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ABSTRACT 
Social Signal Processing techniques have given the 
opportunity to analyze in-depth human behavior in social 
face-to-face interactions. With recent advancements, it is 
henceforth possible to use these techniques to augment 
social interactions, especially the human behavior in oral 
presentations. The goal of this paper is to train a 
computational model able to provide a relevant feedback to 
a public speaker concerning his coverbal communication. 
Hence, the role of this model is to augment the social 
intelligence of the orator and then the relevance of his 
presentation. To this end, we present an original interaction 
setting in which the speaker is equipped with only wearable 
devices. Several coverbal modalities have been extracted 
and automatically annotated namely speech volume, 
intonation, speech rate, eye gaze, hand gestures and body 
movements. An offline report was addressed to participants 
containing the performance scores on the overall 
modalities. In addition, a post-experiment study was 
conducted to collect participant’s opinions on many aspects 
of the studied interaction and the results were rather 
positive. Moreover, we annotated recommended feedbacks 
for each presentation session, and to retrieve these 
annotations, a Dynamic Bayesian Network model was 
trained using as inputs the multimodal performance scores. 
We will show that our assessment behavior model presents 
good performances compared to other models. 
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INTRODUCTION 
Oral communication is considered one of the most valued 
interpersonal skills in variety of domains such as education, 
business and politics [30]. This task of public speaking 
stresses many people and was featured in many surveys as 
their number one fear, even higher than death [49]. 

Fortunately, as stated in literature of clinical psychology 
[11], this skill is not only a bestowed gift to minority of 
charismatic individuals but rather a skill that can be learned 
and improved. Nevertheless, being an efficient 
communicator requires a lot of practice and training notably 
with experts and professional coaches. It requires to 
continually modulate both verbal and coverbal cues, and to 
perceive, interpret and react to other’s displays and signals. 
The nonverbal communication in particular is 
acknowledged to play a significant role in social 
interactions [3, 28]. According to [2, 16], at least 65 percent 
of the information in conversations, are conveyed via 
nonverbal behaviors. Moreover, studies on conversational 
behavior have confirmed that these coverbal cues – such as 
body posture, hand gestures, facial expressions, eye gaze, 
speech energy, intonation and speech rate – are strongly 
involved in maintaining social attention and social glue 
[31]. Thus, mastering coverbal behavior in public speech is 
a key success for being a brilliant communicator, that is 
what we call the social intelligence [1].  

Social intelligence as defined by Vinciarelli et al. [48] is the 
facet of our cognitive capabilities that guide us to interact 
harmoniously with others in different situations and 
contexts. In this paper we present a specific social face-to-
face interaction carefully designed to model the social 
intelligence of a speaker in an oral presentation scenario. 
We present an original setting using only wearable devices 
in order to study the subtleties of human behavior in public 
speech. Our main challenge is to train a behavioral 
assessment model able to interpret the presenter nonverbal 
performances, estimate the cognitive state of the presenter 
and then predict an appropriate feedback. The feedback is 
aimed to enhance the awareness about coverbal attitude and 
thus the social intelligence of the speaker. In this work, the 
feedback modeling is solved in a data-driven way through a 
Dynamic Bayesian Network whose graphical structure 
describes the complex relationship between the cognitive 
state of the presenter, his multimodal performance scores 
and the adequate feedback. The long-term goal of our 
research is to implement our behavioral evaluation model 
on wearable devices and test in real-time the relevance of 
our modeling and the social acceptability of the setting. 
More generally, this research can be enlarged to many other 
domains besides public speaking such as job interviews, 
customer services and sales, communication for health-care 
professionals, helping people with social difficulties, etc.  

 



The paper is organized as follows: the next section briefly 
reviews the state of the art of feedback systems and models. 
In section 3, we introduce our oral presentation interaction: 
the proposed scenario, study protocols, experimental setting 
and recorded signals are described in details. In section 4, 
the whole process of data annotation is described. In section 
5, the post-experiment study is presented and we will show 
that overall opinions were positive. In section 6, the DBN 
model is introduced and we will show its relevance in 
predicting suitable feedbacks. Section 7 summarizes our 
contributions and concludes the paper.   

