Michel Valstar 
  
Jonathan Gratch 
  
Björn Schuller 
  
Fabien Ringeval 
  
Denis Lalanne 
  
Mercedes Torres Torres 
  
Stefan Scherer 
  
Giota Stratou 
  
Roddy Cowie 
  
Maja Pantic 
  
  
  
  
  
  
  
  
  
  
  
  
  
AVEC 2016 -Depression, Mood, and Emotion Recognition Workshop and Challenge
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des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

The 2016 Audio-Visual Emotion Challenge and Workshop (AVEC 2016) will be the sixth competition event aimed at comparison of multimedia processing and machine learning methods for automatic audio, video, and physiological analysis of emotion and depression, with all participants competing under strictly the same conditions. The goal of the Challenge is to compare the relative merits of the approaches (audio, video, and/or physiologic) to emotion recognition and severity of depression estimation under welldefined and strictly comparable conditions, and establish to what extent fusion of the approaches is possible and beneficial. A second motivation is the need to advance emotion recognition for multimedia retrieval to a level where behaviomedical systems [START_REF] Valstar | Automatic behaviour understanding in medicine[END_REF] are able to deal with large volumes of non-prototypical naturalistic behaviour in reaction to known stimuli, as this is exactly the type of data that diagnostic and in particular monitoring tools, as well as other applications, would have to face in the real world.

AVEC 2016 will address emotion and depression recognition. The emotion recognition sub-challenge is a refined re-run of the AVEC 2015 challenge [START_REF] Ringeval | AVEC 2015-The first a↵ect recognition challenge bridging across audio, video, and physiological Data[END_REF], largely based on the same dataset. The depression severity estimation subchallenge is based on a novel dataset of human-agent interactions, and sees the return of depression analysis, which was a huge success in the AVEC 2013 [START_REF] Valstar | AVEC 2013 -The Continuous Audio / Visual Emotion and Depression Recognition Challenge[END_REF] and 2014 [START_REF] Valstar | AVEC 2014 -The Three Dimensional A↵ect and Depression Challenge[END_REF] challenges.

• Depression Classification Sub-Challenge (DCC):

participants are required to classify whether they are to be classified as depressed or not, where the binary ground-truth is based on the severity of self-reported depression as indicated by the PHQ-8 score for every human-agent interaction. For the DCC, performance in the competition will be measured using the average F1 score for both classes depressed and not depressed.

Participants are encouraged to provide an estimate of the severity of depression, by calculating the root mean square error over all HCI experiment sessions between the predicted and ground-truth PHQ-8 score. In addition, participants are also encouraged to report on overall accuracy, average precision, and average recall to further analyse their results in the paper accompanying their submission.

• Multimodal A↵ect Recognition Sub-Challenge (MASC) participants are required to perform fully continuous a↵ect recognition of two a↵ective dimensions: Arousal, and Valence, where the level of a↵ect has to be predicted for every moment of the recording.

For the MASC, two regression problems need to be solved: prediction of the continuous dimensions Valence and Arousal. The MASC competition measure is the Concordance Correlation Coe cient (CCC), which combines the Pearson's correlation coe cient (CC) with the square di↵erence between the mean of the two compared time series, as shown in 1.

⇢c = 2⇢

x y 2

x + 2 y + (µx µy) 2 (1) 
where ⇢ is the Pearson correlation coe cient between two time series (here prediction and gold-standard),

2
x and 2 y are the variance of each time series, and µx and µy are the mean value of each. Therefore, predictions that are well correlated with the gold standard but shifted in value are penalised in proportion to the deviation.

To be eligible to participate in the challenge, every entry has to be accompanied by a paper presenting the results and the methods that created them, which will undergo peerreview. Only contributions with a relevant accepted paper will be eligible for challenge participation. The organisers reserve the right to re-evaluate the findings, but will not participate in the Challenge themselves.

