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Abstract
During the last decade, speech emotion recognition technology
has matured well enough to be used in some real-life scenarios.
However, these scenarios require an almost silent environment
to not compromise the performance of the system. Emotion
recognition technology from speech thus needs to evolve and
face more challenging conditions, such as environmental addi-
tive and convolutional noises, in order to broaden its applica-
bility to real-life conditions. This contribution evaluates the im-
pact of a front-end feature enhancement method based on an au-
toencoder with long short-term memory neural networks, for ro-
bust emotion recognition from speech. Support Vector Regres-
sion is then used as a back-end for time- and value-continuous
emotion prediction from enhanced features. We perform ex-
tensive evaluations on both non-stationary additive noise and
convolutional noise, on a database of spontaneous and natural
emotions. Results show that the proposed method significantly
outperforms a system trained on raw features, for both arousal
and valence dimensions, while having almost no degradation
when applied to clean speech.
Index Terms: emotion recognition, spontaneous speech, ad-
ditive and convolutional noises, feature enhancement, autoen-
coder, LSTM Neural Networks

1. Introduction
Technology for automatic emotion recognition from speech
(ERS) has gained increasing commercial attention in the last
decade. Rapid progress of this technology has indeed en-
abled application of ERS in various domains, such as, health
care [1], education [2], serious games [3], robotics [4], and
call-centers [5]. However, while good performance has been
reported in research papers under laboratory conditions [6], or
with systems tailored towards specific databases [7], real-life
applications of ERS still remain an open challenge. Indeed,
various factors make this task highly challenging, which can
be grouped into three main categories: (i) the contextual depen-
dencies of the meaning and significance of affective expressions
across different speakers, languages and cultures [8], (ii) the
presence of varying and degraded acoustic conditions caused
by reverberation, background noise, and acoustic properties of
the recording devices used, and (iii) the necessity to use dis-
tributed systems in a client-server architecture, which introduce
some latency and distortion in the data [9].

Stationary, non-stationary, and convolutional noise severely
degrade performance of systems, and affect consequently the
user experience in real-life conditions [10, 11, 12]. Therefore,
many studies have been performed for speech and acoustic fea-

ture enhancement (FE), especially for automatic speech recog-
nition (ASR). Recurrent Neural Networks (RNN) are widely
used in this field to enhance corrupted features, which is an ap-
plication of the de-noising autoencoder [13] principle: neural
networks are trained to map noisy features to clean features.
This method has recently also been exploited for speech en-
hancement in the time domain [14, 15]. RNN have been also
studied for blind non-linear source separation, with the aim to
enhance the acoustic features by separating noise and speech
sources [16, 17]. In the context of speech enhancement, the au-
thors in [14] use deep neural networks to map noisy to clean
Mel features, but the network output is synthesised directly
into a time domain signal, instead of constructing a filter based
on speech and noise magnitudes. A combination of unsuper-
vised noise estimation and Deep Neural Network (DNN) based
speech power spectrum estimation is used in [15] to construct a
Wiener filter. Supervised training of deep neural networks was
performed to predict the ideal ratio mask in an uncertainty de-
coding framework for ASR [18].

Studies on noise robustness for ERS are much more sparse,
despite being necessary for real-life applications of this tech-
nology. To the best of our knowledge, only a few studies have
addressed this issue so far. Large acoustic feature sets were in-
vestigated in [10]. Adaptive noise cancellation was proposed as
a front end in [11]. Speech enhancement based on spectral sub-
traction and masking properties was studied in [12]. Wavelet
decomposition [19] and feature selection techniques [20] have
also been proposed. Additionally, supervised Nonnegative Ma-
trix Factorization (NMF) was investigated for the robustness of
emotion recognition engines [21].

One may note that most existing work on noise robust-
ness for ERS has been performed on acted emotions, which
are rarely observable in real-life. Furthermore, only a few of
those studies have analysed the impact of reverberated noise,
which is known to impact severely the performance of ASR
systems [21, 22]. In this light, this present contribution studies
the impact of non-stationary additive noise and convolutional
noise on the automatic recognition of spontaneous emotions
from speech. We propose the use of a FE method based on a
memory-enhanced recurrent Denoising Autoencoder (rDA) as a
front end, and show that this method can significantly improve
the performance, while having almost no degradation when ap-
plied to clean speech.

