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Analysis of a Physically Realistic Film Grain
Model, and a Gaussian Film Grain Synthesis

Algorithm

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

Laboratoire MAP5 (CNRS UMR 8145), Université Paris Descartes, Paris

Abstract. Film grain is a highly valued characteristic of analog im-
ages, thus realistic digital film grain synthesis is an important objective
for many modern photographers and film-makers. We carry out a the-
oretical analysis of a physically realistic film grain model, based on a
Boolean model, and derive expressions for the expected value and covari-
ance of the film grain texture. We approximate these quantities using a
Monte Carlo simulation, and use them to propose a film grain synthesis
algorithm based on Gaussian textures. With numerical and visual exper-
iments, we demonstrate the correctness and subjective qualities of the
proposed algorithm.

Keywords: film grain, Gaussian texture, covariance, Monte Carlo sim-
ulation

1 Introduction

Film grain is the specific texture which results from the analog photographic
process. This texture is highly sought after by film directors and photographers
alike for its artistic qualities. Producing realistic film grain for images is there-
fore a crucial goal. Proposed film grain synthesis methods often rely on scanned
example of film grain which is either directly blended with a given image [1,4,7],
used to generate a film grain model [6,10,16,12]. Although, simple and fast, these
approaches rely completely on the resolution and quality of the original scan. Fur-
thermore, in the case where film grain is modelled as independent noise [10,16],
with a variance which is dependent on the input image intensity, the grain tex-
ture is completely uncorrelated spatially, which gives a distinctly undesirable
“digital” feel to the image. To tackle these issues, Newson et al [11] proposed a
physically realistic model of film grain. This made use of the Boolean model [3]
from the stochastic geometry literature. In the present work, we propose an ap-
proximation of the Boolean model using Gaussian textures. The central idea is to
determine the covariance of the film grain produced by the Boolean model, and
impose this covariance on a white noise vector. This approach has several advan-
tages. Firstly, once the covariance matrix is known for a given image, the grain
can be re-synthesized extremely quickly, since this is done by sampling a white
noise vector, and multiplying it with a (very sparse) matrix. This differs from
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many grain synthesis algorithms which blend a fixed scan of film grain with an
image. Secondly, the texture model is based on the covariance of the physically-
motivated Boolean model, which means that the parameters are meaningful.
From a technical point of view, for any given couple of input pixels, we deter-
mine the covariance and the expected value of the filtered Boolean model using
a Monte Carlo simulation. We impose these characteristics on a Gaussian white
noise to produce the output image. This paper has two main objectives. Firstly,
we analyze a previously proposed, physically realistic film grain model [11], based
on the Boolean model [3]. In this analysis, we consider the first and second order
statistics of the grain model and propose an algorithm to determine these statis-
tics for any given input image. These quantities are the key characteristics of film
grain, therefore their theoretical calculation is of significant value. Indeed, once
these quantities are known, a variety of algorithms could be proposed to exploit
this information for film grain synthesis. Our second contribution is one such
algorithm which simulates film grain on a given input image by imposing the
previous characteristics on the output image, using a Gaussian approximation.

2 Stochastic Modelling of Film Grain

An analog film is made up of an emulsion (a gelatin) in which many microscopic
silver halide crystals are suspended. These crystals are sensitive to light, which
is why they are used for photography. During the exposure, when a photograph
is taken, a photon may hit one of the crystals and “sensitize” it, creating a very
small amount of solid silver on the crystal. The emulsion is then “developed”,
that is to say a chemical compound is introduced into the emulsion. This com-
pound turns only the sensitized grains into solid silver grains, which means that
the density of the grains depends on the intensity of the light (the image) which
was shone upon them. A comprehensive explanation of the photographic process
can be found in [9]. In order to model the previous process, Newson et al. [11]
proposed to use an inhomogeneous Boolean model1 from the stochastic geome-
try literature [3]. This model was also implicitly used in much of the “analog”
literature concerning film grain [2,14]. In such a context, the model is defined as
the union of a sequence of disks whose centers are randomly distributed in R2.
The disks represent the silver halide grains in the film emulsion, and the density
of the disks is chosen to respect the input image gray-level at each pixel. Thus,
the model is defined in a continuous manner. Let us now formally present this
model. Let u be an input image of size m × n, with gray-levels normalized to
the range [0, 1), and let r be the radius of the disks of the Boolean model (in
pixel “units”). Let P = {zi, i ∈ N} ⊂ [0,m]× [0, n] be the Poisson process with
intensity measure µ(dt) = λ(t)dt. In the present context, the zi’s represent the
centers of the film grains. The intensity λ is defined as the following piecewise

1 Please note that the Boolean model is in fact defined in a much more general fashion,
but for our purposes this definition is sufficient.