DEPRESSION ANALYSIS CORPUS

The Distress Analysis Interview Corpus -Wizard of Oz (DAIC-WOZ) database is part of a larger corpus, the Distress Analysis Interview Corpus (DAIC) [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF], that contains clinical interviews designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder. These interviews were collected as part of a larger e↵ort to create a computer agent that interviews people and identifies verbal and nonverbal indicators of mental illness [START_REF] Devault | SimSensei kiosk: A virtual human interviewer for healthcare decision support[END_REF]. Data collected include audio and video recordings and extensive questionnaire responses; this part of the corpus includes the Wizard-of-Oz interviews, conducted by an animated virtual interviewer called Ellie, controlled by a human interviewer in another room. Data has been transcribed and annotated for a variety of verbal and non-verbal features.

Information on how to obtain shared data can be found in this location: http://dcapswoz.ict.usc.edu. Data is freely available for research purposes.

Depression Analysis Labels

The level of depression is labelled with a single value per recording using a standardised self-assessed subjective depression questionnaire, the PHQ-8 [START_REF] Kroenke | The PHQ-8 as a measure of current depression in the general population[END_REF]. This is similar to the PHQ-9 questionnaire, but with the suicidal ideation question removed for ethical reasons. The average depression severity on the training and development set of the challenge is M = 6.67 (SD = 5.75). The distribution of the depression severity scores based on the challenge training and development set is provided in Fig. 1. A baseline classifier that constantly predicts the mean score of depression provides an RM SE = 5.73 and an MAE = 4.74.

Depression Analysis Baseline Features

In the following sections we describe how the publicly available baseline feature sets are computed for either the audio or the video data. Participants can use these feature sets exclusively or in addition to their own features. For ethical reasons, no raw video is made available.

Video Features

Based on the OpenFace [2] framework 1 , we provide di↵erent types of video features:

• facial landmarks: 2D and 3D coordinates of 68 points on the face, estimated from video

• HOG (histogram of oriented gradients) features on the aligned 112x112 area of the face

• gaze direction estimate for both eyes

• head pose: 3D position and orientation of the head 1 https://github.com/TadasBaltrusaitis/CLM-framework

In addition to that, we provide emotion and facial action unit continuous measures based on FACET software [START_REF] Littlewort | The computer expression recognition toolbox (CERT)[END_REF]. Specifically, we provide the following measures:

• emotion: {Anger, Contempt, Disgust, Joy, Fear, Neutral, Sadness, Surprise, Confusion, Frustration}

• AUs: {AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU18, AU20, AU23, AU24, AU25, AU26, AU28, AU43}

Audio Features

For the audio features we utilized COVAREP(v1.3.2), a freely available open source Matlab and Octave toolbox for speech analyses [START_REF] Degottex | COVAREP -A collaborative voice analysis repository for speech technologies[END_REF] 2 . The toolbox comprises well validated and tested feature extraction methods that aim to capture both voice quality as well as prosodic characteristics of the speaker. These methods have been successfully shown to be correlated with psychological distress and depression in particular [START_REF] Scherer | Automatic audiovisual behavior descriptors for psychological disorder analysis[END_REF][START_REF] Scherer | Self-reported symptoms of depression and PTSD are associated with reduced vowel space in screening interviews[END_REF]. In particular, we extracted the following features:

• Prosodic: Fundamental frequency (F0) and voicing (VUV)

• Voice Quality: Normalized amplitude quotient (NAQ), Quasi open quotient (QOQ), the di↵erence in amplitude of the first two harmonics of the differentiated glottal source spectrum (H1H2), parabolic spectral parameter (PSP), maxima dispersion quotient (MDQ), spectral tilt/slope of wavelet responses (peak-Slope), and shape parameter of the Liljencrants-Fant model of the glottal pulse dynamics (Rd)

• Spectral: Mel cepstral coe cients (MCEP0-24), Harmonic Model and Phase Distortion mean (HMPDM0-24) and deviations (HMPDD0-12).

In addition to the feature set above, raw audio and transcripts of the interview are provided, allowing participants to compute additional features on their own. For more details on the shared features and the format of the files participants should also review the DAIC-WOZ documentation3 .

