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Abstract
We establish an exact logical characterization of linear time complexity of cellular automata of
dimension d, for any fixed d: a set of pictures of dimension d belongs to this complexity class
iff it is definable in existential second-order logic restricted to monotonic Horn formulas with
built-in successor function and d+1 first-order variables. This logical characterization is optimal
modulo an open problem in parallel complexity. Furthermore, its proof provides a systematic
method for transforming an inductive formula defining some problem into a cellular automaton
that computes it in linear time.
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Introduction

Descriptive complexity provides machine-independent views of complexity classes. Typically,
Fagin’s Theorem [5] characterizes NP as the class of problems definable in existential second-
order logic (ESO). Similarly, Immerman-Vardi’s Theorem [15] and Grädel’s Theorem [8, 9]
characterize the class P by first-order logic plus least fixed-point, and second-order logic
restricted to Horn formulas, respectively. The link between computational and descriptive
complexity can be made as tight as possible [20, 14, 17, 11]. Two of the present authors have
proved in [12, 13] that a problem is recognized in linear time on a non-deterministic cellular
automaton of dimension d iff it is definable in ESO logic with built-in successor and d+ 1
first-order variables. Is there such a natural characterization in logic for the more interesting
deterministic case? This question motivates the present paper.

A number of algorithmic problems (linear context-free language recognizability, product of
integers, product of matrices, sorting. . . ) are computable in linear time on cellular automata
of appropriate dimension. For each such problem, the literature describes the algorithm
of the cellular automaton in an informal way [2, 16]. In parallel computational models,
algorithms are often difficult to design. However, the problems they solve can often be simply
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23:2 Horn formulas and linear time on cellular automata

defined inductively. For instance, the product of two integers in binary notation is inductively
defined by the classical Horner rule.

The first contribution of this paper is the observation that those inductive processes are
naturally formalized by Horn formulas [9]. As our second and main contribution, we notice
that for every concrete problem defined by a Horn formula with d+ 1 first-order variables
(d ≥ 1), this inductive computation by Horn rules has a precise geometrical characterization:
It can be modeled as the displacement of a d-dimensional hyperplane H along some fixed line
D in a space of dimension d+ 1. Provided we interpret the line D as a temporal axis, the
parallel displacement of H with respect to D coincides with a computation of a d-dimensional
cellular automaton. The converse is obvious: a d-dimensional cellular automaton computation
can be regarded as the parallel displacement of a d-dimensional hyperplane – its set of cells –
along the time axis.

In the next section, a logic is designed which captures these inductive behaviors (see
Def. 14). Roughly speaking, it is obtained from the logic ESO-HORN taylored by Grädel to
characterize P, by restricting both the number of first-order variables and the arity of second-
order predicate symbols. Besides, it includes an additional restriction – the ‘monotonicity
condition’ – that reflects the geometrical consideration above-mentioned. We denote this
logic by mon-ESO-HORNd(∀d+1, arity d+1).

Now we can quote the main result of the paper (Thm. 15): a set L of d-pictures can be
decided in linear time by a deterministic cellular automaton – written L ∈ DLINd

ca – if, and
only if, it can be expressed in mon-ESO-HORNd(∀d+1, arity d+1). For short:

DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1). (1)

A noticeable interest of this result is the constructive method of its proof. In order
to design a cellular automaton that computes a problem in linear time, one has to define
inductively the problem with a monotonic Horn formula. The normalized form of the formula
is automatically obtained: this is the program of the cellular automaton1.

The paper is structured as follows: The next section collects the preliminary definitions
and gives a precise statement of our main result. In Sec. 2, we establish the left-to-right
inclusion of the identity displayed in (1). The rest of the paper is devoted to the converse
inclusion, whose proof is far more involved. In Sec. 3 we build a monotonic Horn formula
expressing the language of palindromes (a “toy” example) and deduce from it a cellular
automaton that recognizes this language in linear time. Sec. 4 generalizes this construction to
any problem defined in mon-ESO-HORNd(∀d+1, arity d+1), thus completing the proof of (1).
In Sec. 5, we conclude by arguing for the optimality of our result.

1 Preliminaries

1.1 Cellular automata, picture languages, linear time
We essentially use the terminology of [10].

I Definition 1. A cellular automaton of dimension d (d-CA or CA, for short) is a quadruple
A = (d,Q,N , δ), where d ∈ N is the dimension of the automaton, Q is a finite set whose

1 For lack of space, this paper gives only one example of this method on a “toy” problem. However,
we explicitly describe two more significant examples in the Appendix: first, the product of boolean
matrices; second, the product of integers by the Horner method.
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elements are called states, N is a finite subset of Zd called the neighborhood of the automaton,
and δ : QN → Q is the local transition function of the automaton.

I Definition 2. A d-dimensional configuration C over the set of states Q is a mapping from
Zd to Q. The elements of Zd will be referred to as cells.

I Definition 3. Given a cellular automaton A = (d,Q,N , δ), a configuration C and a
cell c ∈ Zd, we call neighborhood of c in C the mapping NC(c) : N → Q defined by
NC(c)(v) = C(c+ v).

From the local transition function δ of A = (d,Q,N , δ), we can define the global transition
function of the automaton ∆ : QZd → QZd obtained by applying the local rule on each cell,
that means ∆(C)(c) = δ(NC(c)) = δ((C(c+ v))v∈N ), for each cell c.

One identifies the CA A with its global rule: A(C) = ∆(C) is the image of a configuration
C by the action of A. Moreover, At(C) is the configuration resulting from applying t times
the global rule of A from the initial configuration C.

I Definition 4. For a given cellular automaton: a state q is permanent if a cell in state q
remains in this state regardless of the states of its neighbors; a state q is quiescent if a cell in
state q remains in this state if all its neighbors are also in state q.

Cellular automata of dimension d operate on d-pictures.

I Definition 5. Let Σ be a finite alphabet. For integers d, n ≥ 1, a picture of dimension d

(d-picture) and side n over Σ is a mapping p : J1, nKd → Σ. We denote by Σ(d) the set of
d-pictures over Σ. Any subset of Σ(d) is called a d-picture language over Σ.

I Remark. d-picture languages can capture a wide variety of decision problems if the
alphabet Σ is sufficiently expressive. For instance, the product problem of boolean square
matrices is a 2-picture problem over the three-part alphabet Σ = {0, 1}3 that consists of
square pictures M such that the projection of M over the last part of the alphabet is equal
to the product of its projections over the first two parts.

I Definition 6. Given a picture p : J1, nKd → Σ, we define the picture configuration associated
with p with permanent or quiescent state2 q0 6∈ Σ as the function Cp,q0 : Zd → Σ ∪ {q0} such
that Cp,q0(x) = p(x) if x ∈ J1, nKd and Cp,q0(x) = q0 otherwise.

I Definition 7. Given a d-picture language L ⊆ Σd, we say that a cellular automaton
A = (d,Q,N , δ) such that Σ ⊆ Q with permanent states qa and qr (accepting and rejecting
states) recognizes L with permanent state (quiescent state, respectively) q0 ∈ Q\(Σ∪{qa, qr})
in time τ : N → N (for short, τ(n)) if for any picture p : J1, nKd → Σ, starting from the
configuration Cp,q0 at time 0, the state of cell n = (n, . . . , n) of A, called the reference cell, is
qa or qr at time τ(n) with Aτ(n)(Cp,q0)(n) = qa if p ∈ L and Aτ(n)(Cp,q0)(n) = qr if p 6∈ L.

I Definition 8. For d ≥ 1, we call DLINd
ca the class of d-picture problems L for which

there exist a d-CA A with quiescent state q0 and a function τ(n) = O(n) such that L can be
recognized by A in time τ(n). Such a problem is said to be recognizable in linear time.

2 The condition that each cell outside the input domain J1, nKd remains in a permanent state (resp.
quiescent state) q0 means that the computation space is exactly the set of input cells (resp. is not
bounded).

CVIT 2016
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The class DLINd
ca is very robust: it is not modified under many changes: neighborhoods,

precise time/space bounds, input presentation, etc. The proof of the first part of our main
result will use the following restrictive characterization which is a consequence of a general
linear acceleration theorem (see e.g. [10, 19]).

I Lemma 9. [10] DLINd
ca is the class of d-picture problems that can be recognized in time

n− 1 by a d-CA of neighborhood N2 = {−2,−1, 0, 1, 2}d with permanent state q0.

1.2 Picture structures and monotonic Horn formulas
The local nature of cellular automata acting on pictures is captured by logical formulas
acting on first-order structures, the so-called picture structures, that represent these pictures.
Before defining picture structures, let us detail their signatures. Given a dimension d ≥ 1
and k alphabets Σ1, . . . ,Σk, we denote by sg(d; Σ1, . . . ,Σk) the signature below:

sg(d; Σ1, . . . ,Σk) = {(Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred}.