The following paper is structured as follows: the proposed
FE method based on rDA is introduced in Section 2, then ex-
tensive experiments on spontaneous emotions are described in
Section 3, and a conclusion with future work is given in Sec-
tion 4.
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Figure 1: Structure of a recurrent denoising autoencoder with
LSTM neural networks.

2. Feature enhancement
In the past few years, Long Short-Term Memory (LSTM) mod-
els have been widely applied to a variety of pattern recognition
tasks [23, 24], and show a powerful capability of learning long-
range contextual information. In this section, we give a quick
overview of such a memory-enhanced RNN, on which the pro-
posed rDA is built.

2.1. Memory-enhanced recurrent neural networks

Compared to conventional RNN, the LSTM-RNN model pro-
posed by Hochreiter and Schmidhuber [25] uses one or multiple
LSTM blocks to replace hidden neurons. Every memory block
consists of self-connected linear memory cells c and three mul-
tiplicative gate units: an input gate i, a forget gate f , and a
output gate o, which are responsible for writing, reading, and
resetting the memory cell values, respectively. Given an input
xt at the step time t, the activations of the input gate it, the for-
get gate ft, the memory cell state ct, and the output gate ot are
separately updated by the following formulas:

it = fg(Wxixt +Whiht−1 +Wcict−1 + bi), (1)
ft = fg(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (2)
ct = it · fi(Wxcxt +Whcht−1 + bc) + ft · ct−1, (3)
ot = fg(Wxoxt +Whoht−1 +Wcoct + bo), (4)
ht = ot · fo(ct), (5)

where fg , fi, and fo denote the logistic sigmoid, tanh, and tanh
activation functions, respectively; W is a weight matrix of the
mutual connections; ht presents the output of the hidden block;
b indicates the block bias. From the equations mentioned above,
it is observed that the values of all memory cells and block out-
puts in the previous time step t − 1 will certainly affect the
activations of all three gates, even the input units in the cur-
rent time step t in the same layer, except for the case between
memory cell and output gate. More details about the memory
structure can be found in [26].

The main advantage of using such a memory-enhanced
block over a traditional neuron in a RNN is that the cell state
in a LSTM block sums activations over time. Since derivatives
distribute over sums, the backpropagated error does not blow up
or decay over time (the vanishing gradient problem) [25, 26].

The general structure of rDA with memory-enhanced neu-
ral networks proposed in this paper is illustrated in Fig. 1, which
includes an input layer, an output layer, and one or multiple hid-

den layers that are implemented by the LSTM blocks. In com-
parison with the conventional DA given in [13] where the DA is
modelled with Feedforward Neural Networks (FNN), the pre-
sented DA is structured with the above described LSTM-RNN
in the hidden layers. Additionally, it also should be noticed that
the recurrent autoencoder also differs from the ones described
in [24, 27], where an encoder is used to map an input sequence
into a fixed length representation, and a decoder is used to de-
code the target sequence from the representation.

2.2. Feature enhancement by an autoencoder

As discussed in Section 1, the speech signal s(k) is easily dis-
torted by the environmental noise and recording devices when
facing realistic application scenarios with the Acoustic Impulse
Response (AIR) r(k) of finite length T60 and the background
additional noise n(k). Therefore, the distorted speech signal
ŝ(k) can be expressed as

ŝ(k) = s(k) ∗ r(k) + n(k). (6)

The signal in the time domain ŝ(k) can be approximatedly
transformed into the spectrum domain as

|Ŝ(f)|2 ≈ |S(f)|2 · |R(f)|2 + |N(f)|2 (7)

by applying a Short-Time Discrete Fourier Transform (STDFT)
with three assumptions: 1) T60 is shorter than the analysis win-
dow sizew; 2) The power spectrum of the additive noise in each
analysis window w is a slowly varying process, which means
that the additive noise is assumed to be stationary in each anal-
ysis window; 3) The phase of different analysis windows are
non-correlated.