EMOTION ANALYSIS CORPUS

The Remote Collaborative and A↵ective Interactions (RECOLA) database [START_REF] Ringeval | Introducing the RECOLA multimodal corpus of remote collaborative and a↵ective interactions[END_REF] was recorded to study socio-a↵ective behaviours from multimodal data in the context of computer supported collaborative work [START_REF] Ringeval | On the influence of emotional feedback on emotion awareness and gaze behavior[END_REF]. Spontaneous and naturalistic interactions were collected during the resolution of a collaborative task that was performed in dyads and remotely through video conference. Multimodal signals, i. e., audio, video, electro-cardiogram (ECG) and electro-dermal activity (EDA), were synchronously recorded from 27 French-speaking subjects. Even though all subjects speak French fluently, they have di↵erent nationalities (i. e., French, Italian or German), which thus provides some diversity in the expression of emotion. Data is freely available for research purposes, information on how to obtain the RECOLA database can be found on this location: http://diuf.unifr.ch/diva/recola. 

Emotion Analysis Labels

Regarding the annotation of the dataset, time-continuous ratings (40 ms binned frames) of emotional arousal and valence were created by six gender balanced French-speaking assistants for the first five minutes of all recordings, because participants discussed more about their strategy -hence showing emotions -at the beginning of their interaction.

To assess inter-rater reliability, we computed the intraclass correlation coe cient (ICC(3,1)) [START_REF] Shrout | Intraclass correlations: Uses in assessing rater reliability[END_REF], and Cronbach's ↵ [START_REF] Cronbach | Coe cient alpha and the internal structure of tests[END_REF]; ratings are concatenated over all subjects. Additionally, we computed the root-mean-square error (RMSE), Pearson's CC and the CCC [START_REF] Li | A concordance correlation coe cient to evaluate reproducibility[END_REF]; values are averaged over the C 6 2 pairs of raters. Results indicate a very strong interrater reliability for both arousal and valence, cf. Table 1. A normalisation technique based on the Evaluator Weighted Estimator [START_REF] Grimm | Evaluation of natural emotions using self assessment manikins[END_REF], is used prior to the computation of the goldstandard, i. e., the average of all ratings for each subject [START_REF] Ringeval | Prediction of Asynchronous Dimensional Emotion Ratings from Audiovisual and Physiological Data[END_REF]. This technique has significantly (p < 0.001 for CC) improved the inter-rater reliability for both arousal and valence; the Fisher Z-transform is used to perform statistical comparisons between CC in this study.

The dataset was divided into speaker disjoint subsets for training, development (validation) and testing, by stratifying (balancing) on gender and mother tongue, cf. Table 2.

Emotion Analysis Baseline Features

In the followings we describe how the baseline feature sets are computed for video, audio, and physiological data.

Video Features

Facial expressions play an important role in the communication of emotion [START_REF] Ekman | Facial action coding system[END_REF]. Features are usually grouped in two types of facial descriptors: appearance and geometric based [START_REF] Valstar | FERA 2015 -Second Facial Expression Recognition and Analysis Challenge[END_REF]. For the video baseline features set, we computed both, using Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) [START_REF] Almaev | Local Gabor Binary Patterns from Three Orthogonal Planes for Automatic Facial Expression Recognition[END_REF] for appearance and facial landmarks [START_REF] Xiong | Supervised descent method and its applications to face alignment[END_REF] for geometric features.

The LGBP-TOP are computed by splitting the video into spatio-temporal video volumes. Each slice of the video volume extracted along 3 orthogonal planes (x-y, x-t and y-t) is first convolved with a bank of 2D Gabor filters. The resulting Gabor pictures in the direction of x-y plane are divided into 4x4 blocks. In the x-t and y-t directions they are divided into 4x1 blocks. The LBP operator is then applied to each of these resulting blocks followed by the concatenation of the resulting LBP histograms from all the blocks. A feature reduction is then performed by applying a Principal Component Analysis (PCA) from a low-rank (up to rank 500) approximation [START_REF] Halko | An algorithm for the principal component analysis of large data sets[END_REF]. We obtained 84 features representing 98 % of the variance.

In order to extract geometric features, we tracked 49 facial landmarks with the Supervised Descent Method (SDM) [START_REF] Xiong | Supervised descent method and its applications to face alignment[END_REF] and aligned them with a mean shape from stable points (located on the eye corners and on the nose region). As features, we computed the di↵erence between the coordinates of the aligned landmarks and those from the mean shape, and also between the aligned landmark locations in the previous and the current frame; this procedure provided 196 features in total. We then split the facial landmarks into groups according to three di↵erent regions: i) the left eye and left eyebrow, ii) the right eye and right eyebrow and iii) the mouth. For each of these groups, the Euclidean distances (L2-norm) and the angles (in radians) between the points are computed, providing 71 features. We also computed the Euclidean distance between the median of the stable landmarks and each aligned landmark in a video frame. In total the geometric set includes 316 features.

