
tion of the apparent permeability as a function of the Reynolds
number. We show that several different regimes can be identi-
fied. These results suggest that the standard quadratic Darcy-
Forchheimer formulation may be valid only for relatively large
Reynolds numbers when the flow is fully unsteady. Computa-
tions of the flow for larger values of the Reynolds numbers
are necessary to further understand this regime, along with
the impact of temporal fluctuations on the permeability.

� the effective boundary condition accurately describes the per-
meability at the macro-scale for the Stokes and inertial flow
regimes, but fails when unsteady flow develops. This is because,
in this last regime, the impact of the roughness is not localized
to the vicinity of the wall but propagates to the center of the
pores. For large amplitudes of the roughness, our approach is
therefore limited to relatively small Reynolds number. Further
developments are needed to accurately model the flow charac-
teristics at high Reynolds numbers.
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Appendix A. Spatial averaging

In this section, the system of equations Eqs. (19) is volume aver-
aged using the definitions introduced in Section 3.1. We detail only
the main steps of the developments, the reader is referred to the
works of Lasseux et al. (2014) and Whitaker (1986) for further
details or to other works (see e.g. Quintard and Whitaker, 1994c,
b,a).

We use the following spatial averaging theorem (Howes and
Whitaker, 1985) for the permutation between volume averaging
and spatial differentiation

rwih i ¼ r wih i þ 1
Vj j

Z
V\C

nwi dr; ð42Þ

and similar for the divergence. The porosity of the medium is also
considered as constant, so that

r/s ¼ � 1
Vj j

Z
V\C

ndr ¼ 0: ð43Þ

The application of the volume averaging theorem, Eq. (42), to the
continuity equation yields



r � ush i þ 1
Vj j

Z
V\Cws

n � us dr ¼ 0: ð44Þ

The effective condition, Eq. (6), implies that the velocity on the
boundary Cws is tangential, so that the integral term vanishes and
the averaged continuity equations reads

r � ush i ¼ 0: ð45Þ

The momentum equation, Eq. (19b), may be written as

qc
@us

@t
þr � ususð Þ

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LHS

¼ �rps þr � lc rus þ rusð ÞT
� �h i

þ qcg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RHS

in Xs;

ð46Þ

which is decomposed, for clarity, into a left and a right hand side,
LHS and RHS respectively. Averaging the LHS leads to

LHSh i ¼ qc
@ ush i
@t

þ qcr � usush i þ 1
Vj j

Z
V\Cws

n � ususð Þdr: ð47Þ

The slip condition on Cws implies that 1
Vj j
R
V\Cws

n � ususð Þdr ¼ 0.

Using the relation between intrinsic and superficial averages Eq.
(13) and the decomposition into average plus perturbation Eq.
(15), this leads to

LHSh i ¼ qc/s
@ ush is
@t

þ qcr � /s ush is ush is� �þ qcr � ~us~usð Þ; ð48Þ

or

LHSh i ¼ qc/s
@ ush is
@t

þ qc/s ush is � r ush is þ qcr � ~us~usð Þ; ð49Þ

using the averaged mass conservation equation Eq. (45).
Averaging the RHS of Eq. (19b) yields

RHSh i ¼ �r psh i þ lcr2 ush i þ r � 1
Vj j

Z
V\Cws

nus dr
� �

þ 1
Vj j

Z
V\Cws

n � �psIþ lc rus þ rusð ÞT
� �h i

drþ qcg: ð50Þ

Contrary to developments for a no-slip condition, the term

r � 1
Vj j
R
V\Cws

nus dr
� �

cannot, strictly speaking, be eliminated (this

issue was also studied in the work of Lasseux et al. (2014)). An order
of magnitude estimation of this term compared to others in the
equation leads to

r � 1
Vj j

Z
V\Cws

nus dr
� �

� O
rusk k
L

� �
� rusk k

l

� �
; ð51Þ

We therefore neglect this term.
Using the spatial decomposition Eq. (15), we have

RHSh i ¼ �/sr psh is þ lc/sr2 ush is

þ 1
Vj j

Z
V\Cws

n � �~psIþ lc r~us þ r~usð ÞT
� �h i

drþ qcg: ð52Þ

Combining expressions for the LHS and RHS, we finally obtain

qc
@ ush is
@t

þ qc ush is � r ush is þ qc/
�1
s r � ~us~ush i

¼ �r psh is þ lcr2 ush is

þ 1
Vsj j

Z
V\Cws

n � �~psIþ lc r~us þ r~usð ÞT
� �h i

drþ qcg: ð53Þ

As referred in Whitaker (1996), Soulaine and Quintard (2014), and
Lasseux et al. (2014), the terms in the LHS of Eq. (53) as well as
the diffusion term can be neglected compared to other terms, lead-
ing to
0 ¼ �r psh is þ qcg þ 1
Vsj j

