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Abstract High dynamic range (HDR) image and video

technology has recently attracted a great deal of at-

tention in the multimedia community, as a mean to

produce truly realistic video and further improve the

Quality of Experience (QoE) of emerging multimedia

services. In this context, measuring the quality of com-

pressed HDR content plays a fundamental role. How-

ever, full-reference (FR) HDR visual quality assessment

poses new challenges with respect to the conventional

low dynamic range case. Quality metrics have to be re-

designed or adapted to HDR, and understanding their

reliability to predict users’ judgments is even more crit-

ical due to the still limited availability of HDR displays

to perform subjective evaluations. The goal of this pa-

per is to provide a complete and thorough survey of the

performance of the most popular HDR FR image qual-
ity metrics. To this end, we gather several existing HDR

image databases with subjective quality annotations, in

addition to a new one created by ourselves. After align-

ing the scores in these databases, we obtain an extensive

set of 690 compressed HDR images, along with their

subjective quality. Next, we analyze in depth many FR

metrics, including those used in MPEG standardiza-
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75013 Paris, France
Tel.: +33-1-45817240
E-mail: emin.zerman@telecom-paristech.fr

G.Valenzise
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tion, using both classical correlation analyses and clas-

sification accuracy. We believe that our results could

serve as the most complete and comprehensive bench-

mark of image quality metrics in the field of HDR image

compression.

Keywords High dynamic range · quality assessment ·
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1 Introduction

High Dynamic Range (HDR) imaging enables to cap-

ture, represent and reproduce a wide range of colors

and luminous intensities present in everyday life, rang-

ing from bright sunshine to dark shadows [11]. These

extended capabilities are expected to significantly im-
prove the Quality of Experience (QoE) of emerging

multimedia services with respect to conventional Low

Dynamic Range (LDR) technology. Commercial HDR

video cameras and displays are becoming available, and

parts of the HDR end-to-end delivery chain such as im-

age and video compression are currently matter of stan-

dardization activities in MPEG [19,31] and JPEG [53].

In this context, evaluating the visual quality of com-

pressed HDR pictures is of critical importance in order

to design and optimize video codecs and processing al-

gorithms.

Evaluating HDR visual quality presents new chal-

lenges with respect to conventional LDR quality assess-

ment [45]. The higher peak brightness and contrast of-

fered by HDR increases the visibility of artifacts, and

at the same time changes the way viewers focus their

attention compared to LDR [41]. Moreover, color dis-

tortion assumes a major role in the overall quality judg-

ment, as a result of the increased luminance level [15].

Since these and other factors intervene in a complex
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way to determine HDR visual quality, the most accu-

rate approach to assess it is, in general, through subjec-

tive test experiments. However, these are expensive to

design and implement, require specialized expertize and

are time-consuming. Furthermore, in the case of HDR,

subjective testing requires specialized devices such as

HDR displays, which still have a high cost and a limited

diffusion. Therefore, designing and tuning full-reference

(fidelity) quality metrics for HDR content is very timely,

and has motivated research in both the multimedia and

computer graphics community in the past few years [3,

35,42–44].

Two main approaches have been proposed to mea-

sure HDR fidelity. On one hand, some metrics require

modeling of the human visual system (HVS), such as

the HDR-VDP [35] or HDR-VQM [42] metrics for im-

ages and videos, respectively. For example, the HDR-

VDP metric accurately models the early stages of HVS,

including intra-ocular scattering, luminance masking,

and achromatic response of the photoreceptors, in or-

der to precisely predict the visibility and strength of

per pixel distortion. On the other hand, one can re-

sort to metrics developed in the context of LDR im-

agery, such as simple arithmetic (PSNR, MSE), struc-

tural (SSIM [62] and its multiscale version [61]) and

information-theoretic (e.g., VIF [55]) metrics. All these

LDR metrics are based on the assumption that pixel

values are perceptually linear, i.e., equal increments of

pixel values correspond to equivalent changes in the

perceived luminance. This is not true in the case of

HDR content, where pixel values store linear light, i.e.,

pixels are proportional to the physical luminance of

the scene. Instead, human perception has a more com-

plex behavior: it can be approximated by a square-root

in low luminance values and is approximately propor-

tional to luminance ratios in higher luminance values,

as expressed by the DeVries-Rose and Weber-Fechner

laws, respectively [28]. Thus, in order to employ these

metrics, the HDR content needs to be perceptually lin-

earized, e.g., using a logarithmic or perceptually uni-

form (PU) encoding [3].

The capability of both kinds of fidelity metrics to

predict viewers’ mean opinion scores (MOS) has been

assessed in a number of recent subjective studies using

compressed HDR pictures [17, 37, 39, 59]. Nevertheless,

the results of these studies show sometimes discrep-

ancies in their conclusions about the ability of these

metrics to yield consistent and accurate predictions of

MOSs. For instance, the correlation values of PU-SSIM,

i.e., SSIM metric applied after the PU encoding of [3],

differ substantially between the study of Narwaria et

al. [43] and that of Valenzise et al. [59]. The difference

is basically related to the size and characteristic of the

subjective material. In [59], the performance of objec-

tive metrics was assessed on a small image database (50

subjectively annotated images), using different coding

schemes including JPEG, JPEG 2000 and JPEG-XT.

In [43], the authors evaluate metric correlations using a

number of subjectively annotated databases, with var-

iegate distortion and, especially, with scores gathered

in separated tests (each with their own experimental

conditions). Both studies have their advantages and

limitations, which renders difficult to extract a simple

and clear conclusion about the performance of fidelity

metrics. In other cases, such as [17], metrics have been

tested on a single type of distortion only (specifically

JPEG-XT compression), thus it is desirable to extend

those conclusions to more realistic and variegate condi-

tions.

The aim of this paper is to bring more clarity in

this field, by providing an extensive, reliable, and con-

sistent benchmark of the most popular HDR image fi-

delity metrics. To this end, we collected as many as pos-

sible publicly available databases of HDR compressed

images with subjective scores, in addition to proposing

a new one which mixes different codecs and pixel en-

coding functions. This gives a total of 690 HDR images,

which is up to our knowledge the largest set on which

HDR metrics have been tested so far. We then align the

MOSs of these databases using the iterated nested least

square algorithm (INLSA) proposed in [50], in order to

obtain a common subjective scale. Based on this data,

we analyze the prediction accuracy and the discrim-

inability (i.e., the ability of detecting when two images

have different perceived quality) of 25 fidelity metrics,

including those currently tested in MPEG standardiza-

tion.

The main contributions of this paper include:

– the most extensive evaluation (using 690 subjec-

tively annotated HDR images) of HDR full-reference

image quality metrics available so far;

– the proposal of a new subjective database with 50

distorted HDR images, combining 3 image codecs

and 2 pixel encoding algorithm (SMPTE-2084 Per-

ceptual Quantization [57] and a global tone-mapping

operator);

– an evaluation of metric discriminability, that com-

plements the conventional statistical accuracy anal-

ysis, based on a novel classification approach.