Here, each Qis is a d-ary relation symbol, min and max are unary relation symbols, and suc
and pred are unary function symbols.

I Definition 10. Let p1, . . . , pk be pictures of respective alphabets Σ1, . . . ,Σk. We assume
that the pi’s have the same dimension d and the same side n. The picture structure of the
k-tuple (p1, . . . , pk) is the structure of signature sg(d; Σ1, . . . ,Σk) defined as follows:

S(p1, . . . , pk) = 〈J1, nK, (Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred〉.

Here, n is the common side of the pi’s. Besides, symbols of sg(d; Σ1, . . . ,Σk) are interpreted
on S(p1, . . . , pk) as follows, where we denote the same way a symbol and its interpretation:

each Qis is the set of cells of pi labelled by s. Formally: Qis = {a ∈ J1, nKd : pi(a) = s};
min and max are the singleton sets {1} and {n}, respectively;
suc and pred are the successor and predecessor functions: that is suc(n) = n and
suc(a) = a+ 1 for a ∈ J1, n− 1K; pred(1) = 1 and pred(a) = a− 1 for a ∈ J2, nK.

In the following, we will freely use the natural notation x+ i, for any fixed integer i ∈ Z.
It abbreviates suci(x) if i > 0, and pred−i(x) if i < 0. For i = 0, it represents x.

We will use the usual definitions and notations in logic (see [4, 18, 9]). All formulas
considered hereafter belong to existential second-order logic. More precisely, we shall focus
on the following logic:

I Definition 11. ESOd(∀d+1, arity d+1) is the class of formulas of the form ∃R∀xψ, where
R = (R1, . . . , Rr) is a tuple of (d+ 1)-ary relation symbols, x = (x0, . . . , xd) is a (d+ 1)-tuple
of first-order variables, and ψ is a quantifier-free first-order formula of signature sg(d; Σ)∪R
for some tuple of alphabets Σ = (Σ1, . . . ,Σk).

Such a formula involves two sorts of predicate symbols: those of sg(d; Σ) are called input
predicates and those of R are called guessed predicates.

It is proved in [13] that the above logic exactly characterizes NLINd
ca, the non-deterministic

counterpart of DLINd
ca. The ‘inclusion’ DLINd

ca ⊆ ESOd(∀d+1, arityd+1) immediately fol-
lows, but the converse inclusion is quite unlikely, since it entails DLINd

ca = NLINd
ca, which

in turn implies P = NP. Nevertheless, this engages us in looking for a logic characterizing
DLINd

ca inside the logic ESOd(∀d+1, arityd+1). A first restriction of this logic is naturally
suggested by the Grädel’s characterization of P already mentioned in the introduction:
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I Definition 12. ESO-HORNd(∀d+1, arity d+1) brings together formulas ∃R∀xψ among
ESOd(∀d+1, arity d+1) whose quantifier-free part ψ is a conjunction of Horn clauses of the
form3 α1 ∧ . . . ∧ αm → α0 such that:

each premise α1, . . . , αm is

either a guessed atom R(x0 + i0, . . . , xd + id) with R ∈ R and i0, . . . , id ∈ Z,
or an input literal I(t1 + i1, . . . , tq + iq) or ¬I(t1 + i1, . . . , tq + iq), with I ∈ sg(d; Σ),
t1, . . . , tq ∈ x, and i0, . . . , iq ∈ Z ;

the conclusion literal α0 is either a ‘constant’ – the boolean ⊥ or an input literal – or a
guessed atom4 of the restricted form R(x0, . . . , xd) with R ∈ R.

We will see that this new logic still contains DLINd
ca but that here again the converse

inclusion is unlikely, as argued in Sec. 5. Whence the necessity of a further restriction of the
logic, detailed in Def. 14. For now, let us give some motivation for this restriction.

The first-order part of an ESO-HORNd(∀d+1, arityd+1)-formula can be viewed as a
program whose execution, on a given picture structure taken as input, computes the guessed
predicates from the input ones. Consider for instance the Horn clause R(x − 2, y − 1) ∧
R′(x+ 1, y− 2)→ R(x, y) built on guessed predicates R and R′. It establishes a dependence
between the values of the guessed predicates (taken as a whole) at place (x, y) and their
values at place (x− 2, y − 1), on one hand, and at place (x+ 1, y − 2), on the other hand.
This notion is formalized by the definition below.

I Definition 13. Let Φ = ∃R∀x0, . . . , xdψ be in ESO-HORNd(∀d+1, arityd+1). A nonzero
tuple (i0, . . . , id) ∈ Zd+1 is an induction vector of Φ if there exists a Horn clause C in ψ and
two guessed predicates R,R′ in R such that C includes R(x0, . . . , xd) as its conclusion and
R′(x0 + i0, . . . , xd + id) among its hypotheses. The set of induction vectors of Φ is called its
induction system.

The logic involved in the characterization of DLINd
ca that constitutes the core of this

paper is defined as follows:

I Definition 14. A formula Φ ∈ ESO-HORNd(∀d+1, arity d+1) with induction system
S is said monotonic and we write Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1) if there exist
a0, . . . , ad ∈ Z such that each induction vector (v0, . . . , vd) ∈ S fulfils a0v0 + · · ·+ advd < 0.
This condition is called the monotonicity condition.

In other words, there exists a hyperplane a0x0 + · · · + adxd = 0, called a reference
hyperplane of S, such that each vector (v0, . . . , vd) ∈ S belongs to the same strict half-space
determined by this hyperplane, that means a0v0 + · · · + advd < 0. One also says that
S ⊂ Zd+1 satisfies the monotonicity condition w.r.t. the reference hyperplane.

We are now in a position to state formally the main result of the paper:

I Theorem 15. For d ≥ 1, DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1).

The two ‘inclusions’ underlying the above characterization are proved in Sec. 2 and 4.

3 We will always assume that conjunction has priority over implication.
4 Alternatively, in Horn formulas, ‘guessed’ predicates and ‘guessed’ atoms can be called more intuitively
‘computed’ predicates and ‘computed’ atoms.

CVIT 2016



23:6 Horn formulas and linear time on cellular automata

2 DLINca ⊆ mon-ESO-HORN

I Proposition 16. For d ≥ 1, DLINd
ca ⊆ mon-ESO-HORNd(∀d+1, arity d+1).

Proof. Let L ⊆ Σ(d) be a d-picture language in DLINd
ca. By Lemma 9, there exists a CA A =

(d,Q,N2, δ) of neighborhood N2 = {−2,−1, 0, 1, 2}d that recognizes L in time τ(n) = n− 1
with permanent state q0. Let J1, nK denote the interval of the n instants of the computation
of A on a d-picture of side n; in particular, the initial and final instants are numbered 1 and
n, respectively. We are going to construct a formula Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1)
that defines L, i.e., that expresses that the computation of A on a d-picture p accepts it. It is
of the form Φ ≡ ∃(Rs)s∈Q∀t∀cψ where c denotes the d-tuple of variables (c1, . . . , cd) and, for
s ∈ Q, the intended meaning of the guessed atom Rs(t, c) is the following: at the instant t,
the cell c is in the state s. For simplicity of notation, let us assume d = 1. Also assume
n ≥ 5. The quantifier-free part ψ of Φ is the conjunction of three kinds of Horn clauses:

1. the initialization clauses: for each s ∈ Σ, the clause min(t) ∧Qs(c)→ Rs(t, c);
2. five kinds of computation clauses that compute the state at instant t > 1 of any cell c

according to its possible neighborhoods for N2 = {−2,−1, 0, 1, 2} :

(i) c = 1; (ii) c = 2; (iii) general case c ∈ J3, n− 2K; (iv) c = n− 1; (v) c = n.

Let us consider the general case: for any 5-tuple of states (s−2, s−1, s0, s1, s2) ∈ (Q −
{q0, qa, qr})5, the clause(

Rs−2(t− 1, c− 2) ∧Rs−1(t− 1, c− 1) ∧
Rs0(t− 1, c) ∧Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

)
→ Rδ(s−2,s−1,s0,s1,s2)(t, c)

computes the state at any instant t > 1 of any cell c in the interval J3, n− 2K, which can
be tested by the use of ¬min() and ¬max() in the premises;

3. the accepting clause Rqr
(t, c)→⊥, which says that the computation does not reject, and

hence accepts, since by hypothesis each computation of A either accepts or rejects.

By construction, Φ belongs to ESO-HORNd(∀d+1, arity d+1) and the induction system
is {−1} × {−2,−1, 0, 1, 2}d, which has a reference hyperplane of equation t = 0. Hence,
Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1), which completes the proof. J

The proof of the converse inclusion, mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca, given

in Sec. 4, is much more elaborate. In order to give its main ideas which are essentially
of geometrical nature, we now present the inductive definition of a “toy” problem by a
monotonic Horn formula from which we will derive a cellular automaton that recognizes the
problem.