Z
V\Cws

n � �~psIþ lc r~us þ r~usð ÞT
� �h i

dr:

ð54Þ
A.1. Mathematical problem governing the deviations

The averaged form of the continuity equation Eq. (45) is sub-
tracted from Eq. (19a) to obtain

r � ~us ¼ 0: ð55Þ
Using the same approach, we can subtract the averaged momentum
equation Eq. (53) from the pore-scale relation Eq. (19b). Along with
the assumption of time-scale and length-scale separation, this
yields

qc
@~us

@t
þus �r~us

� �
¼�r~psþlcr2~us

� 1
Vsj j

Z
V\Cws

n � �~psIþlc r~usþ r~usð ÞT
� �h i

dr: ð56Þ

Using the perturbation decomposition, the Navier condition Eq. (6)
is also written

~us þM � n � r~us þ r~usð ÞT
� �

� I� nnð Þ
h i

¼ � ush is on Cws: ð57Þ

As indicated in Eq. (16), the average of the deviations over the fluid
domain is zero, (Whitaker, 1986),

~psh is ¼ 0; ~ush is ¼ 0: ð58Þ
A.2. Closure problem

Identifying inhomogeneous source terms in the equations
above, we can now formulate an approximate form for the pertur-
bations. In this case, the only source term is the averaged velocity
ush is in Eq. (57), so that the perturbations can be mapped linearly
to ush is as
~us ¼ Bs � ush is; ð59Þ

~ps ¼ lcbs � ush is; ð60Þ
where the closure variables bs;Bsð Þ are first- and second-order ten-
sors, respectively. By substituting Eqs. (59) and (60) into Eqs. (55)–
(57) and assuming that Eqs. (59) and (60) hold correct for any value
of ush is, we obtain

r � Bs ¼ 0 in Xs; ð61aÞ

qcus � rBs ¼ �rbs þr2Bs

� 1
Vsj j

Z
V\Cws

n � �bsIþ rBs þ rBsð ÞT
� �h i

dr; ð61bÞ

Bs þM � n � rBs þ rBsð ÞT
� �

� I� nnð Þ
h i

¼ �I on Cws; ð61cÞ

Bsh is ¼ 0; ð61dÞ

Bs rþ lið Þ ¼ Bs rð Þ i ¼ 1;2;3; ð61eÞ

bs rþ lið Þ ¼ bs rð Þ i ¼ 1;2;3; ð61fÞ
where we have added the standard periodic condition for closure.
This problem is integro-differential which can complicate numeri-
cal resolution. To simplify computations, we use the following
change of variables (see also Whitaker, 1999 and Soulaine and
Quintard, 2014) for bs and Bs,



B0
s ¼ Bs þ Ið Þ � KH

s /
�1
s ; ð62Þ
b0
s ¼ bs � KH

s /
�1
s ; ð63Þ

where KH
s is defined such as

KH�1
s /s ¼ � 1

Vsj j
Z
V\Cws

n � �bsIþ rBs þ rBsð ÞT
� �h i

dr: ð64Þ

Injecting Eqs. (62) and (63) into the system of equations Eqs. (61)
leads to

r � B0
s ¼ 0 in Xs; ð65aÞ
qc

lc
us � rB0

s ¼ �rb0
s þr2B0

s þ I in Xs; ð65bÞ
B0
s þM � n � rB0

s þ rB0
s

� �T
� �

� I� nnð Þ ¼ 0 on Cws; ð65cÞ
B0
s

D Es
¼ KH

s /
�1
s ; ð65dÞ
B0
s rþ lið Þ ¼ B0

s rð Þ i ¼ 1;2 ð65eÞ
b0
s rþ lið Þ ¼ b0

s rð Þ i ¼ 1;2: ð65fÞ
This is a Navier-Stokes problem with the effective condition Eq.

(65c) that can be solved using standard numerical methods. The
components of the tensor KH

s are obtained by considering a source
term along the different directions of space in the closure problem.
Fig. 20. Meshes for the unit-cell of the array of beads (left) and for the element of
packings (right). Domains Xc and Xs are given. The element of packings corresponds
to the geometry a.
Similarly to the work in Soulaine and Quintard (2014), the problem
still involves the micro-scale velocity field us that solves the set
Eqs. (19) in the slip domain Xs.
Appendix B. Visualisation of the grids

We show in Fig. 20 the grids of the exact and effective domains
Xc and Xs, both for the 2D cylinder and the geometry a of struc-
tured packings.
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