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Tractors and Twistors from conformal Cartan geometry: aggau

theoretic approach

[l. Twistors
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2 Aix Marseille Univ, Université de Toulon, CNRS, CPT, Maitke France

Abstract

Tractor and Twistor bundles both provide natural confolyr@ivariant calculi on B-Riemannian manifolds.
They have dterent origins but are closely related, and usually conttubottom-up through prolongation of
defining diferential equations. We propose alternative top-down géugeretic constructions, starting from
the conformal Cartan bundi@ and its vectoriaE and spinoriaE associated bundles. Our key ingredient is
the dressing field method of gauge symmetry reduction, walidws to exhibit tractors and twistors and their

associated connections as gauge fields of a non-standaté&ifar as Weyl rescaling symmetry is concerned.

By non-standardve mean that they implement the gauge principle of physiasate of a diferent geometric
nature than the well known fiierential geometric objects usually underlying gauge tlesorWe provide the

corresponding BRST treatment. In a companion paper we déaltractors, in the present one we address the

case of twistors.

Keywords twistors, diferential geometry, Cartan geometry, conformal symmetygg theory, BRST algebra.
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1 Introduction

Twistor theory probably needs no introduction. Let us jeshind that it was devised by Penrose in the 60’s and
early 70’s as an alternative framework for physics - and guargravity - in which conformal symmetry is pivotal
[1-4]. In twistor theory spinors quantities takes over the rdidemsors and the - conformally compactified -
Minkowski space is seen as secondary, emerging from a modafental twistor space hoped to be more fit for
guantization. A generalization to arbitrary pseudo-Rienian manifolds gave rise to the concept of local twistors,
which provides a conformal spinorial calculus. The staddeference text is Penrose and RindEr€]. Twistor
theory remains an active area of research in physics.

Tractors are perhaps not as well known from physicists, baenso from mathematicians. In the period of
renewal of diferential geometry sparked by Einstein’s General Relgfisitound 1922-1926 Cartan developed the
notions of moving frames arespace généralise¥ hese are manifolds with torsion in addition to curvatatassic
examples being manifolds endowed with projective and aoméb connections. Cartan’s work became widespread
and lead to the further development by Whitney and Ehresnsfmmonnections on fibered manifolds, known to
be the underlying geometry of Yang-Mills theories. In 192-Thomas developed, independently from Cartan, a
calculus on torsionless conformal (and projective) mdd#fpanalogous to Ricci calculus on Riemannian manifolds.
His work was rediscovered and expanded 7hwhere it was given its modern guise as a vector bundle called
standard tractor bundl@ndowed with a linear connection, thractor connection In recent years this conformal
tractor calculus has been of interest for physicists, spE8e9]

Tractors and twistors are closely linked. It has been ndttbat both define vector bundles associated to the
conformal Cartan principal bund@(M, H) - with H the parabolic subgroup of the conformal groB@(2, 4) *
comprising Lorentz, Weyl and conformal boost symmetriesd #nat tractor and twistor connections are induced
by the so-callechormal Cartan connectiowr, onP.

In standard presentations however, both tractors and tetstiors are constructed through the prolongation of
defining diferential equations defined on a Riemannian manifditjg): the Aimost Einstein equation and Twistor
Equation respectively. The systems thus obtained arerlise@ closed, so that they can be rewritten as linear
operators acting on multiplets of variables called par#déectors and global twistors respectively. The behavior o
the latter under Weyl rescaling of the underlying metriciieeg by definition and commutes with the actions of
their associated linear operators, which are then respéctialled tractor and twistor connections. The multiplet
are then seen as parallel sections of vectors bundles, abwitrand local twistor bundles, endowed with their
linear connections. For the procedure in the tractor casd/&geor [14] for a more recent and detailed review.
For the twistor case see the clas$f; pr [15] which generalizes the twistor construction to paracantalr(PCF)
manifolds. This constructive procedure via prolongatias been deemed more expliclts], more intuitive and
direct [7] than the viewpoint in terms of vector bundles associatef(#d1, H). Since it starts from1, g) to built
a gauge structure on top of it - vector bundles endowed witinections - we may call-it a “bottom-up” approach.

In this paper and its companion we put forward a “top-downgrapch to tractors and twistors that relies on
a gauge theoretic method of gauge symmetry reduction: #esihg field method. Given a gauge structure (fiber
bundles with connections) oM, this method allows to systematically construct partigyige-invariant composite
fields built from the usual gauge fields and a so-caflexbsing field According to the transformations of the latter
under residual gauge symmetries, the composite fieldsagispleresting properties. In a noticeable case they are
actually gauge fields of non-standard kind, meaning thatithelement the gauge principle but are not of the same
geometric nature as the usual Yang-Mills fields. The methedrfithe BRST framework.

The common gauge structure @l we start with is the conformal Cartan bund®AM, H) endowed with a
Cartan connection. If we add the vector bunBl@ssociated to the defining representafighof H, the dressing
approach allows to erase the conformal boost symmetry anectaver tractors and the tractor connection. This
has been detailled irlLp]. In this paper, we consider the vector bundle associatédetspin representatiofi* of
SA2,4) andH. From its dressing we shall obtain tractors and a genedatizistor connection induced by the spin
representation of the Cartan connection. When the norméeonnection is considered, we recover the standard
twistor connection. We stress that twistors thus obtaimdule being genuine standard gauge fields with respect

IFirstintroduced to physics, according ], by [11] and [L2; 13] in connection with Special Relativity and the invarianéé/axwell's
equations.



to (w.r.t) Lorentz gauge symmetry, are examples of nonestethgauge fields alluded to above w.r.t Weyl gauge
symmetry. This, we think, is a new consideration worth ensziag.

We don't want to force the reader to skip through the compapiaper [L6] to find definitions and notations,
much less to gather results. To the advantage of the readevpwid rather make the present paper as self-contained
as possible. But to do so we are bound to duplicate significacitground material in the first two sections. Then,
in section2 we review the basics of flerential geometry underlying gauge theories, includinga@egeometry, as
well as the BRST formalism, so as to fix notations and defineitapt notions.

In section3 we review the dressing field method of gauge symmetry reoluctiVe provide a number of general
propositions, proofs of which can be found in the corresprumdection of 16]. We emphasis, as a result of the
method, the possible emergence of gauge fields of a nonasthkohd which we characterize.

Finally, section4 starts with a brief review of the “bottom-up” procedure favidgtors. Then we describe
the conformal Cartan bundle as well as the group morphism H c SU(2,2) and the Lie algebra morphism
s0(2,4) — su(2, 2), rediscovering for ourselves results @7]. At last, we put this material to use in constructing
twistors and the twistor connection, “top-down” througlessing. In doing so we reproduce and generalize results
of [18] connecting the normal Cartan connection and the twistoneotion. Residual Lorentz and Weyl gauge
symmetries are analyzed both at the finite and BRST levehlllyjrwe give a geometrically clear way to recover
the results of 19] concerning a twistorial approach to Weyl gravity, and fatate a critic of its unification with
electromagnetism as proposed 20]. We summarize our results and gather our comments in owlesion5.

2 The geometry of gauge fields

Gauge theories are a cornerstone of modern physics bulttegorinciple that the fundamental interactions originate
from local symmetries called gauge symmetries. The mattiesnanderlying classical gauge theories is now widely
known to be the dferential geometry of fiber bundles and connections suppitadeby the dierential algebraic
BRST approach. In order to fix notations, we briefly recallbhsic features of these in this section.

2.1 Basic dfferential geometry

Let P(M, H) be a principal fiber bundle over a smogtidimensional manifold\, with structure Lie groupd and
projection mapr : ¥ — M. Given a representatiop,(V) for H we have the associated bun@e= P x, V, whose
sections are in bijective correspondence withquivariant maps off: ¢ € I'(E) & ¢ € A%P, p).

Given the right-actiorR,p = phof H on#, aV-valuedn-form g is saidp-equivariant ff R:g = p(h DB, Let
XV e VP c TP be a vertical vector field induced by the infinitesimal actibiX € ) = LieH on®. A form g is said
horizontal if3(X",...) = 0. A form g is said p, V)-tensorial if it is both horizontal and-equivariant.

Let w € AY(P,b) be a choice of connection & it is Ad-equivariant and satisfies(X") = X. The horizontal
subbundleHP c T#, the non-canonical complement @, is defined as kan. Given YN € H® the horizontal
projection of a vector fiely € TP, the covariant derivative of p-form « is defined byDa := da(Y", ..., YB).

The connection’s curvature for@ € A%(P, 1) is defined as its covariant derivative, but is algebrajycgiven
by the Cartan structure equatién= dw + %[w, w]. Given a p, V)-tensorialp-formsg on#, its covariant derivative
is a (p, V)-tensorial p + 1)-form algebraically given bipg = dB + p.(w)B. FurthermoreD?8 = p.(Q)B5.

Sinceg is a (o, V)-tensorial 0-form, its covariant derivative is the V)-tensorial 1-formDg = dy + p.(w)e.
The sectiony is said parallel ifDy = 0. One can show that the curvatuieis a (Ad h)-tensorial 2-form, so its
covariant derivative iDQ = dQ + adw)Q = dQ + [w, Q]. Given the Cartan structure equation, this vanishes
identically and provides the Bianchi identiB< = O.

