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Abstract—In recent work we showed the interest of using
sparse representation techniques to estimate a target scene
observed by wideband radar systems. However the principle was
demonstrated in a white noise background only. In this paper, we
present an extended version of our sparse estimation technique
that attempts to take into account the (possible) presence of
diffuse clutter. More specifically, an autoregressive model is
considered for the noise vector. Performance of the technique
is studied on synthetic and experimental data. Pertinence of the
noise model is discussed.

I. INTRODUCTION

The discrimination capability of a radar system is of utmost

importance when it comes to detect and classify targets in

challenging scenarios. Due to their high range resolution

(HRR), wideband radar systems have thus attracted much at-

tention. Nevertheless processing the data returns of a wideband

waveform requires considering new phenomena. Particularly,

moving targets may migrate along the range during the coher-

ent processing interval (CPI) [1].

In recent work, we proposed a new model [2] able to give a

satisfying sparse representation of the target scene observed by

a wideband radar with low pulse repetition frequency (PRF).

The algorithm used to estimate the parameters of this model

was based on a hierarchical Bayesian approach where the

migration of the moving targets was considered while sparsity

on the target amplitude vector was enforced. As a result, each

scatterer was estimated as a single peak without sidelobes and

was located unambiguously in the range-velocity map (range

migration allows removal of velocity ambiguities).

Nonetheless the algorithm of [2] may not entirely be suited

for a realistic scenario since only a white noise background is

modeled. Particularly, if clutter entails a diffuse component,

the method is not designed to handle it properly. As a conse-

quence residual sidelobes located at blind velocities (arising

from the diffuse component) can be interpreted as targets. This

may lead to false alarms as well as preventing from detecting

true targets located at the ambiguous velocities.

The work of S. Bidon and O. Besson is supported by DGA/MRIS under
grant 2012.60.0012.00.470.75.01.

In this paper, we assume that a diffuse component in the

clutter is possibly present in the data returns. Accordingly, the

hierarchical model of [2] is modified to take into account this

component. In search of simplicity and to keep the number

of parameters to estimate as low as possible, the following

assumptions are made: i) the disturbance vector models both

thermal noise plus clutter and is centered Gaussian ii) it is

decorrelated from subband to subband iii) it is correlated in

the slow-time according to a stationary auto-regressive (AR)

process with finite order iv) the clutter is locally homogeneous

(i.e., the AR coefficients are subband-independent). Note that

modeling the disturbance vector via an AR process has been

used with success in several radar applications, e.g., [3]. It can

be seen as an efficient regularization technique for estimating

covariance matrices [4], [5]. In our case, the AR approach

requires to include an unknown vector (containing the AR

parameters) to the estimation problem.

The remaining of the paper is organized as follows. The

augmented hierarchical Bayesian model is introduced in Sec-

tion II. Section III describes shortly the estimation technique

associated with this model. More time is spent in Section IV

to describe the performance of the proposed algorithm on

synthetic and experimental data collected from the PARSAX

radar [6]. Section V concludes with a discussion on upcoming

work.

II. BAYESIAN MODEL

The hierarchical Bayesian model proposed in this paper is

represented graphically in Fig. 1 and detailed herein.

A. System description

In what follows, a radar with a low PRF 1/Tr sending

a series of M wideband pulses is considered. The carrier

frequency and the bandwidth are denoted fc and B respec-

tively (typical values are fc ≈ 10 GHz and B ≈ 1 GHz).

After down-conversion and range matched filtering, K range

gates are selected and define a low range resolution (LRR)

segment. A range transform (a simple fast Fourier transform,

FFT) is applied on the fast-time dimension so that the data



x

y

σ2
ǫ φ

(β0, β1)

(µφ, Rφ)(γ0, γ1)w σ2
x

Fig. 1. Graphical representation of the proposed Bayesian model. Parameters
circled by a dotted line have to be set by the radar operator.

are observed in the fast-frequency1/slow-time domain. The

corresponding observation vector y is of length KM and

is built by concatenating the M pulse returns subband-by-

subband.

B. Likelihood

1) Linear model: It was shown in [2] that a convenient data

model enforcing sparsity for the target representation can be

expressed as follows
y = Hx + n

where

H is an interpolation-Fourier transform matrix;

x is the target amplitude vector in the fast-time/slow-

frequency domain;

n is the disturbance vector.

Note that the KM × KM̄ matrix H allows the signal from

each subband to be resampled into M̄ samples at the rate f̄r.

The virtual number of pulses M̄ and the virtual PRF f̄r have

to be chosen by the radar operator (see [2] for more details).