3

constant function

λ(x) =
1

πr2
log

1

1− u(bxc)
,

where bxc corresponds to the pixel index p such that x ∈ p+[0, 1[2. This manner
of defining λ is chosen to ensure that within each pixel domain p + [0, 1[2, the
expected area of the Boolean model corresponds to the image gray-level u(p),
thus preserving the local “average” grey-level. Finally, let φ be some blurring
filter (i.e. φ ≥ 0 and

∫
R2 φ = 1).

Definition 1 (Inhomogeneous Boolean model associated with a digital
image). With the above notations, the (inhomogeneous) Boolean model asso-
ciated with u is the random set Z that consists of the union of all the balls of
radius r centered at the points zi of the Poisson process P, that is,

Z =
⋃
i∈N
Br(zi) ⊂ R2.

Denoting by 1Z the indicator function of the Boolean model, that is, 1Z(x) equals
1 if x ∈ Z and 0 otherwise, the filtered Boolean model associated with u is the
random field

φ ∗ 1Z(x) =

∫
R2

1Z(x− t)φ(t)dt, x ∈ R2.

We note that, while the digital input image u is discrete, both the Boolean model
Z and the filtered Boolean model φ ∗ 1Z are defined in the continuous domain
R2. Of course in practice, one is interested to produce a sampling of φ ∗ 1Z on
a discrete grid to obtain a digital image. The first main objective of this work
is the theoretical analysis of the grain model from a statistical point of view, in
particular the first and second order statistics, the latter being a distinguishing
feature of textures.

Proposition 1 (Expected Value and Covariance of the Filtered Boolean
Model). Consider a Boolean model Z with underlying Poisson process P having
intensity measure µ : A 7→

∫
A
λ(t)dt. Let φ represent a blurring filter. Then for

all x, y ∈ R2,

E [1Z(x)] = 1− E [1Zc(x)] = 1− exp (−µ(Br(x))) (1)

Cov(1Z)(x, y) = exp(−µ(Br(x))− µ(Br(y)))
(

exp(µ(Br(x) ∩ Br(y)))− 1
)
. (2)

Hence, due to the linearity of the convolution with filter φ, the expected value
and covariance of the filtered Boolean model are given by

E [φ ∗ 1Z(x)] = φ ∗ E [1Z ] (x) = 1−
∫
R2

exp(−µ(Br(x− t)))φ(t)dt (3)

Cov(φ ∗ 1Z)(x, y) =

∫
R2

∫
R2

Cov(1Z)(x− s, y − t)φ(s)φ(t)dsdt. (4)
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Proof. The second part of the proposition is straightforward, so here we give
a detailed proof of Equation (1) and 2. Let us first consider the expectation.
Clearly, E [1Z(x)] = 1− E [1Zc(x)] since 1Z(x) = 1− 1Zc(x). Note that for any
point x, 1Zc(x) is only equal to 1 if no balls cover x, that is,

1Zc(x) =
∏
zi∈P

1Bc
r(zi)

(x).