Assessment of image quality is different from the as-

sessment of video quality, as HVS has different tem-

poral mechanisms. Nevertheless, image quality metrics

are often applied to video on a frame-by-frame basis,

e.g., PSNR or SSIM. Therefore, the result of this work

could be indicative of frame-by-frame objective metrics

performance in video as well.
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The rest of this paper is organized as follows. Sec-

tion 2 describes the subjective databases considered

within this paper. The alignment procedure is explained

in Section 3. In Section 4, existing objective image qual-

ity metrics have been compared using both statistical

evaluation and a classification approach. Finally, Sec-

tion 5 concludes the paper.

2 Considered subjective databases

Although there are several publicly available reposito-

ries of high-quality HDR pictures [9,10,13,14,48], there

is only a small number of subjectively annotated im-

age quality databases. For this study, we selected four

publicly available HDR image quality assessment data-

bases, in addition to proposing a new one described in

Section 2.5. Each database contains compressed HDR

pictures with related subjective scores. The databases

differ in size, kind of distortion (codec) and subjective

methodology. A brief description of these databases is

given in the following, while a summary of their char-

acteristics is reported in Table 1. The interested reader

can refer to original publications for further details.

2.1 Database #1 - Narwaria et al. (2013) [39]

In the work of Narwaria et al. [39], a tone mapping

based HDR image compression scheme has been pro-

posed and assessed via a subjective test. Subjective

scores were collected from 27 observers, using a SIM2

HDR47E S 4K display in a 130 cd/m2 illuminated room.

The participants were asked to rate overall image qual-

ity using the Absolute Category Rating with Hidden

Reference (ACR-HR) methodology, employing a five-

level discrete scale where 1 is bad and 5 is excellent

quality. The test material was obtained from 10 pris-

tine HDR pictures, including both indoor and outdoor,

natural or computer-generated scenes. The distorted

images are generated through a backward compatible

scheme [63]: the HDR image is first converted to LDR

by using a tone mapping operator (TMO); then, the

LDR picture is coded using a legacy image codec; fi-

nally, the compressed image is expanded by inverse tone

mapping to the original HDR range. The coding scheme

in [39] employs iCAM06 [27] as TMO, and JPEG com-

pression at different qualities. In addition, the authors

proposed two criteria to optimize the quality of the re-

constructed HDR. As a result, a total of 10 contents

× 7 bitrates × 2 optimization criteria = 140 test im-

ages were evaluated. This database is publicly avail-

able at http://ivc.univ-nantes.fr/en/databases/

JPEG_HDR_Images/.

Table 1 Number of observers, subjective methodology, num-
ber of stimuli, compression type and tone mappings em-
ployed in the HDR image quality databases used in this pa-
per. TMOs legend: AS : Ashikmin, RG: Reinhard Global, RL:
Reinhard Local, DR: Durand, Log: Logarithmic, MT : Man-
tiuk.

No Obs. Meth. Stim. Compr. TMO

#1 [39] 27 ACR-HR 140 JPEG1 iCAM [27]

#2 [40] 29 ACR-HR 210 JPEG 20001

AS [2]
RG [52]
RL [52]
DR [12]

Log

#3 [25] 24 DSIS 240 JPEG-XT
RG [52]
MT [33]

#4 [59] 15 DSIS 50
JPEG1

JPEG 20001

JPEG-XT
Mai [32]

#5 15 DSIS 50
JPEG1

JPEG 20001
Mai [32]

PQ [36,57]

The analysis in [39] shows that Mean Squared Er-

ror (MSE) and Structural Similarity Index Measure

(SSIM) perform well in estimating human predictions

and ordering distorted images when each content is as-

sessed separately. However, these results do not apply

when different contents are considered at the same time.

HDR-VDP-2 was found to be the best performing (in

terms of linear correlation with MOSs) metric, but not

statistically different from the metric proposed in [38].

2.2 Database #2 - Narwaria et al. (2014) [40]

Narwaria et al. [40] evaluate subjectively the impact

of using different TMOs in HDR image compression.

The test material includes 6 original scenes, both in-

door and outdoor, from which a total of 210 test im-

ages were created using JPEG 2000 image compression

algorithm after the application of several TMOs, in-

cluding Ashikmin [2], both local and global versions

of Reinhard [52], Durand [12], and logarithmic TMO.

The experiment setup was the same as in Narwaria et

al. (2013) Database #1 described above. The subjec-

tive test is conducted with 29 observers using ACR-HR

methodology.

Results show that the choice of TMO greatly affects

the quality scores. It is also found that local TMOs,

with the exception of Durand’s, generally yield better

results than global TMOs as they tend to preserve more

1 The distorted images are generated through a scalable
coding scheme [63]: the HDR image is converted to LDR using
a TMO; then, the LDR picture is encoded & decoded by a
legacy codec; finally, the image is converted back to HDR
range.
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details. No evaluation of objective quality metrics is

reported in the original paper [40].

2.3 Database #3 - Korshunov et al. (2015) [25]

In the study of Korshunov et al. [25], an HDR image

quality database, publicly available at http://mmspg.

epfl.ch/jpegxt-hdr, has been created using backward-

compatible JPEG-XT standard [53] with different pro-

files and quality levels. For this database, 240 test im-

ages have been produced, using either Reinhard [52] or

Mantiuk [33] TMO for the base layer, 4 bit rates for

each original image and 3 profiles of JPEG-XT. The

test room was illuminated with a 20 lux lamp, and a

SIM2 HDR display was used. At any time, 3 observers

took the test simultaneously. The subjective scores were

collected from 24 participants, using Double Stimulus

Impairment Scale (DSIS) Variant I methodology, i.e.,

images were displayed side-by-side, one of the images

was the reference and the other the distorted one.

This subjective databases has been used in the work

of Artusi et al. [1]. In this work, an objective evaluation

of JPEG-XT compressed HDR images has been carried

out. The results show that LDR metrics such as PSNR,

SSIM, and multi-scale SSIM (MSSIM) give high corre-

lation scores when they are used with the PU encoding

of [3], while the overall best correlated quality metric is

HDR-VDP-2.

2.4 Database #4 - Valenzise et al. (2014) [59]

Valenzise et al. [59] were the first to collect subjective

data with the specific goal to analyze the performance

of HDR image fidelity metrics. Their database is com-

posed of 50 compressed HDR images, obtained from 5

original scenes in the Fairchild HDR image survey [14].

Three different coding schemes have been used to pro-

duce the test material, i.e., JPEG, JPEG 2000 and

JPEG-XT. In the first two cases, the HDR image is first

tone mapped to LDR using the minimum-MSE TMO

proposed by Mai et al. [32]. The images were displayed

on a SIM2 HDR47E S 4K display, with an ambient lu-

minance of 20 cd/m2. Subjective scores were collected

using DSIS methodology, i.e., pairs of images (original

and distorted) were presented to the viewers, who had

to evaluate the level of annoyance of distortion in the

second image on a continuous quality scale ranging from

0 to 100, where 0 corresponds to very annoying artifacts

and 100 to imperceptible artifacts. Fifteen observers

rated the images. The database is available at http://

perso.telecom-paristech.fr/~gvalenzi/download.

htm.