Both appearance and geometric feature sets are interpolated by a piecewise cubic Hermite polynomial to cope with dropped frames. Finally, the arithmetic mean and the standard-deviation are computed on all features using a sliding window, which is shifted forward at a rate of 40 ms.

Audio Features

In contrast to large scale feature sets, which have been successfully applied to many speech classification tasks [START_REF] Schuller | The INTERSPEECH 2013 Computational Paralinguistics Challenge: Social Signals, Conflict, Emotion, Autism[END_REF][START_REF] Schuller | The INTERSPEECH 2014 Computational Paralinguistics Challenge: Cognitive & Physical Load[END_REF], smaller, expert-knowledge based feature sets have also shown high robustness for the modelling of emotion from speech [START_REF] Ringeval | Emotion recognition in the wild: Incorporating voice and lip activity in multimodal decision-level fusion[END_REF][START_REF] Bone | Robust unsupervised arousal rating: A rule-based framework with knowledge-inspired vocal features[END_REF]. Some recommendations for the definition of a minimalistic acoustic standard parameter set have been recently investigated, and have led to the Geneva Minimalistic Acoustic Parameter Set (GeMAPS), and to an extended version (eGeMAPS) [START_REF] Eyben | The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and A↵ective Computing[END_REF], which is used here as baseline.

The acoustic low-level descriptors (LLD) cover spectral, cepstral, prosodic and voice quality information and are extracted with the openSMILE toolkit [START_REF] Eyben | Recent developments in openSMILE, the Munich open-source multimedia feature extractor[END_REF].

As the data in the RECOLA database contains long continuous recordings, we used overlapping fixed length segments, which are shifted forward at a rate of 40 ms, to extract functionals; the arithmetic mean and the coe cient of variation are computed on all 42 LLD. To pitch and loudness the following functionals are additionally applied: percentiles 20, 50 and 80, the range of percentiles 20 -80 and the mean and standard deviation of the slope of rising/falling signal parts. Functionals applied to the pitch, jitter, shimmer, and all formant related LLDs, are applied to voiced regions only. Additionally, the average RMS en-ergy is computed and 6 temporal features are included: the rate of loudness peaks per second, mean length and standard deviation of continuous voiced and unvoiced segments and the rate of voiced segments per second, approximating the pseudo syllable rate. Overall, the acoustic baseline features set contains 88 features.

Physiological Features

Physiological signals are known to be well correlated with emotion [START_REF] Koelstra | DEAP: A database for emotion analysis using physiological signals[END_REF][START_REF] Knapp | Physiological signals and their use in augmenting emotion recognition for human-machine interaction[END_REF], despite not being directly perceptible the way audio-visual are. Although there are some controversies about peripheral physiology and emotion [START_REF] Schachter | Cognition and peripheralist-centralist controversies in motivation and emotion[END_REF][START_REF] Keltner | Emotion[END_REF], we believe that autonomic measures should be considered along with audio-visual data in the realm of a↵ective computing, as they do not only provide complementary descriptions of a↵ect, but can also be easily and continuously monitored with wearable sensors [START_REF] Sanoa | Quantitative analysis of wrist electrodermal activity during sleep[END_REF][START_REF] Picard | A↵ective media and wearables: surprising findings[END_REF][START_REF] Chen | AIWAC: A↵ective interaction through wearable computing and cloud technology[END_REF].