Hence one can compute E [1Zc(x)] by invoking the following general formula.
In general, for any Poisson process P with intensity measure Θ, and for any
measurable function f : E → [0, 1], one has [13, page 65]

E

[ ∏
zi∈P

f(zi)

]
= exp

(∫
R2

(f − 1)dΘ

)
(5)

In our case, we have Θ = µ and f(z) = 1Bc
r(z)

(x) = 1Bc
r(x)

(z), thus,

E [1Zc(x)] = exp

(∫
R2

(
1Bc

r(x)
(z)− 1

)
λ(z)dz

)
= exp (−µ(Br(x))),

which proves Equation (1). Let us now turn to the computation of the covariance.
Since 1Zc = 1− 1Z and the covariance is invariant by the multiplication by −1
and the addition of a constant, one has Cov(1Z)(x, y) = Cov(1Zc)(x, y). Now,

Cov(1Zc)(x, y) = E [1Zc(x)1Zc(y)]− E [1Zc(x)]E [1Zc(y)] .

and we need to evaluate E [1Zc(x)1Zc(y)]. Using the above expression of 1Zc(x)

1Zc(x)1Zc(y) =
∏
zj∈P

1Bc
r(x)∩Bc

r(y)
(zj)

Using again Equation (5) with f(z) = 1Bc
r(x)∩Bc

r(y)
(z) = 1Bc

r(x)∩Bc
r(y)

(z) one has

E [1Zc(x)1Zc(y)] = exp

(∫
R2

(1Bc
r(x)∩Bc

r(y)
(z)− 1) λ(z) dz

)
= exp(−µ(Br(x) ∪ Br(y))).

Hence,

Cov(1Z)(x, y) = exp(−µ(Br(x) ∪ Br(y)))− exp (−µ(Br(x))) exp (−µ(Br(y)))

= exp(−µ(Br(x))− µ(Br(y)))
(

exp(µ(Br(x) ∩ Br(y)))− 1
)
.

ut Before continuing,
let us summarize the theoretical results presented here. Firstly, we have shown
that, in terms of covariance, the “positive” and “negative” Boolean grain models
are equivalent, in other words, the covariance of the texture produced in dark
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regions or light regions will be symmetric with respect to the “middle” gray-
level. Secondly, that this covariance is dependent on the input image gray-level,
which means that methods that rely on grain scanned at a given resolution are
inherently incorrect. Another remark is that in the case of the unfiltered Boolean
model, when ||x − y|| ≥ 2r, we have Cov(1Z(x),1Z(y)) = 0. This is coherent
with what we expect from the Boolean model, and will be useful further on.
Finally, we have given the exact expression and an approximation method of the
expected value and covariance of the filtered Boolean model.

3 Gaussian approximation of the filtered Boolean model

The second main objective of this work is to propose an approximation of the
filtered Boolean model using Gaussian textures. This requires the evaluation
of the expected value and the covariance of the model for all pixels on a grid.
Unfortunately, the expressions given in Equation (3) and Equation (4) cannot
be evaluated exactly. However, we can approximate them using a Monte Carlo
integration.

3.1 Monte Carlo Integration for Approximating the Expected
Value and Covariance of the Filtered Boolean Model

We will carry out two Monte Carlo integrations, one for the expected value, and
one for the covariance. Let M and N be the number of samples for these Monte
Carlo integrations, and {ξ1 . . . ξM} and {ξ′1 . . . ξ′N} be two sequences of indepen-
dently and identically distributed (i.i.d.) standard normal variables. Using the
law of large numbers, we have

1

M

M∑
k=1

exp[−µ(Br(x− ξk))] −−−−−→
N→+∞

E[φ ∗ 1cZ(x)], (6)

almost surely. This gives us a straightforward method to estimate E[φ ∗ 1Z(x)].
We now consider the approximation of the covariance function. Recall that the
final goal of this is to create a covariance matrix which will be used to produce
an output image with the same covariance as a filtered Boolean grain model.

Definition 2. We define the approximate covariance function CovN (x, y) as the
approximation of Cov(φ ∗ 1Z) evaluated at the couple of positions (x, y)

CovN (x, y) =
1

N2

N∑
k,`=1

Cov(1Z)(x− ξ′k, y − ξ′`). (7)

Proposition 2. The function CovN is symmetric, positive semidefinite, and
CovN (x, y) converges almost surely towards Cov(φ ∗ 1Z)(x, y) when N → +∞.
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Proof. The proof of symmetry is direct. For the positivity, we have to check
that for every integer d, every (α1, . . . , αd) ∈ Rd and every (x1, . . . , xd) ∈ (R2)d,∑d
i,j=1 αiαjCovN (xi, xj) ≥ 0. Now, it is straightforward to show that for fixed

values of ξ′1, . . . , ξ
′
N ,

d∑
i,j=1

αiαjCovN (xi, xj) = Var

[
d∑
i=1

N∑
k=1

αi1Z(xi − ξ′k)