3 From the formula to the automaton: the example of palindromes

Let Palindrome(Σ) denote the language of palindromes over a fixed alphabet Σ.

3.1 A monotonic Horn formula defining the language of palindromes
Let us prove that Palindrome(Σ) is definable in mon-ESO-HORN1(∀2, arity 2). In addition
to the set of input unary predicates Input = {min,max, (Qs)s∈Σ} involved in the picture
structure that represents a word w = w1w2 . . . wn ∈ Σ∗, we need to consider three guessed
binary predicates symbols R=, R< and RnoPal. The first two are inductively enforced to
encode, respectively, the equality relation and the usual strict linear order over the domain
J1, nK. This is done with the clauses θ1, . . . , θ5 below:
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θ1: min(x) ∧min(y)→ R=(x, y);
θ2: ¬min(x) ∧ ¬min(y) ∧R=(x− 1, y − 1)→ R=(x, y);
θ3: ¬max(x) ∧R=(x+ 1, y)→ R<(x, y);
θ4: ¬max(x) ∧R<(x+ 1, y)→ R<(x, y);
θ5: R<(x, x)→ ⊥.

The (set of) clauses θ6 and θ7 below inductively define RnoPal as the set of couples
(x, y) ∈ J1, nK2 such that x < y and the factor wx . . . wy of the input word w is not a
palindrome. Then the clause θ8 forces w to be a palindrome:

θ6: R<(x, y) ∧Qs(x) ∧Qs′(y)→ RnoPal(x, y), for all s 6= s′ in Σ;
θ7: R<(x, y) ∧RnoPal(x+ 1, y − 1)→ RnoPal(x, y);
θ8: min(x) ∧max(y) ∧RnoPal(x, y)→ ⊥.

In conclusion, Palindrome(Σ) is defined by the following formula Φpal, over the structure
S(w) = 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉 associated with an input word w = w1 . . . wn:

Φpal ≡ ∃R=, R<, RnoPal∀x, y
∧
i≤8

θi.

Moreover, Φpal belongs to ESO-HORN1(∀2, arity 2) and has S = {(−1,−1), (1, 0), (1,−1)} as
its induction system (see Def. 13) Clearly, the system S satisfies the monotonicity condition
of Def. 14 with the line of equation −x+ 2y = 0 as its reference hyperplane. It follows:

I Proposition 17. Palindrome(Σ) ∈ mon-ESO-HORN1(∀2, arity 2).

3.2 From Φpal to Apal

It remains to transform the formula Φpal above into a one-dimensional cellular automaton
Apal that recognizes the language Palindrome(Σ). For sake of simplicity, we first ignore
the input literals and only take account of guessed atoms in the Horn clauses θi. Notice
that in each clause whose conclusion is a guessed atom R(x, y), R ∈ {R=, R<, RnoPal}, the
guessed atoms occurring as premises have one of the following forms:

R′(x, y), R′(x+ 1, y), R′(x+ 1, y − 1), R′(x− 1, y − 1).
Intuitively, if one regards the set Dt = {(x, y) ∈ J1, nK2 | −x + 2y = t} as the line of

cells of a one-dimensional CA at instant t, then the conjunction of the above clauses θi can
be regarded as the transition function of such a CA (see Fig. 1). More formally, in order
to introduce the time parameter t, we eliminate one of the variables, x for example, and
we regard the other variable, y, as the space variable c. That is, one makes the change of
variables5: t = −x+ 2y ; c = y.

Let us now explain how the automaton Apal to be constructed can take account of the
input literals. For each point (x, y) ∈ J1, nK2, we call state(x, y) the tuple of boolean values
of all input and output atoms on x and y. That is,

state(x, y) =

 min(x), min(y), max(x), max(y),
(Qs(x))s∈Σ, (Qs(y))s∈Σ,

R=(x, y), R<(x, y), RnoPal(x, y)

 ,

5 There is an analogy between our method and the so-called loop-skewing or polytope/polyhedron method
in compilation and parallel algorithms [6, 1, 7].
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23:8 Horn formulas and linear time on cellular automata

where the values R=(x, y), R<(x, y), RnoPal(x, y), are deduced by the Horn formula.
By the change of variables (x, y) 7→ (t = −x+ 2y, c = y) whose converse is the function

(t, c) 7→ (x = −t+ 2c, y = c), each input atom of the form I(x) becomes I(−t+ 2c) and each
input atom of the form I(y) becomes I(c). The CA we construct has to memorize in each
cell c at instant t the boolean values I(c) and I(−t+ 2c), for I ∈ Input. This can be realized
as follows:

(a) For each I(c) (former I(y)): the CA conserves on cell c the boolean value I(c) from an
instant t− 1 to the next instant t;

(b) For each I(−t+ 2c) (former I(x)): because of the identity −t+ 2c = −(t− 2) + 2(c− 1),
whence I(−t+ 2c) ≡ I(−(t− 2) + 2(c− 1)), the CA only has to move to each cell c at
instant t the boolean value I(−(t− 2) + 2(c− 1)) that is present at instant t− 2 on the
cell c− 1.

All in all, the state of each point P = (t, c) = (−x+ 2y, y) is determined by the states of
the following points (as shown on Fig. 2):

P1 = (−(x− 1) + 2(y− 1), y− 1) = (t− 1, c− 1), P2 = (−(x+ 1) + 2y, y) = (t− 1, c) and
P3 = (−(x+ 1) + 2(y − 1), y − 1) = (t− 3, c− 1), because of guessed atoms, and
P2 = (t− 1, c) and P4 = (t− 2, c− 1) because of the above items (a) and (b), respectively,
for input atoms.

Hence, the state of a cell c at instant t is determined by the states of: (i) cell c− 1 at
instant t− 1; (ii) cell c at instant t− 1; (iii) cell c− 1 at instant t− 3; (iv) cell c− 1 at
instant t− 2. Figures 1 and 2 below summarize the effects of the change of variables on the
induction system.6

It seems that we have achieved the design of an automaton of neighborhood {−1, 0} that
recognizes the language Palindrome(Σ) in linear time since t = −x+ 2y and x, y ∈ J1, nK
imply −n+ 2 ≤ t ≤ 2n− 1. However, it remains to describe both the initialization and the
end of the computation.

y

x

Dt

Figure 1 Induction system for
guessed atoms before the change of
variables.

t

c

Dt

Figure 2 Induction system after the change of vari-
ables for guessed atoms (left) and input atoms (right).

The result and the initialization of the computation:

The result of the computation is accept or reject according to whether S(w) does or does
not satisfy the formula Φpal, where S(w) is the structure 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉
associated with the input word w = w1 . . . wn. As this is testified by the clause θ8 =
min(x)∧max(y)∧RnoPal(x, y)→ ⊥, on the point of coordinates (x = 1, y = n) which become

6 At first glance, Conditions (iii) and (iv) seem to contradict the requirement that the state of any cell c
of a CA at instant t should be determined by the only states of its neighbour cells at the previous
instant t− 1. However, we can overcome the problem by using the ability of a cell to memorize at any
instant t its states at instants t− 1 and t− 2 with a finite number of states.
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after the change of variables (t = −x+ 2y = 2n− 1, c = y = n), the acceptance/rejection
can be read on the state of cell c = n at the instant t = 2n− 1 so that the final state qa or
qr is obtained at the following instant 2n.

The initialization of the computation requires some care in connection with the items (a)
and (b) of the previous paragraph, about the input bits:

(1) Initializing each I(c) (former I(y)): The state of each cell c ∈ J1, nK at the instant just
before −n + 2, i.e. at instant −n + 1, should store the boolean value I(c), for each
I ∈ Input.

(2) Initializing each I(−t+ 2c) (former I(x)): Because of the correspondence x = −t+ 2c or,
equivalently, c = (x+ t)/2, for all x ∈ J1, nK, the boolean value I(x) should be stored in
the state of the cell c = (x+ t)/2 at the maximal instant t < −n+ 2 such that (x+ t)/2
is an integer ; that is the cell c = (x − n)/2 at instant −n if x − n ≡ 0 (mod 2) and
c = (x− n+ 1)/2 at instant −n+ 1 if x− n ≡ 1 (mod 2): see Fig. 3.

The two configurations at the successive instants −n and −n+ 1 described in items (1)
and (2) are called initialization configurations. By construction, the space of both configura-
tions – their informative cells, i.e. those in non-quiescent states – is included in the interval
J−dn/2e+ 1, nK.