Given a local sectiomr : U ¢ M — P, we have that*w € AY(U,D) is a Yang-Mills gauge potential,
o*Q e A%(U,D) is the Yang-Mills field strength ana*¢ is a matter field, whiler*De = do*¢ + p.(c*w)o*¢ is
the minimal coupling of the matter field to the gauge poténtia

The group of vertical automorphisms Bf Aut,(P) = {® : P — P | he H,®(ph) = ®(p)h andr o ® = @} is
isomorphic to the gauge grouff := {y P — HIRy(p) = h‘ly(p)h}, the isomorphism bein@(p) = py(p). The
composition law of Auf(P), @51 := @1 o @,, implies that the gauge group acts on itselfw,lﬁ/ = yilylyg.



The gauge groug ~ Aut,(P) acts on the connection, curvature apo\)-tensorial forms as,
W = P'w=yluy+yldy, Q=0'Q=y1Qy, 1)
¢’ = 0o =p(y e, and Og) = D'y’ = d*Dy = p(y *)De.

These ar@activegauge transformations, formally identical but to be cotually distinguished fronpassivegauge
transformations relating two local descriptions of the eagiobal objects. Given two local sections related via
o = o1h, either over the same open g¢tof M or over the overlap of two open sets N U», one finds

THw = h_lo'jcu h+hldh 0,Q = h_loﬁQ h, 2
oy =p(h™oje, and o3De = p(h o} De.

This distinction active vs passive gauge transformatisnefininiscent of the distinction fieomorphisms vs coor-
dinate transformations in General Relativity.

If the manifold is equipped with ar,(s)-Lorentzian metric allowing for a Hodge star operator, @n® is
equipped with an inner product ), then the prototypical Yang-Mills Lagrangianform for a gauge theory is

L(c*w, 0*¢) = 2 Tro*Q A (0™ Q)] + (0" Dy, x0* D) — U(c™* ),

whereU is a potential term for the matter field, as is necessary fersfpontaneous symmetry breaking (SSB)
mechanism in the electroweak sector of the Standard Model.

2.2 Cartan geometry

Connectionsy on P such as described, known as Ehresmann or principal connsctare well suited to describe
Yang-Mills fields of gauge theory. They are the heirs of aaptiotion of connection, best suited to describe gravity
in a gauge theoretic way: Cartan connections. A Cartan atiomerz on a principal bundleP(M, H), beside
satisfying the two defining properties of a principal cortimt, defines an absolute parallelism $n A bundle
equipped with a Cartan connection is a Cartan geometrydr@tas).

Explicitly, given a Lie algebra > b with dim g = dim T,# for which a group is not necessarily chosen, a Cartan
connection isz € AYP, ) satisfying: w(XY) = X, Riw = Adpr@ andw@p @ TpP — g is a linear isomorphism
Vp € P. This last defining property implies that the geometry ofthhaedle® is much more intimately related to
the geometry of the base spacetime manifdlig hence the fithess of Cartan geometry to describe gravitiien t
spirit of Einstein’s insight. Concretely one can show thatl ~ £ x g/b, and the image a&r under the projection
7 : g — g/h defines a generalized soldering foréh;= r(w). The latter, more commonly known as the vielbein
in the physics literature, implements (a version of) theiedence principle and accounts for the specificities of
gravity among other gauge interactions. The (feensorial curvature 2-forn@’ of w is defined through the
Cartan structure equatio®’ = dw + %[w, w]. Its g/h-part is the torsion 2-form® := ().

Given a Ady-invariant bilinear forny of signaturer(, s) ong/b, a (, s)-metricg on M is induced byw according
to g(X,Y) := n(c*0(X), o 0(Y)), for X, Y € TM ando : U c M — P atrivializing section.

In the casey admits a Ag-invariant splittingg = b + g/, the Cartan geometry is said reductive. Then one has
w = w + 0, wherew is a principalH-connection, and)’ = Q + ® with Q the curvature ofv. As an example, the
Cartan geometry withg(b) the Euclid and rotations Lie algebras is Riemann geomeitty tarsion.

Given a groupgs and a closed subgroug, G/H is a homogeneous manifold a®&>S G/H is aH-principal
bundle. The Maurer-Cartan formy; on G is a flat Cartan connection. S&(w;) is a flat Cartan geometry,
sometimes referred to as the Klein model for the geomé@®rys(), which is thus said to be of typ&(H).

Let V be a ¢, H)-module, i.e it supports g-actionp, and aH-representatiomp whose diferential coincides
with the restriction of they-action toh. The Cartan connection defines a covariant derivativeoo¥)ftensorial
forms. On sections of associated bundles, i.e@uuivariant mapg, we have:Dy = dp + p.(@)¢. As usual
D?%p = p.(Q)¢. On the curvature it gives the Bianchi identipQ’ = dQ’ + [w, Q'] = 0.

The gauge grou@ ~ Aut,(P) acts onw andQ’ as it does o andQ in (1). The definition of local represen-
tatives via sections @, local gauge transformations and gluing properties tHgnamreeds as in the standard case.



2.3 The BRST framework

The infinitesimal version of1) can be captured by the so-called BRSTatiential algebra. Abstracth2]] it

is a bigraded dferential algebra generated ky, Q,v, y} wherev is the so-called ghost and the generators are
respectively of degrees @), (20), (0,1) and (11). It is endowed with two nilpotent antiderivatiomsand s,
homogeneous of degrees @) and (01) respectively, with vanishing anticommutataf = 0 = s?, sd+ ds = 0.
The algebra is equipped with a bigraded commutatof]: = o — (-)9e9r1dedblg, Notice that if the commutator
vanishes identically, the BRST algebra is a bigraded corativet diterential algebra. The action dfis defined

on the generators bydw = Q — %[w, w] (Cartan structure equationdQ = [Q, w] (Bianchi identity),dv = y and

dy = 0. The action of the BRST operator on the generators givesshal defining relations of the BRST algebra,

sw=-dv-[w,V], sQ=[QV], and sv=-3[v,V]. (3)

Defining the degree (1) homogeneous antiderivatiah:= d + s and so-called algebraic connectian= w + v,
(3) can be compactly rewritten B = do + %[E, w] = Q. This is known as the “russian formula2Z; 23]
or “horizontality condition” R4; 25]. One is free to supplement this algebra with an elengeaf degrees ()
supporting a linear representatipnof the algebra as well as the action of the antiderivationshat upon defining
D := d + p.(w) one has consistent§?y = p.(Q)¢ and

sp=—p:(V)p, and sDyp=—p.(v)Dg. (4)

When the abstract BRST algebra is realized in the abd¥erdntial geometric setup, the bigrading is according
to the de Rham form degree and ghost degdeis, the de Rham dierential on (or M) and s is the de Rham
operator orH. The ghost is the Maurer-Cartan form @i so thatv € AY(H, LieH), and giver¢ € TH, v(¢) :

P — b € LieH [26]. So in practice the ghost can be seen as awmap — | € LieHH, a place holder that takes over
the role of the infinitesimal gauge parameter. Thus the firstrelations of 8) and @) reproduce the infinitesimal
gauge transformations of the gauge fielt)s While the third equation ind) is the Maurer-Cartan structure equation
for the gauge groug.

The BRST framework provides an algebraic way to charaaemitevant quantities in gauge theories, such
as admissible Lagrangian forms, observables and anomd#Jieantities of degreer,(g) that ares-closed, that is
s-cocyclese Z"9(s) := kers, are gauge invariant. Quantities of degrea) that ares-exact ares-coboundaries
€ B"9(s) := Ims. Sinces? = 0 obviouslyB"9(s) c Z"9(s) and one defines thecohomology grougH"9(s) :=
Z"9(s)/B"9(s), elements of which diiering only by a coboundarg = ¢ + sh, define the same cohomology class.
Non-trivial Lagrangians and observables must belonglt(s).> For example, given a properly gauge invariant
Yang-Mills LagrangiarL, sL = 0, the prototypical Faddeev-Popov gauge-fixed Lagrangian £ L + sh where
b is of degreef, —1) (since it involves an antighost, not treated here), artd belong to the samgcohomology
class inH™9(s). Wess-Zumino consistent gauge anomaklesguantum gauge symmetry breaking of the quantum
actionW = €5, sW = A - belong toH™(s).

3 Reduction of gauge symmetries: the dressing field method

As insightful as the gauge principle is, gauge theorie@esurom prima facie problems such as an ill-defined
guantization procedure due to the divergence of their padigral, and the masslessness of the interaction mediating
fields (at odds with the phenomenology of the weak interatibhese drawbacks are rooted in the very thing that
is the prime appeal of gauge theories: the gauge symmetncdtbe necessity to come-up with strategies to reduce
it. Broadly, two standard strategies to do so, addressithgreproblems respectively, are gauge fixings and SSB
mechanisms. Furthermore, similarly to what happens in ¢Relativity, it may not be straightforward to extract
physical observables in gauge theories. In GR, observalss be difeomorphism-invariant. In gauge theories,
observables must be gauge-invariant, e.g the abelian (El&Raraday) field strength or Wilson loops.

2|f suitable boundary conditions are imposed on the fieldhiettheory or if the spacetime manifold is boundaryless, éaeirement of
quasi-invariance of the Lagrangiasl, = de, is enough to ensure the invariance of the acti®r; fL. So that one may considét"9(s/d),
the ssmodulo-d-cohomology instead of the stristcohomology.