]
≥ 0. (8)

As for the convergence, a direct application of the strong law of large num-
ber for u-statistics [8] shows that the part of this sum containing only couples
(k, l) of distinct integers (k 6= l) converges almost surely towards its expectation
Cov(φ ∗ 1Z)(x, y) when N → +∞. Since the part of the sum composed of cou-
ples (k, k) is bounded by N

N2 , the whole sum converges almost surely towards
the desired covariance. ut

3.2 Gaussian Texture Approximation for Grain on an Input Image

As previously mentioned, we propose to approximate analog film grain with a
Gaussian texture, the latter being especially good at modeling “micro-textures” [5],
of which film grain is a very good example. Recall that u denotes the input image
defined over the image grid {0, . . . ,m − 1} × {0, . . . , n − 1} and its associated
filtered Boolean model φ ∗ 1Z . By computing approximations of the expected
value and covariance of this model on the grid, we can produce Gaussian vectors
which approximate the filtered Boolean model. These Gaussian vectors will be
the output images of our algorithm. In the following, we list the pixel coordi-
nates as {pi} with i ∈ {0, . . . ,mn − 1}, and pi ∈ R2. Vectors and matrices will
be denoted with bold font. The approximation of the expectation E[φ ∗ 1Z(pi)]
on a pixel pi of the image grid is denoted by ûi and computed thanks to the
Monte Carlo integration (6)

ûi = 1− 1

M

M∑
k=1

exp[−µ(Br(pi − ξk))].

In order to compute this sum, we consider first of all the following vectors:

– λ ∈ Rmn such that λi = 1
πr2 log( 1

1−u(pi) );

– 1: a vector of ones.

Next, we define the matrix Api ∈ RM,mn, with pi ∈ R2 such that

Api
k,` = A(Br(pi − ξk) ∩ (p` + [0, 1[2)), (9)

where A is the Lebesgue measure in R2. In other words, Api
k,` is the area of the

part of the disk Br(pi−ξk) which is contained in the pixel region p`+[0, 1[2. Using
this matrix, one has µ(Br(pi − ξk)) = Api

k,·λ, that is, computing the intensity
measure of the ball Br(pi − ξk) boils down to a matrix-vector multiplication.
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Intersection 
with the pixel 

For each pair of intersecting balls

Fig. 1: Illustration of the approximation of covariance of filtered
Boolean model. In this Figure, we illustrate the manner in which the co-
variance is approximated, using a Monte Carlo simulation.

Thus, the vector û which approximates the expected value of the filtered Boolean
model can be written

ûi = 1− 1

M
1T exp[−Apiλ]. (10)

We now turn to the covariance matrix C. The entry (i, j) of C is defined as
the approximate covariance function evaluated at the points (pi, pj). In short,
Ci,j = CovN (pi, pj). Similarly to the case of the expectation, we define the

matrices Bpi , Dpj and Dpi∩pj (this time in RN2×mn), such that, for (k, s) ∈
{0, . . . , N − 1} × {0, . . . , N − 1}

Bpi
k+Ns,` =A(Br(pi − ξ′k) ∩ (p` + [0, 1[2))

D
pj
k+Ns,` =A(Br(pi − ξ′s) ∩ (p` + [0, 1[2))

D
pi∩pj
k+Ns,` =A(Br(pi − ξ′k) ∩ Br(pi − ξ′s) ∩ (p` + [0, 1[2))

(11)

Finally, given these matrices, we can define the entry (i, j) of C as

Ci,j =
1

N2
1T exp (− (Bpi + Dpj )λ)� [exp (Dpi∩pjλ)− 1 ] , (12)

where � represents the Hadamard (element-wise) vector product. Proposition 2
ensures that C is symmetric semi-definite positive. The covariance approxima-
tion process is illustrated in Figure 1. An interesting feature is that we can
precompute these area matrices for a given parameter set, since they are inde-
pendent of the image u. Furthermore, it seems reasonable to assume that the
covariance will be zero for couples (pi, pj) which are further apart than a certain
distance, by choosing a blurring kernel φ with compact support. In practice, we
choose a truncated Gaussian for φ , which is truncated at the value Pα such
that, for ξ ∼ N(0, 1),

P
[
ξ ∈ [−Pα, Pα]2

]
= 1− α, (13)
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Algorithm 1 Film grain rendering algorithm with Gaussian texture.