RELATED WORK 
This research is part of the automatic analysis of human 
behavior in social interactions [13]. Automatic 
conversations analysis tries to infer from raw signals 
information about social actions, social emotions, social 
relations and social attitudes [48]. Depending on the 
application domain, several computational models have 
been proposed to cope with these issues. For instance, 
Mihoub et al. [35] presented a behavioral model designed to 
endow social robots with social skills enabling them to 
engage relevant interactions with human interlocutors. The 
model was based on Hidden Markov Models and was able 
to analyze human-partner behavior and generate adequate 
coverbal behavior particularly eye gaze fixations. Nihei et 
al. [40] established classification models that estimate 
influential statements in group discussions using prosodic 
features, head motion and eye gaze information. Group 
discussions are used in some countries for job recruitment 
processes. Expert recruiters observe the social behavior of 
all candidates and select only the good discussion 
performers. Through their modeling, Nihei et al. aimed to 
elaborate automatic skill evaluation through automatic 
scene analysis. They showed that persons who make 
influential statements frequently present better facilitation 
ability in discussions. To enhance group collaboration, Kim 
et al. [27] introduced the Meeting Mediator (MM), a real-
time system that detects social interactions in meetings and 
provide feedback on the interaction dynamics. The 
exchanged social signals - based essentially on speech 
features and body movements - were captured by 
Sociometric portable badges and visualized on mobile 
phones of the interacting interlocutors. They showed that 
the system was able - in a brainstorming scenario - to 
ameliorate interactivity level and to reduce behavioral 
differences between non-dominant and dominant people. 

Besides promoting social dynamics in-group meetings, one 
major application of social augmenting is to enhance social 
behavior in public speak. In this context, three 
configurations are identified in the literature: (1) Behavior 
assessment in training sessions, i.e. the feedback is 
provided before a real presentation situation. (2) Feedback 
provided online, i.e. during a real presentation situation. (3) 
Feedback provided offline, i.e. after a real presentation 
situation. The presentation trainer [42] is a recent example 

of systems within the first configuration. It is a multimodal 
tool designed to track the user’s body and voice (body 
posture, gestures, volume, pauses, etc.) using a microphone 
and a Kinect®. The feedback is transmitted through a visual 
graphical interface and a connected wristband (haptic 
information). Two types of feedback (corrective and 
interruptive) were provided using a rule-based model. For 
the latter type, the system considers the user’s mistake as 
severe and interrupts the speaking. To reduce the cognitive 
load of the presenter only one feedback is instructed at a 
time and the system was demonstrated to have significant 
effect on users’ learning. MACH (My Automated 
Conversation coacH) [21, 22] is another well-known system 
in the literature. Through a virtual agent the system 
simulates a job interview with human participant. At end of 
session, a summary feedback is provided concerning many 
aspects of the nonverbal communication such as total pause 
duration, speaking rate, weak language (filler words such as 
“basically” and “umm”), pitch variation, smiles, head 
gestures, loudness, etc. In the same context, Chollet et al. 
[5] explored an interactive virtual audience paradigm to 
create a forgiving and engaging environment for public 
speak training. The virtual audience was projected on a life-
size screen and was animated by a wizard of oz strategy. 
The system was able to give direct visual feedback on the 
screen but also implicit feedback via the nonverbal behavior 
of the animated characters. For instance a character could 
exhibit a forward or a backward posture depending on 
speaker’s performances. The system was shown to have 
positive effect on learners’ audiovisual behavior. 

The second type of systems proposed in literature, are those 
delivering online feedback during real presentations. 
Knowing that human attention is a limited source [43] and 
that human brain is not adept for multitasking [41, 45], the 
challenge is to convey a relevant feedback in a convenient 
format and with an optimal frequency, so that speaker is not 
distracted from his task. For instance, Rhema [46] is an 
intelligent user interface for wearable Google® glasses, 
developed to help presenters modulate speech volume and 
speech rate during their talk. The paper shows that optimal 
feedback should be one instruction at a time and in single 
words format (e.g. louder, faster, etc.). One limitation of 
this work is the lack of multimodality in the behavior 
assessment. Logue [7] is another system designed to deliver 
in-situ real-time feedbacks about the nonverbal behavior of 
a speaker, especially speech rate, body energy and 
openness. The social sensing is performed by a microphone, 
a Kinect® placed in front of the speaker and wearable 
Vuzix® glasses which were used also for feedback 
rendering. The feedback generation was provided by a rule-
based model and a set of manually fixed thresholds. With 
two user studies, the authors showed that Logue system was 
perceived to be helpful, and that it has got significant 
impact on users’ performances. The multi-sensor self-
quantification framework [12] is a feedback system 
belonging to the third aforementioned configuration. It 



generates an offline report about many aspects of the oral 
presentation such as speaking rate, liveliness, body 
movement, gestures, speaker attention, audience 
engagement, etc. It utilizes a whole motion capture system 
composed of two static cameras, one Kinect®, and three 
wearable Google® glasses (one for the user and two for 
public). The feedback model was based on Support Vector 
Machine models trained with annotated multimodal data. 
The ground truth was collected using manual annotation of 
videos segmented in multiple 10-second clips. The user 
study showed that analytics report generated after each 
presentation received positive opinions from the experiment 
participants.  

