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ABSTRACT
Signal noise reduction can improve the performance of ma-
chine learning systems dealing with time signals such as
audio. Real-life applicability of these recognition technolo-
gies requires the system to uphold its performance level in
variable, challenging conditions such as noisy environments.
In this contribution, we investigate audio signal denoising
methods in cepstral and log-spectral domains and compare
them with common implementations of standard techniques.
The di↵erent approaches are first compared generally us-
ing averaged acoustic distance metrics. They are then ap-
plied to automatic recognition of spontaneous and natural
emotions under simulated smartphone-recorded noisy condi-
tions. Emotion recognition is implemented as support vector
regression for continuous-valued prediction of arousal and
valence on a realistic multimodal database. In the experi-
ments, the proposed methods are found to generally outper-
form standard noise reduction algorithms.
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1. INTRODUCTION
Audio signals are commonly a↵ected by factors other than

the signal of interest. Additive noise arises due to other
sound sources competing with the target signal and due to
the combined e↵ects of the recording equipment and the
transmission channel. Convolutive variation appears due to
the channel and acoustic reverberation. The performance
of machine learning systems is generally negatively a↵ected
by these e↵ects, because they may mask target signals, such
as speech, and cause mismatch in feature statistics between
the training and recognition conditions.

Additive noise is a ubiquitous problem that a↵ects the
performance of machine-learning speech systems in many
common environments. In the field of automatic speech
recognition (ASR), this is addressed on di↵erent stages of
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the system, including feature extraction, feature enhance-
ment, machine learning models and their training [13, 29]
and also by using better hardware or multiple microphones.

Noise reduction for speech audio is often evaluated from
the viewpoint of listeners in terms of enhancing either the
subjective quality or speech intelligibility [16]. Of these, in-
telligibility, whose improvement is the more di�cult problem
[16], is potentially relevant for ASR. Computational paralin-
guistic analysis of speech, whose general aim is to uncover
various external attributes of speech not related to its lin-
guistic message (the concern of ASR), has emerged as an
active field of research within the past decade [28]. Two of
its most central topics are speaker recognition (identification
and verification) and, more recently, automatic recognition
of emotion in speech. These applications, which are im-
portant for multimedia content analysis, retrieval and pro-
cessing, do not have an obvious connection with the tra-
ditional objectives of speech enhancement. Nevertheless,
in speaker recognition, traditional single-channel noise re-
duction systems are frequently found helpful as preprocess-
ing in improving system performance under noisy or mis-
matched conditions [9, 19, 25, 26]. General-purpose signal-
based denoising methods, such as power spectral subtraction
and minimum-mean-square-error estimation of log-spectral
amplitude, have been found to improve speaker recogni-
tion performance quite reliably across di↵erent back-end
machine learning systems, test conditions (type and level
of degradation) and training conditions (noise-matched or
mismatched), even more so than auditory-based methods
designed to improve subjective quality [9]. In general, the
relative performance of di↵erent denoising methods is quite
strongly a↵ected by the aforementioned factors [9, 25].

In this paper, following on the results of the studies focus-
ing on signal denoising in text-independent speaker recogni-
tion [9, 25], a machine learning task that is commonly based
on identifying the distribution of the short-time magnitude
spectrum, we compare denoising techniques from the view-
point of audio and multimedia content analysis in speech
emotion recognition. It is another central paralinguistic
problem with other applications ranging from ASR systems
and call centers to intelligent user interfaces [28]. Work
on noise robustness in speech emotion recognition has also
been started [27, 32], but to our knowledge, signal denois-
ing has not been explicitly studied for this purpose. As
emotional or stressed speech often coincides with acousti-
cally noisy environments, it is worthwhile to investigate the
performance of general-purpose noise reduction solutions in
improving short-time spectral representation of the two pri-



mary emotion dimensions – activation (arousal), i. e., the
intensity of emotional expression, and valence, i. e., the pos-
itive/negative a↵ective dimension [10].

