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Abstract—This paper addresses dynamic bandwidth allocation
for virtual network (VN) resources to respond to increasing or
decreasing applications requirements in cloud environments. A
distributed and local-view framework, composed of a controller
and three algorithms running in substrate nodes, is proposed
to deal with all types of bandwidth demand fluctuations in
embedded virtual networks. The framework is based on the
Self-Stabilization concept to drive the system back to a “stable
state” when new bandwidth demands drift the system away into
an “unstable state”. Performance evaluation results demonstrate
the effectiveness of our proposal in handling bandwidth demand
fluctuations in convergence speed and cost.

Index Terms—Virtual network embedding, dynamic band-
width allocation, elasticity, self stabilization, local view, cloud,
distributed and parallel algorithms;

I. INTRODUCTION

Network virtualization allows multiple virtual networks to
coexist on a shared physical infrastructure. A critical issue in
network virtualization is virtual network resource provision-
ing. This deals with the optimal allocation of the VN onto the
substrate network (SN), and the management of the allocated
resources throughout the life-cycle of the VN.

The current state of the art has extensively addressed the
static provisioning where a fixed amount of resources is allo-
cated to the VN for its entire lifetime. But cloud services and
environment require the elastic allocation of resources accord-
ing to increasing/decreasing applications demands. Moreover,
traditional resource provisioning solutions employ centralized
and total-view based techniques that face serious limitations
when applied to large and highly dynamic cloud environments.
In centralized solutions, maintaining dynamically up-to-date
description of real-time substrate resources states induces high
latency during analysis and enforcement of decisions because
of the management traffic overhead with the central entity.
This leads to low responsiveness to VNs evolution and affects
in fine the cloud user satisfaction.

In this paper, we propose a distributed and parallel frame-
work to manage bandwidth demand fluctuation without need-
ing a global view of available resources to avoid costly
updating and monitoring. The proposal is based on the self-
stabilization [1] concept that guaranties the convergence of the
system to a stable state in a finite time regardless of its initial
state. In fact, we view bandwidth requirements fluctuations as
events that drift the system (the substrate network) into an
unstable state, and our self stabilizing algorithms, executed

locally on each substrate node, as actions that take it back to
a stable state where all new bandwidth demands are satisfied.

Section II of this paper presents the background and related
work. Section III defines the dynamic bandwidth allocation
problem in the context of network virtualization while section
IV briefly introduces the concept of Self-Stabilization. Section
V describes our model and proposal. The effectiveness of
our algorithms is assessed in section VI where performance
evaluation is reported.

II. RELATED WORK

To the best of our knowledge, only [2], [3], [4] and [5]
address the VN bandwidth demand fluctuation in a distributed
manner. In [2], authors propose a decentralized multi-agent
resource management system based on Reinforcement Learn-
ing. Each agent (substrate node/link) dynamically adjusts the
allocated resources to avoid under utilization of the substrate
network and to satisfy new demands. The agents choose an
action among a pre-defined set of actions (Decrease/increase
allocated resources by 50/37/25/12.5 percent or maintain the
currently allocated resources). The choice is made according
to the results of a decentralized Q-learning based algorithm
that iteratively approximates the state action values. The main
drawbacks of this proposal are i) a limited set of actions that
affects the algorithm efficiency and action granularity, and ii)
the need for a high number of learning episodes to determine
an optimal decision policy.

Authors of [3] improve the efficiency of the previous system
by conceiving an autonomous system based on Artificial Neu-
ral Networks (ANN). They represent each substrate resource
as an ANN whose input is the network resource usage status
and the output is an allocation action. An error function is used
to evaluate the desirability of ANN outputs and hence perform
online training. Note that even if neural networks are important
for their learning and generalization capabilities, they do not
have a clearly defined way on how the number of layers as
well as the number of neurons in each layer are determined.

Work in [4] is an extension of the previous model using an
adaptive hybrid system composed of Neural Networks, Fuzzy
systems and Reinforcement Learning. The system dynamically
adjusts both the substrate network usage and structure by
adding or removing substrate resources. The SN is modeled
as a distributed system of autonomous agents. For each
agent, an initial knowledge base is defined using supervised
learning subsequently improved with Reinforcement Learning.978-1-5090-0223-8/16/$31.00 c© 2016 European Union
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Unfortunately, authors still limit the action granularity of the
algorithm.

Authors of [5] use a distributed controller system to adapt
bandwidth allocations to the VN dynamic workloads. The
system predicts the optimal request for each VN and adjusts
the offered bandwidth accordingly.