The dressing field approach is a third way, besides gaugeyfadd SSB, to systematically reduce gauge sym-
metries. As such it may dispense to fix a gauge, can be a subdtit SSB (see?[/-29]) and provides candidate
physical observables.

3.1 Composite fields

LetP(M, H) be a principal bundle equipped with a connectiswith curvatureQ, and lety be apo-equivariant map
on® to be considered as a section of the associated vector bEndl® xy V. The gauge group i#{ ~ Aut,(P).
The main content of the dressing field approach as a gauge sgrynraduction scheme is in the following

Proposition 1. If K and G are subgroups of H such that&G c H. NoteX c H the gauge subgroup associated
with K. Suppose there exists a map

u:P — G defined by its K-equivariance property ,R= k~1u, (5)

This map u, that we will call @ressing fieldallows to construct through f £ — # given by {p) = pu(p), the
following composite fields

W= ffw=utwu+utdy QY= f*Q = u'Qu=do" + 3", 0],
oli=fo=putye and D¢":= f'Dy = p(U)Dyp = de" + p.(w")e". (6)
which are-invariant, K-horizontal and thus project on the quotieabbundleP/K c P.

NB: The dressing field can begually definedy its K-gauge transformatiorns” = ®*u = y~tu, with y € K c H.
This together with I) makes easy to check algebraically that the composite fig€dare K-invariant indeed,
according to ¢U)? = ()Y = (7)Y Y = yu.3

Several comments are in order. First, in the event@at H then one has to assume that thébundle® is
a subbundle of &-bundle, andnutatis mutandishe proposition still holds. Such a situation occurs wifeis a
reduction of a frame bundle (of unspecified order) as the mhiject of this paper will illustrate.

Second, ifK = H then the composited field§)(areH-invariant, the gauge symmetry is fully reduced, and they
live onP/H ~ M. This shows that the existence of a global dressing field tsoa@ constraint on the topology
of the bundleP: a K-dressing field means that the bundle is trivial alongKhsubgroup® ~ £/K x K, while a
H-dressing field means its trivialitf ~ M x H.

Notice that despite the formal similarity witi)((or (2)), the composite fields5] are not gauge transformed
fields. Indeed the defining equivariance propeBydf the dressing field impliea ¢ #, andf ¢ Aut,(P). As a
consequence, in general the composite fields do not belaheg auge orbits of the original fieldg" ¢ O(y). The
dressing field method then shouldn’t be mistaken for a meng@éxing.

3.2 Residual gauge symmetry

Since in generaH/K is a coset, its action on the dressing fiali left unspecified and depends on specifics of the
situation at hand. Then in general nothing can be said of#imsformation properties of the composite fields under
H/K. But interesting things happenk is a normal subgrou < H, so thatH/K is a group that we noté for
convenience. The quotient bund®K is then aJ-principal bundle noted®” = #'(M, J). We discuss two most
important such cases in the following subsections.

3.2.1 The composite fields as genuine gauge fields

Proposition 2. Let u be a K-dressing field oR. Suppose its J-equivariance is given by

R]fu = Ad1u, with je J. @)

3We usey = {w,Q, ¢, ...} to denote a generic variable when performing an operatianapplies equally well to any specific one.



Then the dressed connectiat is a J-principal connection o#’. That is, for Xe j and j € J, " satisfies:
w(XY) = X and F§w“ = Adj10". Its curvature is given bp".

Also, ¢ is a (p, V)-tensorial map or?’ and can be seen as a section of the associated buridief® x; V. The
covariant derivative on such sections is given By=bd + p(w").

From this we immediately deduce the following

Corollary 3. The transformation of the composite fields under the resigiigauge symmetry is found in the usual
way to be

(CUU))" = @Y = ,y/—la)u,y/ + ,y/—ld,y/’ (QU))" — QY = ,y/—lQu ',

@) =07 =p( et and  (DYY) 1= ®7DY! = p(y DY, 8)
with @’ € Aut(P’) ~ 7 > v'.
NB: The relationu”” = y’~1uy’ can be taken as an alternative % és a condition on the dressing field
Further dressing operations In the case where7} holds so that the composite field8) @re K-invariant but
genuineJ-gauge fields with residual gauge transformation given®ytfie question stands as to the possibility to
perform a further dressing operation.

Suppose a second dressing figldor the residual symmetry is available. It would be definediBy = v’ v’

for v/ € 9. But in order to not spoil th& -invariance obtained from the first dressing fieldhe second dressing
field should satisfy theompatibility condition

Ru =u, forkeK. Oraltenatively: u”=u, forye«k. 9
In this case indeed:

(") = ()" = (YW =, ye k.
r =1y

() = (Xy/)uy,uw, = (X’l)ykluy Tl a yeg.

We see that the defining properties of the dressing figlaisdu’, together with their compatibility conditiong
and (L1) implies thatuu' can be treated as a single dressing#ar

¢ ’ ¢ 1 - r =1 r—1 — N\~
WUy = (uy) =@ tud)y = () Y ey Y T =y Tyl = (vy) .

The extension of this scheme to any number of dressing figttagghtforward, the details can be found 29].

3.2.2 The composite fields as a new kind of gauge fields

Before turning to this next case we need to introduce somaitiefis. LetG’ > G be a Lie group for which
representationso(V) of G are also representations Gf. Consider e&C*-mapC : Px J — G, (p, j) = Cp(j),
satisfying

Cp(iJ") = Cp(DCpi(1")- (10)
From this we have thap(€) = e, e the identity in both] andG’, andCp(j)~t = Cp;(j=1). The diferential ofC is
dCp.jy = dC(j)p +dCpjj : TP & T;J — Tc (G,
where kedC(j) = T;J and kerdC, = TP, with by definition

dC(j)p(Xp) := ECys(j)o.  ¢1 the flow of X € TP andgio = p,
dCy(Y)) = d%Cp(got)lt=o, ¢t the flow of Y € T Jandyi—g = |.

Notice thatCp(j)*dCipj) : TpP @ TjJ — TG’ = g’. We are now ready to state our next result as the following

7



Proposition 4. Let u be a K-dressing field . Suppose its J-equivariance is given by
(R]-‘u)(p) = j‘lu(p)Cp(j), with  je Jand C a map as above (12)
Thenw" satisfies
1. wh(X}) = cp(X) := FCp(€™)l=0,  for X € jand Xj € VpP".
2. Rw!" = C(j)""C(j) + C(j)~*dC(j).

So,w" is a kind of generalized connectiddform. Its curvatureQ" is J-horizontal and satisfies’J?R“ = C(j)~1QUC()).
Also,¢" is ap(C)-equivariant map, ; U= p(C(j)) "t " The first order dferential operator ¥ := d + p.(w) is @
natural covariant derivative on sugpt' so that D'¢" is a (o(C), V)-tensorial form: 3D“¢“ = p(C(j)) "t DYy and
(DY")p(Xp) = 0.

From this we can find the transformations of the compositdgighder the residual gauge grQiip= Aut,(¥’).
But first, we again need some preliminary results. Conslder Aut (') ~ v’ € 7, the residual gauge transfor-
mation of the dressing field is

(W) (p) := @ u)(p) = u(py'(P)) = ¥ ()~ u(P)Cp (' (D)) = (¥ uCH)) (p)- (12)

NB: This relation can be taken as an alternativeltt) @s a condition on the dressing field
We witness the introduction of the m&gy’) : " — G’, p— C, (¥'(p)). Itis given by the composition serie

o ]
P Spxp ZL 156,

pr— (p.p) — (p.Y'(P)) — Cp(¥'(P)).

Its differentialdC(y’) : Tp#" — Tc, ()G’ is given bydC(y’) = dC o (id®dy’) o dA. Notice that we have
Cop 40 dC(y")p : TpP" — TG = ¢'. Then, we have the following

Proposition 5. Given®’ € Aut,(P’) = v’ € J and a dressing field u satisfying1) or (12), the residual gauge
transformations of the composite fields are

(Y)Y = " w" = C(y)r'C(y) + C(y')dC(), QY)Y = QY = C(y) 1QUC(y),
(@) ="' =p(CH)Y)¢"  and (DY) = "D = p(C(y)") D", (13)

So, the composite field6) behave as gauge fields of a new kind, and implemergahge principle or principle
of local symmetry- of field theory in Physics.

NB: Under a further gauge transformatithe Aut,(P’) ~ n € 7, the dressing field behaves as

(F*(@°u)) (p) = (@ o ¥)*u) (p) = u(@(pr(p)) = u(@(P)(P)) = u(Py(PIN(P)) = n(P) ¥(P) u(P)Cp (¥(PI(P)) ,
= (7 uClm)(p).
or (¥*(@"W) (p) = (¥ "uCH)) (¥(P) =¥ (pn(p)) ™ u(P(P)) Cpnep) (¥(P(P)) »
= () ¥(p)" 1(p) - 1(P) " U(P)Cp (7(P)) - Cpmey (7(P) ¥(P(P))
= n(p)"¥(P) ™ u(P)Cp (7(P)) - Cpnp) ((P) ™) Cp ((PI(P)) = ()~ (D) u(P)Cp (¥(PI(P)) -

This secures the fact that the actidrs) of the residual gauge symmetry on the composites fields lish@baved
as a representation.