We propose a family of general-purpose, adaptive signal
denoising techniques that can be simply configured with re-
spect to spectral smoothing, temporal smoothing and adap-
tation rate of the noise model in order to tackle di↵erent non-
stationary noise conditions and application requirements.
They operate in a log-spectral or cepstral domain, which
di↵er in terms of spectral smoothing facilitated by the cep-
stral representation. These methods are compared against
published implementations of baseline methods suggested
by the previous studies, firstly by using general, objective
signal enhancement quality measures. The most promising
variants are then compared as preprocessing for an emotion
recognition system performing continuous-valued prediction
of arousal and valence. In this study, we focus on relatively
similar noise conditions in the training and testing phase, so
that denoising is used to recover important information in
both training and testing.

2. NOISE REDUCTION

2.1 Previous Work
Classical single-channel noise reduction methods include

variants of spectral subtraction [2, 3], where an averaged
noise (magnitude or power) spectrum is subtracted from the
noisy signal spectrum while keeping the resultant spectral
magnitudes positive, and Wiener filtering [16], often imple-
mented in practice using an iterative approach [12].

The performance of the minimum mean square er-
ror (MMSE) [7] and log-spectral amplitude MMSE (Log-
MMSE) estimators [8] still remains among the best of the
published methods [20]. In part, this can be attributed to
their decision-directed estimation approach, which bases the
spectral estimate of each frame partially on the estimates
from previous frames via the a priori SNR estimate up-
dated by using a memory coe�cient [5]. Spectral subtrac-
tion [21] and the decision-directed MMSE [20] methods have
also been applied in the spectral modulation domain in order
to better handle nonstationary noise.

In recent comprehensive evaluations looking at noise re-
duction preprocessing techniques to combat mismatch in
speaker recognition, MMSE, Log-MMSE and spectral sub-
traction have performed well [9, 25]. Power spectral subtrac-
tion also resulted in large performance gains in [26]. There-
fore, as the baseline noise reduction methods in this study,
we choose two published implementations of spectral sub-
traction, one working in the power spectral domain (SS-P
[16]) and one in the magnitude spectral domain (SS-M [4]),
and two published implementations of Log-MMSE (MMSE-
1 [16]; MMSE-2 [4]).

2.2 Methods Under Study
The methods proposed in this study are based on obtain-

ing the noise model by averaging over low-energy frames in
the representation domain – log-spectral or cepstral – and,
optionally, by adapting the noise model constantly based on
the (Gaussian) similarity of the short-term moving average
of the representation to the initial noise model. A general
overview is presented in Fig. 1.

The audio signal is processed in Hann-windowed frames of
30 ms extracted every 10 ms. The discrete Fourier transform
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Figure 1: The noise reduction framework.

(DFT) of each audio frame is first transformed into either a
logarithmic magnitude spectrum or a truncated cepstrum [6,
22]. The real cepstrum is a frequency transform (specifically,
the inverse Fourier transform) of the logarithmic spectrum.
A truncated cepstrum, where only the lower-order coe�-
cients are retained, thus represents a smoothed version of
the original logarithmic spectrum [22]. With the sampling
rate of 44100 Hz used in this study, we choose to retain the
first J = 50 cepstral coe�cients in accordance to a rule of
thumb of choosing the length of the truncated cepstrum to
be less than an expected pitch period [22].

In the lower branch of Fig. 1, low-energy frames within
the analysis block of six seconds are automatically found
by clustering the frame logarithmic energies into two clus-
ters by using k-means and selecting the frames assigned to
the cluster with the lower mean value. The initial noise
model D = {µj ,�

2
j }, consisting of a mean and variance for

each (spectral or cepstral) coe�cient, is then obtained by
averaging over these frames. In the upper branch, temporal
smoothing is applied to the complete sequence of the noisy
vectors {Y n} by using the equation

Zn = �Zn�1 + (1� �)Y n, (1)

where n is the frame index, � = (w � 1)/w and w is an
“equivalent rectangular window length” of the moving av-
erage integrator in the sense that the contribution of each
new observation is weighted by 1/w. Setting w = 1 causes no
temporal integration to be performed. In the next stage, the
similarity of the noisy representation Zn = (Zn,1, . . . , Zn,J)
with the initial noise model is evaluated as