The results of this study showed that LDR fidelity

metrics could accurately predict image quality, provided

that the display response is somehow taken into account

(in particular, its peak brightness), and that a perceptu-

ally uniform (PU) encoding [3] is applied to HDR pixel

values to make them linear with respect to perception.

2.5 Database #5 - New subjective database

In addition to the databases described above, we con-

struct a new subjective HDR image database of 50 im-

ages, as an extension to our previous work [59]. The

new database features 5 original contents, selected in

such a way to be representative of different image fea-

tures, including the dynamic range, image key and spa-

tial information. The five contents are shown in Fig-

ure 1. The images “Balloon”, “FireEater2”, and “Mar-

ket3” are chosen among the frames of the MPEG HDR

sequences proposed by Technicolor [29]. “Showgirl” is

taken from Stuttgart HDR Video Database [16]. “Type-

writer” is from HDR photographic survey dataset [14].

All images have either 1920 × 1080 pixels spatial reso-

lution, or are zero-padded to have the same resolution.

Similarly to [59], the test images are obtained by

using a backward compatible HDR coding scheme [63],

using JPEG and JPEG 2000 (with different bitrates) as

LDR codecs. We did not include JPEG-XT in this ex-

periment, since some of the contents we selected (e.g.,

“Showgirl” and “Typewriter”) were already part of the

Database #3. In order to convert HDR to LDR, we use

two options: i) the TMO of Mai et al. [32]; and ii) the

electro-optical transfer function SMPTE ST 2084 [36,

57], commonly known as Perceptual Quantization (PQ).

The latter is a fixed, content-independent transfer func-

tion which has been designed in such a way that the in-

crements between codewords have minimum visibility,

according to Barten’s contrast sensitivity function [5].

We choose this transfer function as an alternative to

tone mapping, as it has been proposed as the anchor

scheme in current MPEG HDR standardization activ-

ities [31]. Both PQ and Mai et al.’s TMO are applied

per color channel.

The test environment and methodology are carefully

controlled to be the same as in Database #4 (Valenzise

et al. (2014)) [59]. The DSIS methodology is employed,

where the reference image is shown for 6 seconds, fol-

lowed by 2 seconds of mid-gray screen and 8 seconds

of degraded image. The asymmetry in timing between

distorted and reference image is determined in a pilot

test, taking into account the fact that the reference im-

age is shown several times, while the degraded image is

different at each round and requires a longer evaluation

interval. After both the original and distorted image
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(a) “Balloon” (b) “FireEater2” (c) “Market3” (d) “Showgirl” (e) “Typewriter”

Fig. 1 Original contents for the new proposed image database described in Section 2.5, rendered using the TMO in [34].

are displayed, the observer takes all the time she/he

needed to rate the level of annoyance on the same con-

tinuous scale as in [59]. The sequence of tested images is

randomized to avoid context effects [8]. Moreover, too

bright (“Market3”) and too dark (“FireEater2”) stim-

uli are not placed one after another in order to avoid

any masking caused by sudden brightness change. In

addition to randomization, stabilizing images (one from

each content and featuring each quality level) are shown

in the beginning of the experiment to stabilize viewers’

votes (which are discarded for those images).

In addition to the contents reported in Figure 1, a

small subset of the stimuli of Database #4 was included

in the test. This enabled to align the two databases,

#4 and #5, in order for the corresponding MOS values

to be on the same scale [51]. Thus, in the following

we will refer to the union of these two databases as

Database #4 & 5.

A panel of 15 people (3 women, 12 men; average

age of 26.8 years), mainly Ph.D. students naive to HDR

technology and image compression, participated to the

test. Subjects reported normal or corrected-to-normal

vision. The outlier detection and removal procedure de-

scribed in BT.500-13 [21] resulted in no detected out-

lier. Then, mean opinion scores and their confidence

interval (CI) were computed assuming data follows a

t-Student distribution2.

3 Alignment of Database MOSs

During the training phase, the subjects are generally

instructed to use the whole range of grades (or distor-

tions) in the scale while evaluating. However, the qual-

ity of the test material for different experiments may

not be the same when they are compared to each other.

The viewers may not share the same understanding and

expectations of image or video quality. Hence, the MOS

values generally do not show the absolute quality of the

stimuli. In Fig. 2(a), we observe the MOS distribution

for non-aligned databases as a function of the HDR-

VQM metric. Due to the characteristics of the experi-

2 These scores, together with the test images, are available
upon request to the authors and will be made public if this
manuscript is accepted for publication.

ments and test material, a similar level of impairment

in the subjective scale may correspond to very differ-

ent values of the objective metrics. Therefore, in order

to use in a consistent way the MOS values of different

subjective databases, these need to be mapped onto a

common quality scale.

In order to align the MOS values of all five HDR

image databases, we use the iterated nested least square

algorithm (INLSA) proposed in [50]3. This algorithm

requires objective parameters for the alignment, under

the assumption that those are sufficiently well corre-

lated and linear with respect to MOS. Therefore, we se-

lected the five most linear and most correlated objective

quality metrics: HDR-VDP-2.2, HDR-VQM, PU-IFC,

PU-UQI, and PU-VIF (the calculation of PU-metrics

will be explained in detail in Sec. 4.1). The INLSA al-

gorithm first normalizes MOS scores from each source

in the [0, 1] interval, and then aligns them by solving

two least square problems: first, the MOS values are

corrected by an affine transformation in order to span

the same subjective scale; second, the MOS values are

aligned to the corresponding objective values by find-

ing the optimal (in least-square sense) combination of

weights such that the corrected MOSs can be predicted

as a linear combination of objective parameters. These

two steps, prediction and correction, are repeated iter-

atively till some convergence criterion is met. Details

about the algorithm can be found in [50].

The scatter plots of MOS values and HDR-VQM

metric values after alignment can be seen in Fig. 2.(b).

It can be observed that data points having similar HDR-

VQM values have similar MOS values after INLSA align-

ment. After the alignment, all the MOS values have

been mapped onto a common subjective scale, and they

can be used in the evaluation of the objective quality

metrics.

From Fig. 2(b) and initial observations of the test

images, we notice that images in Database #2 [40] have

very different characteristics compared to others, and

MOS values are much more scattered than other data-

bases after the alignment. This is mainly due to the

3 INLSA implementation on Matlab has been downloaded
from http://www.its.bldrdoc.gov/resources/video-

quality-research/guides-and-tutorials/insla-

code.aspx
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Fig. 2 Plots of MOS vs HDR-VQM scores before and af-
ter INLSA alignment. The INLSA algorithm scales MOS val-
ues so that images which have similar objective scores also
have similar MOS values. In order to compare the scatter
plot quantitatively, the root mean squared error (RMSE) of
the data is reported for each case.

characteristics of this database, i.e., the stimuli were

mainly obtained by changing the tone mapping algo-

rithm used in the compression, including many TMOs

which are definitely not adapted to be used in coding as

they produce strong color artifacts in the reconstructed

HDR image, and that are therefore not used in any

practical coding scheme. Also, different kinds of distor-

tion are present simultaneously, such as color banding,

saturation etc. In some cases, it is noticed that false

contours have been generated, and some color channels

were saturated. Initial inspection of both test images

and objective metric results indicate that the consid-

ered metrics do not capture the effect of color on quality

as humans do.

