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Signal noise reduction can improve the performance of machine learning systems dealing with time signals such as audio. Real-life applicability of these recognition technologies requires the system to uphold its performance level in variable, challenging conditions such as noisy environments. In this contribution, we investigate audio signal denoising methods in cepstral and log-spectral domains and compare them with common implementations of standard techniques. The di↵erent approaches are first compared generally using averaged acoustic distance metrics. They are then applied to automatic recognition of spontaneous and natural emotions under simulated smartphone-recorded noisy conditions. Emotion recognition is implemented as support vector regression for continuous-valued prediction of arousal and valence on a realistic multimodal database. In the experiments, the proposed methods are found to generally outperform standard noise reduction algorithms.

INTRODUCTION

Audio signals are commonly a↵ected by factors other than the signal of interest. Additive noise arises due to other sound sources competing with the target signal and due to the combined e↵ects of the recording equipment and the transmission channel. Convolutive variation appears due to the channel and acoustic reverberation. The performance of machine learning systems is generally negatively a↵ected by these e↵ects, because they may mask target signals, such as speech, and cause mismatch in feature statistics between the training and recognition conditions.
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MM '16, October 15-19, 2016, Amsterdam, Netherlands c 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00 DOI: http://dx.doi.org/10.1145/2964284.2967306 the system, including feature extraction, feature enhancement, machine learning models and their training [START_REF] Huang | Spoken Language Processing[END_REF][START_REF] Schuller | Recognition of noisy speech: A comparative survey of robust model architecture and feature enhancement[END_REF] and also by using better hardware or multiple microphones.

Noise reduction for speech audio is often evaluated from the viewpoint of listeners in terms of enhancing either the subjective quality or speech intelligibility [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]. Of these, intelligibility, whose improvement is the more di cult problem [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF], is potentially relevant for ASR. Computational paralinguistic analysis of speech, whose general aim is to uncover various external attributes of speech not related to its linguistic message (the concern of ASR), has emerged as an active field of research within the past decade [START_REF] Schuller | Paralinguistics in speech and languagestate-of-the-art and the challenge[END_REF]. Two of its most central topics are speaker recognition (identification and verification) and, more recently, automatic recognition of emotion in speech. These applications, which are important for multimedia content analysis, retrieval and processing, do not have an obvious connection with the traditional objectives of speech enhancement. Nevertheless, in speaker recognition, traditional single-channel noise reduction systems are frequently found helpful as preprocessing in improving system performance under noisy or mismatched conditions [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF][START_REF] Ortega-Garcia | Overview of speech enhancement techniques for automatic speaker recognition[END_REF][START_REF] Sadjadi | Assessment of single-channel speech enhancement techniques for speaker identification under mismatched conditions[END_REF][START_REF] Saeidi | Temporally weighted linear prediction features for tackling additive noise in speaker verification[END_REF]. General-purpose signalbased denoising methods, such as power spectral subtraction and minimum-mean-square-error estimation of log-spectral amplitude, have been found to improve speaker recognition performance quite reliably across di↵erent back-end machine learning systems, test conditions (type and level of degradation) and training conditions (noise-matched or mismatched), even more so than auditory-based methods designed to improve subjective quality [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF]. In general, the relative performance of di↵erent denoising methods is quite strongly a↵ected by the aforementioned factors [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF][START_REF] Sadjadi | Assessment of single-channel speech enhancement techniques for speaker identification under mismatched conditions[END_REF].