According to our conventions, the initial configuration of the automaton should be the
configuration Cw,q0 associated with the input word w, as defined in Def. 6. However, one
can design a routine which, starting from configuration Cw,q0 (with quiescent state q0),
computes the two initialization configurations by using the classical technique of signals in
CA’s (see [16]) as shown on Fig. 4. By a careful examination of this figure, we precisely
observe that this precomputation is performed on the interval of cells J−dn/2e+ 1, n+ 1K
during the time interval J−3n,−n+ 1K.7

We have now achieved the design of a cellular automaton Apal that recognizes in linear
time the language Palindrome(Σ) from the monotonic Horn formula Φpal that defines it.

4 mon-ESO-HORN ⊆ DLINca

The main problem we have to deal with in the general case as in the previous example is the
integration of the input to the computation of the CA to be constructed. For that purpose,
we will need the following technical lemma whose proof is given in Appendix A.2:

I Lemma 18. Let S ⊂ Zd+1 be an induction system satisfying the monotonicity condition
w.r.t. some reference hyperplane. Then, S has another reference hyperplane of equation
a0x0 + · · ·+ adxd = 0 where each coefficient ai (i ∈ J0, dK) is a non-zero integer.

We are now ready to prove the most difficult inclusion of Thm. 15:

I Proposition 19. For each d ≥ 1, mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca.

Proof. Let L be a d-picture language defined by a formula Φ ≡ ∃R1 . . . ∃Rr∀x0 . . . ∀xd ψ in
mon-ESO-HORNd(∀d+1, arity d+1) with an induction system S and a reference hyperplane

7 Notice that our numbering of instants is not canonical. It is only a convenient time scale for describing
our algorithm. In particular, the initial instant of the (pre)-computation of the upper part of Fig. 4 is
−2n when n is even and −2n− 1 when n is odd, and the initial instant of the two signals of the lower
part of Fig. 4 is −3n. We let the reader imagine the variants of Fig. 3 and Fig. 4 for the odd case.
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t

c

−n2 + 1 1 n

−n
−n+ 1

1

2n− 1

I(1)

I(2)

I(3)

I(4)

I(5)

I(6)

I(1)I(2)I(3)I(4)I(5)I(6)

Figure 3 Initial positions and translation vectors
for I(x) = I(−t+2c) (in red) and I(y) = I(c) (in blue)
when n is even (here n = 6). The gray parallelogram
is where the induction actually happens. The result
of the computation lies at the upper right cell.

t

c
−n2 + 1 1 n
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t

c
−n2 + 1 1 n+ 1

Figure 4 The linear precomputation of
I(x) can be done by stacking the informa-
tion of the cells in the odd columns, then
packing it to the left against a “wall” at
c = −n

2 + 1 (n even). The bottom figure
shows how the wall can be constructed in
linear time with two signals of slope − 1

3
(resp. −1) starting in cell 1 (resp. n+ 1) at
instant −3n.

a0x0 + a1x1 + · · · + adxd = 0, with coefficients ai ∈ Z∗ for all i ∈ J0, dK, as justified by
Lemma 18. For simplicity of notation, assume all the coefficients ai are positive.

First, for sake of simplicity, let us ignore the input literals and take account of the only
guessed atoms Ri(x0 + i0, . . . , xd + id) in the Horn clauses. Intuitively, if one regards the
hyperplane Ht = {(x0, x1, . . . , xd) ∈ J1, nKd+1 | a0x0 + a1x1 + · · ·+ adxd = t} as the set of
cells of a d-dimensional CA at instant t, then the conjunction of Horn clauses ψ can be
regarded as the transition function of such a CA. More formally, in order to introduce the
time parameter t, we eliminate one of the variables, x0 for example, and we regard the other
variables, x1, . . . , xd, as the space variables, i.e. the respective d coordinates c1, . . . , cd of a
cell. More precisely, one makes the following change of variables:(
t = a0x0 + · · ·+ adxd,

c1 = x1, . . . , cd = xd

)
, whose converse is

(
x0 = (t− a1c1 − · · · − adcd)/a0,

x1 = c1, . . . , xd = cd

)
.

As in Section 3.2, we associate with each point x = (x0, . . . , xd) ∈ J1, nKd+1, the tuple
state(x) of boolean values of all input and guessed atoms on x. That is,

state(x) =
(

(I(u))I∈Input
u(x

, (R(x))R∈Guess

)
.
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Here, we denote by Input (resp. Guess) the set of input (resp. guessed) predicates occurring
in the formula. Furthermore, u ∈ x means that u is any variable among x0, . . . , xd, while
u ( x means that u is any m-tuple built from those variables, where m ≤ d is the arity
of I. Besides, the values of the guessed litterals R(x), R ∈ Guess, are deduced by the Horn
formula ∀xψ.

If one ignores the input literals, the state of each point

P = (t, c1, . . . , cd) =

 d∑
j=0

ajxj , x1, . . . , xd

 is determined by the states of the points

Pv =

 d∑
j=0

aj(xj + vj), x1 + v1, . . . , xd + vd

 =

t+
d∑
j=0

ajvj , c1 + v1, . . . , cd + vd


for each vector v = (v0, . . . , vd) of the induction system S. In other words the state of the
cell (c1, . . . , cd) at instant t is determined by the states of the cells (c1 + v1, . . . , cd + vd) at
the respective previous instants t+

∑d
j=0 ajvj for the vectors v = (v0, . . . , vd) ∈ S. (Recall

that
∑d
j=0 ajvj < 0, by hypothesis.)

Let us now explain how the CA we construct can take account of the input atoms, i.e.
let us describe how the CA moves the input bits. The crucial point is that at least one of
the d+ 1 variables x0, . . . , xd does not occur in each input atom because the arity of each
input predicate is at most d. This missing variable is used as a ‘transport variable’ of the
values of the concerned input atom. As a generic example, let us consider the input atom
I(x0, x2, . . . , xd) where I is an input predicate of arity d and where the variable x1 does not
occur8. After the above-mentioned change of variables, this atom becomes

I( 1
a0

(t− a1c1 · · · − adcd), c2, . . . , cd).

Because of the identity (t − a1) − a1(c1 − 1) − a2c2 · · · − adcd = t − a1c1 − a2c2 · · · − adcd
the automaton only has to move to each cell (c1, c2, . . . , cd) at instant t the boolean value

I( 1
a0

((t− a1)− a1(c1 − 1)− a2c2 · · · − adcd), c2, . . . , cd)

which is stored at instant t− a1 in the state of cell (c1 − 1, c2, . . . , cd). In terms of cellular
automaton, the values of the input atom I(x0, x2, . . . , xd) are moved/transmitted by linear
parallel “signals” which cover all the inductive space J1, nKd+1.
Time and initialization of the computation : Since the d+ 1 original variables x0, . . . , xd lie in
J1, nK, the domain of the time variable t = a0x0+· · ·+adxd is JA,AnK, where A = a0+· · ·+ad.
As a consequence, the equation of the cell hyperplane at the initial instant (resp. final
instant) in the space-time diagram is t = A (resp. t = An)9.

The initialization of the input values (input “signals”) before the instant t = A is the most
delicate/technical part of the computation. It is sufficient to describe the initialization of the
values of the input “signals” for our generic example10 of input atom α ≡ I(x0, x2, . . . , xd)

8 As we have seen in previous examples the case where one variable among x2, . . . , xd does not occur
in an input atom is similar; the case where x0 does not occur or the case where the arity of the input
predicate is less than d are easier to deal with as we have also seen.

9 In the sequel, A always denote the sum a0 + · · ·+ ad. Also, recall that each ai is positive.
10Here again, all the other examples have either exactly the same treatment or a simpler one.
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or, equivalently, α ≡ I( 1
a0

(t− a1c1− · · · − adcd) , c2, . . . , cd), for which c1 (that is the missing
variable x1 of α) is the “transport” variable. To give the reader the geometric intuition of the
following construction in the general case we invite her to consult Fig. 3 and 4 of Sec. 3.2 in
the particular case of atom α ≡ I(x) ≡ I(−t+ 2c) of the formula that defines Palindrome.

Because of the correspondence t = a0x0 + a1c1 + a2x2 · · ·+ adxd or, equivalently,
c1 = (t−a0x0−a2x2 · · ·−adxd)/a1, with c2 = x2, . . . , cd = xd, for all (x0, x2, . . . , xd) ∈ J1, nKd,
the boolean value I(x0, x2, . . . , xd) should be stored – for the initialization of its input “signal” –
in the state of the cell (c1, x2, . . . , xd) such that c1 = (t0 − a0x0 − a2x2 · · · − adxd)/a1 at
the maximal instant t0 < A (depending on the tuple (x0, x2, . . . , xd)) such that the quotient
(t0 − a0x0 − a2x2 · · · − adxd)/a1 is an integer. Let i be the integer in J0, a1 − 1K such that
A− a0x0 − a2x2 · · · − adxd ≡ −i (mod a1). It is easy to verify that t0 = A− a1 + i. So, the
boolean value I(x0, x2, . . . , xd) should be stored/initialized at the instant t0 = A− a1 + i in
(the state of) the cell (c1, x2, . . . , xd) where c1 = (A − a1 + i − a0x0 − a2x2 · · · − adxd)/a1:
see Fig. 3.