As baseline features, we extracted features from both ECG and EDA signals with overlapping (step of 40 ms) windows. The ECG signal was firstly band-pass filtered ([3 27] Hz) with a zero-delay 6th order Butterworth filter [START_REF] Ringeval | Prediction of Asynchronous Dimensional Emotion Ratings from Audiovisual and Physiological Data[END_REF], and 19 features were then computed: the zero-crossing rate, the four first statistical moments, the normalised length density, the non-stationary index, the spectral entropy, slope, mean frequency plus 6 spectral coe cients, the power in low frequency (LF, 0.04-0.15 Hz), high frequency (HF, 0.15-0.4 Hz) and the LF/HF power ratio. Additionally, we extracted the heart rate (HR) and its measure of variability (HRV) from the filtered ECG signal [START_REF] Ringeval | Prediction of Asynchronous Dimensional Emotion Ratings from Audiovisual and Physiological Data[END_REF]. For each of those two descriptors, we computed the two first statistical moments, the arithmetic mean of rising and falling slope, and the percentage of rising values, which provided 10 features in total.

EDA reflects a rapid, transient response called skin conductance response (SCR), as well as a slower, basal drift called skin conductance level (SCL) [START_REF] Dawson | The electrodermal system[END_REF]. Both, SCL (0-0.5 Hz) and SCR (0.5-1 Hz) are estimated using a 3rd order Butterworth filter, 8 features are then computed for each of those three low-level descriptors: the four first statistical moments from the original time-series and its first order derivate w.r.t. time.

CHALLENGE BASELINES

For transparency and reproducibility, we use standard and open-source algorithms for both sub-challenges. We describe below how the baseline system was defined and the results we obtained for each modality separately, as well as on the fusion of all modalities.

Depression

The challenge baseline for the depression classification subchallenge is computed using the scikit-learn toolbox 4 . In particular, we fit a linear support vector machine with stochastic gradient descent, i.e. the loss is computed one sample at a time and the model is sequentially updated. We validated the model on the development set and conducted a grid search for optimal hyper-parameters on the development set of both the audio data and video data separately. Features of both modalities are taken from the provided challenge baseline features. Classification and training was performed on a frame-wise basis (i.e., at 100Hz for audio and 30Hz for video); temporal fusion was conducted through simple majority voting of all the frames within an entire screening interview. For both modalities we conducted a grid search for the following parameters: loss function 2 {logarithmic, hinge loss}, regularization 2 {L1, L2}, and ↵ 2 {1e1, 1e0, . . . , 1e 5}. For the audio data the optimal identified hyper-parameters are loss function = hinge loss, regularization = L1, and ↵ = 1e 3. For the video data the optimal identified hyper-parameters are loss function = logarithmic, regularization = L1, and ↵ = 1e0. The ensemble of audio and video was computed through a simple binary fusion of a logical AND. The test performance was computed on a classifier trained using the found optimal parameters from the grid search. Since the positive outputs of the video modality are a subset of those of the audio the ensemble classifier's performance is exactly the same as the video modality for both the development and test sets. Results are summarized in Table 3.

In addition to classification baseline, we also computed a regression baseline using random forest regressor. The only hyper-parameter in this experiment was the number of trees 2 10, 20, 50, 100, 200 in the random forest. For both audio and video the best performing random forest has trees = 10. Regression was performed on a frame-wise basis as the classification and temporal fusion over the interview was conduced by averaging of outputs over the entire screening interview. Fusion of audio and video modalities was performed by averaging the regression outputs of the unimodal random forest regressors. The performance for both root mean square error (RMSE) and mean absolute error (MAE) for development and test sets is provided in Table 4.

Table 5: Size of the window W in seconds used to extract features on the di↵erent modalities, and delay D in seconds applied to the gold-standard, according to the emotional dimension, i. e., arousal (A), and valence (V ); parameters were obtained as the result of an optimisation of the performance measured as CCC on the development partition. 

Arousal

Affect

Mono-modal emotion recognition was first investigated separately for each modality. Baseline features were extracted as previously described, with a window size W ranging from four to 14 seconds, and a step of two seconds. The window was centred, i. e., the first feature vector was assigned to the center of the window (W/2), and duplicated for the previous frames; the same procedure was applied for the last frames. For video data, frames for which the face was not detected were ignored. For EDA, SCL, and SCR, test data from the subject #7 was not used, due to issue during the recording of this subject (sensor was partially detached from the skin). Two di↵erent techniques were investigated to standardise the features: (i) online (standardisation parameters µ and are computed on the training partition and used on all partitions), and (ii) speaker dependent (µ and are computed and applied on features of each subject). In order to compensate time reaction of the raters, a time delay D is applied to the gold-standard, by shifting back in time the values of the time-series (last value was duplicated), with a delay ranging from zero to eight seconds, and a step of 400ms.