In this paper, following on the results of the studies focusing on signal denoising in text-independent speaker recognition [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF][START_REF] Sadjadi | Assessment of single-channel speech enhancement techniques for speaker identification under mismatched conditions[END_REF], a machine learning task that is commonly based on identifying the distribution of the short-time magnitude spectrum, we compare denoising techniques from the viewpoint of audio and multimedia content analysis in speech emotion recognition. It is another central paralinguistic problem with other applications ranging from ASR systems and call centers to intelligent user interfaces [START_REF] Schuller | Paralinguistics in speech and languagestate-of-the-art and the challenge[END_REF]. Work on noise robustness in speech emotion recognition has also been started [START_REF] Schuller | Emotion recognition in the noise applying large acoustic feature sets[END_REF][START_REF] Zhang | Facing realism in spontaneous emotion recognition from speech: Feature enhancement by LSTM neural autoencoders[END_REF], but to our knowledge, signal denoising has not been explicitly studied for this purpose. As emotional or stressed speech often coincides with acoustically noisy environments, it is worthwhile to investigate the performance of general-purpose noise reduction solutions in improving short-time spectral representation of the two pri-mary emotion dimensions -activation (arousal), i. e., the intensity of emotional expression, and valence, i. e., the positive/negative a↵ective dimension [START_REF] Goudbeek | Beyond arousal: Valence and potency/control cues in the vocal expression of emotion[END_REF].

We propose a family of general-purpose, adaptive signal denoising techniques that can be simply configured with respect to spectral smoothing, temporal smoothing and adaptation rate of the noise model in order to tackle di↵erent nonstationary noise conditions and application requirements. They operate in a log-spectral or cepstral domain, which di↵er in terms of spectral smoothing facilitated by the cepstral representation. These methods are compared against published implementations of baseline methods suggested by the previous studies, firstly by using general, objective signal enhancement quality measures. The most promising variants are then compared as preprocessing for an emotion recognition system performing continuous-valued prediction of arousal and valence. In this study, we focus on relatively similar noise conditions in the training and testing phase, so that denoising is used to recover important information in both training and testing.

NOISE REDUCTION

Previous Work

Classical single-channel noise reduction methods include variants of spectral subtraction [START_REF] Berouti | Enhancement of speech corrupted by acoustic noise[END_REF][START_REF] Boll | Suppression of acoustic noise in speech using spectral subtraction[END_REF], where an averaged noise (magnitude or power) spectrum is subtracted from the noisy signal spectrum while keeping the resultant spectral magnitudes positive, and Wiener filtering [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF], often implemented in practice using an iterative approach [START_REF] Hansen | Constrained iterative speech enhancement with application to speech recognition[END_REF].

The performance of the minimum mean square error (MMSE) [START_REF] Ephraim | Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[END_REF] and log-spectral amplitude MMSE (Log-MMSE) estimators [START_REF] Ephraim | Speech enhancement using a minimum mean-square error log-spectral amplitude estimator[END_REF] still remains among the best of the published methods [START_REF] Paliwal | Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude estimator[END_REF]. In part, this can be attributed to their decision-directed estimation approach, which bases the spectral estimate of each frame partially on the estimates from previous frames via the a priori SNR estimate updated by using a memory coe cient [START_REF] Cappé | Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor[END_REF]. Spectral subtraction [START_REF] Paliwal | Single-channel speech enhancement using spectral subtraction in the short-time modulation domain[END_REF] and the decision-directed MMSE [START_REF] Paliwal | Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude estimator[END_REF] methods have also been applied in the spectral modulation domain in order to better handle nonstationary noise.

In recent comprehensive evaluations looking at noise reduction preprocessing techniques to combat mismatch in speaker recognition, MMSE, Log-MMSE and spectral subtraction have performed well [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF][START_REF] Sadjadi | Assessment of single-channel speech enhancement techniques for speaker identification under mismatched conditions[END_REF]. Power spectral subtraction also resulted in large performance gains in [START_REF] Saeidi | Temporally weighted linear prediction features for tackling additive noise in speaker verification[END_REF]. Therefore, as the baseline noise reduction methods in this study, we choose two published implementations of spectral subtraction, one working in the power spectral domain (SS-P [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]) and one in the magnitude spectral domain (SS-M [START_REF] Brookes | VOICEBOX: Speech processing toolbox for MATLAB[END_REF]), and two published implementations of Log-MMSE (MMSE-1 [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]; MMSE-2 [START_REF] Brookes | VOICEBOX: Speech processing toolbox for MATLAB[END_REF]).

