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ABSTRACT
This paper presents a novel CutFEM-LaTIn algorithm to solvemultiple unilateral contact problems over geometries
that do not conform with the finite element mesh. We show that our method is (i) stable, independently of the
interface locations (ii) optimally convergent with mesh refinement and (iii) efficient from an algorithmic point of
view.
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1. Introduction
Since the pioneer work presented in [5], several research teams have successfully developed stable XFEM
schemes for unilateral contact (see e.g. [10, 6, 1]). However, it is extremely challenging to make sure
that these methods are optimally convergent with mesh refinement. As far as we are aware, this has only
been achieved recently in [4, 3]. In this paper, we propose an alternative to the latter contributions that is
based on an extension of the CutFEM [7, 2] technology for embedded interface problems, coupled with
the LaTIn mixed formulation of contact [9, 5, 8, 6]. We show that the formulation is always stable, and
that our high-performance computing implementation allows us to perform 3D computations involving
arbitrarily complex intersections of solids, potentially leading to field singularities. Moreover, we show
optimal convergence with mesh refinement of the background grid. Incidentally, our work is also a
stabilisation of the LaTIn hybrid-mixed formulation. In this respect, our method is an alternative to
the two previous non-locking LaTIn formulations based on (i) a local coarsening of trace meshes (see
e.g [9, 8]) and (ii) a relaxation of interface kinematic conditions together with the addition of penalty
terms, as presented in [6]. Our approach is algorithmically quite advanced. We therefore choose, in
this short contribution, to focus on the most novel aspects of it, which is the discrete non-conforming
and non-locking mixed LaTIn formulation of contact, enriched and further stabilised with tools of the
CutFEM technology. This scheme is developed in section 2, whilst section 3 contains some representative
examples and short conclusions.

2. Finite Element Formulation
2.1. Domain Discretisation

We consider a domain Ω divided into nd non-overlapping subdomains Ωi . We partition the boundary
of domain Ω, ∂Ω, into a Dirichlet ∂ΩD (body is clamped) and a Neumann part ∂ΩN (tractions are
imposed). Furthermore, each subdomain Ωi is considered to be covered by a linear elastic body (i). We
assume that if two elastic bodies share an interface Γi, j = ∂Ωi ∩ ∂Ω j these two bodies are expected
to come into contact. For example, in Figure 1a, we employ contact condtions on the interfaces Γ1,2,
Γ1,3 and Γ2,3. We introduce a non-conforming finite element discretisation of the domains as follows.
Firstly, let Th denote a tessellation of domain Ω independent of the interface locations Γi, j . Secondly, we
introduce the following mesh subsets of our background mesh Th . For each subdomain Ωi , we introduce
a so-called fictitious domain Ω̂∗, i := {K ∈ Th : K ∩ Ωi , ∅}. In a similar fashion, we define the set of
elements intersected by an interface Γi =

⋃
(k,l )∈IΓ, (k=i or l=i) Γ

k,l as Gi := {K ∈ Th : K ∩ Γi , ∅}.
We also define the following two subsets of faces between two elements F (K, K ′) = K ∩ K ′: the set of
element faces associated with Gi , namely F i

G
:= {F ∈ F (K, K ′) : K ∈ Gi or K ′ ∈ Gi }, which we call

ghost penalty faces, and the set of intersected faces F i
I := {F ∈ F (K, K ′) : K ∈ Gi and K ′ ∈ Gi } (see

Figure 1b).
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(b) Schematics of mesh subsets for Ω3.

Figure 1: Example of rectangular domain Ω with two circular inclusions Ω2 and Ω3 and the definition of
important mesh subsets for domain Ω3.

2.2. Discrete hybrid-mixed formulation of the contact problem

LetU i
h
denote the vector valued space of continuous piecewise linear polynomials defined on the fictitious

domain Ω̂∗, i . Our weak formulation of linear elasticity reads: For all Ω̂∗, i , find ui
h
∈ U i

h
such that for all

δui
h
∈ U i

h

a(ui
h, δui

h ) + ab (ui
h, δui

h ) + j (ui
h, δui

h ) = l (δui
h ) + lb (δui

h ). (1)

The terms of a(ui
h
, δui

h
) and l (δui

h
) are given by

a(ui
h, δui

h ) =
∫
Ωi

h

σ(ui
h ) : ε (δui

h ) dΩ −
∫
Γ
i, j
h

(σ(ui
h ) · ni, j ) δui

h dΓ,

l (δui
h ) =

∫
Ωi

h

f · δui dΩ,
(2)

where σ(u) = λi tr(εεε (u)) III + 2 µi ε (u) is the Cauchy-stress tensor, ε (u) = 1
2

(
∇u + ∇uT

)
is the strain

tensor, ni, j is the normal on Γi, j
h

pointing from Ωi
h
to Ω j

h
, λi and µi are the two Lamé coefficients, i.e.