As machine learning, we used a linear Support Vector Machine (SVM) to perform the regression task with the liblinear library [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF]; the L2-regularised L2-loss dual solver was chosen (option -s 12) and a unit bias was added to the feature vector (option -B 1), all others parameters were kept to default. The complexity of the SVM was optimised in the range [10 5 10 0 ]. In order to compensate for scaling and bias issues in the predictions, but also noise in the data, we used the same post-processing chain as employed in [START_REF] Trigeorgis | Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network[END_REF]. The window size W and the time delay D were optimised by a grid search with an early stopping strategy, i. e., evaluations were stopped if no improvement was observed over the best score after two iterations. Experiments were always performed for both standardisation strategies, i. e., online and per speaker. The best value of complexity, window size, time delay, and standardisation method were obtained by maximising the performance -measured as CCC -on the development partition with the model, learned on the training partition. Table 5 lists the best parameters for W and D, for each modality and emotional dimension, and shows that, the valence generally requires longer window size (to extract features) and time delay (to compensate for reaction time) than for arousal; WA = 5.3, WV = 9.3, DA = 1.2, DV = 1.8. Moreover, the results show that, a separate processing of features related to ECG, i. e., HRHV, and those related to EDA, i. e., SCL, and SCR, is justified as the best parameters obtained those signals di↵er from the ones obtained on their original signal. Regarding the standardisation technique, the online approach worked best for audio on both dimensions, and video data on valence, whereas standardisation of the features per subject worked best for all physiological features.

Mono-modal performance is reported in Table 6. Results show that, a significant improvement has been made for all modalities compared to the AVEC 2015 baseline [START_REF] Ringeval | AVEC 2015-The first a↵ect recognition challenge bridging across audio, video, and physiological Data[END_REF], excepted for the EDA features. In agreement with the stateof-the-art, audio features perform significantly better than any other modality on arousal, and video features on valence. Interestingly, emotion prediction from the HRHRV signal performs significantly better than with the original ECG signal, and it is ranked as the most relevant physiological descriptor for arousal, when taken alone.

Multimodal emotion recognition is performed with three di↵erent late-fusion models, because frames might be missing on the video, and EDA related features; (i) audio-ECG, used for missing video and EDA; (ii) audio-ECG-EDA, used for missing video; (iii) audio-ECG-EDA-video, used otherwise. In order to keep the complexity low, and estimate the contribution of each modality in the fusion process, we build the fusion model by a simple linear regression of the predictions obtained on the development partition, using Weka 3.7 with default parameters [START_REF] Hall | The WEKA data mining software: an update[END_REF]. Obtained predictions were then post-processed with the same approach used for the mono-modal predictions.

P redm = ✏m + N X i=1 i ⇤ P redu(i), (2) 
where P redu(i) is the mono-modal prediction of the modality i from the N available ones (ranging from two to eight), i and ✏m are regression coe cients estimated on the development partition, and P redm is the fused prediction.

Performance is reported in Table 6. Results show that, the baseline for the AVEC 2016 MASC is highly competitive, with the performance obtained on valence for the test partition being slightly better than the top-performer of AVEC 2015 [START_REF] He | Multimodal A↵ective Dimension Prediction Using Deep Bidirectional Long Short-Term Memory Recurrent Neural Networks[END_REF]. In order to depict the contribution of each modality in the prediction of emotion, we normalised the linear regression coe cients that were learned for the multimodal fusion model (iv) into a percentage:

Ci = 100 ⇤ | i| P N k=1 | k | , ( 3 
)
where Ci is the contribution of the modality i in percentage, and k are the regression coe cients of the multimodal fusion model; N = 8.

Results show that, even if the mono-modal performance can be low for a given modality and emotion, e. g., EDA for arousal or SCR for valence, cf. Table 6, all modalities contribute, to a certain extent, to the prediction of arousal and valence in the fusion scenario, cf. Figure 2. This is especially the case for SCR features on arousal and for SCL features on valence, which did not perform well when used in isolation, but contribute even outperformed appearance features in the fusion model.