Methods Under Study

The methods proposed in this study are based on obtaining the noise model by averaging over low-energy frames in the representation domain -log-spectral or cepstral -and, optionally, by adapting the noise model constantly based on the (Gaussian) similarity of the short-term moving average of the representation to the initial noise model. A general overview is presented in Fig. 1.

The audio signal is processed in Hann-windowed frames of 30 ms extracted every 10 ms. The discrete Fourier transform (DFT) of each audio frame is first transformed into either a logarithmic magnitude spectrum or a truncated cepstrum [START_REF] Deller | Discrete-Time Processing of Speech Signals[END_REF][START_REF] Rabiner | Digital Processing of Speech Signals[END_REF]. The real cepstrum is a frequency transform (specifically, the inverse Fourier transform) of the logarithmic spectrum. A truncated cepstrum, where only the lower-order coecients are retained, thus represents a smoothed version of the original logarithmic spectrum [START_REF] Rabiner | Digital Processing of Speech Signals[END_REF]. With the sampling rate of 44100 Hz used in this study, we choose to retain the first J = 50 cepstral coe cients in accordance to a rule of thumb of choosing the length of the truncated cepstrum to be less than an expected pitch period [START_REF] Rabiner | Digital Processing of Speech Signals[END_REF].

In the lower branch of Fig. 1, low-energy frames within the analysis block of six seconds are automatically found by clustering the frame logarithmic energies into two clusters by using k-means and selecting the frames assigned to the cluster with the lower mean value. The initial noise model D = {µj, 2 j }, consisting of a mean and variance for each (spectral or cepstral) coe cient, is then obtained by averaging over these frames. In the upper branch, temporal smoothing is applied to the complete sequence of the noisy vectors {Y n} by using the equation

Zn = Zn 1 + (1 )Y n, ( 1 
)
where n is the frame index, = (w 1)/w and w is an "equivalent rectangular window length" of the moving average integrator in the sense that the contribution of each new observation is weighted by 1/w. Setting w = 1 causes no temporal integration to be performed. In the next stage, the similarity of the noisy representation Zn = (Zn,1, . . . , Zn,J ) with the initial noise model is evaluated as

n,j = exp( (Zn,j µj) 2 / 2 j ), 1  j  J, (2) 
yielding scores in the range (0, 1). The components of the current noise model at the nth frame µn,j (initially, µ0,j = µj) are then adapted towards the direction of the current smoothed noisy representation Zn, in proportion ↵ to the similarity n,j of the latter to the initial noise model:

µn,j = µn 1,j + ↵ n,j (Zn,j µn 1,j ). (3) 
In both log-spectral and cepstral domains, spectral-domain division corresponds to subtraction. Therefore, the DFTdomain noise extraction filter Gn(k) is represented by µn,j Zn,j in the analysis domain, and can be obtained by transforming this quantity back to the DFT domain. It is then used to create the noise suppression filter, with the lower limit of suppression at zero: Hn(k) = max(1 Gn(k), 0). The modified frames are combined using an overlap-add method to produce the enhanced signal.

One motivation for processing the signal in one of these domains is to be able to apply cepstral smoothing in generating the noise and noisy signal models by temporal averaging and integration. The log-spectral representation is both an intermediate stage in cepstrum computation and a special case in the sense that it is equivalent to a non-truncated cepstral representation. Considering distance metrics in the cepstral and log-spectral domains, the cepstral Euclidean distance can be shown to be a lower bound for the rootmean-square (RMS) log-spectral distance; with the inclusion of more cepstral coe cients in the truncated cepstrum, more spectral fine structure information is preserved and the cepstral Euclidean distance approaches the RMS log-spectral distance from below [START_REF] Gray | Distance measures for speech processing[END_REF]. The logarithmic spectrum representation is frequently used in audio signal analysis due to the large dynamic range of hearing in the amplitude dimension [START_REF] Zwicker | Psychoacoustics, Facts and Models[END_REF], and is also used in denoising by the Log-MMSE method [START_REF] Ephraim | Speech enhancement using a minimum mean-square error log-spectral amplitude estimator[END_REF]. In this paper, methods using the two representations are distinguished by referring to them as cepstral noise reduction (CNR) and log-spectral noise reduction (LNR). The variants of these main types are further distinguished from each other based on the temporal smoothing parameter w and the adaptation rate ↵ (Eqs. 1-3), which control the focus of the noise suppression filter on di↵erent modulation frequencies of the nonstationary noise and the target signal.