As viewers were rating very different distortions with

respect to the other databases, which instead contain

similar kinds of visual impairments, Database #2 is

very challenging for all the quality metrics we consid-

ered in this work. Therefore, in order to provide a com-

plete overview of the performance of HDR fidelity met-

rics, in the following we report results both with and

without including Database #2 in the evaluations.

4 Analysis of Objective Quality Metrics

After the alignment of MOS values of the databases,

we obtain an image data set consisting of 690 (or 480

images if Database #2 is excluded) images compressed

using JPEG, JPEG-XT, and JPEG 2000. In this sec-

tion, we provide a thorough analysis of the performance

of several HDR image fidelity metrics, both from the

point of view of prediction accuracy and of their abil-

ity to tell whether two images are actually perceived as

being of different quality.

4.1 Objective Quality Metrics under Consideration

We include in our evaluation a number of commonly

used full-reference image quality metrics, including the

mean square error (MSE), peak signal to noise ratio

(PSNR), structural similarity index (SSIM) [62], multi-

scale SSIM (MSSIM) [61], information fidelity criterion

(IFC) [56], universal quality index (UQI) [60], VIF [55],

and pixel based VIF. In addition to those metrics, we

consider HDR-VDP-2.2 [43], HDR-VQM [42], additional

full-reference metrics recently proposed for HDR video

such as mPSNR, tPSNR, CIE ∆E 2000 [58], and spa-

tial extension of CIE ∆E 2000 [65] which is computed

with S-CIELAB model.

In order to calculate quality metrics, we first scale

pixel values to the range of luminance emitted by the

HDR displays used in each subjective experiments. This

is especially important for those metrics such as HDR-

VDP 2.2 which rely on physical luminance. In order to

compute these values, we convert HDR pixels into lumi-

nance emitted by a hypothetical HDR display, assum-

ing it has a linear response between the minimum and

maximum luminance of the display. As the same display

(i.e. SIM2 HDR47E S 4K) has been used in all the ex-

periments, we have selected the same parameters for all

experiments, i.e., 0.03 cd/m2 and 4250 cd/m2 for min-

imum an maximum luminance, respectively. Although

the emitted luminance on HDR displays depends on

many factors and is not exactly a linear function of in-

put pixel values, we found in our previous work that, it

is adequately close to linear [64] and from a practical

point of view, this simple linear assumption is equiva-

lent to more sophisticated luminance estimation tech-

niques which require a detailed knowledge of the repro-

duction device [59].

The objective quality metrics under consideration

can be grouped as following:

– HDR-specific metrics: HDR-VDP-2.2 and HDR-

VQM are recent fidelity metrics developed for HDR

image and video, respectively. They model several
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phenomena that characterize the perception of HDR

content, and thus requires some knowledge of view-

ing conditions (such as distance from the display,

ambient luminance, etc.). The mPSNR is PSNR ap-

plied on an exposure bracket extracted from the

HDR image, and then averaged across exposures.

– Color difference metrics: we use CIE ∆E 2000

(denoted as CIE ∆E00), which entails a color space

conversion in order to get perceptually uniform color

differences [30], and its spatial extension [65] (de-

noted as CIE ∆ES00). More sophisticated color ap-

pearance models have not been considered in this

study, as their use in quality assessment has been

marginal so far. However they are an interesting as-

pect to investigate in future work.

– LDR metrics applied after a transfer func-

tion: LDR metrics such as MSE, PSNR, VIF, SSIM,

MSSIM, IFC, and UQI. To compute these LDR met-

rics we use:

– Physical luminance of the scene directly, denoted

as Photometric-,

– Perceptually uniform [3] encoded pixel values,

denoted as PU-,

– Logarithmic coded pixel values, denoted as Log-,

or

– Perceptually quantized [36, 57] pixel values. For

this case, only tPSNR-YUV has been considered

as in [58].

When possible, we use the publicly available imple-

mentation of these metrics, i.e., HDR-VDP-2.2.1 avail-

able at http://sourceforge.net/projects/hdrvdp/

files/hdrvdp/, HDR-VQM available at http://www.

sourceforge.net/projects/hdrvdp/files/hdrvdp/,

HDRtools version 0.4 [58] developed within MPEG, the

MeTriX MuX library for Matlab, available at http://

foulard.ece.cornell.edu/gaubatz/metrix_mux/.

4.2 Statistical Analysis

The performance of the aforementioned fidelity met-

rics has been evaluated in terms of prediction accu-

racy, prediction monotonicity, and prediction consis-

tency [8]. For prediction accuracy, Pearson correlation

coefficient (PCC), and root mean square error (RMSE)

are computed. Spearman rank-order correlation coeffi-

cient (SROCC) is used to find the prediction mono-

tonicity, and outlier ratio (OR) is calculated to de-

termine the prediction consistency. These performance

metrics have been computed after a non-linear regres-

sion performed on objective quality metric results using

a logistic function, as described in the final report of

VQEG FR Phase I [54]. This logistic function is given

in Eqn. 1:

Yi = β2 +
β1 − β2

1 + e
−(

Xi−β3
|β4|

)
, (1)

where Xi is the objective score for the ith distorted im-

age, and Yi is the mapped objective score. It tries to

minimize the least-square error between the MOS val-

ues and the objective results. This fitting has been done

using the nlinfit function of Matlab to find optimal β

parameters for each objective quality metric. After fit-

ting, the performance scores have been computed using

the mapped objective results, Yi, and MOS values.

The results of these performance indexes (SROCC,

PCC, RMSE, and OR) have been computed for each

database separately, as well as considering all the data

together. The results are reported in Tables 2-5. The

aligned data scores have been denoted as “Combined”,

and “Except Database #2” for the data aligned ex-

cluding Database #2 as explained in Section 3.

These results show that the performance of many fi-

delity metrics may significantly vary from one database

to another, due to the different characteristics of the

test material and of the subjective evaluation proce-

dure. In particular, Database #2 is the most challeng-

ing for all the considered metrics, due to its more com-

plex distortion features, as discussed in Section 3. De-

spite the variations across databases, we can observe

a consistent behavior for some metrics. Photometric-

MSE is the worst correlated one, for all databases. This

is expected as mean square error is computed on photo-

metric values, without any consideration of visual per-

ception phenomena. On the other hand, HDR-VQM,

HDR-VDP-2.2 Q, and PU-MSSIM are the best per-
forming metrics, with the exception of Database #2.