All the previous work scales up and down the allocated
resources but fixes the VN topology. This prior art does
not address bandwidth demand fluctuation with topological
changes: i.e. when adding/ deleting virtual links to/from the
VN. The authors do not take advantage of virtual resources
migration (re-allocation) either. We devise a self-stabilizing
framework to deal with all types of bandwidth fluctuations
without the need for a learning phase, unlike [2]–[4]. To the
best of our knowledge, this is the first distributed and local-
view based framework that manages all types of bandwidth
demand fluctuations; i.e. increasing/diminishing bandwidth
needs of embedded virtual links, new bandwidth requests to
connect nodes or the need to free link bandwidth no longer
needed between nodes.

III. PROBLEM FORMULATION

Virtual network embedding (VNE) can be decomposed into
two stages: the initial VNE and a dynamic resource manage-
ment phase. The first stage provides an efficient mapping of
virtual resources (nodes and links) onto the physical hosts
(nodes and substrate paths), while the second manages the
resource demand fluctuation of already embedded VNs.

A. Initial VNE

Let us represent the substrate network by a weighted undi-
rected graph Ĝ = (N̂ , L̂). N̂ (resp. L̂) is the set of substrate
nodes (resp. links). Each substrate node ˆ

n ∈ N̂ is characterized
by an amount of available resources n̂av (typically CPU and
memory) and a unit cost cost(n̂). Each substrate link l̂ ∈ L̂
is associated with an available bandwidth l̂av and a unit cost
cost(l̂).

Similarly, Let G = (N,L) be a weighted undirected graph
that represents the VN request topology. N (resp. L) is the set
of required virtual nodes (resp. links). Let reqn (resp.reql)
denote the minimum required capacity (resp. bandwidth) of
the virtual node n ∈ N (resp. link l ∈ L).

Figure 1 shows an example of VN and SN. The numbers in
rectangles next to the substrate (resp. virtual) nodes represent
the amount of available (resp. requested) node resources and
the numbers next to the substrate (resp. virtual) edges represent
the available (resp. required) bandwidth.

The initial VNE stage is out of the scope of this paper,
diverse approaches can be found in the literature (centralized
[6], [7] and distributed [8], [9] ). We focus exclusively on the
second stage and more specifically on managing bandwidth
demand fluctuations by adapting links and network topology.

B. Management of resource demand fluctuation

The first stage, successful initial VNE, results in multiple
VNs running simultaneously over the SN. This is the starting

Fig. 1. Example of initial VN embedding

point of the second stage, the focus of our study. To represent
this situation, we denote by Nn̂ the set of virtual nodes hosted
by the substrate node n̂, and Ln̂ the set of virtual links incident
to or passing through the substrate node n̂. For example, in
figure 1, Nâ = {a} and Lâ = {(a, b)}.

Over time, the VN end user requirements can change, for
instance when staring/ completing a new task/ application,
or when their required resources change, consequently, the
corresponding VN characteristics (topology and resources
requirements) will change.

We enumerate four bandwidth demand fluctuation scenarios:
i) partially releasing no more required bandwidth ii) com-
pletely removing virtual links iii) adding new virtual links
and iv) allocating more bandwidth to embedded links. To cope
with scenarios i) and ii) the substrate network provider should
release some bandwidth. For cases iii) and iv), the provider
should allocate more bandwidth on the hosting paths when
feasible, otherwise find new paths to support the requested
bandwidth.

To model a virtual link l bandwidth demand fluctuation we
define allol, the amount of bandwidth allocated to l. Note
that reql = allol when the bandwidth demand is met. Else,
we formulate the four bandwidth demand fluctuation scenarios
as follows:

• i) Decrease in Bandwidth Requirement (DBR): allol >
reql > 0 (the required bandwidth is lower then the
allocated).

• ii) Link Removal (LR): 0 < allol and reql = 0 (link l
does not require the allocated bandwidth any more and
the link should be removed).

• iii) Link Addition (LA): allol = 0 and 0 < reql (link
l requires an amount of bandwidth not allocated yet, it
should be added to the VN topology).

• iv) Increase in Bandwidth Requirement (IBR: 0 <
allol < reql (the required bandwidth is higher then the
allocated).

We opt for a self-stabilizing approach to manage band-
width demand fluctuation. We will first introduce the Self-
stabilization concept and motivate this choice, then, we will
describe our solution.
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IV. SELF-STABILIZATION

A. Introduction to Self-Stabilization

Self-Stabilization is related to Autonomic Computing [10],
which entails several “Self-*” attributes: self-management,
self-configuration, self-healing, etc. It is the property of an
autonomous process to reach a “stable state” no matter what
initial state is given. Hence a self-stabilizing system will
eventually correct itself automatically without the need for an
outside intervention.