To extract the feature vectors in the ceptral domain such
as Mel-Frequency Cepstrum Coefficients (MFCC) for emotion
recognition from speech, logarithms and Discrete Cosine Trans-
form (DCT) are performed over the above spectrum. Therefore,
Eq. (7) can be further formulated into

D(ln|Ŝ(f)|2) ≈D(ln|S(f)|2) +D(ln|R(f)|2)

+D(ln(1 + |N(f)|2

|S(f)|2 · |R(f)|2 )).
(8)

From Eq. (8), we can see that the goal of denoising is
to eliminate the impact of the last two terms. For the non-
stationary noise, however, the cepstrum does not only fluctuate
over time, but is also involved with the original speech spec-
trum which is non-stationary as well. Therefore, the last term in
Eq. (8) cannot be simply subtracted due to its non-linear prop-
erty.

To tackle this non-linear problem, we choose the memory-
enhanced rDA as described in Section 2.1 with the purpose of
exploiting its advantage of accessing long-range contextual in-
formation. The goal of the DA is to reconstruct the features
xc in the clean speech feature domain X c from the correspond-
ing features xn in the corrupted speech feature domain Xn, as
shown in Fig. 1. When providing these corrupted features as the
input xn to the first layer, we want the output x̂n to be highly
similar to the clean features xc. To learn the required mapping
between noisy and clean features, an objective function – Mean
Squared Error (MSE) – is defined to mimise the reconstruction
error during training:

J (θ) = 1

T

T∑
t=1

(x̂n
t − xc

t)
2, (9)

where T is the number of frames of the training set.



3. Experiments and results
In the following, we firstly describe the selected spontaneous
emotion database, then evaluate the performance of the pro-
posed FE method based on the rDA with LSTM neural networks
for time- and value-continuous emotion recognition.

3.1. RECOLA and noise database

For the experiments, we chose the REmote COLlaborative
and Affective (RECOLA) database [28] which was used as
a database for the 5th Audio/Visual+ Emotion Challenge
(AV+EC 2015) [29]. The motivation of the database collec-
tion was to study the complex phenomena, especially emotion,
portrayed by humans during social interactions in daily-life.

To generate additive noisy speech, we added the CHiME15
database [30] into the clean (raw or original) speech with vari-
ous levels of SNR (i.e., 0–12 dB at a step of 3 dB). This database
was used for the 3rd CHiME Challenge [30], and was collected
in five different locations, such as booth, bus, cafe, pedestrian
area, and street junction. The goal of this database is to simu-
late emotional speech in different places with various additive
background noises.

To generate convolution noise, we applied (via convolution)
the Microphone Impulse Response (MIR) of the Google Nexus
One smartphone to the recordings from RECOLA using the Au-
dio Degradation Toolbox (ADT) [31]. The goal is to simulate
reverberant speech being recorded with a smartphone. More-
over, other noises are further simulated via the MIR, by apply-
ing the Room Impulse Response (RIR) of classroom or grand
hall as the second convolutional noise. This aims to simulate
the scenarios that someone speaks on the phone in different en-
vironments.

Note that, when adding the CHiME noise, each noise
recording was firstly normalised to 0 dB peak energy and con-
catenated according to the type of noise. Then, the recording
was cut into three partitions of the same length for the training,
the validation, and the test sets, respectively. Finally, for each
recording of RECOLA, we randomly chose an excerpt of the
concatenated noise signal from the relevant partition, to ensure
both speaker and noise independent partitions.

3.2. Experimental setups

At the front-end of the emotion recognition system, 13 Low-
Level Descriptors (i.e., MFCCs 0–12) were firstly extracted.
In detail, the feature vectors of xn

t and xc
t were separately ex-

tracted from the distorted speech signals and the original clean
speech signals at every 10 ms using a window size of 25 ms.
Before training the rDA, the global means and variances were
calculated of the noisy and clean speech. Then, standardisa-
tion was performed over the network inputs and targets using
the means and variances from the corresponding training sets,
respectively.