EXPERIMENTS

Overview and Material

We evaluate the denoising methods on the RECOLA multimodal a↵ective interaction corpus [START_REF] Ringeval | Introducing the RECOLA multimodal corpus of remote collaborative and a↵ective interactions[END_REF]. It includes 46 multimodal (audio, video and physiological data) recordings of French-speaking participants involved in a dyadic collaborative task. A↵ective dimensions expressed by the participants were evaluated by six annotators for the first five minutes of each recording. This was done for arousal and valence separately. Obtained labels were then resampled to a constant 40 ms frame rate and averaged over all raters by considering inter-evaluator agreement, to provide a 'gold standard' [START_REF] Ringeval | Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data[END_REF]. In order to ensure speaker-independence in the experiments, the corpus was split into three partitions, by balancing the gender and the age of the subjects: training (16 subjects), validation (15 subjects) and testing (15 subjects).

In adding noise to the audio material, the recordings were convolved with the impulse response of a smartphone [START_REF] Mauch | The audio degradation toolbox and its application to robustness evaluation[END_REF]. This step was performed to simulate talking over a smartphone in di↵erent places. Di↵erent types of additive noise were then added, using the CHiME-2013 database [START_REF] Barker | The PASCAL CHiME speech separation and recognition challenge[END_REF] for simulating a living room environment (CHiME ), and data collected from the freesound platform 1 to simulate public transport (trains) environments. We collected, in total, 230 minutes of noise, to match the duration of the RECOLA database. In order to provide realistic conditions, we concatenated all the recordings of noise into three independent partitions and added them to the smartphone-simulated recordings of the RECOLA database, with two di↵erent signal-to-noise ratios (SNRs): 0 and 6 dB.

In the first part dealing with acoustic distance measures (Section 3.2), we use the first six recordings of the RECOLA training set (30 minutes in total) and study the quality of noise reduction using these distance measures. The original audio is used as reference signal.

An emotion recognition system is then equipped with different types of noise reduction preprocessing, in both the 1 https://www.freesound.org/ training and evaluation phase, using the most promising variants of the proposed methods and the relevant baseline methods. The di↵erent systems are trained on the training set of RECOLA to predict continuous-valued arousal and valence using support vector regression (SVR) on the mean and variance of 13 mel-frequency cepstral coe cients (MFCCs). In the training phase, we adjust the windowing for mean and variance computation to be optimal according to the validation set, as in [START_REF] Valstar | AVEC 2016 -depression, mood, and emotion recognition workshop and challenge[END_REF]. For SVR, we use a linear kernel and also tune the complexity on the validation partition [START_REF] Zhang | Facing realism in spontaneous emotion recognition from speech: Feature enhancement by LSTM neural autoencoders[END_REF]. Post-processing of the predictions is applied using the same methodology as described in [START_REF] Trigeorgis | Adieu features? End-to-end speech emotion recognition using a Deep Convolutional Recurrent Network[END_REF]. Performance in emotion recognition is evaluated with the concordance correlation coe cient (CCC) [START_REF] Lin | A concordance correlation coe cient to evaluate reproducibility[END_REF][START_REF] Valstar | AVEC 2016 -depression, mood, and emotion recognition workshop and challenge[END_REF].