In a self stabilizing system, each of the individual entities
(nodes) composing it maintains local variables determining its
state that can be either stable or active. A node can execute
an action to make a move and change its state. The system
is said to be stable when all the nodes are stable. Hence
all the active nodes should make moves to reach the system
stability. The number of moves (or rounds if nodes make
moves simultaneously) required to reach the stable state is
often used to measure the efficiency of the algorithm.

Central to the theory of self-stabilization is the notion
of daemon [11], it is the entity responsible for setting
the actions/moves execution order. In fact, in each round, it
selects some of/ or all active nodes to make a move, and the
process continues until there are no more active nodes, i.e.
until reaching stable state. In the self stabilization literature,
a daemon is often viewed as an adversary to the system that
tries to prevent stabilization by scheduling the worst possible
nodes for execution.

However, in our work, this definition seems unnecessar-
ily restrictive. In fact, most resource management systems
( [5], [12]) employ a manager (or controller) to supervise
and harmonize the distributed entities behavior. In the same
perspective, we replace the daemon by a scheduler that helps
the system to converge by setting the best nodes execution
scheme. In the following, this scheduler is called controller.

Unlike resource allocation traditional central entities, our
controller does not require the dynamic description of physical
resources to make scheduling decisions. Only the substrate
network topology (generally static) and the list of the physical
nodes scheduled to execute are needed. In fact, the nodes
are the only responsible of choosing the actions they need
to perform, the controller simply sets the actions execution
order using an elementary scheduling algorithm that sorts the
nodes according to their action priority.

B. Motivation for Self-stabilization

A self stabilizing system i) is local-view, hence maintaining
a global up-to-date description of the physical resources is
not required, ii) allows simultaneous nodes execution, hence
favors managing multiple and different demand fluctuations
simultaneously, iii) is suitable to the topology changing net-
works as modification of the code when the system topology
evolves during operation is not required and vi) does not re-
quire initialization as the system system converges irrespective
of its original state. All this reasons motivated us to explore
the self-stabilization concept.

V. A SELF-STABILIZING MODEL FOR BANDWIDTH
ALLOCATION

A. System model

This section extends the network model proposed in III with
self stabilizing elements. Namely, we expand the virtual link
and substrate node models.

1) Virtual link description: Let srcl and dstl denote the
source and destination virtual nodes of virtual link l, and let
~Pl denote the ordered list of substrate nodes composing l’s
hosting path. In Fig. 1, for l = (a, c), we have srcl = a,
dstl = c and ~Pl =

{
â, b̂, ĉ, d̂, ê

}
.

2) Substrate node description: We suppose that each sub-
strate node knows the local variables of its neighbors (through
periodic message passing or a shared memory ( [13])), yet it
can only modify its local variables. We model each substrate
node local-view of its environment as follows:

Local view of mapping: for each virtual link l passing
through or incident to substrate node n̂, let n̂x denote the
feature x describing l and saved in (seen by) n̂ (x ∈{
l, allol, srcl, dstl, ~Pl

}
). For example, n̂allol describes the

amount of bandwidth allocated to l as seen by n̂. In other
terms, each substrate node saves “a copy” of the parameters
describing the virtual links l ∈ Ln̂. When the system is in the
stable state, all the substrate nodes in ~Pl share the same l’s
description, else end to end update is required.

Local view of available resources: let Neigh(n̂) denote
the set of n̂ neighbors (adjacent substrate nodes). Let m̂ ∈
Neigh(n̂) be such a neighbor. To describe the substrate link
(m̂, n̂) connecting n̂ and m̂ in a distributed manner, node n̂
(resp. m̂) holds a variable (n̂, m̂)av (resp (m̂, n̂)av) defining
the available bandwidth on (m̂, n̂). When the SN is stable,
(n̂, m̂)av = (m̂, n̂)av i.e. the substrate nodes n̂ and m̂ share
the same view on substrate link (n̂, m̂) available bandwidth,
otherwise an update is required.

B. The Self stabilizing framework

We propose a framework to deal with bandwidth demand
fluctuation of embedded virtual networks. The framework
contains algorithms, composed of a set of actions executed
locally by the substrate nodes, and a controller defining
the actions execution scheme. We propose three different
algorithms to deal with the four bandwidth fluctuation types
described previously. We will first describe the controller role
and the general execution plan, then we will describe the
algorithms.