For the rDA, both input and output node numbers are equal
to the dimension of the feature vector (13 in our case). Two
bidirectional LSTM hidden layers were chosen, and each layer
consists of 30 memory blocks. During network training, gradi-
ent descent was implemented with a learning rate of 10−6 and
a momentum of 0.9. Zero mean Gaussian noise with standard
deviation 0.1 was added to the input activations in the train-
ing phase such as to improve generalisation. All weights were
randomly initialised in the range from -0.1 to 0.1. Note that,
all these parameters were optimised on the validation set. Fi-
nally, the early stopping strategy was used, i.e., training was
stopped when no improvement of the MSE on the validation set

has been observed during 20 epochs or the predefined maximum
number of training epochs (200 in our case) has been executed.
Further, to accelerate the training process, we updated the net-
work weights after running every mini batch of 8 sequences for
computation in parallel. The training was performed with our
CURRENNT toolkit [32].

After the procedure of FE, functionals – mean and vari-
ance – were applied over each of the enhanced MFCCs with
a window size of 8 s at a step of 0.04 s, which leads to 26 at-
tributes for each window. These statistical features were then
fed into the back-end of the system used for emotion recogni-
tion, where L2-regularised L2-loss Support Vector Regression
(SVR) implemented in the LIBLINEAR toolbox [33] was used.
The complexity value of SVR was optimised by the best perfor-
mance of the validation set, i.e., C = 5 · 10−5 for arousal and
C = 5 · 10−3 for valence in our experiments.

For the performance evaluation, we choose the Concor-
dance Correlation Coefficient (CCC) [34]. Compared to Pear-
son’s Correlation Coefficient (PCC), CCC can estimate not only
the linear correlation, but also the difference of the bias between
two variables. Formally, CCC is formulated as

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (10)

where ρ is the correlation coefficient between the two variables;
µx and µy are the means of the two variables; and σ2

x and σ2
y are

the corresponding variances. Moreover, it is worth noting that
the gold standard ratings for all the recordings were shifted back
in time with a four seconds delay. This is due to the reaction
delay of human for continuous emotion annotation [35].

3.3. Results and Discussion

To verify the effectiveness of the rDA with LSTM Neural Net-
works for FE, we separately performed two experiments: 1) on
the non-stationary additive noisy speech only, i.e., by adding
CHiME15 noise; 2) on the smartphone related convolutional
noisy speech, i.e., the speech is distorted by applying MIR only
(smartphone), or additionally by applying RIR of the class-
room/hall (+classroom/hall), or additionally by adding various
levels of CHiME noise (+CH).

Apart from that, we carried out two FE strategies – 1)
matched FE: Several FE models are trained separately on the
data sets with different noise conditions. For example, when
testing on clean speech, the same quality of speech is used, i.e.,
clean speech is employed to train the rDA; 2) mixed FE: One
FE model is trained on a data set with mixed noise conditions.
Therefore, the distinction between the two FE strategies is based
on the noise condition of the training data that can match or not
with the one of the testing data. For example, when testing the
clean speech, the mixed conditional speech, i.e., all kinds of
CHiME noisy speech or the smartphone related noisy speech
together with the clean speech, are utilised to train the rDA.

Table 1 shows the performance of the non-enhanced and en-
hanced speech (with the matched or mixed FE strategies) eval-
uated on the emotion recognition model trained on the clean
speech for both, arousal and valence regression. In almost all
cases, the proposed FE method significantly outperforms the
system trained on the non-enhanced noisy speech (baseline).
Taking the additive noisy speech (CHiME15) for example, the
average CCC over the recordings at different levels of SNRs on
the test set is boosted from 0.563 to 0.596 and 0.594, respec-
tively, by matched and mixed FE for arousal, and from 0.176
to 0.223 and 0.199, respectively, by matched and mixed FE for



Table 1: Performance (Concordance Correlation Coefficient [CCC]) of the validation and test sets for the proposed matched and mixed
feature enhancement (FE) model on the CHiME15 noisy speech only or on the smartphone related noisy speech, in the evaluation
of arousal and valence emotional tasks. class.: classroom; CH.: the average CCC over five different ‘smartphone + CHiME’ noisy
speeches with 0–12 dB of SNRs at a step of 3 dB. The mark of “/”: no other noise is added onto the smartphone related noisy speech.