The case ofl-a-cocycles SupposeC, : J — G’ is defined byCp(jj’) = Cp(j) a;j[Cp(j)], for a : I — Aut(G’)

a continuous group morphism. Such objects appear in theseptation theory of crossed productfalgebras
and is known as a-&-cocycle(see BO; 31]).* Its defining property is an example dfQ), and everything that has
been said in this section -and will be said in the followingplkes wherC,, is a 1e-cocycle. As a particular case,
consider the following

Proposition 6. Suppose J is abelian and lep 8 : J — GL, be group morphisms whequp(j’) = B(j)"Ax(j")B(j)-
Then G := ApB: J — GL, is al-a-cocyle where the morphism: J — Aut(GL,) is the conjugate action through
the morphism Baj[g] = B(j)~}[g]B(j), with g€ GL,.

As a matter of fact, in the case of the conformal Cartan gegrraatd the associated tractors and twistors,
1-a-cocycles of this type do appear, willis the Weyl group of rescalings.

3.3 Application to the BRST framework

The BRST algebra encodes the infinitesimal gauge symmaditiy.td be expected that the dressing field method
modifies it. To see how, let us first consider the following

Proposition 7. Given the BRST algebré)-(4) on the initial gauge variables and the ghostev LieH. The
composite field§o) satisfy themodified BRST algebra

s = DW= —dV' — [0 V], QU= QU] s = - (W)eY, and sV = -1V (14)
with thedressed ghost W = u™vu+ utsu

This result does not rest on the assumption that u is a drgd$&iu.

Proof. The result is easily found by expressing the initial gaugéatde v = {w, Q, ¢} in terms of the dressed fields
x" and the dressing field, and re-injecting in the initial BRST algebrad){(4). At no point of the derivation does
suneed to be explicitly known. It then holds regardless ig a dressing field or not. m|

If the ghostv encodes the infinitesimal initigf -gauge symmetry, the dressed ghdstncodes the infinitesimal
residual gauge symmetry. Its concrete expression depentte®BRST transformation af

Under the hypothesiK c H, the ghost decomposesas Vvt + vy ;, and the BRST operator splits accordingly:
S= s+5y. If uis adressing field its BRST transformation is the infinitesirrersion of its defining transformation
property: ssu = —v;U. So the dressed ghost is

W= utvu+ utsu= (v + Vie)u + U (=i + sp50) = Ut U+ U s,

We see that the Li& part of the ghosty;, has disappeared. This means thgt' = 0, which expresses thk-
invariance of the composite fields)(

Residual BRST symmetry In generaly/t is simply a vector space, s:u is left unspecified and nothing can be
said in general of* and of the form of the modified BRST algebr&l). But following section3.2, if K < H then
H/K = Jis a group with lie algebrg/t = j. We here provide the BRST treatment of the two cases detailtds
section.

Suppose the dressing field satisfies the conditinwhose BRST version issu = [u, vj]. The dressed ghost
is then

W=utviu+utsu=utviu+ utuy - viu) = v (15)
This in turn implies that the new BRST algebra is

u

sw' = -D"; = —dv — [w", V], SQY=[Q%v], sp'=-p. ()", and sy =—3[w,v]. (16)

4In the general theory the gro is replaced by &£*-algebraA.



This is the BRST version ofg], and reflects the fact that the composites fiejsate genuings-gauge fields, in
particular thatw" is a J-connection.

A further dressing field’ would be defined bygu = —v;u’, and the necessary compatibility condition it needs
to satisfy issu’ = 0. The combined dressing/ is such thasud = —vuu, so that! = 0 andsyYY = 0. Again the
straightforward extension of the scheme to any number afSiing fields can be found i29)].

Suppose now that the dressing field satisfies the conditibyy (whose BRST version issu = —V;u + ucy(V;).
The dressed ghost is then

V= utvu+ utsu = utviu+ ut (-viu+ ugp(w)) = cp(w). (17)
This in turn implies that the new BRST algebra is

sw" = —dep(v) — [w', Cp(w)], Q" =[Q", o)), spt = —p.(Cp(Vi))¢", (18)
and  sGy(V§) = —3[Cp(v), Cp(v))].

This is the BRST version of1@), and reflects the fact that the composites fie@dr{stantiate the gauge principle
in a satisfactory way.

3.4 Local aspects and Physics

Until now we have exposed the global aspects of the dressipigpach on the bundle to emphasize the geometric
nature of the composites fields obtained, according to thengéquivariance properties displayed by the dressing
field. Most notably we stated that the composite field canveha a new kind of gauge fields.

But to do Physics we need the local representatives on ansyfesetZ{ ¢ M of global dressing and composite
fields. These are obtained in the usual way from a local sectiol/ — P of the bundle. The important properties
they thus retain is their gauge invariance and residual @&agsformations.

If it happens that a dressing field is defined locally@rfirst, and not directly orP, then the local composite
fields y" are defined in terms of the local dressing fialdnd local gauge fieldg by (6). The gauge invariance
and residual gauge transformations of these local comgbsitls are derived from the gauge transformations of
the local dressing field under the various subgroups of tbel lgauge grougH,. according to £V)* = (y")*. The
BRST treatment for the local objects mirrors exactly the gien for the global objects.

This being said, not& = o*w, F = ¢*Q for definiteness but keapandy to denote the local dressing field and
section. We state the final proposition of this section,idgakith gauge theory.

Proposition 8. Given the geometry defined by a bun#lieM, H) endowed witho and the associated bundle E,
suppose we have a gauge theory given by the prototygigginvariant Yang-Mills Lagrangian

L(A ¢) = 3 Tr(F A =F) + (Dg, =Dy) — U(ll¢l)),

wherellg|| := (@)% If there is a local dressing field ul{ — G c H with %,..-gauge transformation’u= y~1u,
then the above Lagrangian is actually7d../K..-gauge theory defined in terms 4f,.-invariant variables since
we have

L(A, @) = L(AY, ¢") = 3 Tr(F" A «FY) + (DY, «D"e") — U(llg"l)
by a mere change of variables.

Proof. The result follows straightforwardly from th#-invariance of the initial Lagrangian. Sin¢€A”, ¢?) =
L(A, ¢) fory : U — H, holds as a formal property &f, it follows thatL(AY, o) = L(A,¢)foru: U - Gc H. O

Notice that sincau is a dressing fieldy ¢ H,,. so the dressed Lagrangi&ugA", ¢") ought not to be confused
with a gauge-fixed Lagrangidn(A?, ¢?) for some chosew € H,, even if it may happen that = u.A fact that
might go unnoticed. As we've stressed in the opening of ee&jthe dressing field approach is distinct from both
gauge-fixing and spontaneous symmetry breaking as a mesduce gauge symmetries.
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Let us highlight the fact that a dressing field can often bestanted by requiring the gauge invariance of a
prescribed “gauge-like condition”. Such a condition isegiwhen a local gauge field(often the gauge potential)
transformed by a fieldi with value in the symmetry groupl, or one of its subgroups, is required to satisfy a
functional constraintZ(y") = 0. Explicitly solved, this makes a function ofy, u(y), thus sometimes calldfitld
dependent gauge transformatiodowever this terminology is valid if and only if{y) transforms under the action
of y € Hee asu(y)” = ulx?) = ytu(y)y, in which caseu(y) € H,.. But if the functional constraint still holds
under the action o4, or of a subgoup thereof, it follows that)"" = " (or equivalently thasy" = 0). This in
turn imposes that” = y~1u (or su= —vu) so thatu ¢ H, but is indeed a dressing field.

This and the above proposition generalizes the pioneedieg of Dirac B2; 33] aiming at quantizing QED by
rewriting the classical theory in terms of gauge-invarieariables. The idea was rediscovered several times, early
by Higgs himself B4] and Kibble B5]. The invariant variables were sometimes ternichc variables[36; 37]
and reappeared in various contexts in gauge theory, suclEBJ &3], quarks theory in QCDJ9], the proton spin
decomposition controversyi(-42] and most notably in electroweak theory and Higgs mechafizma43-49].
Indeed, propositior8 applies to the electroweak sector of the Standard Model fausl irovides an alternative to
the usual textbook interpretation of the Higgs mechanistarims of spontaneous symmetry breaking, 28e29].

The dressing field approach thus gives a unifying and ciadfframework for these works, and others concern-
ing the BRST treatment of anomalies in QFA3] 50], Polyakov’'s “partial gauge fixing” for R-quantum gravity
[51; 52] or the construction of the Wezz-Zumino functionn&8J. It is the aim of this paper and its companion to
show that both tractors and twistors can also be encompéagsinis approach, which furthermore highlights their
nature as gauge fields of a non-standard kind. The case abtwis dealt with in the next section.

4 Twistors from conformal Cartan geometry via dressing

Due to the important progress of the last twenty years, tme twistor is now more general than it used to. Twistor
theory for various dferential geometric structures has been devised, e.g facpaformal manifolds in15]. And
the reference texBH] defines it for any parabolic geometry.

However, as mentioned in our introduction, initially thadter bundle was devised for conformal manifolds and
constructed via prolongation of a definindtdrential equation. A procedure deemed more explicit fazudational
purposes than the bundle constructids][ We briefly review this procedure in the following subseati so that
the reader can compare with the derivation via the dressitd)fiethod in the next.