1) Controller description: The controller is responsible of
setting the actions execution plan. It holds a local database
containing a subset of substrate nodes, called active nodes,
scheduled to execute one or many actions. An active node
requires the controller permission to perform. Each action A
is associated with a ”priority” pA defining its precedence.

The framework execution plan is organized into rounds. In
each round, the controller examines the list of active nodes
in its database and allows the nodes scheduled with the most
urgent action/task to run simultaneously. At the end of the
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Fig. 2. A step by step example of Algorithm 1 execution

round, the controller updates its database (it removes the
executed actions and keeps the others for the next round).
This process continues until reaching system stability.

Note that the local views of substrate nodes are combined
with the controller to reduce load on this central point of
failure that usually has a back up for fault tolerance. One of
the substrate nodes can be elected as a central node as needed.

Two reasons can activate a substrate node: either a new
bandwidth request is submitted, or the node is solicited by a
neighboring node. When a virtual link l requires an amount
of bandwidth reql (6= allol), the substrate node hosting srcl
(host(srcl)) is activated: an entry of the form (host(srcl), A,
l, reql) is added to the controller database to define i) the
activated node, ii) the task to run, iii) the concerned virtual
link and vi) the new request. Substrate nodes cooperate to
reach stability, to do so a node n̂ can activate its neighbor
m̂ ∈ Neigh(n̂) to perform an action A (concerning a virtual
link l with reql 6= allol). Node n̂ asks the controller to add
(m̂, A, l, reql) in its database. The different possible actions
are described in the following.

2) Algorithms description: Three algorithms manage the
four bandwidth fluctuation types. Each algorithm is composed
of actions. The first algorithm concerns scenarios i) Decrease
in Bandwidth Requirement and ii) Link Removal. The second
manages the Link addition (scenario iii). The third handles
the Increase in Bandwidth Requirement (scenario iv). Due to
lack of space, only the two first algorithms will be detailed.

Algorithm1, Decrease in Bandwidth Requirement or
Link Removal: This algorithm deals with the two following
cases: i) a virtual link l requires less bandwidth or ii) should
be completely removed from the VN topology. Hence, no
more required bandwidth should be freed and the virtual link
mapping should be updated along the hosting path.

To do so, the origin substrate node (hosting srcl) is activated
upon receiving the new request. If selected by the controller,
the node executes the following action: Trigger Allocation, to
i) update its state (mapping and available resources) and ii)
activate the next node in ~Pl. If selected by the controller in
the next round, the latter runs an other action: De-allocate; it
updates its local description to synchronize with the soliciting
node, then activates the next node in ~Pl. This process continues

Algorithm 1: Decrease in Bandwidth Requirement/Link Removal
Inputs:1: The executing node : n̂

2: The concerned virtual link : l
3: The new required bandwidth : reql

Action 1: Trigger de-allocation (Priority=pTA > pD)
Steps: 1: (n̂, ô)av += (n̂allol − reql) where ô = ~Pl

next
(i.e. release no

more required bandwidth in the substrate link (n̂, ô) where ô is
the next node in l’s hosting path)

2: n̂allol = reql (update the amount of resources allocated to l)
3: Add (ô, De− allocate, l, reql) to the controller database (i.e.

activate the next node in ~Pl)
4: if reql = 0 (i.e. In case of virtual link removal) then
5: Ln̂.remove(l) (i.e. remove l from n̂ mapping list)
6: end if

Action 2: De-allocate (Priority=pD)
Steps: 1: (n̂, m̂)av += (n̂allol − reql) where m̂ = ~Pl

previous
(i.e.

update available bandwidth in (n̂, m̂) to synchronize with the
the soliciting node m̂, i.e. the previous node in hosting path)

2: n̂allol = reql (update the amount of resources allocated to l)
3: if dstl /∈ Nn̂ (if n̂ is not the last node in ~Pl) then
4: (n̂, ô)av += (ôallol − reql) where ô = ~Pl

next
(release no

more required bandwidth in (n̂, ô), ô is the next node in ~Pl)
5: Add (ô, Deallocate, l, reql) to the controller database to

activate ô
6: end if
7: if reql = 0 (i.e. in case of virtual link removal) then
8: Ln̂.remove(l) (i.e. remove l from n̂’s mapping list)
9: end if

until reaching the end (extremity) of the substrate path. The
action Trigger Allocation (resp. De-allocate) is associated with
a priority pTA (resp. pD), such that pTA > pD. The idea
behind this choice is to favor managing multiple requests
simultaneously. Details can be found in Algorithm 1.