λi = E iν
(1+ν)(1−2ν) , µ

i = E i

2(1+ν) , with Ei the Young’s modulus and ν = 0.3 the Poisson’s ratio. Ωi
h
and

Γ
i, j
h

denote piecewise polynomial approximations of exact geometrical sets. The terms ab (ui
h
, δui

h
) and

lb (δui
h

) weakly enforce Dirichlet conditions using Nitsche’s method and Neumann boundary conditions

ab (ui
h, δui

h ) = −
∫
∂ΩD

(σ(ui
h ) · ni, j ) δui

h dΓ −
∫
∂ΩD

(σ(δui
h ) · ni, j ) ui

h dΓ +
∫
∂ΩD

αEi

h
ui
h · δui

h dΓ,

lb (δui
h )) = −

∫
∂ΩD

(σ(δui
h ) · ni, j ) g dΓ +

∫
∂ΩD

αEi

h
g · δui

h +

∫
∂ΩN

T δui
h dΓ dΓ,

(3)
where T is a prescribed surface load, g is a prescribed displacement and α > 0 is the Nitsche penalty
parameter. The term j (ui

h
, δui

h
) regularises the solution in the interface region and is given by

j (ui
h, δui

h ) =
∑

F ∈F i
G

∫
F

γg h
Ei

r
σ(ui

h ) · nF

z
·

r
σ(δui

h ) · nF

z
ds. (4)

We call j (ui
h
, δui

h
) ghost penalty stabilisation ([2]). Here, Jx · nFK denotes the normal jump of the

quantity x over the face, F, defined as Jx · nFK = x |K nF − x |K ′ nF , where nF denotes a unit normal to



the facet F with fixed but arbitrary orientation and γg > 0 is the ghost penalty parameter.
At contact interfaces Γi, j

h
, we introduce interface force F i

h
and interface displacement W i

h
satisfying∫

Γ
i, j
h

F i
h · δui

h dΓ =
∫
Γ
i, j
h

(
σ(ui

h ) · ni, j
)
· δui

h dΓ , and W i
h = ui

h at Γi, j
h
. (5)

Now, let Qh (Gi ) :=
{
vh ∈ C0(Gi ) : vh |K ∈ P1(K )d, ∀K ∈ Gi

}
denote the space of continuous piece-

wise linear polynomials on the band of intersected elements. Then, we determine the interface fields as
follows. Find F i

h
∈ Qh (Gi ) andW i

h
∈ Qh (Gi ), such that for all δF i

h
∈ Qh (Gi ) and for all δW i

h
∈ Qh (Gi )∫

Γ
i, j
h

(F i
h − F i

♥) δF i
h dΓ + jF (F i

h, δF i
h ) = 0 ,∫

Γ
i, j
h

(W i
h −W i

♥) δW i
h dΓ + jF (W i

h, δW i
h ) = 0 ,

(6)

where
jF (F i

h, δF i
h ) =

∑
F ∈F i

h

γΠh2
∫
F

q
∇F i

h · nF

y
·
q
∇δF i

h, ·nF

y
ds (7)

regularises the interface fields with a penalty parameter γΠ > 0. Heart quantities F i
♥, W i

♥ are required to
fulfill contact at a set of quadrature points along the interface Γi, j

h(
W j
♥ −W i

♥

)
· ni, j ≥ 0 ; F i

♥ · n
i, j ≤ 0 ;

(
(W j
♥ −W i

♥) · ni, j
)
·
(
F i
♥ · n

i, j
)
= 0 . (8)

and the system is closed by requiring that the fluctuation of the heart quantities around F i
h
andW i

h
satisfy

a Robin condition, which reads as (
F i
h − F i

♥

)
− β

(
W i

h −W i
♥

)
= 0 , (9)

where β is an algorithmic parameter that is homogeneous to a stiffness (we set it equal to the LaTIn search
direction parameter for reasons not detailed here). We can finally solve the nonlinear coupled system
of equations (1,5,6,8) for ui

h
, F i

h
, W i

h
, F i
♥, W i

♥, using an extension of the LaTIn iterative algorithm [9]
whereby the local stage is “non-localised" by two-scale continuity condition (6).

3. Results
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(b) Convergence rates.

Figure 2: Convergence rates and energy norm error for two inclusions with E1 = E2 = E3 = 1.

The structure illustrated in Figure 2 is made of two interacting inclusions within a square matrix. The
square matrix is meshed using a regular grid of triangles (Figure 1a). The matrix is compressed in



the vertical direction. We plot the vertical compressive component of the stress. We also show the
convergence rate together with the element size h. The convergence rate is optimum in both H1 and
energy semi-norm. Figure 3 shows the versatility of the method and the stability of the implementation
in 3D.

(a) Displacement magnitude. (b) von Mises stress on pig.

Figure 3: Angry bird in contact with a pig. The bird is being pushed into the pig, which results in the
development of a stress concentration around the contact zone.

4. Conclusions

We have presented a novel non-conforming finite element formulation for multiple linear elastic bodies
in contact. We have demonstrated that our discretisation scheme is stable independent of how the contact
interfaces intersect our fixed regular background mesh and that the contact problem solution converges
optimally with mesh refinement. The next stage of our investigations is to extend the approach to the
context of large displacements, whereby the contact region is an unknown of the problem.
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