Compared to literature, our research paradigm is intended 
to offer the final user the advantages of the three 
configurations. In fact, in this paper we claim the following 
contributions: 

• An original social sensing setting not based on classic 
motion capture systems but only wearable devices that 
are easily portable and susceptible to be shortly available 
for general public. 

• At this state, our system offers training and practice 
possibilities as well as detailed offline reports on 
behavioral performances. It is intended to integrate real-
time feedbacks in the near future. 

• Behavior evaluation is performed to be as exhaustive as 
possible in order to deal with almost coverbal modalities 
(speech features, hand/body motions and eye gaze). 

• Contrary to existing feedback models (rule-based, classic 
classifier, wizard of oz, etc.), we propose an evaluation 
model based on a probabilistic graphical model (DBN) 
that is more appropriate in modeling temporal complexity 
of human behavior dynamics. 

BEHAVIOR ASSESSMENT EXPERIMENT 

Proposed scenario 

The objective of the proposed interaction is to collect 
multimodal behaviors of many speakers in an oral 
presentation scenario (cf. Figure 1). The presenters were 
asked to give a “pitch” presentation for five minutes. Each 
presentation was composed of five slides in which each 
slide corresponds to one of the following items: presenter 
education, professional experiences, technical/interpersonal 
skills, current projects, and future projects. In our 
experiment, this pitch scenario was particularly chosen 
since it highly motivates participants to be at the top of their 
performances compared to other presentation topics.   

Study protocols 
11 presenters (7 male and 4 female) were recruited to 
participate in our experiment. Our study was limited to 
French native speakers in order to have homogeneous 
behavioral patterns and a standard annotation protocol. 
Participants’ ages ranged from 22 to 48 years old with an 

average of 34. They had different functions: interns, 
developers, PhD students, researchers, ergonomists and 
project managers. Two weeks before recording, participants 
were asked to fill an online form about (1) their 
demographic information (2) self-assessment of skills in 
oral presentations and (3) their personal Curriculum Vitae. 
On a 10-point scale question (1 = never, 10 = very 
frequent), our participants rated themselves on average 5.36 
for frequency of giving presentations, 6.27 (1 = not at all, 
10 = very comfortable) for their comfort in public speak 
and 6.45 (1 = very bad, 10 = very good) on how good they 
think their nonverbal communication is. Experimenters 
used the third information (i.e. personal CV) to build 
presentation slides that were sent to participants one week 
before their talk. This protocol helped us to have standard 
presentations for all speakers, which neutralizes preparation 
effects on behavior performances. Each presenter was asked 
to give two presentations on two different days to minimize 
learning effect, which leads to a total of 22 presentations. 
These presentations were recorded in 7 sessions with 
groups of three or four participants. The mean length of a 
session was about 1 hour and 15 minutes. The groups were 
designed to mix the 11 participants in different groups. 
Since we have two presentations per participant, this 
protocol avoided presenters’ lassitude caused by the 
repetition of a talk in front of the same person. For each 
group (for instance a 4-person group), we have one 
presenter and three observers who constitute the audience. 

At the beginning of each session, the experimenter presents 
the study and its progress phases. He also takes few minutes 
to expose the importance of nonverbal communication in a 
public speak and gives some recommendations about it. 
This step guarantees that participants have similar baseline 
knowledge about coverbality in public speak. After each 
presentation, one form is filled by the speaker for self-
assessment and a second form is filled by an audience 
member that we call the evaluator. Two tablets were used to 
this end; collected information from these questionnaires 
will be discussed in the post-study experiment section. 
After each presentation, a role changing strategy is applied 
by the experimenter so that each person participates as a 
presenter but also as observer for the rest. Particularly, 
he/she will be an evaluator for a specific speaker by rating 
his/her behavior performances through the second 
questionnaire. Each evaluator was discreetly informed from 
the beginning about the person to evaluate. Note that, our 
changing role strategy ensured that two persons couldn’t 
evaluate theirself mutually. The evaluators were instructed 
to pay attention to the coverbal behavior of the speakers 
especially voice, gaze, and body language.  

Experimental setting 
The aim of the setting (cf. Figure 1 and Figure 2) is to sense 
the audiovisual social behavior of a presenter particularly 
voice attributes (volume, intonation, speech rate), eye gaze 
fixations, hand gestures and body movements. In order to 



make our evaluation system portable and usable in different 
contexts, only the presenter was equipped with wearable 
devices (cf. Figure 2). For same reasons, we omitted the use 
of heavy motion capture systems by utilizing only 
wearables in part already democratized for public. 
Therefore, the multimodal behavior of a presenter was 
captured by: 

• A smartphone (Samsung®) put in the pocket of the 
presenter, used to track body movements. 

• A smartwatch (Sony®) worn on the directional hand, used 
to track hand gestures. 

• Smart glasses (Epson Moverio BT-200®), a head-
mounted device used to capture eye gaze fixations. 