Figure 2 depicts a detailed example of the algorithm ex-
ecution. We use the VN and SN of figure 1. For each
round, we show two tables. The first describes the most
relevant substrate node parameters and the second illustrates
the controller database (at the start/ end of the round). The
second table is a 4 column table defining i) the active nodes
ii) the scheduled actions, iii) the concerned virtual links and
vi) the new bandwidth requests. In each round, the executing
substrate nodes and the main changes are colored in red.

Suppose that the virtual link l = (a, b), initially requesting
20 bandwidth units and hosted by the substrate path ~Pl =



(â, ê, d̂), is now requiring a new amount of bandwidth = 10
units, and let us run through the algorithm.

Initially, the substrate network is stable: the required band-
width is met for all the embedded virtual links, in particular,
âallol = reql = 20, where â = host(srcl). Moreover,
(â, ê)av = (ê, â)av = 50 and the controller database is empty.

After receiving l’s new request reql = 10, the substrate
node â is activated to run the Trigger de-allocation action. As
there is only one node in the controller database, â is selected
to run in the first round. It i) updates l’s mapping to have
âallol = 10, ii) frees the no longer required bandwidth in the
substrate link (â, ê) ((â, ê)av = 60), and finally iii) activated
the next node in ~Pl: ê is added to the controller database.

In the second round, node ê is selected by the controller
to execute the action De− allocate. It i) updates l mapping
and the available bandwidth in (ê, â) to synchronize with â,
ii) releases bandwidth from (ê, d̂) and finally iii) activates
d̂. In the last round, node d̂ runs the same steps as ê except
activating the the next node in ~Pl as the path’s end is reached.

Note that the system has reached stability in 3 rounds, which
corresponds to the number of substrate nodes composing ~Pl.
Moreover, all the substrate nodes in ~Pl have the same new l
description at the end of execution, and the amount of available
bandwidth is updated through the entire substrate path.
Algorithm 2, Link Addition:This is the case where a new
virtual link l should be added to connect two embedded virtual
nodes.

To do so, a substrate path connecting the substrate nodes
hosting srcl and dstl, and having enough available bandwidth
(> reql) should be found. We define the cost of embedding a
virtual link l as the sum of costs of the substrate links hosting
l, as in [14]. The aim is to find the most cost effective substrate
path, in a distributed, and self stabilizing manner.

To achieve this, the algorithm runs in two steps: first it
i) searches all available paths (having enough bandwidth)
to connect the two end nodes and ii) saves the required
bandwidth in each of them. Second, it i) selects the most
cost effective substrate path among the K first arriving path
proposals (where K is a tuning variable), ii) maps the virtual
link l in the best path, and iii) releases previously reserved
bandwidth in non selected paths. Four actions compose this
algorithm:

Action 1, Trigger searching and reserving bandwidth: This
action concerns the source substrate node (hosting srcl). It
triggers the first algorithm step. A node n̂ executing this action
checks if all its attached substrate paths are saturated, if it is
the case, the new bandwidth request is immediately rejected as
no path connecting host(srcl) and host(dstl) can be found.
Else, n̂ starts building a path proposal by adding n̂ to ~Pl,
initially empty. Then, for all available attached substrate links,
n̂ reserves bandwidth and activates the corresponding nodes
to do so.

Note that the existence of an available substrate path to
connect host(srcl) and host(dstl) is not guarantied, hence,
we risk to search infinitely for a nonexistent substrate path and
never reach stability. To avoid this, we define a timer Timerl,

Algorithm 2: Link Addition
Inputs:1: The executing node : n̂

2: The concerned virtual link : l
3: The new required bandwidth : reql

Action 1: Trigger searching and reserving BW (Priority=pTSR)
Steps: 1: Launch T imerl

2: if all connected substrate links are saturated then
3: Reject the New bandwidth request
4: else
5: ~Pl.add(n̂) (i.e. start building a path proposal)
6: for all available attached links (n̂, ô) do
7: (n̂, ô)av -= reql (i.e. reserve bandwidth in (n̂, ô))
8: Activate ô
9: end for

10: end if

Action 2: Search and reserve BW (Priority=pSR)
Steps: 1: if T imerl has not expired and no path is found yet for l then