When we analyze objective metrics for each transfer

function, we observe that Photometric-IFC is the best

correlated and Photometric-MSE is the worst in the lin-

ear domain; Log-SSIM is the best correlated and Log-

VIF is the worst in the logarithmic domain. Among the

objective metric results in PU domain, PU-MSSIM and

PU-SSIM display high correlation coefficients, while PU-

MSE is the again the worst performer. Comparing the

three transfer functions, PU is the most effective, as

PU-MSSIM and PU-SSIM achieve performance very

close to HDR-VDP-2.2 Q and HDR-VQM. In general,

metrics which are based on MSE and PSNR (PU-MSE,

Log-MSE, PU-PSNR, mPSNR, etc.) yield worse results

compared to other metrics. Instead, more advanced LDR

metrics such as IFC, UQI, SSIM, and MSSIM yield

much better results. We also notice that mPSNR, tPSNR-

YUV, and CIE ∆E 2000, which have been recently used

in MPEG standardization activities, perform rather poorly

in comparison to the others.
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Table 2 Pearson Correlation Coefficient (PCC) Results for Each Database and for Aligned Data

Metric Database #1 Database #2 Database #3 Database #4&5 Combined
Except

Database #2

Photometric-MSE 0.4051 0.1444 0.7080 0.5095 0.3651 0.6987
Photometric-PSNR 0.4409 0.2564 0.7132 0.5594 0.5166 0.6506
Photometric-SSIM 0.5016 0.3583 0.8655 0.6708 0.6441 0.7462
Photometric-IFC 0.7781 0.8234 0.9183 0.8195 0.8344 0.7680
Photometric-UQI 0.7718 0.8208 0.8846 0.7876 0.8312 0.7667
Photometric-VIF 0.7603 0.5076 0.8666 0.6144 0.6264 0.8452

PU-MSE 0.4824 0.3309 0.8559 0.8024 0.6273 0.7710
PU-PSNR 0.5297 0.3269 0.8606 0.8009 0.6271 0.7761
PU-SSIM 0.8661 0.7049 0.9532 0.9201 0.8441 0.9016
PU-IFC 0.7910 0.8422 0.9201 0.8566 0.8569 0.8024
PU-MSSIM 0.8847 0.7236 0.9564 0.9038 0.8570 0.9210
PU-UQI 0.7823 0.8507 0.8768 0.7777 0.8367 0.7637
PU-VIF 0.7845 0.7583 0.9349 0.9181 0.8574 0.8655

Log-MSE 0.6114 0.5314 0.8856 0.8820 0.6844 0.7872
Log-PSNR 0.6456 0.5624 0.8870 0.8819 0.7001 0.7923
Log-SSIM 0.8965 0.8035 0.9235 0.8255 0.8418 0.8401
Log-IFC 0.7919 0.8366 0.9167 0.8551 0.8530 0.8034
Log-UQI 0.7837 0.8268 0.8786 0.7830 0.8285 0.7592
Log-VIF 0.5079 0.6202 0.8354 0.7065 0.6049 0.6889

HDR-VDP-2.2 Q 0.8989 0.5482 0.9531 0.9408 0.7590 0.9261
HDR-VQM 0.8949 0.7932 0.9612 0.9332 0.8807 0.9419

mPSNR 0.6545 0.6564 0.8593 0.8587 0.7434 0.7959
tPSNR-YUV 0.5784 0.4524 0.8319 0.7789 0.6580 0.7718

CIE ∆E00 0.6088 0.2553 0.7889 0.6082 0.4979 0.7752

CIE ∆ES00 0.6167 0.3331 0.8793 0.7322 0.5783 0.7929

Table 3 Spearman Rank-Ordered Correlation Coefficient (SROCC) Results for Each Database and for Aligned Data

Metric Database #1 Database #2 Database #3 Database #4&5 Combined
Except

Database #2

Photometric-MSE 0.3881 0.1235 0.7227 0.5711 0.3417 0.7174
Photometric-PSNR 0.4018 0.2783 0.7183 0.5737 0.4991 0.6520
Photometric-SSIM 0.4953 0.3063 0.8792 0.6770 0.6357 0.7610
Photometric-IFC 0.7684 0.8254 0.9179 0.8109 0.8354 0.7708
Photometric-UQI 0.7495 0.8299 0.8686 0.8017 0.8310 0.7650
Photometric-VIF 0.7482 0.4915 0.8723 0.4864 0.6010 0.8376

PU-MSE 0.4791 0.2959 0.8617 0.8065 0.6108 0.7750
PU-PSNR 0.4791 0.2959 0.8617 0.8065 0.6108 0.7750
PU-SSIM 0.8553 0.7234 0.9503 0.9121 0.8525 0.9080
PU-IFC 0.7786 0.8433 0.9165 0.8489 0.8573 0.8044
PU-MSSIM 0.8711 0.7363 0.9517 0.8969 0.8570 0.9198
PU-UQI 0.7612 0.8608 0.8569 0.7932 0.8358 0.7606
PU-VIF 0.7634 0.7662 0.9306 0.9083 0.8560 0.8627

Log-MSE 0.5943 0.5843 0.8892 0.8719 0.6730 0.7917
Log-PSNR 0.5943 0.5843 0.8892 0.8710 0.6802 0.7917
Log-SSIM 0.8935 0.7869 0.9268 0.8179 0.8448 0.8424
Log-IFC 0.7782 0.8420 0.9140 0.8482 0.8529 0.8049
Log-UQI 0.7622 0.8232 0.8592 0.7960 0.8285 0.7563
Log-VIF 0.4884 0.5908 0.8385 0.6653 0.6346 0.6885

HDR-VDP-2.2 Q 0.8911 0.5727 0.9503 0.9298 0.7634 0.9357
HDR-VQM 0.8874 0.8126 0.9572 0.9193 0.8779 0.9416

mPSNR 0.6133 0.6496 0.8648 0.8521 0.7381 0.7970
tPSNR-YUV 0.5324 0.4342 0.8374 0.7901 0.6497 0.7722

CIE ∆E00 0.5883 0.2551 0.7824 0.5951 0.4837 0.7761

CIE ∆ES00 0.5979 0.3096 0.8779 0.7430 0.5816 0.7955
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Table 4 Root Mean Squared Error (RMSE) Results for Each Database and for Aligned Data (Please note that, in order to
have comparable results, RMSE values were calculated after all MOS values are scaled to the range of [0,100].)

Metric Database #1 Database #2 Database #3 Database #4&5 Combined
Except

Database #2

Photometric-MSE 23.526 27.459 22.163 25.684 24.204 17.910
Photometric-PSNR 23.096 26.791 22.000 24.742 22.262 19.012
Photometric-SSIM 22.261 25.907 15.719 22.138 19.888 16.665
Photometric-IFC 16.164 15.748 12.426 17.105 14.328 16.032
Photometric-UQI 16.364 15.850 14.635 18.392 14.455 16.071
Photometric-VIF 16.715 23.909 15.659 23.551 20.267 13.378

PU-MSE 22.540 26.187 16.232 17.814 20.247 15.942
PU-PSNR 21.826 26.225 15.984 17.874 20.251 15.787
PU-SSIM 12.861 19.683 9.489 11.688 13.939 10.831
PU-IFC 15.744 14.963 12.295 15.403 13.401 14.939
PU-MSSIM 11.995 19.153 9.165 12.775 13.396 9.754
PU-UQI 16.030 14.586 15.093 18.765 14.238 16.162
PU-VIF 15.956 18.089 11.142 11.828 13.381 12.539