Note that for the atom α ≡ I(x0, x2, . . . , xd), there are a1 distinct “initialization” config-
urations in the respective a1 hyperplanes Ht0 , where t0 = A − a1 + i with i ∈ J0, a1 − 1K,
according to the possible values of the function f(x0, x2, . . . , xd) = A−a0x0−a2x2 · · ·−adxd
modulo a1. Furthermore, one can verify that, by construction, the space of the “initialization”
configurations – their informative cells, in non-quiescent states – is included in a hypercube
of the form J−bn, bnKd, for some constant integer b > 0.

Pre-computation and end of computation: The initial configuration of a d-CA that recognizes
the d-picture language L should be the picture configuration Cp,q0 where p is the input
picture. Therefore, there should be a pre-computation starting from Cp,q0 that computes the
“initialization” configurations of the input atoms of Φ. By the classical technique of signals
of CA’s (see [16]) we have exemplified above in the case of Palindrome (see Fig. 4), this
can be done in linear space and linear time.

Similarly, the result of the computation should be given by the accept/reject state, qa or
qr, in the reference cell n = (n, . . . , n). This is realized in linear time by gathering in the
reference cell the possible contradictions deduced in cells for Horn clauses.

For lack of space, we have omitted to deal with loops in Horn clauses: the possible presence
of guessed atoms of the form R(t, c), i.e. without predecessor/successor functions, both as
conclusions and as hypotheses of clauses of monotonic Horn formulas seemingly contradicts
the “strict monotonicity” of the induction. We cope with this point in Appendix A.3. This
achieves the proof of Prop. 19 and Thm. 15. J

5 Optimality of our main result

It is natural to ask whether the monotonicity condition can be removed or weakened in our
main result. It is unlikely because it would imply (as proved in Appendix B.2) the following
time-space trade-off which would be a breakthrough in computational complexity:

I Proposition 20. If we had DLINd
ca = ESO-HORNd(∀d+1, arity d+1) or the weaker equality

DLINd
ca = weak-mon-ESO-HORNd(∀d+1, arity d+1) for a given d > 1, then any set of words

recognizable by a 1-CA in time nd on n cells would be recognizable by a d-CA in time O(n)
on O(nd) cells.

Here, weak-mon-ESO-HORNd(∀d+1, arity d+1) denotes the variant of the class
mon-ESO-HORNd(∀d+1, arity d+1) where the strict inequality a0x0 + · · ·+ adxd < 0 of the
monotonicity condition is replaced by the non-strict inequality a0x0 + · · ·+ adxd ≤ 0.
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Appendix

This appendix is divided into three sections. In Section A, we provide the referees with some
details omitted in proofs leading to the main result (Thm. 15). In Section B, we argue the
optimality of our result: a natural extension of the logic involved in the characterization of
DLINca is considered, for which Thm. 15 still holds. In contrast, removing or weakening
the monotonicity condition would threaten the validity of this theorem, as announced in
the conclusion (Sec. 5). Section C insists on the algorithmic scope of the main result.
We illustrate the whole process described before — expressing a given problem π with a
monotonic Horn formula Φπ, and then extracting from Φπ a linear time automaton Aπ for π
— with two natural problems more enlightening than the pedagogical case study (the set of
palindromes) used in the paper. More precisely,

Subsection A.1 gives a complete proof of the inclusion DLINca ⊆ mon-ESO-HORN
(Prop. 16). In order to complete the proof of the converse inclusion (Prop. 19), Subsec-
tion A.2 presents the proof of the technical Lemma 18. Subsection A.3 explains how to
adapt the program of the cellular automaton for coping with loops in Horn clauses.
Subsection B.1 proves the conservation of Thm. 15 for a natural generalization of mono-
tonic Horn formulas which allows permutations of variables in guessed atoms. In contrast,
Subsection B.2 establishes that the strict monotonicity feature of formulas characterizing
DLINca-languages is probably not optional (Prop. 20).
Section C presents the inductive definition of two new classical problems: the product
of boolean matrices by the usual inductive definition (C.1) and the product of integers
by Horner’s rule (C.2). In both cases, we derive from the monotonic Horn formula that
defines the problem a cellular automaton that decides it.

A Complements of proofs

A.1 Proposition 16: The first inclusion

We present here a more complete version of the proof of Proposition 16. In particular, we
present additionnal examples of computation clauses and accepting clauses for less general
cases, that were omitted in the core of the article due to space limitations.

Proposition 16. For d ≥ 1, DLINd
ca ⊆ mon-ESO-HORNd(∀d+1, arity d+1).

Proof. Let L ⊆ Σ(d) be a d-picture language in DLINd
ca. By Lemma 9, there exists a CA

A = (d,Q,N2, δ) of neighborhood N2 = {−2,−1, 0, 1, 2}d that recognizes L in time τ(n) =
n−1 with permanent state q0. Let J1, nK denote the interval of n instants of the computation
of A on a d-picture of side n; in particular, the initial and final instants are numbered 1 and
n, respectively. We are going to construct a formula Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1)
that defines L, i.e., expresses that the computation of A on a d-picture p accepts it. It is of
the form Φ ≡ ∃(Rs)s∈Q∀t∀cψ where c denotes the d-tuple of variables (c1, . . . , cd) and, for
s ∈ Q, the intended meaning of the guessed atom Rs(t, c) is the following: at the instant t,
the cell c is in the state s. For simplicity of notation, let us assume d = 1. The quantifier-free
part ψ of Φ is the conjunction of three kinds of Horn clauses:

(1) initialization clauses: for each s ∈ Σ, the clause min(t) ∧Qs(c)→ Rs(t, c);
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23:16 Horn formulas and linear time on cellular automata

(2) five kinds of computation clauses that compute the state at instant t > 1 of any cell c
according to its possible neighborhoods for N2 = {−2,−1, 0, 1, 2}, i.e. the following five
possible cases11 for n ≥ 4:

(i) c = 1; (ii) c = 2; (iii) general case c ∈ J3, n− 2K; (iv) c = n− 1; (v) c = n.

– general case (iii) c ∈ J3, n − 2K : for any 5-tuple of states (s−2, s−1, s0, s1, s2) ∈
(Q− {q0, qa, qr})5, the following clause whose premises imply n ≥ 5: ¬min(t) ∧ ¬min(c) ∧ ¬min(c− 1) ∧ ¬max(c) ∧ ¬max(c+ 1) ∧

Rs−2(t− 1, c− 2) ∧Rs−1(t− 1, c− 1) ∧
Rs0(t− 1, c) ∧Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

→ Rδ(s−2,s−1,s0,s1,s2)(t, c)

– case (i) c = 1 : for any 3-tuple of states (s0, s1, s2) ∈ (Q− {q0, qa, qr})3, the following
clause whose premises imply n ≥ 4:(
¬min(t) ∧min(c) ∧ ¬max(c) ∧ ¬max(c+ 1) ∧ ¬max(c+ 2) ∧
Rs0(t− 1, c) ∧Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

)
→ Rδ(q0,q0,s0,s1,s2)(t, c)

– case (ii) c = 2 : for any 4-tuple of states (s−1, s0, s1, s2) ∈ (Q − {q0, qa, qr})4, the
following clause whose premises imply n ≥ 4: ¬min(t) ∧ ¬min(c) ∧min(c− 1) ∧ ¬max(c) ∧ ¬max(c+ 1) ∧
Rs−1(t− 1, c− 1) ∧Rs0(t− 1, c) ∧
Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

→ Rδ(q0,s−1,s0,s1,s2)(t, c)

– clauses of cases (v) c = n and (iv) c = n−1 which are symmetrical to clauses of cases (i)
and (ii) above.

(3) the accepting clause Rqr
(t, c)→⊥ which says that the computation does not reject, and

hence accepts, since by hypothesis each computation of A either accepts or rejects.

Recall that the computation clauses of above Item (2) say nothing in case n < 4. That is
why specific clauses are needed for each of the cases n = 1, n = 2 and n = 3. For example,
for n = 3, add for each input word w = w1w2w3 ∈ Σ3 \ L the clause12

min(c) ∧ ¬max(c) ∧ ¬max(c+ 1) ∧max(c+ 2) ∧Qw1(c) ∧Qw2(c+ 1) ∧Qw3(c+ 2)→⊥

which “eliminates” the word w.
This ends the list of clauses of our formula. We let the reader convince herself or himself

that the formula Φ so obtained correctly defines the language L in case d = 1. It is easy
but tedious – because of notation – to generalize the formula to any dimension d > 1. In
particular, the number of kinds of computation clauses (Item (2) above) is 5d in the general
case.