2: if dstl /∈ Nn̂ (i.e. if n̂ is not the end node) then
3: if all attached substrate links are saturated, or we risk to

produce a loop then
4: Reactivate the soliciting node to Release BW
5: else
6: (n̂, m̂)av -= reql, ~Pl.add(n̂) (i.e. synchronize with

the soliciting node and continue building the path)
7: for for all available links (n̂, ô) with no risk to produce

a loop do
8: (n̂, ô)av -= reql (i.e. reserve bw in the link)
9: Activate the neighbor ô to Reserve BW

10: end for
11: end if
12: else
13: (i.e. the path end is reached and this is the Rth path

proposal)
14: (n̂, m̂)av -= reql, ~Pl.add(n̂) (i.e. synchronize with the

soliciting node and continue building the path)
15: if R < K then
16: Save the path solution
17: end if
18: if R = K then
19: Select the most cost effective path, called BestPath
20: Map l to the best path and save the new mapping
21: Activate the previous node in BestPath to Allocate

BW
22: for all non selected paths do
23: Release previously reserved BW
24: Activate the previous node in the path to release

BW
25: end for
26: end if
27: if R > K (i.e. this proposal is arriving late) then
28: (n̂, m̂)av += reql (i.e. release previously reserved bw)
29: Activate the soliciting node to Release BW
30: end if
31: end if
32: else
33: Add (m̂, Release BW, l, reql) to the controller database (i.e.

activate m̂ to Release BW)
34: end if

to limit the path search phase duration. It can be set in terms of
rounds, and depends on the SN dimension. Timerl is launched
when n̂ starts searching for a path. If Timerl expires and no
path is found, the request is rejected. Detailed algorithm can be
found in Algorithm 2, action 1. Action 2: Search and reserve
bandwidth:

This action concerns the other substrate nodes searching for
an available path for l. A node n̂ executing this action runs
different operations depending on the situation:
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Fig. 3. A step by step example of algorithm 2 execution

IF n̂ is not the end node, there are two cases: in the first
case, all adjacent substrate links are unavailable or we risk
to produce a loop if we add the neighboring node to l’s
path (the node is already in ~Pl), we conclude that n is the
end of a no-through path! and previously reserved bandwidth
should be released from the saved path. To do so n̂ re-
activates the soliciting node to perform a Release bandwidth
action, described below, that will be spread back through
the reserved path. In the second case:, node n̂ synchronizes
with its soliciting node and goes on reserving bandwidth on
available substrate links, then solicits corresponding neighbors
to do so. ELSE the path end is reached.

Recall that n̂ must wait K path proposals to select the most
cost effective path, hence n̂ synchronizes with soliciting node
then runs the following actions depending on the rank R of
the arriving proposal:

• if R < K: node n̂ simply saves the path proposal.
• If R = K : node n̂ i) selects the most cost effective

path, ii) assigns it to l and re-activates the previous
node in the selected path to spread back an Allocate
bandwidth action, described below, finally iii) for all non
selected paths, the reserved bandwidth is released, and the
previous node in each path is activated to spread back a
Release bandwidth action. Node n̂ informs the controller
that a path proposal was found for l to stop reserving
other paths.

• If R > K: the proposal is arriving late, thus it is rejected:
reserved bandwidth is released and a Release bandwidth
action is triggered among the reserved path.

Note that if a path proposal is found or the link timer has

expired, a node activated to execute this action will not run the
previously described steps, but simply spreads back a Release
BW action to free the previously reserved path.

Action 3: Allocate bandwidth: Node n̂ updates mapping
and if it is not the origin node, it activates the previous node
in ~Pl to spread back the Allocate bandwidth request.

Action 4: Release bandwidth: Node n̂ releases previously
reserved bandwidth and if it is not the origin node, it releases
reserved bandwidth in (n̂,m̂) (with m̂ the previous node in ~Pl)
and activates m̂ to spread back the Release bandwidth request.

Actions priorities: We choose the following priority order
for previous actions: pSR < pRel < pAll < pTSR where
pTSR is for action Trigger searching and reserving BW, pSR

for Search and reserve bandwidth, pAll for Allocate bandwidth
and pRel for Release bandwidth action.

The motivation is threefold: first we give the highest priority
to Trigger searching and reserving bandwidth action to favor
dealing with new arriving requests and thus handle many
demands simultaneously. Allocate bandwidth action comes
next in order to allocate the virtual links as soon as an available
path proposal is found. Finally, by giving Release bandwidth a
higher priority then Search and reserve bandwidth, we release
bandwidth before searching for available paths to increase the
number of path solutions. Note that the controller selects a
set of non adjacent active nodes to execute Trigger searching
and reserving BW or Search and reserve bandwidth actions to
avoid conflicts.