�n,j = exp(�(Zn,j � µj)
2/�2

j ), 1  j  J, (2)

yielding scores in the range (0, 1). The components of the
current noise model at the nth frame µn,j (initially, µ0,j =
µj) are then adapted towards the direction of the current
smoothed noisy representation Zn, in proportion ↵ to the
similarity �n,j of the latter to the initial noise model:

µn,j = µn�1,j + ↵�n,j(Zn,j � µn�1,j). (3)

In both log-spectral and cepstral domains, spectral-domain
division corresponds to subtraction. Therefore, the DFT-
domain noise extraction filter Gn(k) is represented by µn,j�
Zn,j in the analysis domain, and can be obtained by trans-
forming this quantity back to the DFT domain. It is then
used to create the noise suppression filter, with the lower
limit of suppression at zero: Hn(k) = max(1 � Gn(k), 0).
The modified frames are combined using an overlap-add
method to produce the enhanced signal.

One motivation for processing the signal in one of these
domains is to be able to apply cepstral smoothing in generat-
ing the noise and noisy signal models by temporal averaging



and integration. The log-spectral representation is both an
intermediate stage in cepstrum computation and a special
case in the sense that it is equivalent to a non-truncated
cepstral representation. Considering distance metrics in the
cepstral and log-spectral domains, the cepstral Euclidean
distance can be shown to be a lower bound for the root-
mean-square (RMS) log-spectral distance; with the inclusion
of more cepstral coe�cients in the truncated cepstrum, more
spectral fine structure information is preserved and the cep-
stral Euclidean distance approaches the RMS log-spectral
distance from below [11]. The logarithmic spectrum repre-
sentation is frequently used in audio signal analysis due to
the large dynamic range of hearing in the amplitude dimen-
sion [33], and is also used in denoising by the Log-MMSE
method [8]. In this paper, methods using the two representa-
tions are distinguished by referring to them as cepstral noise
reduction (CNR) and log-spectral noise reduction (LNR).
The variants of these main types are further distinguished
from each other based on the temporal smoothing parameter
w and the adaptation rate ↵ (Eqs. 1-3), which control the
focus of the noise suppression filter on di↵erent modulation
frequencies of the nonstationary noise and the target signal.

3. EXPERIMENTS

3.1 Overview and Material
We evaluate the denoising methods on the RECOLA mul-

timodal a↵ective interaction corpus [24]. It includes 46 mul-
timodal (audio, video and physiological data) recordings of
French-speaking participants involved in a dyadic collabora-
tive task. A↵ective dimensions expressed by the participants
were evaluated by six annotators for the first five minutes of
each recording. This was done for arousal and valence sep-
arately. Obtained labels were then resampled to a constant
40 ms frame rate and averaged over all raters by considering
inter-evaluator agreement, to provide a ‘gold standard’ [23].
In order to ensure speaker-independence in the experiments,
the corpus was split into three partitions, by balancing the
gender and the age of the subjects: training (16 subjects),
validation (15 subjects) and testing (15 subjects).

In adding noise to the audio material, the recordings were
convolved with the impulse response of a smartphone [18].
This step was performed to simulate talking over a smart-
phone in di↵erent places. Di↵erent types of additive noise
were then added, using the CHiME-2013 database [1] for
simulating a living room environment (CHiME), and data
collected from the freesound platform1 to simulate public
transport (trains) environments. We collected, in total, 230
minutes of noise, to match the duration of the RECOLA
database. In order to provide realistic conditions, we con-
catenated all the recordings of noise into three independent
partitions and added them to the smartphone-simulated
recordings of the RECOLA database, with two di↵erent
signal-to-noise ratios (SNRs): 0 and 6 dB.

In the first part dealing with acoustic distance measures
(Section 3.2), we use the first six recordings of the RECOLA
training set (30 minutes in total) and study the quality of
noise reduction using these distance measures. The original
audio is used as reference signal.