Finally, notice that by construction Φ ∈ ESO-HORNd(∀d+1, arity d+1) and that its
induction system is {−1}×{−2,−1, 0, 1, 2}d, which has the reference hyperplane t = 0. This
implies Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1) and concludes the proof of Prop. 16. J

11Case (iii) does not occur when n = 4.
12Those clauses can be regarded as accepting clauses since none mentions the words w ∈ L ∩ Σ3 and

hence their conjunction globally defines L ∩ Σ3.
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A.2 Lemma 18: Existence of all-non-zero reference hyperplane
Lemma 18. Let S ⊂ Zd+1 be an induction system satisfying the monotonicity condition
w.r.t. some reference hyperplane. Then, S has another reference hyperplane of equation
a0x0 + · · ·+ adxd = 0 where each coefficient ai (i ∈ J0, dK) is a non-zero integer.

Proof. Without loss of generality, assume that the reference hyperplane of the induction
system S is of the form f(x0, . . . , xk) = a0x0 + · · · + akxk = 0, for 0 ≤ k < d, with the
integer coefficients ai 6= 0, i ∈ J0, kK Then, f(v0, . . . , vk) = a0v0 + · · ·+ akvk < 0 holds for
each vector (v0, . . . , vd) ∈ S, that means f(v0, . . . , vk) ≤ −1 since all the values involved are
integers. Define the positive integer

A = 1 + max(v0,...,vd)∈S(|vk+1|+ |vk+2|+ · · ·+ |vd|)

and consider the hyperplane of equation

g(x0, . . . , xd) = A(a0x0 + · · ·+ akxk) + xk+1 + · · ·+ xd = 0,

where each variable x0, . . . , xd has a non-zero coefficient. We claim that g(v0, . . . , vd) < 0
holds, for each vector (v0, . . . , vd) ∈ S. By hypothesis, a0v0 + · · ·+ akvk ≤ −1 holds; hence,
A(a0v0 + · · · + akvk) ≤ −A. This implies g(v0, . . . , vd) ≤ −A + |vk+1| + · · · + |vd|. Then,
g(v0, . . . , vd) ≤ −A+ max(v0,...,vd)∈S(|vk+1|+ · · ·+ |vd|) = −1 holds, by definition of A, and
g(v0, . . . , vd) < 0 as claimed. J

A.3 Proposition 19: Coping with loops in Horn clauses
The possible presence of guessed atoms of the form R(t, c), i.e. without predecessor/successor
functions, both as conclusions and as hypotheses of clauses of monotonic Horn formulas seems
to contradict with the “strict monotonicity’ of the induction. Let us now precisely explain
how to cope with this problem. Without loss of generality, one can assume – as it is easily
justified – that each clause of a monotonic Horn formula Φ is of either of the two following
forms (a) or (b):

(a) inductive clause α1 ∧ . . . ∧ αm ∧ R1(t, c) ∧ . . . ∧ Rp(t, c) → R0(t, c), p ≥ 0, where the
Ri(t, c) are guessed atoms over the same (d+ 1)-tuple of variables (t, c) and the αj ’s are
either input literals or guessed atoms of the form R(t− u, c1 + i1, . . . , cd + id) for some
induction vector (−u, i1, . . . , id), u > 0, of Φ;

(b) contradiction clause β1 ∧ . . . ∧ βm → β0 whose conclusion β0 is an input literal or the
constant ⊥, and the hypotheses β1, . . . , βm are either input literals or guessed atoms of
the form R(t−u, c1 + i1, . . . , cd + id) for some integers u, i1, . . . , id, with u ≥ 0, including
at least one guessed atom of the form R(t, c).

Notice that each inductive clause can be equivalently rewritten as

(a) α1 ∧ . . . ∧ αm → γ(t, c)
where γ(t, c) is the Horn clause R1(t, c) ∧ . . . ∧Rp(t, c)→ R0(t, c), the atoms of which are
guessed atoms over the same (d+ 1)-tuple (t, c).

In essence, a cell of the automaton that simulates Φ can evaluate “on the fly” the premises
of Horn clauses while updating its own state if said premises are of the form R(t, c). In order
to accomplish this, at each instant t− 1, the next step of A is divided into three successive
substeps:
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First substep: For each inductive clause α1 ∧ . . . ∧ αm → γ(t, c), evaluate its premise
α1, . . . , αm. Let θ(t, c) denote the conjunction of the conclusions γ(t, c) = R1(t, c)∧ . . .∧
Rp(t, c)→ R0(t, c) of the inductive clauses whose all the premises α1, . . . , αm evaluate
to TRUE;
Second substep: Compute13 the set of guessed atoms (R(t, c))R∈Guess that are consequences
of θ(t, c): by convention, the state of the cell c as instant t is

state(t, c) =
(

(I(u)) I∈Input
u({t}∪{c}

, (R(t, c))R∈Guess

)
;

Third substep: For each contradiction clause (b), evaluate its literals; reject if all the
premises of the clause evaluate to TRUE whereas its conclusion evaluates to FALSE.

B Generalizations

B.1 Theorem. 15: Allowing permutations of variables
In Def. 12 that defines ESO-HORNd(∀d+1, arity d+1)-formulas, we have assumed that variables
occur in the standard order x0, x1, . . . , xd in guessed atoms. In fact, guessed atoms with
variables in any order can be allowed: the definition of an ESO-HORNd(∀d+1, arity d+1)-
formula and of its induction system (Def. 12 and 13) can be naturally extended to “non
ordered” guessed atoms.

In the scope of this extension, a non-ordered guessed atom is a guessed atom of the form
R(xπ(0) + iπ(0), . . . , xπ(d) + iπ(d)), where π is a permutation of J0, dK. Likewise, the induction
vector associated with such a non-ordered atom is the tuple (i0, . . . , id) ∈ Zd+1, if this tuple
is nonzero.

We continue to assume that the only allowed form of a guessed atom that occurs as the
conclusion of a Horn clause is R(x0, . . . , xd). However, it should be clear that this convention
is not a real restriction: any Horn clause with non-ordered guessed atoms occurring both in
its hypotheses and its conclusion can be equivalently rewritten with an ordered atom as its
conclusion.

We claim that in this extended framework, Thm. 15 still holds.

Proof. (proof of the generalization of Thm. 15). Let us succinctly explain how general
guessed atoms with variables in any order can be replaced by “ordered” guessed atoms,
i.e., with variables in the standard order: x0, x1, . . . , xd. The trick consists in associating
to each guessed predicate R a new guessed predicate Rπ, for each permutation π of J0, dK,
and replacing each guessed atom R(xπ(0), . . . , xπ(d)) by the “ordered” atom Rπ(x0, . . . , xd).
More generally, each occurrence of an atom R(xπ(0) + iπ(0), . . . , xπ(d) + iπ(d)) is replaced by
Rπ(x0 + i0, . . . , xd + id). We also have to add some Horn clauses to ensure the pairwise
coherence of the (d+ 1)! predicates Rπ associated with the same guessed predicate R. Let us
explain in detail how to do this in the simple case d = 1. Let R denote the binary guessed
predicate associated with R for the inversion of its two arguments. Clearly, the mutual
coherence of R and R is ensured by the implication x0 = x1 → (R(x0, x1) ↔ R(x0, x1)),
which should be formally replaced by the conjunction of the two following Horn clauses where

13This can be realized by pre-computing a table by the classical deduction algorithm on propositional
Horn formulas (see e.g. [3]). Recall that the formula θ is shorter than our fixed formula Φ.
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guessed atoms are “ordered”:

x0 = x1 ∧R(x0, x1)→ R(x0, x1) and x0 = x1 ∧R(x0, x1)→ R(x0, x1).

Notice that we have used the equality relation which can be inductively defined as a guessed
predicate in either of the two following symmetrical ways :

in the increasing induction given by the Horn clauses min(x) ∧min(y)→ R=(x, y) and
¬min(x) ∧ ¬min(y) ∧R=(x− 1, y − 1)→ R=(x, y) with the induction vector (−1,−1) ;
in the decreasing induction given by the Horn clauses max(x) ∧max(y)→ R=(x, y) and
¬max(x)∧¬max(y)∧R=(x+ 1, y + 1)→ R=(x, y) with the induction vector (1, 1) which
is the opposite of the previous vector.

One chooses either the increasing induction or the decreasing induction according to
either vector (−1,−1) or (1, 1) belongs to the (strict) half-space chosen for the induction
system of the original Horn formula: exactly one of them belongs to this half-space14.