CONCLUSION

We introduced AVEC 2016 -the third combined open Audio/Visual Emotion and Depression recognition Challenge. It comprises two sub-challenges: the detection of the a↵ective dimensions of arousal and valence, and the estimation of a self-reported level of depression. This manuscript describes AVEC 2016's challenge conditions, data, baseline features and results. By intention, we opted to use open-source software and the highest possible transparency and realism for the baselines by refraining from feature space optimisation and optimising on test data. This should improve the reproducibility of the baseline results.

Figure 1 :

 1 Figure 1: Histogram of depression severity scores for DESC challenge. Data of training and development set are provided here.

Figure 2 :

 2 Figure 2: Percentage of contribution of each modality in the prediction of emotion; values are derived from the multimodal fusion model; V-APP: video appearance; V-GEO: video geometric; ECG: electrocardiogram; HRHV: heart rate and heart rate variability; EDA: electrodermal activity; SCL: skin conductance level; SCR: skin conductance resistance.

Table 1 :

 1 Inter-rater reliability on arousal and valence for the 6 raters and the 27 subjects of the RECOLA database; raw or normalised ratings[START_REF] Ringeval | Prediction of Asynchronous Dimensional Emotion Ratings from Audiovisual and Physiological Data[END_REF].

		RMSE CC CCC ICC	↵
			Raw
	Arousal	.344	.400 .277 .775 .800
	Valence	.218	.446 .370 .811 .802
			Normalised
	Arousal	.263	.496 .431 .827 .856
	Valence	.174	.492 .478 .844 .829

Table 2 :

 2 Partitioning of the RECOLA database into train, development, and test sets.

	#	train	dev	test
	female	6	5	5
	male	3	4	4
	French	6	7	7
	Italian	2	1	2
	German	1	1	0

age µ ( ) 21.2 (1.9) 21.8 (2.5) 21.2 (1.9)

Table 3 :

 3 Baseline results for depression classification. Performance is measured in F1 score for depressed and not depressed classes as reported through the PHQ-8. In addition, precision and recall are provided. Values for class not depressed are reported in brackets.

	Partition	Modality	F1 score	Precision	Recall
	Development Audio	.462 (.682) .316 (.938) .857 (0.54)
	Development Video	.500 (.896) .600 (.867) .428 (.928)
	Development Ensemble .500 (.896) .600 (.867) .428 (.928)
	Test	Audio	.410 (.582) .267 (.941) .889 (.421)
	Test	Video	.583 (.851) .467 (.938) .778 (.790)
	Test	Ensemble .583 (.851) .467 (.938) .778 (.790)

Table 4 :

 4 Baseline results for depression severity estimation. Performance is measured in mean absolute error (MAE) and root mean square error (RMSE) between the predicted and reported PHQ-8 scores, averaged over all sequences.

	Partition	Modality	RMSE MAE
	Development Audio	6.74	5.36
	Development Video	7.13	5.88
	Development Audio-Video	6.62	5.52
	Test	Audio	7.78	5.72
	Test	Video	6.97	6.12
	Test	Audio-Video	7.05	5.66

Table 6 :

 6 Baseline results for a↵ect recognition on the development (D) and test (T) partitions from audio, video (appearance and geometric), and physiologic (ECG, HRHRV, EDA, SCL, and SCR) feature sets, and their late fusion (multimodal). Performance is measured in Concordance correlation coe cient.

	Modality	Arousal Valence
	D-Audio	.796	.455
	D-Video-appearance	.483	.474
	D-Video-geometric	.379	.612
	D-ECG	.271	.153
	D-HRHRV	.379	.293
	D-EDA	.073	.194
	D-SCL	.068	.166
	D-SCR	.073	.085
	D-Multimodal	.821	.683
	T-Audio	.648	.375
	T-Video-appearance	.343	.486
	T-Video-geometric	.272	.507
	T-ECG	.158	.121
	T-HRHRV	.334	.198
	T-EDA	.075	.228
	T-SCL	.066	.216
	T-SCR	.065	.145
	T-Multimodal	.683	.639

http://covarep.github.io/covarep/

http://dcapswoz.ict.usc.edu/wwwutil files/ DAICWOZDepression Documentation.pdf

http://scikit-learn.org/
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