Acoustic Quality Measures

Several quality measures exist for automatically evaluating denoising and enhancement results for speech signals. These include simple energy-based measures such as SNR and segmental SNR, perceptual measures such as PESQ and distance measures in di↵erent representation domains of the magnitude spectrum [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF].

The short-time magnitude spectrum is the basis of most audio feature extraction techniques. Audio pattern recognition and machine learning systems generally aim to distinguish sound classes based on the distributions of the shape of the short-time magnitude spectrum, and typically are not concerned with the true sound level or its psychoacoustical counterpart, loudness [START_REF] Zwicker | Psychoacoustics, Facts and Models[END_REF]. Therefore, in this study, we choose not to use measures that depend on the signal level in any manner, and whose results would depend on proper gain adjustment applied to the enhanced signal. These include the SNR measures as well as the RMS log-spectral distance [START_REF] Gray | Distance measures for speech processing[END_REF]. We also do not use perceptual measures that explicitly aim to predict subjective quality or intelligibility. Instead, we focus on the preservation of the information about the shape of the short-time magnitude spectrum. These considerations resulted in the choice of two measures. Firstly, we apply the Itakura distance [START_REF] Deller | Discrete-Time Processing of Speech Signals[END_REF][START_REF] Itakura | Minimum prediction residual principle applied to speech recognition[END_REF], given by dITA = log(aR0a 0 /a0R0a 0 0 ), where a=(1, a1, . . . , ap) is the all-pole model under test for its similarity to the reference model a0 = (1, a0,1, . . . , a0,p), estimated using the Toeplitz autocorrelation matrix R0 [START_REF] Makhoul | Linear prediction: A tutorial review[END_REF]. The numerator represents the total squared prediction error of the reference signal using the test model and the denominator represents the error using the reference model. In this study, R0 and the reference model a0 are obtained from the original, i. e., not noisified signal. This is a purely signal-based, non-perceptual distance measure that focuses on accuracy in all-pole modeling, which in turn is known to focus on spectral peaks and formants [START_REF] Makhoul | Linear prediction: A tutorial review[END_REF][START_REF] Rabiner | Digital Processing of Speech Signals[END_REF]. As another measure, we apply the Euclidean distance between two mel-frequency cepstral vectors, the noisy test vector and the reference vector obtained from the original signal, consisting of 12 MFCCs while excluding the zeroth coe cient [START_REF] Huang | Spoken Language Processing[END_REF]; we denote this measure by dMFCC. This measure has the perceptual aspect of an auditory-based warped frequency scale and it is also connected to the feature extraction procedure of many machine learning systems, including the one used in the present study.

Fig. 2 shows the Itakura and MFCC distances, averaged over a large number of speech frames, computed such that denoised frames are compared against corresponding reference frames in the original signal. Three conditions are con-sidered: smartphone speech, and smartphone with CHiME and trains noise, each added at 6 dB SNR. 

Emotion Recognition

Table 1 shows the emotion recognition results in various noise conditions with approximately matched training.

When training is performed with the original audio material, the system is evaluated with the original and smartphoneprocessed material. For CHiME and trains noise, the training is performed with 6 dB SNR and the system is evaluated with 0 dB and 6 dB SNR of the same type of noise corruption. This setup requires the noise reduction preprocessing methods to preserve emotion-related information to a sucient precision in both the training and recognition phases.

The two leftmost results columns indicate that denoising clean speech generally degrades recognition performance. A similar observation has been made in a recent study on feature enhancement with the same data [START_REF] Zhang | Facing realism in spontaneous emotion recognition from speech: Feature enhancement by LSTM neural autoencoders[END_REF]. An exception here, however, is the cepstral approach with moderate adaptation and no temporal smoothing (CNR/1,0.5), which actually improves prediction of the arousal dimension. None of the evaluated methods improve the prediction of arousal under the nonstationary CHiME noise; this might be explained by highly variable residual noise corrupting spectral energy trajectories. Otherwise, the proposed methods (CNR, LNR) outperform both the not denoised approach and the standard baseline noise reduction methods.