Log-MSE 20.362 23.508 14.574 14.067 18.956 15.437
Log-PSNR 19.651 22.945 14.494 14.071 18.566 15.275
Log-SSIM 11.400 16.520 12.038 16.847 14.033 13.578
Log-IFC 15.713 15.201 12.540 15.477 13.571 14.905
Log-UQI 15.984 15.611 14.988 18.567 14.560 16.295
Log-VIF 22.167 21.769 17.249 21.126 20.704 18.146

HDR-VDP-2.2 Q 11.276 23.209 9.496 10.120 16.926 9.447
HDR-VQM 11.481 16.900 8.657 10.725 12.313 8.410

mPSNR 19.455 20.934 16.053 15.298 17.390 15.158
tPSNR-YUV 20.992 24.748 17.418 18.721 19.577 15.918

CIE ∆E00 20.414 26.830 19.285 23.694 22.548 15.813

CIE ∆ES00 20.256 26.165 14.949 20.330 21.211 15.254

Table 5 Outlier Ratio (OR) Results for Each Database and for Aligned Data

Metric Database #1 Database #2 Database #3 Database #4&5 Combined
Except

Database #2

Photometric-MSE 0.750 0.933 0.787 0.830 0.838 0.744
Photometric-PSNR 0.771 0.905 0.767 0.820 0.810 0.729
Photometric-SSIM 0.821 0.938 0.679 0.780 0.790 0.681
Photometric-IFC 0.750 0.871 0.546 0.610 0.658 0.637
Photometric-UQI 0.707 0.871 0.558 0.640 0.664 0.629
Photometric-VIF 0.679 0.948 0.617 0.800 0.796 0.596

PU-MSE 0.857 0.933 0.633 0.680 0.768 0.635
PU-PSNR 0.779 0.919 0.579 0.660 0.774 0.640
PU-SSIM 0.714 0.948 0.404 0.560 0.645 0.456
PU-IFC 0.750 0.886 0.500 0.610 0.619 0.629
PU-MSSIM 0.607 0.933 0.388 0.570 0.625 0.446
PU-UQI 0.664 0.848 0.583 0.680 0.648 0.615
PU-VIF 0.700 0.943 0.450 0.520 0.632 0.629

Log-MSE 0.843 0.924 0.592 0.570 0.694 0.646
Log-PSNR 0.786 0.919 0.588 0.580 0.745 0.667
Log-SSIM 0.643 0.876 0.525 0.570 0.681 0.560
Log-IFC 0.750 0.833 0.529 0.610 0.636 0.627
Log-UQI 0.671 0.843 0.579 0.630 0.652 0.627
Log-VIF 0.807 0.924 0.654 0.730 0.864 0.694

HDR-VDP-2.2 Q 0.586 0.938 0.342 0.490 0.733 0.475
HDR-VQM 0.514 0.890 0.392 0.530 0.607 0.448

mPSNR 0.771 0.895 0.667 0.610 0.720 0.642
tPSNR-YUV 0.800 0.952 0.625 0.670 0.774 0.656

CIE ∆E00 0.743 0.924 0.675 0.760 0.833 0.669

CIE ∆ES00 0.793 0.933 0.613 0.710 0.813 0.669
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We also evaluate the significance of the difference

between the considered performance indexes, as pro-

posed in ITU-T Recommendation P.1401 [23]. The re-

sults are provided in Fig. 3 and Fig. 4 for “Combined”

and “Except Database #2” cases respectively. The bars

indicate statistical equivalence between the quality met-

rics. We observe that the performance of HDR-VQM

in the combined database is significantly different from

all others while PU-MSSIM, PU-VIF, and some other

metrics have essentially equivalent performance across

the combined databases. Although HDR-VDP-2.2 has

a lower performance on combined dataset compared to

its performance on individual databases, it is among the

three most correlated metrics with HDR-VQM and PU-

MSSIM on the case excluding Database #2. Interest-

ingly, the HDR-VQM metric, which has been designed

to predict video fidelity, gives excellent results also in

the case of static images, and is indeed more accurate

on Database #2 than HDR-VDP-2.2. Furthermore, we

notice that all metrics except CIE ∆E00 and CIE ∆ES00
consider only luminance values. Although CIE ∆E00

and CIE ∆ES00 have been found to be among the most

relevant color difference metrics among others in a re-

cent study [47], they have lower correlation scores when

compared to luminance-only metrics. In fact, this result

is not in disagreement with [47], which did not con-

sider compression artifacts in the experiments, as the

impact of those on image quality was deemed to be

much stronger than color differences. Thus, our analy-

sis confirms that luminance artifacts such as blocking,

etc., play a dominant role in the formation of quality

judgments, also in the case of HDR.

4.3 Discriminability Analysis

MOS values are estimated from a sample of human

observers, i.e., they represent expected values of ran-

dom variables (the perceived annoyance or quality).

Therefore, MOS are as well random variables which are

known with some uncertainty, which is typically rep-

resented by their confidence intervals [21]. As a result,

different MOS values could correspond to the same un-

derlying distribution of subjective scores and two im-

ages with different MOS might indeed have the same

visual quality in practice (with confidence level). The

performance scores considered in Section 4.2 assume

instead that MOS values are deterministically known,

and that the goal of fidelity metrics is to predict them

as precisely as possible, without taking into account

whether two different subjective scores do actually cor-

respond to different quality. Therefore, in the following

we consider another evaluation approach, which aims

at assessing if an objective fidelity metric is able to

discriminate whether two images have significantly dif-

ferent subjective quality.

The intrinsic variability of MOS scores is not a com-

pletely new problem, and several approaches have been

proposed in the literature to take this into account while

evaluating objective metrics. Brill et al. [6] introduced

the concept of resolving power of an objective metric,

which indicates the minimum difference in the output of

a quality prediction algorithm such that at least p% of

viewers (where generally p = 95%) would observe a dif-

ference of quality between two images. This approach

has also been standardized in ITU Recommendation

J.149 [22], and used in subsequent work [4, 18, 46, 49].

Nevertheless, this technique has a number of disadvan-

tages. Resolving power is computed after transforming

MOS to a common scale, which requires applying a fit-

ting function; however, the fitting problem could be ill-

posed in some circumstances, yielding incorrect results.

Also, the resolving power in the common scale corre-

sponds to a variable metric resolution in the original

scale, which makes it difficult to interpret. Moreover,

it is not always possible to fix the level of significance

p to be the same for different metrics, as there could

be cases when the percentage of observers seeing a dif-

ference between image qualities is lower than p for any

metric difference values. Finally, the results of this ap-

proach are generally evaluated in a qualitative manner,

e.g., by considering how the number of correct decisions,

false rankings, false differentiations, etc., vary as a func-

tion of objective metric differences [6,18]; conversely, a

compact, quantitative measure is desirable in order to

fairly compare different metrics. Another approach to

this problem has been recently proposed by Krasula et

al. [26]. In their paper, Krasula et al. find the accuracy

of an objective image or video quality metric by trans-

forming the problem into a classification problem. For

this purpose, they find z-score of subjective scores and

the difference of objective scores for each pair of stimuli,

and then find the accuracy of the metric by calculating

classification rates.