CHiME15 smartphone +
CCC clean 12dB 9dB 6dB 3dB 0dB mean clean / class. hall CH. mean

arousal on the validation set
baseline 0.736 0.680 0.657 0.626 0.584 0.526 0.635 0.736 0.726 0.629 0.634 0.436 0.545
matched FE 0.735 0.715 0.710 0.692 0.666 0.627 0.691 0.735 0.723 0.641 0.662 0.675 0.682
mixed FE 0.693 0.721 0.711 0.691 0.648 0.594 0.676 0.690 0.686 0.650 0.651 0.599 0.630

arousal on the test set
baseline 0.732 0.628 0.590 0.542 0.480 0.404 0.563 0.732 0.719 0.618 0.609 0.356 0.495
matched FE 0.729 0.658 0.646 0.611 0.510 0.422 0.596 0.729 0.713 0.614 0.694 0.682 0.684
mixed FE 0.717 0.683 0.651 0.598 0.499 0.418 0.594 0.712 0.690 0.612 0.600 0.532 0.586

valence on the validation set
baseline 0.402 0.304 0.276 0.246 0.213 0.180 0.270 0.402 0.359 0.306 0.302 0.156 0.239
matched FE 0.383 0.335 0.299 0.259 0.257 0.223 0.293 0.383 0.335 0.236 0.331 0.187 0.246
mixed FE 0.201 0.227 0.275 0.275 0.262 0.205 0.249 0.253 0.243 0.251 0.253 0.215 0.230

valence on the test set
baseline 0.278 0.190 0.172 0.155 0.139 0.124 0.176 0.278 0.237 0.212 0.205 0.003 0.105
matched FE 0.269 0.227 0.258 0.214 0.200 0.172 0.223 0.269 0.211 0.126 0.152 0.140 0.162
mixed FE 0.171 0.210 0.217 0.214 0.202 0.179 0.199 0.195 0.175 0.208 0.209 0.085 0.135
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Figure 2: Concordance Correlation Coefficient (CCC)
of 13 Low-Level Descriptors (MFCC 0–12) between the
enhanced/non-enhanced speech and the clean speech over the
whole test set with the CHiME noise (a) or the smartphone-in-
the-hall noise (b).

valence. Furthermore, it is expected that the matched FE out-
performs the mixed FE, since the matched FE uses different
FE models for denoising corresponding noisy data, whereas the
mixed FE trains only one FE model for denoising all kinds of
noisy data.

Specifically, the performance obtained on the clean speech
condition almost does not degrade when executing the matched
FE method, but this conclusion is not supported by performing
the mixed FE method. This should be mainly due to huge mis-
match between the clean speech and the mixed noisy speech.
However, this can be easily solved by inserting a noise detec-
tor at the front-end to distinguish whether the signal is noisy
or clean [36]. If it was clean, the speech signal can directly
be fed into the recognition model without any procedures of
FE. Moreover, for the convolutional noise of smartphone in the
classroom or in the hall, we can see that our proposed method
does not work quite well, however, for the convolutional noise
of the smartphone with CHiME noise, the proposed method can
surprisingly improve the baseline. This may be because LSTM-
RNN does not work efficiently for a linear problem, as the T60

of the MIR used for these experiments is short and the convo-
lutinal noise can be regarded as a constant value in the spectral

domain (see Eq. (8)).
To further investigate the efficiency of the proposed FE,

we calculated the CCC between the enhanced (by matched
FE)/non-enhanced speech and the clean speech over the whole
test set with the CHiME noise or the smartphone-in-the-hall
noise, as illustrated in Fig. 2. It can be seen that the enhanced
speech could deliver higher correlation coefficients with the
speech, which possibly contributes to the better emotion recog-
nition performance.