• A microphone connected to the glasses, used to monitor 
the presenter’s speech signal. 

For the purpose of annotation we also equipped the scene 
with a static camera in order to film the whole interaction. 

 

Figure 1: Experimental setting of a presentation 

 

Figure 2: List of devices used to capture presenter’s behavior 

Recorded signals 
For data acquisition a recording platform was developed in 
order to collect multimodal and synchronized data from all 

devices. The recorded signals are as follow: 

• Accelerometer and gyrometer data from the pocket 
smartphone 

• Accelerometer and gyrometer data from the smartwatch 

• Accelerometer and gyrometer data from the glasses 

• Egocentric video scene from the front camera of the 
glasses 

• The speech signal from the microphone 

• Video environment from the static camera 
Human behavior is paced by subtle temporal coordination 
between different modalities. Thus, the challenge for our 
recording platform was to collect those signals in highly 
synchronized way; otherwise all social behavior modeling 
will be invalid. To this end, two Android® applications 
were developed to handle recordings. The first application 
runs on the experimenter smartphone (Samsung®). It allows 
triggering recording for both presenter smartphone and 
smartwatch. The second Android® application monitors the 
glasses and the connected microphone. The two 
applications were controlled by the experimenter to help 
orators focus on their presentation task. Note that manual 
claps are also performed before and after each presentation 
in order to synchronize precisely the different modalities 
especially audio and video. 

DATA ANNOTATION 
Similar to many previous works [12], we chose to segment 
each presentation on 10-second clips. This frame 
granularity was used for all modalities in our annotation 
process. Mean duration of the presentations was about 37 
frames (i.e. 6 minutes and 10 seconds long) and the overall 
time of presentations was about 2 hours and 15 minutes. 
The experiment design was thought to handle a list of 
selected modalities known to largely contribute on public 
talk pertinence.  Next paragraphs describe the set of signal 
processing based rules utilized to infer these modalities 
from recorded signals. 

Volume 
A principal characteristic of human voice is volume. 
Known also as intensity or speech energy, the volume 
represents the loudness of an audio signal and plays 
fundamental role for transmitting clear messages for 
audience [10]. To analyze volume, we used an application 
based on the intensity extraction method of the Praat 
software [4]. We extracted also silent intervals for all 
segmented clips with a silent threshold of –30 dB, a 
minimum silent interval duration of 0.1 sec and a minimum 
sounding interval duration of 0.05 sec. For each 10-second 
clip, we first delete silent intervals and we calculate the 
mean from remaining intensities. Then, using two intensity 
thresholds [17] (50 dB and 60 dB), the volume of the 
interval is classified into three categories: low, good and 
high. Thus, volume levels under 50 dB were considered as 



low while volume levels above 60 dB were considered as 
high. Note that these thresholds may slightly change 
depending on room noise and distance from audience. 

Intonation 
One major attribute of human prosody is intonation. It 
represents the way speakers modulate their voices and plays 
significant role for retaining audience’s attention [10]. Pitch 
is known to be the main acoustic feature that correlates with 
intonation. Hence, for intonation analysis, we automatically 
extract pitches using an application based on Praat software 
[4]. For the extraction, we used a minimum pitch of 75 Hz 
and defaults parameters of the Praat autocorrelation 
method. To quantify pitch variation, it is possible to use the 
raw pitch standard deviation as a metric. However, because 
of differences between speakers especially males and 
females, this metric will give invalid and unfair comparison 
results [20]. Therefore, as proposed by R. Hincks [19, 20] 
the standard deviation should be expressed as a percentage 
of the pitch mean. This normalization is performed by 
dividing the pitch standard deviation by the mean; the 
resulting quotient is known by the acronym PVQ (Pitch 
Variation Quotient). Note that in Hincks works, the PVQ is 
also calculated for 10-second clips. In our work, we first 
calculate for each 10-second segment the corresponding 
PVQ. Then, using two thresholds inspired from [19] (0.10 
and 0.23), the intonation is classified into three categories: 
monotone, medium and lively. In this way, PVQ values 
under 0.10 characterize monotonous speech while values 
above 0.23 reflect lively voice. 

Speech rate 
Balanced speech rate is another important attribute 
featuring voice quality. In fact, a slow rate may cause 
boredom while an accelerated rate may cause 
incomprehension and ambiguity. To measure speaking rate 
one possibility is to use the word per minute (WPM) metric. 
Nevertheless, because of major difference in word length, 
this measure can be imprecise in many contexts [15]. 
Expressing speech rate in syllables per second (SPS) solves 
this problem and presents many advantages. It allows a 
local analysis of voice and more efficient track of its rate 
variations [20]. In our work, the SPS measurement is used 
to characterize speech rate. In particular, we relied on Jong 
and Wempe algorithm [25] to segment our audio clips into 
syllables. The speech rate is then computed by dividing the 
number of detected syllables by the length of clips, i.e. 10 
seconds. Afterwards, using two thresholds inspired from [8] 
(5.8 sps and 10 sps), the speech rate is classified into three 
categories: low, good and high. Accordingly, SPS values 
fewer than 5.8 feature low speaking rates while values 
above 10 distinguish highly speech rates. 