4.1 Bottom-up construction via prolongation of the Twistor Equation: a reminder

We essentially follow the expositions and use the notatidfi§] section 69, and [L5] section 61. But first we need
to remind how points of Minkowski spadé := (R*, n) are represented as hermitian matrices and how the actions
of the Lorentz group and Lie algebra are represented. THidguseful latter on.

Let x = x2 the column vector representing, in abstract index notatlw® coordinates of a point id w.r.t any

.....

s0(1,3) = {s€ GL4(R) | s + ns = 0} acts likewise:x' = sx— X2 = .
Consider{aaAA'}a: 2 2 basis of Z 2 hermitian matrices Herm(Z) = {M € GL,(C) | M* = M}, wherex is
the operation of transposition-conjugation. As vectorcegav and Herm(2C) are isomorphic via

M — Herm(2 C),

X=X X=X ::Xaa'aAA :%(

X0+ x3 xl—ixz). (19)

x+ix?2 xX0-x3

Upper case Latin letters are Weyl spinor indices, takingiesl0 and 1. The spacetime interval is then given by
IX[> = 4 det(). The action o8Q(1, 3) onx preserving; is represented by the action®E(2, C) on x preserving det:
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SQL3)xM— M, SL(2,C) x Herm(2 C) — Herm(2 C), 20
(S.%) > SX = (S.%) - x5 (20)

Since S and S represent the same Lorentz transformation, the homomsp8(L, 3) — SL2,C)is 1 : 2
covering. Itis a spin representation of the Lorentz groupe @&ction oko(1, 3) is likewise represented by the action
of s1(2, C):

s0(1,3) XM — M, sl(2,C) x Herm(2 C) — Herm(2 C), 21
(s, X) — sX = (§X) — SX+ XS @D

Now, to construct twistors, one starts with a 4-dimensiaraiformal manifold M, c) with ¢ the conformal
class of the Levi-Civita connection. Tensorial indicegresented by lower case Greek indicgs/...), can be
converted to Minkowski indicesa(b, . ..) via a tetragvierbein fielde?, (related to a choice of metrig € c). Then
Minkowski indices can then be converted into spinor indig®4/, BB, ...) via the isomorphism19). One then
defines the Twistor Equation as

VA0 w® =0, orequivalently as Vaxw® - 368 Veaw© =0 (22)

whereV is the Levi-Civita connection associated to a choice of imeire ¢ andw® : M — C? is a Weyl spinor.
This is the diferential equation to be prolonged and recast as a systerfiarditial equations. To do so one defines
the intermediary dual spinor variabtg, := iZVCA/wC so that the Twistor Equation is

VAA/a)B + iéiﬂA/ =0. (23)

One only has to find a constraint equationmn to close the system. This is done by applyM@gain, and after
some algebra equatiofid) is replaced by the linear system

VAA/(UB + i5E7TA’ = O, VAA/TIB/ - iISAA/BB/a)B = O, (24)
wherePaagg =~ Pap i= —3 (Rab - —Rgab) is the Schouten tensor. This system can be rewritten as tiom ad a
linear operatorVAA, on the bi-spinoZ® = (wB, 7n) € C*
B 0 i58) (B
VI Z'=0, =  Van [‘“ )+[ — A][‘“ ): 0. (25)
g —IPaage 0 )\ 7o

Given the Weyl rescaling of the metr@ = 7Z2g, after some algebra one finds that the connection changes as
VAAfXC VAA/XC+6CTDA/XD and the Schouten tensor changeﬁ’,a,sBB, Paneg + VaaTee — Tag Taa, With

Yan := Z19anz (Ta := dalnZ). So byrequiring the conformal invariance of the first spinor component, oxesfi

the conformal transformation of the second spinor compbnen

ot =

: , ot 1 0)fo?
—~ oA Or in matrix form, =l = “ . (26)
n =aa HITanw". A iTaxy 1)\7a

This, one may consider as a gauge transformation say#varicbi-spinorsZ® = (w”, 7a) gauge-related by2@),
calledtwistors are considered as sectionsA of a vector bundle overc] with fiber C*: thelocal twistor bundleT.
With still more algebra and the relatiofhy Xcr = VaaXer — ToraXa, one finds that this gauge equivalence
holds also for the bi-spinor defined b34)
(VAA’(-UD I6E7Z'A/) ) _ [ 1 0)[ VAA’(UD + iézﬂ'A’ ) (27)

- — . — B
(Vanme — |PAA’BB’CUB) iTpp Vaanp — iPaxprw
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Sothe linear operatcﬁ‘/l ~ (25) defines a covariant derivative arcalled the twistor transport dwistor connection
A twistor satisfyingVLA,Z“ = 0 is a global twistor and coincides with the notion of twistam which Penrose
wanted to derive Minkowski space.

There is furthemore a well defined bilinear form on twistdrZ’ € I'(T) defined by
2,2y .= nZa)'A + cuA'*an,. (28)

Indeed it is invariant under Weyl rescalix@, Z’) = (Z, Z’), as can be verified vi@6). One also checks vi2p) that,
like a Levi-Civita connection, the twistor connection mags the metric thus defined sifég(Z, 2’y = 2V'Z,Z').
In physics, thehelicity of a twistorZ, usually noteds, is defined as half its norm{Z, Z)=2s.

The commutator of the twistor connection definesltoal twistor curvatureK,

W 0 (o
[VT, VT] Z=KZ= (—i6 —W*) (n)’ (29)

whereC = VP is the Cotton tensor, and/ is the Weyl tensor. From this one sees immediately that th&tdw
connectionVZ is flat if and only if (M, c) is conformally flat.

This is how is constructed the local twistor bundleendowed with the twistor connectiof’, bottom up
from the Twistor Equation on a conformal manifold(c). This approach, while presenting the advantage of
being explicit, involves some amount of computation in orwederive the basic objects and their transformation
properties. In the next section we lay our case that objestg much like these can be recovered with much less
computation, top-down from a gauge structure ovévia the dressing field method. By doing so, the nature of the
twistors and twistor connection as gauge fields of the nanektrd kind described in secti@m2.2is made clear.

4.2 Top-down gauge theoretic approach via dressing

The gauge structure on spacetichéthat we start with is the conformal Cartan geometry and is®eiated spin
bundle. We describe it in the following subsection, and tlessing field method is applied in the next.

4.2.1 The conformal Cartan bundle and its spin vector bundle

Since we are ultimately interested in twistors, we are corexwith 4-dimensional base manifold4 despite the
fact that the conformal Cartan bundle can be defined for déioar> 3. The conformal Cartan geometr, (@)
is said modeled on the Klein moddb(H) whereG = PSQ2,4) = {M € GLg(R) | MTEM = X, detM = 1} / + id

_ 0 0-1 . . . .
with X = ( olg % ) n the flat metric of signature (B), andH is a parabolic subgroup such that the Homogeneous

spaceG/H =~ (St x S%)/Z2 is the conformal compactification of Minkowski spasé, The structure group of the
conformal Cartan bund&(M, H) comprises Lorentz, Weyl and conformal boost symmetrieistas the following
matrix presentationd4; 55]

z 0 OY1 r 3t
H=KyKy={l00 S 00 1 rt ‘zeW::Rj,Sesqm),reR“*.
0o o0ozYylo 0o 1

Here! stands for thej-transposition, namely for the row vectorone hastt = (rp1)T (the operation” being
the usual matrix transposition), aid* is the dual ofR*. ClearlyKq ~ CO(1, 3) via (S,2) — zS, andKj is the
abelian group of conformal boosts. The corresponding Igelaas ¢, b) are gradedd6]: [gi, g;] < gi+j, i, ] =0, %1
with the abelian Lie subalgebras_ [,g 1] = 0 = [g1,91]. They decompose respectively @s= g 1 ® go ® g1 =
R* & co(1,3) ® R* andh = go ® g1 =~ ¢o(1, 3) ® R*. In matrix notation we have,

e p O e p O
g=1{lt s p'll(s—el)e @3, 7eR* peR*i>p={|0 s p'|[},
0 ot —¢

0 0 -¢
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with then-transpositionr! = (57)" of the column vector. The graded structure of the Lie algebras is automatically
handled by the matrix commutator.

The Cartan bundl¢® is then endowed with the conformal Cartan connection, whosa representative on
U c Misw e AU, g) with curvatureQ € A%(U, g). In matrix representation

a P 0 f C O
=0 A P, and Q=do+z?=|0 W C|.
0 ¢ -a 0 O —f

The soldering part ofr is6 = e- dx, i.e 6% := €,dx, with e = €%, the so-called vierbein or tetrad fieldA metric
g of signature (13) on M is induced fromy via @ according tag(X, Y) := 5 (8(X), 8(Y)) = 6(X)"6(Y), or in a way
more familiar to physicistg := e'ne — Ou = eﬂanabebv.

It should be noted that the gauge structyfedf) on M is not equivalent to a conformal class of metrics
Indeed, the action of the local gauge gratp. onw induces a conformal class of metrics via its soldering foautt,
the degrees of freedom af compensated for by the gauge symmesfy, still amounts to more than 9 [c].