To suggest the general case, let us exhibit in the case d = 5 the following “Horn clause”
which ensures the coherence of a guessed predicate R (of arity 6) with its permuted predicate
Rπ for the permutation π = (0 7→ 1, 1 7→ 2, 2 7→ 0, 3 7→ 4, 4 7→ 3, 5 7→ 5), which is the
composition of the disjoint circular permutations (0, 1, 2) and (3, 4) :

x0 = x1 = x2 ∧ x3 = x4 →
(
R(x0, x1, x2, x3, x4, x5)↔ Rπ(x0, x1, x2, x3, x4, x5)

)
.

It is easy to generalize this example. However, here again we have introduced equalities
(or multiple equalities, e.g. x0 = x1 = x2), which are not allowed. They can be defined as
guessed predicates by an increasing or decreasing induction similar as above for the case
d = 1. We leave the details as an exercice to the reader. J

B.2 Proposition 20: Weak monotonicity is not an option
Proposition 20. If we had DLIN2

ca = weak-mon-ESO-HORN2(∀3, arity 3), then any
language L recognizable by a 1-CA in time n2 on n cells would be recognizable by a 2-CA
in time O(n) on O(n2) cells. More generally, for all integer d > 1, if we had DLINd

ca =
weak-mon-ESO-HORNd(∀d+1, arityd+1), then any language L recognizable by a 1-CA in
time nd on n cells would be recognizable by a d-CA in time O(n) on O(nd) cells.

Proof. Assume DLIN2
ca = weak-mon-ESO-HORN2(∀3, arity 3). Let L ⊆ Σ∗ be a language

recognized by a 1-CA A = (2,Q,N , δ) of neighborhood N = {−1, 0, 1} in time n2 on n cells
where n is the length of the input word. Let us associate to each word w = w1 . . . wn ∈ Σ∗
the 2-picture pw defined as follows:

pw :


J1, nK2 → Σ ∪ {q0}

(i, j) 7→
{
wi if j = 1
q0 otherwise

That is, pw is the n× n picture that is empty with the exception of its first column which
contains w. Define the 2-picture language Lsquare = {pw : w ∈ L}. The idea consists in folding
the space-time diagram n2×n of the accepting computation of A of any word w ∈ L by folding

14Notice the particular case where the reference hyperplane is the line of equation x− y = 0 to which the
vectors (−1,−1) and (1, 1) are collinear: then one can slightly modify the reference hyperplane by using
a similar technique as in the proof of Lemma 18.
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the time n2 as an “accordion” of n slices of length n: the set of instants of the computation
is the cartesian power J1, nK2 ordered as follows in a “accordion”, i.e. alternate increasing-
decreasing, mode: (1, 1), (1, 2), . . . , (1, n), (2, n), (2, n− 1), . . . , (2, 1), (3, 1), (3, 2), . . . , (3, n),
(4, , n), (4, n− 1), . . . For defining such a linear order, use the monadic predicate odd. (The
important thing is that the corresponding successor function on pairs in J1, nK2 is defined
“locally” using the “local” suc and pred functions and the odd, min and max predicates.) With
that idea it is easy but tedious to define Lsquare by a formula in Φ ∈ ESO-HORN2(∀3, arity 3)
that describes an accepting computation of w ∈ L corresponding to pw ∈ Lsquare. More
precisely, Φ has 3 first-order variables t1, t2, c on the domain J1, nK: the values of the couple
of variables (t1, t2) represent the n2 instants of the computation and the values of c represent
the n cells of the input (the workspace). It should be clear that the induction system of
Φ is S = {(0,−1), (0, 1), (−1, 0)} × {−1, 0, 1}. It satisfies the weak monotonicity condition
v0 ≤ 0, for each (v0, v1, v2) ∈ S. Then, Φ ∈ weak-mon-ESO-HORN2(∀3, arity 3), and, by
our assumption, it implies Lsquare ∈ DLIN2

ca. That means that Lsquare is recognizable by a
2-CA in time O(n). Equivalently, L is recognizable by a 2-CA in time O(n) on O(n2) cells
as claimed.

The proof of the general case, for any integer d > 1, is similar: use a generalization of
our accordion-folding technique. J

C Illustrations: Two other classical problems

In this section, we present the inductive definitions of the following decision problems by
monotonic Horn formulas in order to convince the reader that such a definition is a natural
step to design cellular automata that recognize/compute these problems:

Matrices-Product
Input : Three boolean matrices n × n, i.e. 2-pictures, A,B,C, of alpha-

bet {0, 1};
Question : Is C the product A×B ?

Integers-Product
Input : three positive integers a, b, c in binary notation15, such that a, b ≤ c.
Question : Have we a× b = c ?

C.1 Product of matrices
I Proposition 21. Matrices-Product is definable in mon-ESO-HORN2(∀3, arity 3).

Proof. The input is represented by the picture structure

S(A,B,C) = 〈J1, nK, A0, A1, B0, B1, C0, C1,min,max, suc, pred〉,

where A0, A1, B0, B1, C0, C1 are binary relations: the matrix A is represented by Ai =
{(x, y) ∈ 〈J1, nK2 : A(x, y) = i}, i ∈ {0, 1}, and similarly for B and C. The conjunction of
the following clauses (1-6) define by induction on the variable y the ‘cumulative’ ternary
predicates T1 and T0 whose intended meaning is

T1(x, y, z) ≡ ∃y′ ≤ y : A1(x, y′)∧B1(y′, z) and T0(x, y, z) ≡ ∀y′ ≤ y : A0(x, y′)∨B0(y′, z).

15We will make no distinction between a positive integer a = Σn
i=1ai2i−1, ai ∈ {0, 1}, and its binary

notation an . . . a1.
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For the basic case y = 1 when it gives 0, the clauses

(1) min(y) ∧A0(x, y)→ T0(x, y, z) and
(2) min(y) ∧B0(y, z)→ T0(x, y, z).

To inductively maintain the value 0, the clauses

(3) ¬min(y) ∧ T0(x, y − 1, z) ∧A0(x, y)→ T0(x, y, z) and
(4) ¬min(y) ∧ T0(x, y − 1, z) ∧B0(y, z)→ T0(x, y, z).

To introduce the value 1, the clause

(5) A1(x, y) ∧B1(y, z)→ T1(x, y, z)).

To inductively maintain the value 1, the clause

(6) ¬min(y) ∧ T1(x, y − 1, z)→ T1(x, y, z).

For the final result C = A×B, the clauses

(7) max(y) ∧ Ti(x, y, z)→ Ci(x, z), for i ∈ {0, 1}.

Clearly, the formula Φmp ≡ ∃T0, T1∀x, y, z ϕmp where ϕmp is the conjunction of clauses
(1),. . . ,(7) correctly defines Matrices-Product and belongs to mon-ESO-HORN2(∀3, arity 3)
since its induction system {(0,−1, 0)} trivially satisfies the monotonicity condition. J

Deriving the CA from the inductive formula

Now, in order to take account of the set of input predicates

Input = {A0, A1, B0, B1, C0, C1,min,max}

of the formula Φmp, let us make the following change of variables presented in the proof of
Lemma 18:

(t = x+ y + z, c1 = x, c2 = z), whose converse is (x = c1, y = t− c1 − c2, z = c2).

For each point (x, y, z) ∈ J1, nK3, let us call state(x, y, z) the tuple consisting of

the tuple of boolean values of the input atoms of ϕmp: min(y),max(y), Ai(x, y), Bi(y, z),
Ci(x, z), for i ∈ {0, 1}, that are true in the structure S(A,B,C),
completed by the guessed atom T0(x, y, z) or T1(x, y, z) deduced by the Horn formula
∀x, y, z ϕmp.

By our change of variables, each input atom Ai(x, y), Bi(y, z), Ci(x, z), min(y), max(y)
becomes Ai(c1, t− c1 − c2), Bi(t− c1 − c2, c2), Ci(c1, c2), min(t− c1 − c2), max(t− c1 − c2),
respectively. The 2-dimensional CA we construct has to memorize in each cell of coordinates
(c1, c2) ∈ J1, nK2 at instant t the tuples of boolean values of those atoms. This can be realized
as follows:

(a) For each Ai(c1, t− c1 − c2) (former Ai(x, y)): because of the identity t − c1 − c2 =
(t − 1) − c1 − (c2 − 1), the CA only has to move to each cell (c1, c2) at instant t the
boolean value Ai(c1, (t − 1) − c1 − (c2 − 1)) which is stored at instant t− 1 in the
cell (c1, c2 − 1).