Due to the factors above limiting the effectiveness

of resolving power, in this work we propose an alterna-

tive approach in the original scale of the metric simi-

lar to what has been presented in Krasula et al. [26],

which enables to evaluate its discrimination power while

avoiding the shortcomings discussed above. Despite the

similarities, the implementation and the data process-

ing steps of their work and the proposed algorithm are

not the same. Therefore, we give the details of the pro-

posed algorithm below in order to clarify differences.

The basic idea of the proposed method is to convert

the classical regression problem of accurately predict-

ing MOS values, into a binary classification (detection)
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Fig. 3 Statistical analysis results for correlation indices for combined data according to ITU-T Recommendation P.1401 [23].
The bars signify statistical equivalence between the quality metrics if they have the same bar aligned with two quality metrics;
e.g., there is a statistically significant difference between HDR-VQM and all the other metrics considered in terms of PCC,
SROCC, and RMSE.

problem [24]. We denote by S(I) and O(I) the subjec-

tive (MOS) and objective quality of stimulus I, respec-

tively, for a certain objective quality metric. Given two

stimuli Ii, Ij , we model the detection problem as one

of choosing between the two hypotheses H0, i.e., there

is no significant difference between the visual quality

of Ii and Ij , and H1, i.e., Ii and Ij have significantly

different visual quality. Formally:

H0 : S(Ii) ∼= S(Ij);

H1 : S(Ij) � S(Ij), (2)

where we use ∼= (resp. �) to indicate that the means

of two populations of subjective scores (i.e., two MOS

values) are the same (resp. different). Given a dataset

of subjective scores, it is possible to apply a pairwise

statistical test (e.g., a two-way t-test or z-test) to de-

termine whether two MOSs are the same, at a given

significance level. In our work, we employ a one-way

analysis of variance (ANOVA), with Tukey’s honestly

significant difference criterion to account for the multi-

ple comparison bias [20], as it is also stated as the ideal

way to find statistical significance in [26]. Figure 5(a)

shows the results of ANOVA on our combined database,

thresholded at a confidence level of 95% (i.e., 5% sig-

nificance). For convenience of visualization, MOS val-

ues have been sorted in ascending order before applying

ANOVA. White entries represent MOS pairs which are

statistically indistinguishable.

In order to decide between H0 and H1, similar to

Krasula et al. [26], we consider the simple test statistic

∆O
ij = |O(Ii) − O(Ij)|, i.e., we look at the difference

between the objective scores for the two stimuli and

compare it with a threshold τ , that is:

Decide:

{
H0 if ∆O

ij ≤ τ
H1 otherwise.

(3)

For a given value of τ , we can then label the set of stim-

uli as being equivalent or not, as shown in Figure 5(b).

The performance of the detector in (3) depends on the

choice of τ . We call true positive rate (TPR) the ra-

tio of images with different MOSs correctly classified as

being of different quality, and false positive rate (FPR)

the ratio of images with equal MOSs incorrectly clas-

sified as being of the different quality. By varying the

value of τ , we can trace a Receiver Operating Char-

acteristic (ROC) curve, which represents the TPR at
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Fig. 4 Statistical analysis results for correlation indices for combined data excluding Database #2 according to ITU-T
Recommendation P.1401 [23]. The bars signify statistical equivalence between the quality metrics if they have the same bar
aligned with two quality metrics; e.g., HDR-VDP-2.2 Q, HDR-VQM, PU-SSIM and PU-MSSIM are statistically equivalent to
each other in terms of OR.

(a) MOS equivalence matrix
at 95% confidence level

(b) HDR-VDP-2.2 Q esti-
mated equivalence matrix (τ
fixed for maximum accuracy)

Fig. 5 Equivalence maps for the (sorted) combined database.
White entries correspond to S(Ii) ∼= S(Ij), black to S(Ii) �
S(Ij).

a given value of FPR [24]. The area under the ROC

curve (AUC) is higher when the overlap between the

marginal distributions of ∆O
ij under each hypothesis,

that is, p(∆O
ij ;H0) and p(∆O

ij ;H1), is smaller. There-

fore, the AUC is a measure of the discrimination power

of an objective quality metric.

Table 6 reports the AUC values for the combined

case and the combination without Database-#2. In ad-

dition to the area under the ROC curve, we also com-

pute the balanced classification accuracy, which is an

extension of the conventional accuracy measure to un-

balanced datasets, i.e., where the number of positive

and negative samples is different [7]:

Acc =
2× TP
TP + FN

+
2× TN
TN + FP

. (4)

In Table 6 we report the maximum classification accu-

racy, Acc∗ = maxτ Acc, which characterizes the global

detection performance, as well as the value of the de-

tector threshold at FPR = 5%, that is,

τ.05 = min{τ : p(∆O
ij > τ ;H0) ≤ 0.05}, (5)

which indicates the minimum value of τ in order to keep

below 5% the probability of incorrectly classifying two

stimuli as being of different quality. This latter measure

provides somehow the resolution of an objective metric

(with a 5% tolerance) in the original metric scale.

These results in Table 6 are complemented with the

percentage of correct decisions (CD) in [6], which is

to be compared with Acc∗. Furthermore, we present



An extensive performance evaluation of full-reference HDR image quality metrics 13

Table 6 Results of discriminability analysis: area under the ROC curve (AUC), threshold τ at 5% false positive rate, maximum
classification accuracy. We report for comparison the fraction of Correct Decisions (CD) at 95% confidence level as proposed
in [6]. For CD, ‘–’ indicates that the 95% confidence level cannot be achieved.

Combined Except Database #2
Metric AUC τ.05 Acc* CD [6] AUC τ.05 Acc* CD [6]

Photometric-MSE 0.532 34894.476 0.530 – 0.644 34894.476 0.614 0.317
Photometric-PSNR 0.576 24.798 0.556 – 0.633 18.135 0.596 0.249
Photometric-SSIM 0.609 0.070 0.590 – 0.677 0.057 0.633 0.306
Photometric-IFC 0.716 5.784 0.666 0.398 0.675 7.554 0.629 0.340
Photometric-UQI 0.765 0.333 0.707 0.380 0.730 0.381 0.678 0.296
Photometric-VIF 0.605 0.730 0.585 0.204 0.717 0.730 0.654 0.446

PU-MSE 0.596 431.687 0.580 – 0.677 431.687 0.645 0.379
PU-PSNR 0.625 20.047 0.593 – 0.715 15.350 0.661 0.380
PU-SSIM 0.721 0.057 0.663 0.399 0.804 0.035 0.725 0.512
PU-IFC 0.729 6.081 0.676 0.451 0.694 7.880 0.643 0.386
PU-MSSIM 0.737 0.092 0.680 0.434 0.838 0.054 0.758 0.598
PU-UQI 0.770 0.312 0.711 0.391 0.730 0.408 0.678 0.286
PU-VIF 0.782 0.419 0.719 0.463 0.802 0.455 0.735 0.493