Data: u : {0, 1, . . .m− 1} × {0, 1, . . . , n− 1} → [0, umax]: input image
Parameters:
σ: standard deviation of the Gaussian low-pass filter
Pα: Gaussian (1− α)th quantile
N : number of iterations in the Monte Carlo method
Result: Image rendered with film grain

X ∼ N (0, Imn,mn)
q = b2(Pα + r)c
ξ, ξ′ ← i.i.d. r.v. with Gaussian density truncated at Pα
Ψ0 ← computeLocalNeighbourhood(q)
Load or compute the area matrices for this parameter set
{A0,B0, . . . ,Dmax(Ψ0), . . . ,D0∩max(Ψ0)} ← AreaMatrices(ξ,ξ

′, r, σ)
foreach (i, j) ∈ {0, . . . ,mn− 1}× {0, . . . ,mn− 1} s.t. Cov(φ ∗ 1Z)(pi, pj) 6= 0
do

λpi ← u(Ψxi)
ûi ← 1

MA0λpi

Cpi,pj = 1
N2 1T exp

(
−
(
B0 + Dpj−pi

)
λpi
)
�
[
exp

(
D0 ∩ (pj−pi)λpi

)
− 1

]
L = Chol(C)
return(û + LX)

for some small parameter α. This is the (1 − α
2 )th quantile of the Gaussian

distribution. Now, recall that for any couple (pi, pj) we have

Br(pi) ∩ Br(pj) = ∅ =⇒ Cov(1Z(pi),1Z(pj)) = 0. (14)

This equation, combined with the fact that our Gaussians are truncated at Pα
implies that for a couple (pi, pj) we have

||pi − pj ||2 > 2(Pα + r) =⇒ Ci,j = 0. (15)

Let us denote with q the maximum output pixel distance for which the covariance
is non-zero. This distance is

q = b2(Pα + r)c. (16)

Let Q = (2q+1). For any pixel pi, the (non-zero) covariance values are therefore
limited to a square neighbourhood Ψpi of size Q2.

Now that we have limited the extent of the covariance function, we can
drastically decrease the size of the area matrices. Furthermore, these matrices
only depend on the relative position of pj with respect to pi. Therefore, we can
set pi to be the “origin” 0 and pj−pi ∈ Ψ0. In this case, we only need to calculate
the matrices A0, B0, Dpj−pi , and D0 ∩ pj−pi . Let λpi represent the values of λ in
the neighbourhood Ψpi . We can now rewrite the expected value and covariance
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Fig. 2: Analysis of variance and covariance of the Gaussian approxima-
tion of the Boolean model. In this Figure, we analyze the evolution of the
variance and covariance of the Gaussian approximation of the Boolean model,
as N increases. As predicted, for small values of N , the approximation is biased,
due to the couples (ξ′k, ξ

′
k) in the Monte Carlo simulation. This effect diminshes

as N increases.

using this reduced number of vectors and matrices

Ci,j =
1

N2
1T exp

(
−
(
B0 + Dpj−pi

)
λpi
)
�
[
exp

(
D0 ∩ (pj−pi)λpi

)
− 1

]
.

(17)
This is the final expression of the covariance matrix used in our algorithm.
Once the positive semi-definite covariance matrix C and expected value û are
computed, we can easily produce Gaussian vectors with these specific expected
value and covariance matrix. Indeed, consider the lower triangular matrix L
resulting from the Cholesky decomposition of C, such that C = LLT . For any
X ∈ Rnm following a standard Gaussian white noise, the vector û + LX has
expected value û and covariance matrix C.