An emotion recognition system is then equipped with dif-
ferent types of noise reduction preprocessing, in both the

1https://www.freesound.org/

training and evaluation phase, using the most promising
variants of the proposed methods and the relevant baseline
methods. The di↵erent systems are trained on the train-
ing set of RECOLA to predict continuous-valued arousal
and valence using support vector regression (SVR) on the
mean and variance of 13 mel-frequency cepstral coe�cients
(MFCCs). In the training phase, we adjust the windowing
for mean and variance computation to be optimal according
to the validation set, as in [31]. For SVR, we use a linear
kernel and also tune the complexity on the validation parti-
tion [32]. Post-processing of the predictions is applied using
the same methodology as described in [30]. Performance in
emotion recognition is evaluated with the concordance cor-
relation coe�cient (CCC) [15, 31].

3.2 Acoustic Quality Measures
Several quality measures exist for automatically evaluat-

ing denoising and enhancement results for speech signals.
These include simple energy-based measures such as SNR
and segmental SNR, perceptual measures such as PESQ and
distance measures in di↵erent representation domains of the
magnitude spectrum [16].

The short-time magnitude spectrum is the basis of most
audio feature extraction techniques. Audio pattern recogni-
tion and machine learning systems generally aim to distin-
guish sound classes based on the distributions of the shape
of the short-time magnitude spectrum, and typically are not
concerned with the true sound level or its psychoacousti-
cal counterpart, loudness [33]. Therefore, in this study, we
choose not to use measures that depend on the signal level
in any manner, and whose results would depend on proper
gain adjustment applied to the enhanced signal. These in-
clude the SNR measures as well as the RMS log-spectral
distance [11]. We also do not use perceptual measures that
explicitly aim to predict subjective quality or intelligibil-
ity. Instead, we focus on the preservation of the informa-
tion about the shape of the short-time magnitude spectrum.
These considerations resulted in the choice of two mea-
sures. Firstly, we apply the Itakura distance [6, 14], given by
dITA = log(aR0a

0/a0R0a
0
0), where a=(1, a1, . . . , ap) is the

all-pole model under test for its similarity to the reference
model a0 = (1, a0,1, . . . , a0,p), estimated using the Toeplitz
autocorrelation matrix R0 [17]. The numerator represents
the total squared prediction error of the reference signal us-
ing the test model and the denominator represents the error
using the reference model. In this study, R0 and the refer-
ence model a0 are obtained from the original, i. e., not nois-
ified signal. This is a purely signal-based, non-perceptual
distance measure that focuses on accuracy in all-pole mod-
eling, which in turn is known to focus on spectral peaks and
formants [17, 22]. As another measure, we apply the Eu-
clidean distance between two mel-frequency cepstral vectors,
the noisy test vector and the reference vector obtained from
the original signal, consisting of 12 MFCCs while excluding
the zeroth coe�cient [13]; we denote this measure by dMFCC.
This measure has the perceptual aspect of an auditory-based
warped frequency scale and it is also connected to the feature
extraction procedure of many machine learning systems, in-
cluding the one used in the present study.

Fig. 2 shows the Itakura and MFCC distances, averaged
over a large number of speech frames, computed such that
denoised frames are compared against corresponding refer-
ence frames in the original signal. Three conditions are con-



sidered: smartphone speech, and smartphone with CHiME
and trains noise, each added at 6 dB SNR.
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Figure 2: Signal degradation (left: Itakura distance,

right: MFCC distance) evaluated for denoised sig-

nals against original, frame by frame, averaged over

three noise conditions and the 25% frames with

most target signal energy. The performance of the

proposed methods is shown with respect to the tem-

poral smoothing parameter w and the noise model

adaptation rate ↵. Corresponding averages for un-

processed noisy signals are shown in parentheses.

3.3 Emotion Recognition
Table 1 shows the emotion recognition results in vari-

ous noise conditions with approximately matched training.
When training is performed with the original audio material,
the system is evaluated with the original and smartphone-
processed material. For CHiME and trains noise, the train-
ing is performed with 6 dB SNR and the system is evaluated
with 0 dB and 6 dB SNR of the same type of noise corrup-
tion. This setup requires the noise reduction preprocessing
methods to preserve emotion-related information to a su�-
cient precision in both the training and recognition phases.