Log-MSE 0.600 0.522 0.587 0.253 0.687 0.036 0.653 0.393
Log-PSNR 0.668 21.195 0.624 0.256 0.729 15.251 0.668 0.395
Log-SSIM 0.717 0.130 0.664 0.394 0.762 0.068 0.696 0.407
Log-IFC 0.725 6.074 0.673 0.443 0.694 7.840 0.642 0.382
Log-UQI 0.769 0.359 0.711 0.368 0.728 0.408 0.676 0.272
Log-VIF 0.634 0.311 0.593 0.217 0.666 0.210 0.635 0.282

HDR-VDP-2.2 Q 0.689 24.084 0.630 0.300 0.850 18.441 0.759 0.622
HDR-VQM 0.791 1.723 0.727 0.487 0.893 1.320 0.816 0.684

mPSNR 0.690 13.840 0.648 0.278 0.727 13.840 0.671 0.381
tPSNR-YUV 0.636 16.452 0.603 0.178 0.708 14.396 0.658 0.367

CIE ∆E00 0.580 7.608 0.559 0.168 0.721 6.657 0.669 0.332
CIE ∆ES00 0.602 7.677 0.575 0.187 0.723 6.718 0.668 0.349

the results of statistical significance evaluation of the

reported AUC values according to the guidelines pre-

sented in Krasula et al. [26]. The results of this sta-

tistical significance evaluation are presented in Fig. 6.
The results show that HDR-VQM is the best perform-

ing metric, and PU-VIF and PU-MSSIM perform better

than most of the considered metrics. Although its per-

formance is reduced in the combined case, HDR-VDP-

2.2 Q also is statistically better than other metrics in

the case excluding Database #2.

We notice that, in general, the values of CD are

much lower than Acc∗. This is due to the fact that the

method in [6] not only aims at distinguishing whether

two images have the same quality, but also to deter-

mine which is the one with better quality. Thus the

classification task is more difficult, as there are three

classes – equivalent, better or worse – to label. Indeed,

we observe a certain coherence between our approach

and [6], and with the statistical analysis in Section 4.2:

the best performing metrics are HDR-VQM and those

based on PU transfer function such as PU-MSSIM, PU-

VIF, and PU-SSIM. Nevertheless, our analysis provides

a better insight on the discrimination power of fidelity

metrics compared to [6], and gives practical guidelines

on which should be the minimal differences between

the objective scores of two images in order to claim that

those have different visual quality. Finally, the fact that,

even for the best performing metrics in terms of corre-

lation with MOSs, maximum accuracy saturates at 0.8

suggests that there is still space for improving exist-

ing HDR objective quality measures, as far as discrim-

inability (and not only prediction accuracy) is included

in the evaluation of performance.

5 Conclusion

In this paper, we conduct an extensive evaluation of

full-reference HDR image quality metrics. For this pur-

pose, we collect four different publicly available HDR

image databases for compression distortion and a newly

created one. In order to have consistent MOS values

across all databases, we align subjective scores using

the INLSA algorithm. After the alignment, a total of

690 compressed HDR images have been evaluated us-

ing several full-reference HDR image quality assessment

metrics. The performance of these fidelity metrics has
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Combined

HDR-VQM

PU-VIF
PU-UQI

Log-UQI

Photometric-UQI

PU-MSSIM

PU-IFC
Log-IFC

PU-SSIM
Log-SSIM

Photometric-IFC

mPSNR
HDR-VDP-2.2 Q

Log-PSNR

tPSNR-YUV
Log-VIF

PU-PSNR

Photometric-SSIM

Photometric-VIF

CIE ∆ES00
Log-MSE

PU-MSE

CIE ∆E00

Photometric-PSNR

Photometric-MSE

Except Database #2

HDR-VQM

HDR-VDP-2.2 Q

PU-MSSIM

PU-SSIM

PU-VIF
Log-SSIM

PU-UQI

Photometric-UQI

Log-PSNR

Log-UQI

mPSNR

CIE ∆ES00
CIE ∆E00

Photometric-VIF

PU-PSNR

tPSNR-YUV

PU-IFC
Log-IFC

Log-MSE

PU-MSE

Photometric-SSIM

Photometric-IFC
Log-VIF

Photometric-MSE

Photometric-PSNR

Fig. 6 Statistical analysis results for the discriminability
analysis, according to the procedure described in Krasula et
al. [26]. The bars signify statistical equivalence between the
quality metrics if they have the same bar aligned with two
quality metrics. It can be said that among PU-UQI, Log-UQI,
and Photometric-UQI, there is not any statistically signifi-
cant difference. Whereas, there is a statistically significant
difference between HDR-VQM and all the other metrics con-
sidered.

been assessed from two different perspectives: on one

hand, by looking at the quality estimation as a re-

gression problem, using conventional statistical accu-

racy and monotonicity measures [8]; on the other hand,

by focusing on the ability of objective metrics to dis-

criminate whether two stimuli have the same perceived

quality.

Our analysis shows that recent metrics designed for

HDR content, such as HDR-VQM and to some extent

HDR-VDP-2.2, provide accurate predictions of MOSs,

at least for compression-like distortion. We also confirm

the findings in previous work [17, 59] that legacy LDR

image quality metrics have good prediction and dis-

crimination performance, provided that a proper trans-

formation such as PU encoding is done beforehand.

This somehow suggests that the quality assessment prob-

lem for HDR image compression is similar to the case of

LDR, if HDR pixels are properly preprocessed. Yet, the

absolute performance figures of these metrics show that,

when databases with heterogeneous characteristics are

merged (database #2 in our experiments), none of the

tested metrics provides highly reliable predictions. All

but two of the considered metrics are computed on the

luminance channel only. Interestingly, the non color-

blind metrics, CIE ∆E00 and CIE ∆ES00, displays poor

performance in our evaluation, similar to other MSE-

based metrics. While other studies report different re-

sults in terms of correlation with MOSs [19], we believe

that a partial explanation for these results is that in the

case of coding artifacts, the structural distortion (block-

ing, blur) in the luminance channel dominates the color

differences, captured by CIE ∆E00 and CIE ∆ES00 . The

important aspect of color fidelity metrics for HDR con-

tent, however, is still little understood and is part of

our current research.

Finally, the alternative evaluation methodology pro-

posed in this work, based on the discriminability of a

metric, provides a complementary perspective on the

performance of objective quality metrics. It recognizes

the stochastic nature of MOSs, which are samples from

a population and hence are known with some uncer-

tainty. Therefore, we consider the quality estimation

task as one of detecting when images have significantly

different quality. The relevance of this alternative point

of view is demonstrated by the amount of efforts to

go beyond classical statistical measures such as cor-

relation in the last decade, from the seminal work of

Brill et al. [6] to the very recent work of Krasula et

al. [26], developed in parallel to our study. These anal-

yses show that, even for metrics which can accurately

predict MOS values, the rate of incorrect classifications

is still quite high (20% or more). This suggests that

novel and more performing object quality metrics could

be designed, provided that new criteria such as discrim-

inability are taken into account alongside the correla-

tion indices used to find statistical accuracy.
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