CONCLUSIONS

Noise reduction methods were evaluated with a focus on paralinguistic machine learning applications (two emotion recognition tasks). Baseline methods were chosen based on earlier, related studies and compared with a proposed new approach, which can be configured according to the specific learning task and the noise conditions using a small number of parameters. The experiments involved objective signal degradation measures and recognition of emotions on a multimodal interaction corpus. In the former evaluation, the proposed approach is shown to perform competitively to the standard noise reduction methods (spectral subtraction and MMSE, recommended as robust baseline methods in the field of speaker recognition [START_REF] Godin | Impact of noise reduction and spectrum estimation on noise robust speaker identification[END_REF]) over most of the range of the parameter values. By increasing the temporal smoothing and adaptation rate in noise modeling, the log-spectral approach clearly outperforms the standard techniques.

In emotion recognition evaluations, arousal and valence are noticed to place somewhat di↵erent requirements on the denoising scheme. Denoising improves the results in a majority of the evaluated training/test setups and in these cases, the proposed methods outperform the standard baselines. The cepstral approach without temporal smoothing of the noise leads to noticeable improvement in the high-SNR conditions. In noisy training and test conditions, temporal smoothing combined with adaptation outperforms all other evaluated approaches. Therefore, it is noted that the proposed methods show promise in audio noise reduction and audio content analysis. In future work, the relationships of di↵erent learning tasks, noise conditions and noise reduction approaches can be further investigated.
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 1 Figure 1: The noise reduction framework.

Figure 2 :

 2 Figure 2: Signal degradation (left: Itakura distance, right: MFCC distance) evaluated for denoised signals against original, frame by frame, averaged over three noise conditions and the 25 % frames with most target signal energy. The performance of the proposed methods is shown with respect to the temporal smoothing parameter w and the noise model adaptation rate ↵. Corresponding averages for unprocessed noisy signals are shown in parentheses.

Table 1 :

 1 Correlation (CCC) between predicted and ground-truth arousal and valence over the test set for closely matched training while using a given denoising method in both training and testing. The cases in which denoising improves upon the not denoised case are indicated in bold. .308 0.180 0.127 0.243 0.156 CNR (20,1.0) 0.207 0.179 0.261 0.227 0.252 0.198 LNR (1,0.5) 0.359 0.288 0.174 0.124 0.147 0.107 LNR (20,1.0) 0.278 0.250 0.137 0.109 0.241 0.218

	Training	Original	CHiME 6 dB trains 6 dB
	Noise			Test
	reduction	Orig. phone	CHiME	trains
	method (w,↵)	-	-	6 dB 0 dB 6 dB 0 dB
				AROUSAL
	none	0.735 0.728 0.670 0.557 0.483 0.379
	SS-P	0.704 0.697 0.634 0.553 0.538 0.441
	SS-M	0.708 0.701 0.637 0.535 0.564 0.488
	MMSE-1	0.672 0.680 0.601 0.490 0.566 0.488
	MMSE-2	0.679 0.698 0.620 0.510 0.514 0.430
	CNR (1,0.5) 0.753 0.755 0.599 0.502 0.535 0.438
	CNR (20,1.0) 0.676 0.650 0.642 0.539 0.547 0.440
	LNR (1,0.5)	0.706 0.664 0.635 0.538 0.532 0.435
	LNR (20,1.0) 0.676 0.650 0.641 0.535 0.701 0.637
				VALENCE
	none	0.400 0.342 0.173 0.120 0.154 0.108
	SS-P	0.328 0.262 0.112 0.107 0.195 0.228
	SS-M	0.386 0.303 0.128 0.114 0.190 0.177
	MMSE-1	0.318 0.294 0.098 0.066 0.218 0.190
	MMSE-2	0.340 0.292 0.087 0.071 0.219 0.160
	CNR (1,0.5)	0.308 0		
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