Gaze 
Besides retaining their attention, sustained eye contacts 
with listeners make the orator look engaged, more 
believable and more convincing. Further, it helps the 

presenter to better receive listeners’ nonverbal signals (e.g. 
facial expressions) and then, responds and enhances his 
message deliver. In our work, eye gaze performances were 
annotated semi-automatically. First, using the videos of the 
glasses, we annotated manually fixations over four regions 
of interest: audience, personal computer, projection screen 
and elsewhere. From these annotations, we computed for 
each 10-second segment a gaze distribution that contains 
the percentage of each region of interest. Then we 
established a rule-based model that uses a list of thresholds 
in order to automatically classify the gaze segment into 
three categories: improvable, medium and good. At this 
state, fixations are annotated manually but we intend in the 
future to use computer vision techniques to automatically 
detect regions of interest. In particular, we may use 
accelerometer and gyrometer data of the glasses - coupled 
with visual features - in order to get better estimations. 

Hand gestures & Body movements 
Hand and body movements are known to be powerful tools 
to enhance social influence. Hand gestures for instance help 
to add emphasis and clarity to spoken words. Body 
movements help also to reinforce verbal messages and 
further ameliorate audience attraction [47]. In our setting, 
hand and body movements were sensed by wearables 
devices. In particular, hand gestures were inferred from 
accelerometer data from the smartwatch, while body 
movements were extracted from accelerometer data from 
the pocket smartphone. For both modalities, a high-pass 
filter was applied to eliminate gravity force. Then, using the 
10-second segments, we computed an energy measurement 
- based on effective power of signal [34] - in order to 
characterize gesture energy and body energy of the speaker. 
Based on two thresholds, the gesture energy was classified 
into three categories: low, good and excessive. Similarly, 
two other thresholds were used to assign body energy to 
one of those classes. Notice that in our annotation, we used 
only accelerometer data to describe overall energy of the 
presenter. In the future, we may also exploit gyrometer data 
in order to get more precisions on types and categories of 
gestures. 

Feedback 
After analyzing all videos, nine specific feedbacks about 
nonverbal behavior of the presenter were proposed with an 
audience point of view: 

• + volume : louder speech volume 
• + liveliness : more voice liveliness, used when intonation 

is perceived as monotone 

• + speech rate : faster speech rate 
• - speech rate : lower speech rate 

• + public : more eye contacts with the public 
• + gestures : more hand gestures 

• + body : more body movements 



• none : no feedback, used when it is not appropriate to 
deliver a feedback at that moment 

• good : used when nonverbal behavior is evaluated as 
good 

As mentioned before, human brain is not adept for 
multitasking [41, 45], for this reason we chose to deliver 
only one feedback per 10-second segment. Efficiency of 
this paradigm has been already demonstrated in the 
literature [42, 46]. Each 10-second clip was affected to one 
of those feedbacks by two expert annotators that have 
excellent knowledge about nonverbal communication in 
public speech. ELAN software [44] was used to visualize 
and to annotate each presentation. Annotators were 
instructed to give priority firstly to voice attributes and gaze 
features, and secondly to hand gestures and body 
movements. These instructions were based on results from 
the post-experiment study. In fact, participants were asked 
about importance of each modality in public presentation 
and the final statistics (cf. Figure 3) showed that voice 
features, as well as gaze, were declared more important 
than hand and body energies. Annotators were also 
instructed to consider annotated feedback history during the 
annotation process in order to get diversified feedbacks and 
avoid sustained emphasis on a particular modality. Note 
that in case of mismatch between annotators, they were 
invited to debate on video segment and choose only one 
final feedback. In the Feedback modeling section we will 
propose a Dynamic Bayesian Network model able of 
retrieving these annotated feedbacks from automatic 
multimodal scores. 

 
Figure 3: Declared importance (from audience) of coverbal 
modalities for presentation relevance (1= not important at all, 
10=very important). Voice is underlined the most important 
modality especially volume. Gaze fixations are also 
emphasized but with more diverging opinions. Finally, 
gestures and body movements are perceived as significant but 
less crucial. 

POST-EXPERIMENT STUDY 
The aim behind our post-experiment study is to (1) survey 
both presenters and audience about many aspect of the 
experiment and (2) collect participants’ opinions about the 
quality of our automatic assessment system. Three 
questionnaires were established to this end: the first one is 
filled by the speaker just after his/her presentation, the 

second one is filled by an audience evaluator and the third 
one is filled by the speaker after getting the automatic 
evaluation. In this section we first propose qualitative 
results about the studied interaction and then qualitative 
results about the automatic offline scores generated by our 
rule-based annotation models. 