But there is a way to make this Cartan geometry equivalentcmnéormal manifold M, ¢). In a way similar
to the singling out of the Levi-Civita connection among alklar connections as the unigue torsion-free and metric
compatible connection, one can single out the so-caltechal conformal Cartan connecticar, as the unique one
satisfying the constrain® = 0 (torsion free) andV3,,4 = 0. Together with thg_;-sector of the Bianchi identity
dQ + [w, Q] = 0, these constraints implfy = O (trace free), so that the curvature of the normal Cartam&ction

0C O ) . . .
reduces tq, = (0 w ¢ ) From the normality conditiohV?,54 = O follows thatP has components (in thiebasis
000

of Q*(U)) Py, = —% (Rab - %Uab)a whereR andR,, are the Ricci scalar and Ricci tensor associated with thad-f
R = dA+ AZ. In turn, from this follows thaWW = R+ 6P + P'¢' is the well known Weyl 2-form. By the way, in the
gaugea = 0,C := dP + PA = DP looks like the familiar Cotton 2-form.

The gauge structure”( @, ) is indeed equivalent to a conformal class of metram M. However, it would be
hasty to identifyA in @ or @, with the spin connection one is familiar with in physics, daych way of consequence
to takeR := dA+ A? andP as the Riemann and Schouten tensors. Indeed, contrary ¢éatetipnsA is invariant
under Weyl rescaling and neithBrnor P have the known Weyl transformations. It turns out that ormevers the
spin connection and the mentioned associated tensors fbatyaadressing operation. Sek].

Spin representation In the same way that there is a spin representaB6(L, 3) 2 SL(2,C) of the Lorentz

group, there is a spin representation of the conformal g&Q(2, 4) 12 SU(2, 2), with the special unitary group
SU(2,2) = {M € GLy(C) | M"ZM = I, detM = 1} with £ = (§ §). The latter gives by restriction a representation

12 — . . . .
of the structure groupl — H. We describe the latter in matrix notation as

= e d = = — s 9 P} ’
0™ 0™ 0 V4 1/28 0 I

where we used?() and the explicit isomorphism
R* — Herm(2 C),

r=xX=xnmr:=xXoy-Xoi =

%( X0 — x3 —x1+ix2). (31)

x-ix2 XX+ x3

Using (19), (21) and @1), the Lie algebra morphisen(2,4) = g — su(2, 2) = g is then explicitely given by

T (=

- S ¢p1 e R,s€e sl(2,C) andr,p € Herm(2 C)} ODh=go+01. (32

5 Notice that from now on we shall make use &f to denote Greek indices contractions, while Latin indicestraction is naturally
understood from matrix multiplication.
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The graded structure gfimplies that
_ 0 0\ (0 —ip\| _(-pt 0)_(-(@p)s+r1) 0 _
o2 6 (T 3-(O5 ™ gl

so that ¢p)o € sl(2,C) andpr € R is a scalar product. Clearly, ; andg; are abelian. Relation$() and @2)
reproduce in a handy and readable way some of the result§of [

The complex representation space @mandH is C*. So, one may form the vector bundie = P x5 C*
associated to the Cartan bundéM, H). A section ofE is aH-equivariant map o® whose local expression is

Y Uc M- C* given explicitely as column vectors y = (Z) with 7, w € C? dual Weyl spinors

The covariant derivative induced by the Cartan connec'ﬂ';dﬁ/j = dy + @y, SO that52¢/ = £_2¢//. The spinorial
conformal Cartan connection and its curvature read

= —(A*.—_a/z]l) P ) and g—zz(—(W*—f/z]l) -iC
160 A-23fLl

1c] W—1p1)
The group metric naturally defines an invariant bilinear form on section&ogiveny, ¢’ € I'(E) one has

p— ]1 /
W'y =0y = (", ) (1? o) (ﬂ ) Srw b

UJ,

The covariant derivativ® naturally preserves this bilinear form sineeis g-valued: DS = dS + @' £ + L@ = 0.

Gauge transformations It would be tempting to identiffE with the twistor bundle. However its sections and
covariant derivative thereof do not undergo the defining Mfeyjsformation of a twistor as defined in sectibni.
Indeed an element of the local gauge groug{ = KoKy (we now drop the subscript “loc”) can be factorized as
¥ =Yoy1: U - H = KoKy with 70 € Ko := [y : U — Ko} andyz € K := {y : U — Ky}. Accordingly, through
simple matrix calculations, the gauge transformationg wfr.t Ky and¥¢; are found to be
o=y (nyo) _ ( zl/z§*7r ) and eyl (n”l) _ (n + il’w] (33)
0 w”° 7S w)’ 71 w” w ’

The same goes fddy” andDy*. In the first relation pus = 1, compare with 6) and notice the dierence. It is
clear that as it standg, is not the twistor bundI& as previously defined.
As for the Cartan connection, its gauge transformatiort .is

@ = y5l@yo + ¥5 dyo, (34)
(_(&* _apl)  -iP )7" ) [_ |(S*AS 5 + dS§ %) - e r0apet _i715'PS )
i0 A-apl) i zS1pS 1 S1AS + S1dS - @+ztdapl )’
and w.r.t??l it reads
@ =yt oyr + 9, (35)

~(A—apl) P ) (- [(A* + (f6)o) — @~ 91| —i|P+dF - (FA+ AT) + af - 7or |
i0 A-apl) i0 A+ (6o — @)1 ‘
It is clear from the transformation of the soldering p@awf @, that the metric induced by is 22g. Thus the
action ofH onw induces a conformal class of metdon M. But notice again that the Weyl transformationsfof
P are not as expected if we were to think of them as the spin Caxita connection and the Schouten tensor.
These disappointments will be corrected after the dred#etd) approach is performed on tiermal version
of the gauge structures just described.
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4.2.2 Twistors from gauge symmetry reduction via dressing

As we did for the tractor case, we aim at erasing the confobnast gauge symmetri; through a dressing field.
In [16] we found such a dressing field

1 g 3qd
Ut U - Ky, thatis u=|0 1 q |,
0 0 1
as solution of the gauge-like constrak{tm't) := Tr(A" — a't) = —4a"1 = —4(a - g¥) = 0 which, once solved for

g, givesgs = a,€",, orin |ndex free notatiom = a- e 1.5 We checked that; satisfies the defining property of a
Ki-dressing fieldui* = y;,~tu.
Had we not known this, we could have found(a—dressmg field in the twistor context

U U — Ky thatis up = (]é —]llfl)
as solution of the gauge-like constra®i(@"™) := Tr(A" — @) = —(a—q§) = 0. This gives indeed the same
g € R* as above which is then mappeddge Herm(2 C). Then using §5) we can check thaf’* = q -, so that
u; satisfies the defining property off& -dressing fleldu”I =y 0.
Or, not ignoring the work done to fing in the tractor case, we map it tg thanks to the group morphisri@)
which secures the fact that the defining property is resde&nad we are done.

With this %;-dressing field we can apply - the local version of - propositi and form theX-invariant com-
posite fields

T A | =Y T _ Wi —fipl) -G
@ = wh = Ultai + Udi=| L |, Q= Q"% =010 = day + @4 = ~ 1_ pL - G
160 Aq 10 Wy — 2l
) 1 — — d7T1 - Alﬂ']_ - IP]_(U]_ V17T1 - i|51a)1
=u = , and D =dy1 +w@ = st 36
v1 L v (wl) 11 & 1= (dwl + Ala)l + I97T1 Viw1 + 101, ( )

As is usualﬁ%m = Qq1. We notice thatf; = -2 Tr (ﬁl) = P1 A 0is the antisymmetric part of the tendey.

The claim is twofold. First, we assert that is a twistor and that the covariant derivatiy®, induced from the
dressed spin conformal Cartan connectienis a “generalized” twistor connection. Second, the contpd&lds
(36) are gauge fields of a non-standard kind - such as descritsattion3.2.2- w.r.t Weyl symmetry, but genuine
gauge fields - according to secti@r.1- w.r.t Lorentz symmetry. Both assertions are supportechbyanalysis of
the residual gauge transformations of these compositesfield

Residual gauge symmetries Being%;-invariant by construction, the composite fiel@§)are expected to display
aKo-residual gauge symmetry. This group breaks down as a gtiredtct of the (spin) Lorentz and Weyl groups:
Ko = SL(2, C)xW, whereSL(2,C) ~ SL(2, C)@SL(2, C)*. We focus on Lorentz symmetry first, then only bring our
attention to Weyl symmetry. Here again we could use the tefmlind in [L6] and map them via the isomorphism
(30), but to be complete we indicate how to reach the same resoitsfirst principles.

The residual gauge transformations of the composite fi@l@sunder the spin Lorentz gauge group, defined as
SL:={s:U->SLRC)|S= Yor=1,S% = S 'ss'}, are inherited from that of the dressing fieid Using @4)
to computeg® = a° - (€%)! = S*gS, one easily finds thans_ S~1u;S. This is a local instance of Proposition
2, which then allows to conclude that the composite f|eldsga|m1|negauge fields w.r.t Lorentz gauge symmetry.

5Beware of the fact that in this index free notatiis the set of components of the 1-foanThis should be clear from the context.
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Hence, from Corollang follows that their residuab.£-gauge transformations are

_ _ —(S*A;S7Y* + dS*S1* -i S*P;S
&5 = 5l&;5 + 57lds = ( i ) SRS
i Slgs1 S_lAls +S71ds

— — —S*H(Wr — fi/o])S— 1 —iS*C;S
QS =slQ;S = (__11_121) - =

i S l@S1* S~ (Wl - fl/z]l)S

S _ o-1 __3_*771 ~ S _RS,S _ o-1R1

Y3 =S = Sl )’ and O1y1)” = DIy7 = S™ Dy, (37)

We notice in particular that, behaves as a standard section 8142, C)-associated bundl€, = E% = P xg C*.