Algorithm summary and parameters We now recap the full film grain syn-
thesis algorithm. This consists of two stages: firstly the computation of the area
matrices. These matrices can be pre-computed (for a given parameter set), and
then stored in memory. This, in turn, requires the areas of disks and intersections
of disks in the ranges of the pixels of the image grid. These areas are calculated
with the geometry software CGAL [15]. The second part of the full method
calculates the non-zero elements of the matrix C, carries out the Cholesky de-
composition on the latter, and then produce the output image. The complete
algorithm is presented in Algorithm 1. In the experiments shown in the next
section, we use the following parameters: σ = 0.8, M = 800, N = 200. The
radius parameter r is varied to show different grain qualities.
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Fig. 3: Gaussian approximation of film grain. In this Figure, we show a
result of our film grain algorithm on several input images, in gray-scale and
color. In the first example of the boat, we show the “pure” texture LX which
is added to the image. This texture has a variance which is maximized in the
areas of middling gray-level (the sky), and is minimal in the areas of extreme
gray-level (the boat’s sails, for example).
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4 Results

In this Section, we show some visual and numerical results of our algorithm. The
first step is to verify experimentally that our Monte Carlo approach converges
to the correct statistics of the Boolean model. One particular drawback of our
approach is that, since we must use the same Gaussian offsets ξ′i (in order to
ensure symmetry and positive-definiteness), there is a list of couples (ξ′k, ξ

′
k)

which are not i.i.d, but whose influence on the approximation diminishes as
N →∞. With small values of N , this influence is significant, since the quantity
Cov(1Z(pi − ξ′k),1Z(pj − ξ′k)) (see Equation (7)) is maximized precisely when
i = j, and with small N there are not enough samples to “rectify” this bias. We
note, however, that this problem is mostly restricted to the case of the variance.
Indeed, for (x, y), s.t. ||pi−pj ||2 > 2r, the quantity Cov(1Z(pi−ξ′k),1Z(pj−ξ′k))
is necessarily equal to 0. Only in the case of large zooms and/or large radii, will
we have a non-zero influence of the couples (ξ′k, ξ

′
k). Thus, the convergence of the

covariance is much faster, and indeed changes very little as N increases. This
is confirmed by numerical experiments shown in Figure 2, where we analyze
the evolution of the values of the variance and covariance of the Monte Carlo
approach, asN increases. These values are determined on a constant image, equal
to 0.5 everywhere, and we compare the values to a “reference” value determined
with the result of the film grain synthesis of [11]. The covariance shown is that
of two vertically adjacent pixels. This gives us an idea of how large N should be,
and also serves as a strong sanity check that our approach is indeed correct. In
Figure 3, we show a result of our algorithm on several input images. In order to
provide some means of “objective” validation of the proposed grain, we show the
result of LX in the middle of the top row. This represents the “pure” texture
(the variance and covariance of the Gaussian approximation). This texture is
coherent with what we expect, since the variance is maximal in the areas of
medium gray-level, such as the sky. In areas with more extreme gray-levels, the
variance is lower (the texture is smoother), which is coherent with the Boolean
model. Indeed, when there are very few or very many balls in the model there
is very little variation, leading to a lower value of Ci,i, for any pi in this region.
This serves as a verification that the Gaussian approximation indeed displays
the characteristics which we are looking for. Finally, we have shown an example
of film grain on an animation image to illustrate the kind of visual style which
can be achieved with our approach even on modern images.

5 Conclusion

We have presented a theoretical analysis of a physically realistic film grain model,
and have derived expressions for the expected value and covariance of this model.
We employ these quantities to design a film grain synthesis algorithm based on
Gaussian textures. An important secondary result of this analysis is the con-
firmation that the covariance of film grain is dependent on the image intensity,
which means that simply scanning and blending film grain is insufficient. We have
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presented numerical experiments which confirm that the proposed Gaussian tex-
ture accurately imitates the second-order statistics of the film grain model, and
we have shown several visual results of our approach. While the proposed algo-
rithm produces good visual results, it is as yet limited to medium-sized images
(maximum 512 × 512) due to memory limitations. Future work will consist in
proposing a simplification of the Gaussian texture approach which exploits the
statistical information presented in the current work yet has reduced computa-
tional complexity.
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