The two leftmost results columns indicate that denoising
clean speech generally degrades recognition performance. A
similar observation has been made in a recent study on fea-
ture enhancement with the same data [32]. An exception
here, however, is the cepstral approach with moderate adap-
tation and no temporal smoothing (CNR/1,0.5), which ac-
tually improves prediction of the arousal dimension. None
of the evaluated methods improve the prediction of arousal
under the nonstationary CHiME noise; this might be ex-
plained by highly variable residual noise corrupting spec-
tral energy trajectories. Otherwise, the proposed methods
(CNR, LNR) outperform both the not denoised approach
and the standard baseline noise reduction methods.

4. CONCLUSIONS
Noise reduction methods were evaluated with a focus on

paralinguistic machine learning applications (two emotion
recognition tasks). Baseline methods were chosen based on
earlier, related studies and compared with a proposed new

Table 1: Correlation (CCC) between predicted and

ground-truth arousal and valence over the test set

for closely matched training while using a given de-

noising method in both training and testing. The

cases in which denoising improves upon the not de-

noised case are indicated in bold.

Training Original CHiME 6 dB trains 6 dB
Noise Test
reduction Orig. phone CHiME trains
method (w,↵) – – 6 dB 0dB 6dB 0dB

AROUSAL
none 0.735 0.728 0.670 0.557 0.483 0.379
SS-P 0.704 0.697 0.634 0.553 0.538 0.441

SS-M 0.708 0.701 0.637 0.535 0.564 0.488

MMSE-1 0.672 0.680 0.601 0.490 0.566 0.488

MMSE-2 0.679 0.698 0.620 0.510 0.514 0.430

CNR (1,0.5) 0.753 0.755 0.599 0.502 0.535 0.438

CNR (20,1.0) 0.676 0.650 0.642 0.539 0.547 0.440

LNR (1,0.5) 0.706 0.664 0.635 0.538 0.532 0.435

LNR (20,1.0) 0.676 0.650 0.641 0.535 0.701 0.637

VALENCE
none 0.400 0.342 0.173 0.120 0.154 0.108
SS-P 0.328 0.262 0.112 0.107 0.195 0.228

SS-M 0.386 0.303 0.128 0.114 0.190 0.177

MMSE-1 0.318 0.294 0.098 0.066 0.218 0.190

MMSE-2 0.340 0.292 0.087 0.071 0.219 0.160

CNR (1,0.5) 0.308 0.308 0.180 0.127 0.243 0.156

CNR (20,1.0) 0.207 0.179 0.261 0.227 0.252 0.198

LNR (1,0.5) 0.359 0.288 0.174 0.124 0.147 0.107
LNR (20,1.0) 0.278 0.250 0.137 0.109 0.241 0.218

approach, which can be configured according to the spe-
cific learning task and the noise conditions using a small
number of parameters. The experiments involved objective
signal degradation measures and recognition of emotions on
a multimodal interaction corpus. In the former evaluation,
the proposed approach is shown to perform competitively to
the standard noise reduction methods (spectral subtraction
and MMSE, recommended as robust baseline methods in
the field of speaker recognition [9]) over most of the range of
the parameter values. By increasing the temporal smooth-
ing and adaptation rate in noise modeling, the log-spectral
approach clearly outperforms the standard techniques.

In emotion recognition evaluations, arousal and valence
are noticed to place somewhat di↵erent requirements on
the denoising scheme. Denoising improves the results in a
majority of the evaluated training/test setups and in these
cases, the proposed methods outperform the standard base-
lines. The cepstral approach without temporal smoothing of
the noise leads to noticeable improvement in the high-SNR
conditions. In noisy training and test conditions, temporal
smoothing combined with adaptation outperforms all other
evaluated approaches. Therefore, it is noted that the pro-
posed methods show promise in audio noise reduction and
audio content analysis. In future work, the relationships of
di↵erent learning tasks, noise conditions and noise reduction
approaches can be further investigated.
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