We repeat the analysis for the Weyl symmetry. The residaaisformations of the composite fields under
the Weyl gauge group, that we define®s ;= {Z T U->W|Z= ;70|5 1,2% = Z} are inherited from that of the
dressing fieldu;. Using @4) to computeg? = a2 - (€%) ! = z1(q+ 1), with T := z19z- 1 - T, = Z19,z &,
one easily finds that

0> =Z0;C(? wherethemap C:W — KyW c H s defined by (38)

= 1 -ir\(Z:1 0 7k iz
@ = kl(z)z_(o 11)( 0 fl/z]l)_[ 0 rl/zn)

Notice that contrary to genuine gauge group members, elsnoérypeC(2) do not form a group:C(2C(Z) #
C(z2). Actually (38) is a local instance of Propositiohwith C a 1-«w-cocycle satisfying Propositiof. Indeed
one can check tha(zZ) = C(Z2) = C(Z) Z’"1C(2)Z’, which is the defining property of an abeliarvcocycle.
Furthermore, under a furtheéW-gauge transformation and duedb = ze, one haky (2% = Z'~ 1k1(z)Z’ which
impliesC(2)% = Z’~1C(2)Z’. So if i, undergoes a a furthe’-gauge transformation we have

(@) =(22) " #c@? =z 27 me@) 27'c@7 = 22) uc).

This implies that the composite field86) are indeed instances of gauge fields of the new kind destiibe
section3.2.2 As a consequence, by Propositiowe have that their residudl’-gauge transformations are

e 9 A - (T)o  —iz [Py +(dT - TA; - A[T) - T6T]
@% = C(9 '@1C(2 + C(9~1dC(2) = [ - A + @) . (39)
ﬁf _ C(z)_1§1C(z) _ [— (Wi‘ _.fl/zll) -T0 -z (Cl - ‘I’Wl - W*‘I' + f1]l‘I’ T@f)) (40)
i zO® Wy — i/l + oT
z 1 _ Z_1/2(7r1+ifa)1) = Z 2,7 _ 1~
Y1 =C(@ Y1 = P . and  Ow1)” =D1ys = C() "Dy (41)

First, notice that in39) now the Lorentz Earﬂl of the composite fields; indeed exhibits the known Weyl
transformation for the spin connection and tRatransforms as the Schouten tensor (in an orthonormal bé&sis)
actually the former genuinely reduce to the latter only wbea restricts to theormal casewy 1, So thatA; is a
function of@ andP; = P71 is symmetric and a function @%;. So f; vanishes and we have
-W: —iC. - -

10 1), and 02, = C(2'Qu1C(2) =

-W; —iz}(Cy - TWy - W;T) 42)
0 W 0 '

g_zN 1= dTD'N 1 + TD'Z =
) > N,1 W1

We see thaCy = V1P := dPy + P1A; — AiPy is the Cotton tensor - and indeed transforms as such - whilés
the invariant Weyl tensor.

Notice that the first relation in4(l) is - modulo thez factors - £6). So the dressed sectign is identified
with a twistor field, section of &-vector bundleE; = E" = P xcw) C* The invariant bilinear form ore
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defined by the group metrit is also defined of1: (y1,4}) = ¥ Zy;. Indeed since(z) € K;W ¢ H, we have
(W2.077) = (C@ 1. C@™y) = ¥i(CER™YIC@ v, = wiZy) = (Y1)

Moreover,D; := d + @1 in (36) is a generalization of the twistor connectidib). But then the term “connec-
tion”, while not inaccurate, could hide the fact thaf is no more a standard connection w.r.t Weyl symmetry. So
we shall prefer to calD; a generalized twistarovariant derivative The usual twistor covariant derivativés) is
recovered by restriction to the dressing of the normal @actannection: Dy Y1 = dy1 + @y aya. Then we have
that D2 w1 = Qu 11 is just 29). We note thato; beingg-valued D12 0 andD; preserves the bilinear foriy ).

In short, by erasing via dressing Q- -gauge symmetry from the conformal Cartan gauge stru¢{#teo), E)
over M, we have recovered top-down the twistor bundle and twisteagant derivative, ;, Dy 1), as a special
case of theC-vector bundle endowed with a covariant derivatii#g,©1). The link between the normal conformal
Cartan connection and the twistor covariant derivativeli@ady been noticed by Friedrich§], whose result we
thus generalize.

The actions ofSL andW on the composite fieldg; are compatible and commute. Indeed, we have first that

sW = s so that on the one han(()(fi)w = (Xf)w = (XQV)SW = (Xf(z))s = x-S, But then we also have

S. -1,
C(25£ = s71C(2)s, so on the other hand we geéjg}”)“% = (Xf(z))& = (Xfi)c(z) f (Xf)s c@s _ ¥ 795 We
should then refine our notation for the bunélgand writeE; = P xcw)sL c4,

As is suggested by the considerations at the end of se8tibh, the fact that the composite field36) are
genuineS.£-gauge fields satisfying3() entitles us to ask if a further dressing operation aimingrasing Lorentz
symmetry is possible. Inlp] we showed that in the case of tractors, the vielbein couldds to this purpose.
But since there is no finite dimensional spin representaifdBL, one suspects that in the case at hand the vielbein
cannot be used. This is indeed so. Furthermore, one jusbhask at theSL(2, C) gauge transformation of the
vielbein to see that it is unsuited as a dressing field. So magss of symmetry reduction ends here.

4.3 BRST treatment

The spin representation of the gauge group of the initiataDageometry isH, so the associated ghosE_Lie?_(
splits along the grading df,

V:\7()+\Z):\79+\7s+%:(€(/)2 E(/)z)+(_0§k 9+(8 _(I)’[j (43)
The BRST operator splits accordingly 8% s+ S1 = Sy + S + S1. Then the BRST algebra for the gauge fields
x ={@,Q,y}is

s@ = -Dv = —dv - [@, V], Q = [Q, V], sy=-w and sv=-A (44)

with the first and third relations in particular reproduciig infinitesimal versions of3@)-(35) and @3). Denote
by BRST this initial algebra. As the general discussion of sec8dgshowed, the dressing approach modifies it.

We know from this general discussion that the compositedigld= {w@1, Q1,y1} satisfy a modified BRST
algebra formally similar but with composite ghast:= Uilv_ul + Uilsﬁl. The inhomogeneous term can be found
explicitly from the finite gauge transformations wf. Writing the linearizations (where the linear parametees a
turned into ghostsy; ~ 1 + v, andS ~ 1 + vs, the BRST actions ok; andSL are easily found to be

=% - sh=-yu and G=SHGS - si=[, V.
This shows that the Lorentz sector gives an instance of thergeresult {5). Now, let us define the linearizations
Z =1 +V, andky(2) = 1 + ky(e), 50 thatC(2) = ki(2)Z = 1 + c(e) = 1 + ka(e) + V; whereky(e) := (3 'Be) with
Os = 0, &5. The BRST action of is

W=2"C@ - syli=-Vl +Uce).
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This shows that the Weyl sector gives an instance of the geresult (7). We then get the composite ghost

V1= UV + Ve + V) + Uy (s + S+ S,

= U (Ve + Vs + V)T + Uy "( — Vel + UnC(e) + [Un, V] — V),

_ _ ([~ (F-cpl) —ide

=c(e) + Vs = ( 0 s ) (45)
We see that the ghost of conformal bogstsas disappeared from this new ghost. This meanssilyat= 0, which
reflects theXi-gauge invariance of the composite fiejds The composite ghost; only depends ons ande, it
encodes the residu#y-gauge symmetry. The BRST algebra for the composite figlds then explicitly

_ = V'§-(@)o -i(-eP1-V(9e) - (P15- §Py))
S71= D=l ol = [i (cob+ 57— 65) V- (@) ]

whereVs = ds+ [Aq, §, V'S = d§ - [A%, §] and V(s) = dis + deAq — Alde.

QO =[Q1,v4] =1 &x +_[_ _l I( eC1 + (0€ i 1f)_+( 1S 1)) ’
i(-e0 -5 -65) [Wi, § + ©de
5 (W8] —i(-oCy+ (@Ws - Wide) + (C15- SC;
in the normal case QN’]_:[[ §1 =i (=eC1 + (96Wy - Wide) +(C1s 1)))’
0 [Wa, §

(S" —¢fl)my + ia?swl] and 7 = _\7% _ [§*§* —i (E)Es_— ?8;)).

S == [ ~(5—*fl)wn 0 s

Denote this algebrBRST,, .. Sincev; = c(e)+Vs, it splits naturally as a Lorentz and a Weyl subalgebsas s, +5 .
The Lorentz algebrBRST, , obtained by setting = 0, shows the composites fielgsto be genuine Lorentz gauge
fields (compare with37)). The Weyl algebr&RST,, , obtained by setting = 0, showsy; to be non-standard Weyl
gauge fields (compare witl39)-(41)).