4. Conclusions
We presented a feature enhancement method based on a de-
noising autoencoder with Long Short-Term Memory neural net-
works for spontaneous emotion recognition from speech. Ex-
tensive experiments were carried out with non-stationary addi-
tive noise and convolutional noise. The results show that, the
presented feature enhancement method is significantly superior
to the baseline without any enhancement methods. With the
fast development of deep learning technologies, there are many
possibilities that could be used to further improve the robustness
performance of emotion recognition systems from speech. For
example, Convolutional Neural Networks are good at reducing
spectral variation for the clean speech, which could also be ef-
fective for noisy speech. Methods combined with Deep Neural
Networks in an end-to-end structure [37] is worth evaluating
as well in future. Further, some other traditional denoising ap-
proaches, e.g., minimum mean square error [38], may be also
of interest in this task.

5. Acknowledgements
The research leading to these results was supported by the
EC’s 7th Framework Programme through the ERC Starting
Grant No. 338164 (iHEARu), the EU’s Horizon 2020 Pro-
gramme through the Innovative Action No. 644632 (MixedE-
motions), No. 645094 (SEWA), and the Research Innovative
Action No. 645378 (ARIA-VALUSPA), and by the German
Federal Ministry of Education, Science, Research and Technol-
ogy (BMBF) under grant agreement #16SV7213 (EmotAsS).
We further thank the NVIDIA Corporation for their support of
this research by Tesla K40-type GPU donation.



6. References
[1] D. Tacconi, O. Mayora, P. Lukowicz, B. Arnrich, C. Setz,

G. Troster, and C. Haring, “Activity and emotion recognition to
support early diagnosis of psychiatric diseases,” in Proc. of Per-
vasiveHealth, Istanbul, Turkey, 2008, pp. 100–102.

[2] R. A. Calvo and S. D’Mello, “Frontiers of affect-aware learning
technologies,” IEEE Intelligent Systems, vol. 27, no. 6, pp. 86–89,
Nov 2012.

[3] B. Schuller, E. Marchi, S. Baron-Cohen, A. Lassalle, H. O’Reilly
et al., “Recent developments and results of asc-inclusion: An in-
tegrated internet-based environment for social inclusion of chil-
dren with autism spectrum conditions,” in Proc. of IDGEI, At-
lanta, GA, 2015, no pagination.

[4] E. Marchi, F. Ringeval, and B. Schuller, “Voice-enabled assistive
robots for handling autism spectrum conditions: An examination
of the role of prosody,” in Speech and Automata in the Health
Care, A. Neustein, Ed. Walter de Gruyter GmbH & Co KG,
2014, pp. 207–236.

[5] V. Petrushin, “Emotion in speech: Recognition and application to
call centers,” in Proc. of Artificial Neural Networks in Engineer-
ing, vol. 710, St. Louis, MO, 1999, pp. 7–10.

[6] B. Schuller, B. Vlasenko, F. Eyben, G. Rigoll, and A. Wendemuth,
“Acoustic emotion recognition: A benchmark comparison of per-
formances,” in Proc. of ASRU 2009. Merano, Italy: IEEE, Dec
2009, pp. 552–557.

[7] F. Ringeval, F. Eyben, E. Kroupi, A. Yuce, J. Thiran, T. Ebrahimi,
D. Lalanne, and B. Schuller, “Prediction of asynchronous dimen-
sional emotion ratings from audiovisual and physiological data,”
Pattern Recognition Letters, Special Issue on Pattern Recognition
in Human Computer Interaction, vol. 66, pp. 22–30, Nov 2015.

[8] D. A. Sauter, F. Eisner, P. Ekman, and S. K. Scott, “Cross-cultural
recognition of basic emotions through nonverbal emotional vocal-
izations,” Proc. of the National Academy of Sciences of the United
States of America (PNAS), vol. 107, no. 6, pp. 2408–2412, 2009.

[9] Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Distributing
recognition in computational paralinguistics,” IEEE Transactions
on Affective Computing, vol. 5, no. 4, pp. 406–417, Oct 2014.
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