Qualitative results about the experiment 
Figure 4 proposes evaluations from the presenters about 
eight criteria of the studied interaction. These criteria 
correspond to the following sub-questions:  

On a scale of 1 to 10, do you agree or disagree with the 
following statements (1 if you totally disagree, 10 if you 
totally agree): 

1. Awareness: “I was aware of my coverbal behavior 
during my presentation.” 

2. Concentration: “I was very focused during my 
presentation.” 

3. Comfort: “I was comfortable during my 
presentation.” 

4. Attention: “I was attentive to audience reactions.” 

5. Encumbrance: “The experimental devices took up too 
much space during the presentation.” 

6. Perturbation: “The experimental devices disrupted my 
social interaction with the audience.” 

7. Online Feedback: “To improve my presentations, it 
will be good to use the experimental devices to get 
feedbacks about my coverbal behavior during my 
presentation.”  

8. Offline Feedback: “To improve my presentations, it 
will be good to use the experimental devices to get 
feedbacks about my coverbal behavior after my 
presentation.” 

 
Figure 4: Evaluations from the presenters. Notation scale 
was from 1 to 10 (1=total disagreement, 10=total 
agreement). 

About the first four criteria, participants have given quite 
good evaluations, showing in part that the experimenter 
presentation about coverbal behavior was well perceived. 
One participant gave the following comment: “My attention 



was more focused on my body movements during the 
second session because I was more comfortable”. About 
experimental device perception, statistics shows divided 
opinions on the perturbation criteria. However, the box 
plots show relatively high median for the encumbrance 
criteria, which is due principally to the glasses type. One 
user explains “I find it extremely heavy”. This particular 
issue would be probably solved in the future thanks to more 
recent and light devices. Concerning online versus offline 
feedbacks, the evaluations from the presenters give a 
preliminarily preference to offline feedbacks. One 
participant judges online feedbacks as follows: “I imagine it 
would be too disturbing”. Consequently, the challenge for 
an online assessment system will be to optimize timing and 
manner of the feedback render. Evaluations from audience 
evaluators are presented in Figure 5. They concern three 
criteria that correspond to the following sub-questions: 

1. Attention: “I was careful to the coverbal behavior of 
the presenter.” 

2. Comfort: “I was comfortable during the presentation 
even if the presenter wears connected devices.” 

3. Perturbation: “The experimental setting disrupted 
social interactions between presenter and audience.” 

The figure plots expose relevant values about the audience 
attention, which respected the experiment instructions. For 
the other criteria, a mixed feeling is observed. We noticed 
positive feelings about comfort criterion but also relatively 
negative ones about perturbation. Indeed, some people 
complain about the glasses opacity, limiting thus eye 
contacts. This result joins presenter evaluation about used 
glasses. 

 
Figure 5: Evaluations from the audience. Notation scale 
was from 1 to 10 (1=total disagreement, 10=total 
agreement). 

Qualitative results about the proposed offline feedbacks 
The multimodal signal analysis gave us the opportunity to 
provide offline feedbacks to the participants about their 
coverbal behaviors. Figure 6 presents one of them. For the 
two sessions (S1 and S2) of the concerned participant, an 
automatic classification is computed for the six coverbal 
modalities. First, a learning effect is proved between the 
two sessions (i.e. for all participants better scores were 
overall recorded for their second session). In case of testing 
online feedback system, it will be necessary to exactly 
quantify learning effect in order to prove that amelioration 

over time is due to the intelligent system and not simply to 
a learning effect. For this particular presenter, the speech 
analysis presents good performances concerning volume, 
intonation - even if this dimension could be improvable - 
and speech rate. In addition, charts show good performance 
on gaze which indicates that it was oriented to the audience 
most of the time. Gesture energy was positively evaluated 
except few excessive segments during the second session. 
Looking on videos, excessive intervals corresponded to 
sudden and saccadic gestures performed by the speaker. An 
improvement on body movements is also notably observed 
between the two sessions. 

Moreover, we collected some verbatim and evaluations 
from our participants concerning these offline feedbacks. 
Some verbatim are positive:  “I find very interesting having 
a numerical target, because it helps to realize and quantify 
our performance, and this is perhaps more credible than 
the comments of a third party”, “Interesting in order to 
progress, particularly the energy levels”. Some verbatim 
are less positive: “To be honest, I expected such results 
because I am aware of my weaknesses (it does not mean 
that I know how to resolve them)”. Some verbatim give 
some perspectives: “For intonation, I would have to 
"perceive" what I can change (e.g. a difference with 
another person who does better)”, “For the eye contacts, it 
could be interesting to visualize in which direction I look 
the most”. 