(b) For each Bi(t − c1 − c2, c2) (former Bi(y, z)): similarly, the CA has to move to each
cell (c1, c2) at instant t the boolean value Bi((t− 1)− (c1− 1)− c2, c2) which is stored at
instant t−1 in the cell (c1−1, c2). Do similarly for min(t− c1− c2) and max(t− c1− c2).
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(c) For each Ci(c1, c2) (former Ci(x, z)): the CA conserves on cell (c1, c2) the boolean value
Ci(c1, c2) from an instant t− 1 to the next instant t.

All in all, the state of each point P = (t, c1, c2) = (x+ y + z, x, z) is determined by the
state of the point P1 = (x+ (y − 1) + z, x, z) = (t− 1, c1, c2) because of guessed atoms and
Item (c), and the states of the points P2(t− 1 , c1, c2 − 1) and P3(t− 1, c1 − 1, c2) because
of items (a) and (b), respectively.

Hence, the state of a cell (c1, c2) at instant t is determined by its state and the states of
cells (c1, c2 − 1) and (c1 − 1, c2) at instant t− 1. It seems that we have achieved the design
of a CA of neighborhood {(0, 0), (0,−1), (−1, 0)} that recognizes Matrices-Product in
linear time since t = x + y + z and x, y, z ∈ J1, nK imply 3 ≤ t ≤ 3n. However, we have
not described the “initialization” configuration, i.e. the configuration at instant t = 2 (the
instant just before instant 3) and the end of the computation. Designing the “initialization”
configuration requires some care in connection with the above points (a), (b) and (c) about
the input bits:

Initializing Ai(c1, t− c1 − c2), Bi(t− c1 − c2, c2), min(t− c1 − c2) and max(t− c1 − c2):
At the instant t = 2, for all c1 ∈ J1, nK and c2 ∈ Z (for all c2 ∈ J1, nK and c1 ∈ Z,
respectively) such that 1 ≤ 2 − c1 − c2 ≤ n, the boolean values Ai(c1, 2 − c1 − c2)
(Bi(2− c1 − c2, c2), min(2− c1 − c2) and max(2− c1 − c2), respectively) should be stored
in the state of the cell (c1, c2).
Initializing Ci(c1, c2): At the instant t = 2, for all (c1, c2) ∈ J1, nK2, the boolean values
Ci(c1, c2) should be stored in the state of the cell (c1, c2).

One easily observes that, by construction16, the space of the “initialization” configuration
is included in the square J2− 2n, nK2. This is linear space.

According to our conventions, the initial configuration of the CA should be the configur-
ation Cp,q0 associated with the input picture p = (A,B,C), as defined in Def. 6. However,
once again, we can design a routine which, starting from configuration Cp,q0 (with quiescent
state q0), computes the “initialization” configuration in linear space and linear time by using
the classical technique of signals in CA’s (see [16]).

The result of the computation (reject, i.e. existence of some contradiction, or accept, i.e.
no contradiction) can be read in the conclusion of clause (7) max(y) ∧ Ti(x, y, z)→ Ci(x, z),
for y = n and x, z ∈ J1, nK, i.e. in the cells (c1, c2) ∈ J1, nK2 at the respective instants
t = n+ c1 + c1 ≤ 3n. Here again, those informations can be communicated to (gathered in)
only one cell, that is (c1 = n, c2 = n) at instant 3n, to get in this reference cell the state qr
or qa at instant 3n+ 1.

We have now achieved the design of a CA that recognizes in linear time the problem
Matrices-Product from the monotonic Horn formula that defines it.

C.2 Product of integers
The problem Integers-Product also has a natural inductive definition by a monotonic
Horn formula from which one similarly derives a CA that decides the problem in linear time:

I Proposition 22. Integers-Product is definable in mon-ESO-HORN1(∀2, arity 2) and
hence belongs to DLIN1

ca.

16For example, the initialization of Ai(c1, 2− c1 − c2) is done on all cells (c1, c2) such that c1 ∈ J1, nK
and 1 ≤ 2− c1 − c2 ≤ n, that means 2− n− c1 ≤ c2 ≤ 1− c1, which implies 2− 2n ≤ c2 ≤ 0.
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Proof. The input is represented by the picture structure

S(a, b, c) = 〈J1, nK, A0, A1, B0, B1, C0, C1,min,max, suc, pred〉,

where A0, A1, B0, B1, C0, C1 are unary relations encoding the input tuple a = an . . . a1
(a =

∑n
i=1 ai2i−1, ai ∈ {0, 1}), b = bn . . . b1, c = cn . . . c1 (cn = 1) in a natural manner:

for each i = 0, 1, we set Ai = {x ∈ J1, nK : ax = i}, and similarly for the Bi’s and the
Ci’s. Besides, for each y ∈ J1, nK we denote by βy the integer with binary representation
bn . . . by+1by (prefix of b). That is, βy = bn2n−y + · · ·+ by+12 + by. Thus we get the relations:

βn = bn, β1 = b, and βy = 2βy+1 + by

that allow an inductive computation of ab = aβ1 (the so-called Horner rule):

Basic case (y = n) : aβn =
{

0 if bn = 0;
a if bn = 1.

For any y ∈ J1, n− 1K : aβy = 2(aβy+1) +
{

0 if by = 0;
a if by = 1.

In order to express the inductive computation in our logical framework, we need to define four
guessed binary predicates S0, S1, Q0, Q1. The intended meaning of S0, S1 is the following.
For i ∈ {0, 1} and x, y ∈ J1, nK, Si(x, y) holds if i is the bit of index x of the product aβy.
The induction above mentionned can be displayed as follows:

The basic case y = n is expressed by the clauses

(1) max(y) ∧B0(y)→ S0(x, y) and
(2) max(y) ∧B1(y) ∧Ai(x)→ Si(x, y), for i = 0, 1.

The general case 1 ≤ y < n with by = 0 is expressed by the clauses

(3) ¬max(y) ∧B0(y) ∧min(x)→ S0(x, y) and
(4) ¬max(y) ∧B0(y) ∧ ¬min(x) ∧ Si(x− 1, y + 1)→ Si(x, y) for i = 0, 1.

The general case 1 ≤ y < n with by = 1 is more elaborate because of the addition
aβy = 2aβy+1 + a. It uses the guessed predicates Q1, Q0 to encode the presence/absence of
a carry at some index in this addition. More precisely, Q1(x, y) (resp. Q0(x, y)) holds if this
addition has a carry (resp. no carry) at index x. The following clauses17 (i = 0, 1) say that
the least significant bit of the integer aβy = 2aβy+1 + a is the least significant bit of a; they
also express that there is no carry at the least index 1:

(5) ¬max(y) ∧B1(y) ∧min(x) ∧Ai(x)→ Si(x, y) ∧Q0(x, y).

The eight following clauses18 that correspond to the possible triples (h, i, j) ∈ {0, 1}3
describe each bit of index x ∈ J2, nK of the sum aβy = 2aβy+1 + a, and the corresponding
carry:

(6)
(

¬max(y) ∧B1(y) ∧ ¬min(x) ∧
Qh(x− 1, y) ∧ Si(x− 1, y + 1) ∧Aj(x)

)
→ Qi1(x, y) ∧ Si0(x, y)

17Here, for concision, conjunctions of atoms are allowed as conclusions of “Horn clauses”.
18The clauses (6) express the following equality: the two bits integer (carry, bit) of index x of the

sum aβy = 2aβy+1 + a is the sum of the following three bits: the carry of index x − 1 of the sum
aβy = 2aβy+1 + a; the bit of index x− 1 of aβy+1; the bit of index x of a.
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where i1i0 is the 2 bits integer that is the sum h+ i+ j: which is 00, 01, 10 or 11. Finally,
the clauses that define the result c = a× b = a× β1 are, for i ∈ {0, 1},

(7) min(y) ∧ Si(x, y)→ Ci(x).

Clearly, Integers-Product is defined by Φip ≡ ∃S0, S1, Q0, Q1∀x, y ϕip, where ϕip is
the conjunction of the Horn clauses above. Moreover, Φip belongs to ESO-HORN1(∀2, arity 2)
and has S = {(−1, 1), (−1, 0)} as its induction system, by clauses (4) and (6). (Notice that the
other clauses give no other induction vector.) This system trivially satisfies the monotonicity
condition with the line of equation x = 0 as its reference hyperplane. However, noticing that
here again as in the previous example (Matrices-Product), one of the variables, which
is y here, misses in this equation, one needs to modify the reference hyperplane so that its
equation involves all the variables. We can choose for that the line of equation 2x+ y = 0 as
constructed in the proof of Lemma 18, or alternatively, the line of equation x− y = 0 which
is simpler to manage since the absolute value of each of its coefficients is 1.

From the monotonic Horn formula Φip and the line of equation x− y = 0 as its reference
hyperplan it is quite easy to design a CA that recognizes in linear time the problem Integers-
Product with the general method. J
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