Figure 3 depicts a detailed example of the algorithm 2
execution. We use the same VN, SN and notations of the first
example. Imagine that a new virtual link l = (a, c) has to
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Fig. 4. Simulation results

be added to the VN to connect the two virtual nodes a and
c, with reql = 30. To simplify the example, we set K to
1 (the first path proposal is embedded) and Timerl to 100
(there is enough time to find a path). First, the node â is
scheduled to execute a Trigger BW research and allocation
action. When selected by the controller in round 1, â i)
reserves bandwidth on (â, b̂) and (â, ê) ((â, b̂)av− = 30,
(â, ê)av− = 30), ii) updates ~Pl (~Pl = {â}) and iii) activates
b̂ and ê to continue searching for available paths. In round
2, b̂ and ê execute simultaneously: b̂ i) synchronizes with â,
ii) updates ~Pl (~Pl =

{
â, b̂

}
), iii) reserves bandwidth only

on (b̂, ĉ), as (b̂, d̂) < reql, and vi) activates b̂. As node ê is
the end of a non through path ((ê, d̂) < reql), it re-actives
â to cancel previous reservation. In round 3, two nodes are
active, â is scheduled to Release bandwidth and ĉ to Search
and reserve bandwidth. Since pSR < pRel, â is selected by
the controller, it updates (â, ê)av to release bandwidth. Node
ĉ is selected in round 4, since it is the end node, it updates
l’s mapping (adds l to Lĉ) and re-activates b̂ to spread back
the Allocate bandwidth update. During the rounds 5 and 6, l’s
mapping is updated along ~Pl =

{
â, b̂, ĉ

}
.

Note that the algorithm converges in 6 rounds, but a path
solution was found since the 4th round.

Algorithm3, Increase in bandwidth requirement: This is
the case where an already embedded virtual link l requires
more bandwidth. To handle such request, we propose a two
step algorithm: first, the algorithm checks if there is enough
bandwidth on the path hosting l to meet the new demand.
If it is the case, the required bandwidth is allocated and the
request is satisfied. Else we move to the second step that
consists of i) finding a new path for l, and ii) de-allocating
l from its old hosting path, in other terms, we perform a
virtual link migration. To do so, a slightly modified version
of already defined actions in previous Algorithms is used.

Due to lack of space, these actions will not be detailed.

VI. SIMULATION RESULTS AND EVALUATION

In this section, we will evaluate the effectiveness of our
algorithms by conducting extensive simulations. We will de-
scribe the simulation environment and then present the results.

A. Simulation environment

We adjusted the C++ simulator used in previous work [14]
to fit our scenario: substrate nodes with local view, and a round
per round algorithm execution. The GT-ITM tool ( [15]) is
used to generate random topologies of the substrate and VN
networks.

The SN size is set to 50 nodes and each pair of substrate
nodes is randomly connected with probability 0.5. The node
resource capacity and edge resource capacity are randomly
drawn between 0 and 50 for nodes and between 0 and 100 for
links. The per unit node and edge resources costs are selected
randomly between 0 and 50.

The VNs requests have between 2 and 10 virtual nodes
in their topologies with an average connectivity also set to
0.5.The node resource capacity is randomly selected between
0 and 20 and the edge resource capacity between 0 and 50.

In order to initialize the scenario and start the system
from a typical situation we map the virtual nodes greedily
and follow with the shortest path algorithm to map edges.
This step leads to suboptimal embedding that can reflect the
state of a SN subject to multiple virtual link evolutions. The
central performance metric will be the the number of rounds
required to reach the stable state (i.e. to converge), called
Convergence T ime. Other metrics will be presented later.

B. Simulation results

1) Algorithm1: Decrease in Bandwidth requirement (DBR)
or Link Removal (LD): We simulate two scenarios to assess
the effectiveness of this algorithm:
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Scenario 1: Only one bandwidth request is managed.
In accordance with the example of Fig.2, Fig. 4.a shows that
Convergence T ime is equal to the number of substrate nodes
supporting the substrate path hosting the evolving virtual link.

Scenario 2: Multiple bandwidth fluctuations are handled
simultaneously. To create a highly dynamic environment
and unpredictable states, we select randomly N virtual links
among the 96 hosted by the SN as virtual links with fluc-
tuating bandwidth demands. To each link l, we associate a
Decrease in Bandwidth Requirement or Link Removal request
randomly. For the DBR, we set the new bandwidth demand to
reql = allol/2.