Finally, on 10-point scale questions, our participants rated 
on average 7.45 for the relevance of provided statistics in 
general, 7.36 for the relevance of those statistics to better 
understand coverbal behaviors, 6.55 for their relevance to 
improve presentations, and 6.82 as a motivation level to 
participate in future experiments with online feedbacks. 

 
Figure 6: Offline multimodal scores for one presenter. S1 

corresponds to session 1 and S2 to session 2. 



FEEDBACK MODELING 
The main challenge of our feedback modeling is to coach 
social intelligence to public speakers. To this end, we 
propose new models – based on Dynamic Bayesian 
Networks (DBNs) – for behavior assessment and feedback 
generation. In the next paragraph, we start with a brief 
review on DBNs. 

Dynamic Bayesian Networks 
Bayesian Networks (BNs) [39] belong to the family of 
Probabilistic Graphical Models (PGMs) [29]. PGMs have 
married in a same formalism graph theory and probability 
theory in order to provide intuitive and effective tools to 
represent a joint probability distribution over a set of 
random variables [26]. Formally, a Bayesian Network (BN) 
is a directed acyclic graph whose nodes are random 
variables and whose edges represent conditional 
dependencies between these variables. An edge linking a 
parent node X to a child node Y semantically means that 
node X exerts direct (or causal) influence over node Y. 
Dynamic Bayesian Networks (DBNs) [38] has extended 
static Bayesian Networks (BNs) by modeling the temporal 
evolution of the variables. Beyond intuitive graphical 
representation and uncertainty dealing, they efficiently 
model complex temporal relationships between variables. 
Since we consider processes that are only Markovian (i.e. 
variables at slice t are only dependent on t-1 slice variables) 
and stationary (i.e. conditional probability distributions do 
not change over time), a DBN can be sufficiently depicted 
by a 2-timeslice structure called 2-timeslice Bayesian 
Network (2-TBN) (see example in Figure 7) [14]. Due to 
their multiple characteristics, DBNs have been used 
successfully in many domains; in particular, they represent 
an attractive and a powerful formalism for modeling 
dynamics of human behavior in social interactions [23, 36]. 

DBN-based models 

Cognitive state 
In this work, we propose to integrate the cognitive state 
(CS) of the presenter to our modeling in order to get better 
prediction of feedbacks. In fact, additional to annotated 
variables already described in section 4 (Data annotation), 
we introduced a novel variable (CS) that tries to model the 
cognitive state of the speaker. Cognitive states condition 
perception-action loops of the human behavior: they reflect 
cognitive processes that coordinate modalities of human 
behavior but also contextualize the interaction by 
considering its circumstances and its evolution. Examples 
of CS could be “informing”, “nodding”, “listening”, “turn 
taking”, etc. Notice that one single CS could also sequence 
many sensory-motor states together.  Similar concepts have 
been proposed in the literature of multimodal behavior 
modeling [23, 32, 35]. In our application, we used data 
mining techniques to explore the cognitive states of the 
presenter. Actually, we used the K-means clustering 
algorithm [24] to infer these states from both multimodal 

scores and feedbacks (volume, intonation, speech rate, 
gaze, gesture energy, body energy, feedback). Indeed, 
associating scores and feedbacks this way, allows the 
estimated states to better contextualize interaction phases. 
For information, Weka Java API [18] has been used to 
realize the clustering task. After many empirical tests (9, 
18, 27, 36), we chose the optimal number of 27 clusters, 
which corresponds, to 27 specific CS.    

Proposed Model 
Based on Dynamic Bayesian Networks (DBNs), our model 
uses machine learning techniques to intrinsically associate 
CS and multimodal performance scores to annotated 
feedbacks. The main objective is to retrieve annotated 
feedbacks and to prove usefulness of this model for future 
online coaching system. List of used variables, as well as 
their respective cardinalities were as follows: 

• CS : cognitive state of the presenter, 27 states 
• V : Volume, 3 levels (low, good, high) 

• I : Intonation, 3 classes (monotone, medium, lively) 

• S : Speech rate, 3 levels (low, good, high) 
• G : Gaze fixations, 3 classes (improvable, medium, good) 

• H : Hand gesture energy, 3 levels (low, good, excessive) 
• B : Body energy, 3 levels (low, good, excessive) 

• F : Feedback, 9 types (+ volume, + liveliness, + speech 
rate, - speech rate, + public (gaze), + gestures, + body, 
none, good) 

Our proposed model is illustrated in Figure 7. The internal 
structure of our DBN was designed to efficiently model 
causal relationships between different nodes. This causality 
graph presents interesting properties: 

• The cognitive state of the speaker influences his 
multimodal behavior (blue arrows). 