4.4 The Yang-Mills Lagrangian of the spin conformal Cartan mnnection and Weyl gavity

In this section we first highlight the fact that the naturahyeMills Lagrangian for the twistor 1-form, 1 actually
reproduces Weyl gravity. This gives a geometrically clederpretation of the results of Merkulo®9] and shows
that local twistors and the twistor covariant derivativaiply define a Yang-Mills theory (see the foonote p. 133
of [6]). We also argue that the dressed spin conformal Cartanextion w; is almost the “modified twistor
connection” introduced ir0] where is advocated an approach to describe both Weyl granid Electromagnetism
as a unified conformally invariant theory. But then we havhkigight a drawback of this approach.

First let us define the invariant Killing forms fer(2, 2) andso(2, 4). GivenA, B € su(2, 2), the Killing form
is Ba22)(A, B) := 3 (Tr(AB) + Tr(B*A)). GivenA, B € so(2,4), the Killing form isBsyz4)(A, B) := Tr(AB). The
same formulae hold fo#1(2, C) andso(1, 3) and defineB>,c) andBgy(1,3)

Twistorial conformal gravity In a previous work$7] we showed that the Yang-Mills Lagrangian associated to
the dressed normal Cartan connectiog); reproduces Weyl gravity,

Lym(@n.1) = 3Bsoa)(Qn1, *Q01) = 3Bear.3)(W1, *W1) = 3 Tr(Wy1 A #Wi) = Lyeyi(6),

where=x is the Hodge star operator orfidirential forms onM, andw; is the Weyl tensor. It is a fact that the only
true degrees of freedom af, 1 are those of the vierbeifi since in the normal case, is expressed as a function
of 6, andP; as a function ofA; throughR; = dA; + A%, So it is no surprise that the field equations obtained on
the one hand by varying the acti®@yy (wy,1) W.r.t @y 1, and on the other hand by varying the actigeyi(6) w.r.t
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6, should coincide. In the first case we obtain the Yang-Mitjsaion for the (dressed) normal conformal Cartan
connection, and in the second case we obtain the Bach equatio
5SWeyI(9)

0S
M:o - Dy#Qu=0 o TR 0 - Bagp=0,
STt : 50

whereBgp is the Bach tensor. The equivalence of the field equationgivgaeoticed by Korzyhski and Lewandowski
[58]. The origin of this equivalence is clear from our perspexti B

Now, consider the normal spin conformal Cartan connectigras a/{-gauge potential, the associated Yang-
Mills Lagrangian is

Lym (@) 1= 3Bau22)(Qu, #Q0) = 3Bagac)(W, #W)
Using propositiorB of section3.4, we know that since, * U — K; we have that
Lym (@) = Lym(@n1) = 2Bau22)(Quts # Q1) = 3Baiz.c) (Wi, ¥Wy)

In other words, the actual symmetry of the theory is bt KoKy with gauge potentiado,, but Kp, with gauge
potential the twistor 1-formwz, 1. By the way, sincel(2,C) =~ so(1, 3), their Killing forms must coincide. As a
matter of fact, forA, B — A, B one hasB,c)(A, B) = B.y1,3)(A, B). This means thatyy (@y) = Lweyi(d). So, as
above, we have equivalence between the Yang-Mills equétictme twistor 1-form and the Bach equation

O0Sym (5N,l) -0 - 61 « ﬁ 1=0 5SWeyI(9) _
— = Nl = — =

— =3 Bap =0,
6Tna : 50 ab

This equivalence was first noticed by Merkuld\d] and deemed surprising. We see that it is quite natural from
our perspective, according to which one just has to obséafethe twistor 1-formw, ;1 is the spin version of the
dressed normal conformal Cartan connectiqyy whose only true degrees of freedom are those of the vietbein

Attempt at a twistorial unification of conformal gravity and electromagnetism In our notation the usual
twistor 1-form iswy 1 = _2\1 _/';1 , with A; the spin Levi-Civita connection ariel the symmetric Schouten tensor.

1
In [20] a twistorial unification of Weyl gravity and electromagiset was proposed. To do so, a modification of the
twistor 1-forma, 1 was suggested, according to whichRtpis added a Weyl invariant antisymmetric component
fl, interpreted as the Maxwell-Faraday tensor. Let us viite fl = P; so that the modified twistor 1-form is

— (_ATI _i_lsl

— (W =t —iC-
7= " A ) with curvature Q) = do + @2 :( (W - #t) _~iCy ) (46)

0 Wl - fl/2

wheref; = P1Afis the antisymmetric part ¢?,, andC; = 61+V1 ﬂ From there, a natural Yang-Mills Lagrangian
is proposed
Lym (@) 1= 3Ba@2)(Q), ¥Q)) = 1By (Wi, #W1) + 1 A %y (47)
It is indeed Lorentz and Weyl invariant since the curvatua@dforms as
S\ A J* Q— Lk Qx(~.
a5 - s - ~(SwiS—npl)  -S'GS |
! 0 (SIW4S - /1)
— — (W —fpl) —izY(Cp— YWy — WY + f11T
Z=C@QC@ = (Wi —vet) (Co= W Wi + 117)
0 W1 - f1/2]1

which are special cases &) and ¢0). Variation of Syy (@) w.r.t @} gives the Yang-Mills equation with source

D, = 5’1 = kT, wherex is an irrelevant constant and the source term is the (Hodgkeafuthe energy-momentum
tensor of the electromagnetic fieldy, = %fcdf‘:dnab + focf%nga. The field equation infolds as the source-free
dynamical Maxwell equatior¥@f;, = 0, and the Weyl gravity coupling to the electromagnetic fi@lg, = «Tap.
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All this would be satisfying is not for a hidden flaw. Noticeath46) is sort of in between the dressed spin
conformal Cartan connectiotr; (36) and its normal version which is the twistor 1-foran, ; (42). But are we
free to posit such an intermediate object? Actually no. déatldy requiringe’ to be torsion free as i), one
an check that the_;-sector of the Bianchi identit{p] Q] = 0 givesdW; + W16 = f,6. The latter impliesf; = 0
by virtue of the fact that the Ricci contraction of the Weylder vanishesW:%y,c = 0. Then the modified twistor
1-form @ reduces to the standard ong 1, the curvature; reduces td,; and one is left with the Lagrangian
for Weyl gravity alone. This shows, we would argue, that tleeteomagnetic field cannot be introduced in the way
proposed in20] because the underlying geometry is too rigid, so to speak.

5 Conclusion

Tractors and twistors are frameworks devised to deal wittffarmal calculus on manifolds. Whereas it has been
noticed that both are vector bundles associated to the woafdCartan principal bundle endowed with its normal
Cartan connection, it is often deemed more direct and imtuib produce them, bottom-up, from the prolongation
of defining diferential equations, the Almost Einstein and Twistor equetirespectively. In this paper we have
proposed a straightforward and top-down gauge theoretistnaction of twistors via the dressing field method of
gauge symmetries reduction. Our scheme involves verg #Hiibrt, and nothing beyond:22 matrix multiplication.

We started with the conformal Cartan gauge struc{(@e =), E) over M with gauge symmetry given by the
gauge grougH - comprising WeylW, LorentzS L and conformal boost; groups - acting on gauge variables
x = {@, Q, ¥, Dy} which are the spin representation of the conformal Cartamection, its curvature, a section of
the associated spici*-vector bundleE and its covariant derivative.

Applying the dressing field approach we showed tKatinvariant composite fieldg; could be constructed
thanks to a dressing field built out of parts of the Cartan connectian In particular, the dressed sectign € E;
was shown to be indeed a tractor ddg = d + @ a generalized tractor covariant derivative, the usual @iegb
induced by the dressed normal conformal Cartan connedign:= d + @, 1. We have thus generalized the results
of [18] linking the twistor connection to the normal conformal @arconnection.

Furthermore we stressed that, while the composite figldsre genuine gauge fields w.r.t the residual Lorentz
gauge symmetn$ L, they are gauge fields of a non-standard kind w.r.t the rasldigyl gauge symmetryy’. Such
non-standard gauge fields, resulting from the dressing fingithod, implement the gauge principle of physics in a
satisfactory way but are not of the same geometric nature tta fields usually underlying gauge theories. The
trator bundle with connectiorEg, Dy 1), as a restriction offs, D1), is then seen to be an instance of non-standard
gauge structure ovevi.

The initial conformal gauge structure is encoded infinitedly in the initial BRST algebra satisfied by the
gauge variableg. As a general result the dressing field approach modifies Rf@TBalgebra of a gauge structure.
We then provided the new algeB®ST,,, satisfied by the composite fielgs.

We ended in showing that our approach allows to make cleaedéalence between Weyl gravity and the
Yang-Mills gauge theory of the twistor connection, firsteh®d in [L9]. We also formulated a critic of the twisto-
rial unification of Wey! gravity with electromagnetism piaged in R0], showing that the underlying geometry was
too rigid to allow a unification thus conceived.

We concluded that our scheme of symmetry reduction givingnistors had reached a final point since no
dressing field was available for further erasing either tlheehtz Symmetry - as is possible in the tractor case
thanks to the vielbein as dressing field - or the Weyl symmduyt actually, one can conceive a conformal gauge
theory involving both twistors and tractors, where the Wayhmetry is further reduced thanks to a dressing field
extracted from a tractor field, which then plays the role ofiggd field. One would obtain a Lorentz-gauge theory
where Dirac spinors and operator could be extracted froariamt twistors and twistor derivative respectively. This
will be investigated in a forthcoming paper.
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