If multiple bandwidth requests are managed simultaneously,
Convergence T ime is at least equal to the convergence time
when handling the the longest path among those hosting the
evolving links. With this idea in mind, we evaluate the perfor-
mance of our algorithm in handling N bandwidth fluctuations
at the same time.

We measure both i) the Convergence T ime when han-
dling all the requests, called CT Multiple Requests and ii)
the Convergence T ime when managing only the virtual link
with the longest supporting path, called CT One Request and
compare.

Figure 4.b depicts the results of 200 averaged runs and
shows that both convergence times increase with the number of
bandwidth requests. Moreover, the gap between the two curves
is small compared to the number of requests handled simul-
taneously ( CT Multiple Requests/CT One Request <
1.4 for N=30). In other terms, managing multiple bandwidth
fluctuations is at most 1.5 more time expensive then managing
only one request. The two convergence times are even equal
for low N values.

2) Algorithm 2: Link addition (LA): Recall that this is the
case where a new virtual link is added to the VN topology.
We will examine three metrics to evaluate the algorithm: the
virtual link embedding cost, the convergence time and the
controller load. To simulate dynamic and unpredictable LA
requests, we select randomly a pair of virtual nodes (among the
133 hosted in the substrate network) as source and destination
of the new virtual link. Note that the pair of nodes belong to
the same VN and are non adjacent (not connected by a virtual
link, in order to avoid multi-graphs).

Embedding cost Recall that the end node of a newly added
virtual link should wait for K path proposals to select the most
cost effective one. We measure the virtual link embedding cost
for K = 1 and K = 2, for different bandwidth demands reql,
and compare to the shortest path cost, found with a global
view of the system.

Figure 4.c shows the ratio of the embedding cost
found with our algorithm, and that of the shortest
path algorithm, called Costs Ratiofor different values of
reql/Average available BW for 100 accepted requests,
where Average available BW is the average of available
bandwidth in the substrate network.

Note that the ratio decreases with K : the most path
proposals we wait, the most chance we have to find the best

path. Moreover, for small values of reql, our algorithm fails
in finding the shortest path as there are many path solutions
that can meet the demand, however, when reql increases, the
number of available paths decreases and the gap between the
two algorithms costs decreases.

Convergence time Recall that this algorithm is composed of
two steps: the first searches for available paths, and the second
assigns the most cost effective path to the virtual link and re-
leases bandwidth from other paths. We measure two time dura-
tions: the first phase duration, called Time to find a path
and the total convergence time, i.e. the two steps duration,
called Convergence T ime. We set K to one, and Timer to
100 rounds, and make evaluation for three SN configurations:
ALS = 78%, 64% and 50%, where ALS is the average
substrate links saturation, as defined in [14]. We measure the
time in seconds for more precision.

Figures 4.d, 4.e, 4.f depict the results of 100 av-
eraged runs and show that both times decrease when
reql/Average available BW increases. In fact, when the
required bandwidth is high, there are few available links, hence
few substrate nodes will be activated to search for a path, and
the system will reach stability more rapidly. In contrary, when
reql is small, the majority of the substrate nodes in SN will
be activated to search for a path, and the system needs more
time to stabilize.

Moreover, looking at Figures 4.4, 4.5, 4.6 jointly, notice that
both times decrease with the average link saturation (ALS),
for the same reasons explained above. Finally, note that the
gap between the two curves increases with ALS, in fact,
when there are more available substrate resources (ALS low),
more substrate paths will be reserved during the first phase of
the algorithm, hence, after finding a path solution, releasing
bandwidth from reserved paths will take more time.

Controller load analysis: in each round, the controller
selects and notifies nodes to execute part of the bandwidth
adaptation. A loose upper bound on controller load (measured
by the number of exchanged messages) is obtained when all
nodes are involved in each round. The bound is given by the
product: substrate network size × the total number of rounds.
Figures 4.d, 4.e, 4.f show that the controller load curve has
nearly the same shape as that of the convergence time since it
is proportional to the number of activated nodes. It decreases
with the new bandwidth demand for the reasons explained
above.

VII. CONCLUSION AND FUTURE WORK

In this paper, a self stabilizing framework was proposed to
deal with bandwidth demand fluctuation in embedded virtual
networks. The solution is composed of a central controller, and
three parallel, distributed and local view algorithms running in
each substrate node to handle all types of bandwidth demand
fluctuations. Simulation results show that many requests can
be managed simultaneously at low cost and in a time effective
way. Future work concerns demand fluctuation in embedded
virtual nodes. We aim at extending the actual framework to
handle all types of resource fluctuations in virtual networks.
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