• The appropriate feedback is a direct consequence of 
multimodal scores of nonverbal behavior (green arrows). 

• The appropriate feedback is also directly influenced by 
the mental state of the speaker (red arrows). 

• The network reflects the temporal correlation between 
cognitive states since a CS at a certain time is influenced 
by the previous state of the speaker (grey arrows). 

•  The network reproduces an important instruction that 
was given to annotators concerning feedback; this 
instruction has incited annotators to diversify feedbacks 
by considering feedback history. Looking to the structure, 
we can easily identify temporal dependence between 
feedbacks (black arrows). 

To demonstrate the efficiency of the proposed causality 
network, we compare our principal model with a second 
baseline DBN whose structure does not consider the CS of 
the presenter (cf. Figure 8). 



Evaluation and results 
Bayes Net toolbox [37] was used for DBNs learning and 
feedback estimation. EM algorithm [9] is applied for 
training while Junction tree algorithm [6] is applied for 
inference. In particular, online inference is used for 
prediction i.e. feedback (F) at a slice t is estimated only 
with observable data (V,I,S,G,H,B) till that instant t. Offline 
inference would rather use the total sequence which is not 
appropriate for real-time systems. We remind that we have 
22 sequences (11 participants and 2 presentations per 
participant). After many empirical tests (1, 2, 5, 10 
seconds), we chose the initial temporal granularity of our 
multimodal data, i.e. 10 sec per time slice. With this 
granularity, mean duration of sequences filled to our DBNs 
was 37 frames. Using a leave-2-out-cross validation, we 
end up with 11 models; each model is trained on sessions of 
10 participants and then tested on the two sessions of the 
remaining participant. Two metrics were used to quantify 
models performances. First, we used the precision of 
prediction, which corresponds to the percentage of retrieved 
feedbacks from original sequences. Because we are 
comparing similarity between two sequences, we propose a 
second approach based on Levenshtein distance [33]. In 
fact, Levenshtein distance computes a minimum number of 
operations to transform one sequence to another. From this 

optimal alignment the F-measure metric is directly 
computed. This method is more adequate to our problem 
since it tolerates small miss-alignments between original 
and predicted values. The final performance results are 
presented in Table 1. Table values correspond to calculated 
means on the 11 trained models. Furthermore, for the sake 
of comparison, we computed also random performances 
from the empirical distributions of annotations. The 
empirical distributions reflect the frequency of each 
feedback type in the annotation database. 

 Precision 
(%) 

F-measure 
(%) 

Our DBN model (with CS) 62.47 67.17 

Baseline DBN (without CS) 59.14 64.57 

Random model 17.53 36.91 

Table 1: Mean performances for feedback estimation 

As we can see, performances of DBN models are largely 
higher than random levels. Thanks to CS modeling, our 
proposed model outperforms the baseline DBN (without 
CS) on both metrics: 62.47 vs. 59.14 for precision and 
67.17 vs. 64.57 for F-measure. This performance gap 

 

Figure 7: Our proposed DBN model (2-TBN model). Variables with white background are 
observable while grey ones represent variables to predict. 

 

 

Figure 8: Baseline model: DBN structure without cognitive state (CS) modeling. 

 



proves the relevance of our causality network in modeling 
the studied interaction and confirms the significant 
contribution of cognitive states in enhancing feedback 
estimation.  

CONCLUSION AND PERSPECTIVES 
In this paper we studied human behavior analysis in social 
interactions. Especially, we were interested in modeling 
nonverbal communication of a public speaker in an oral 
presentation scenario. The challenge was to develop an 
automatic assessment system able to assist presenters in 
becoming brilliant and charismatic speakers. For this 
purpose and contrary to many works in literature, we 
designed a social experiment in which we used only 
wearables devices for multimodal signals sensing. Using 
social signal processing techniques we developed rule-
based models that computed performance scores concerning 
multimodal behavior of the speaker. In our analysis, we 
proceeded with a multimodal approach that allowed us to 
interpret not only voice attributes (volume, intonation, 
speech rate) but also eye gaze, hand gestures and body 
movements. Performance scores were communicated to 
participants in an offline reports (after their presentations) 
and received positive evaluations about their relevance and 
their usefulness. Similarly, overall opinions were quite 
positive about the experimental setting. In fact, some issues 
were raised up especially about the heaviness of the smart 
glasses. This problem will be overcome in future research 
by replacing that device with more appropriate one. 
Moreover, one step toward online feedback delivery is 
ensured thanks to our DBN model. Indeed, we showed that 
our proposed causality network (with explicit CS modeling) 
has led to good performance rates compared to baseline 
models. Starting from actual models, we will enrich in 
future our setting with real-time capacities in order to 
deliver online feedbacks, which enables the speakers to 
improve in real-time and in-situ their nonverbal 
communication. 
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