2) Noise modeling: As stated in the introduction, n is

assumed to be centered Gaussian, i.e.,

n|R ∼ CNKM (0,R)

where R is a KM -by-KM covariance matrix. Using the other

assumptions ii), iii) and iv) implies that the covariance matrix

R has a specific structure

R = IK ⊗ Γ (1)

where ⊗ is the Kronecker product, IK is the identity matrix

of size K, and Γ is an M × M matrix whose inverse is P -

banded [7]. (P is the order of the AR model.) More precisely,

the Cholesky factorization of Γ
−1 can be expressed as

Γ
−1 = σ−2

ǫ (I − Φ)H(I − Φ)

where

Φ is a lower triangular Toeplitz matrix with zero diag-

onal elements

Φ = Toeplitz
{[

0,φT , 0, . . . , 0
]}

with φ =
[

φ1, . . . , φP

]T
the P -length vector con-

taining the AR parameters;

σ2
ǫ is the variance of the white input to the AR model.

1The fast-frequency will be denoted also as “subband”.

C. Parameters and hyperparameters

Since a Bayesian approach is chosen in this paper, a

prior probability density function (pdf) is assigned to each

unknown parameter of the model. Choosing a prior distribution

requires a compromise between physical considerations and

mathematical tractability.

1) Target amplitude vector: The target amplitude vector x

is modeled as in [2]. More precisely, a Bernoulli-Gaussian

distribution is assigned to each (presumably independent)

element xi of x, i.e., for i = 0, . . . ,KM̄ − 1

xi|w, σ2
x ∼ Ber CN

(

w, 0, σ2
x

)

where w is the probability that at the ith range-velocity bin

of analysis a scatterer is present and σ2
x is the power of

the possible scatterer. Furthermore, a uniform probability is

assigned to w while an inverse gamma pdf is assumed for σ2
x

w ∼ U[0,1] (2a)

σ2
x|β0, β1 ∼ IG (β0, β1) (2b)

where β0, β1 are respectively the shape and scale parameters

of (2b). They are chosen later in Section IV to ensure a wide

range of possible target powers in the radar scene.

2) Disturbance vector: The model novelty concerns the

description of the disturbance parameters, namely σ2
ǫ and φ.

Conjugate priors are selected in this work which leads to an

inverse-gamma prior for σ2
ǫ and a Gaussian prior for φ

σ2
ǫ |γ0, γ1 ∼ IG (γ0, γ1) (3a)

φ|µφ,Rφ ∼ CNP

(

µφ,Rφ

)

(3b)

with γ0, γ1 the shape and scale parameters of (3) and µφ,Rφ

the mean vector and the covariance matrix of φ. Additionally

to the concurrent mathematical convenience, the priors (3) can

be made very, moderately or non- informative according to the

values of their hyperparameters γ0, γ1 and µφ,Rφ. Later in

Section IV, non-informative priors are favored to express our

absence of knowledge about the clutter component. Practically,

a degenerate case of (3) is considered and yields the following

flat priors [7]

f(σ2
ǫ ) ∝ 1

σ2
ǫ

I[0,+∞)(σ
2
ǫ ) (4a)

f(φ) ∝ 1 (4b)

where the hyperparameters of (3) are set to γ0 = γ1 = 0 and

the variance of the AR-vector φ is assumed to be infinite.

Remark 1: Note that if P = 0, the proposed model reduces

to that of [2] and σ2
ǫ describes the thermal noise power which

is usually well known. Otherwise if P > 0, having precise

information about σ2
ǫ may not be so straightforward.

III. BAYESIAN ESTIMATION

According to the hierarchical model presented in Section II,

Bayesian estimators can now be derived for the unknown

parameter of interest x. The keystone to design Bayesian esti-

mators is the posterior distribution that merges the information

brought by the observations and the priors. However, in our



case, the posterior pdf f(x|y) cannot be easily manipulated

so that, for instance, neither the minimum mean square error

(MMSE) nor the maximum a posteriori (MAP) estimator

can be obtained analytically. Instead a numerical approach

is undertaken. More precisely, a Monte Carlo Markov chain

(MCMC) method is investigated in this paper. It can be sum-

marized as iteratively generating according to the conditional

distributions of the the parameters x, w, σ2
x, σ2

ǫ and φ [8]. The

latter can be easily obtained via the use of the joint posterior

distribution

f(x, w, σ2
x, σ2

ǫ ,φ|y) ∝ f(y|x, σ2
ǫ ,φ)

× f(x|w, σ2
x)f(w)f(σ2

x)

× f(σ2
ǫ )f(φ).

After a burn-in time Nbi, the Markov chain generates samples

that are asymptotically distributed according to the posterior

distribution of interest. MMSE estimates can then be obtained

for each parameter as an empirical mean

θ̂MMSE = Nr
−1

Nr
∑

nr=1

θ(nr+Nbi)

where Nr is the number of samples θ(nr) used to approximate

the MMSE estimate and θ designates successively the param-

eters x, w, σ2
x, σ2

ǫ and φ. Note that the proposed algorithm

provides other estimators than x and thus can offer additional

information about the radar scene.

IV. NUMERICAL SIMULATIONS

A. Synthetic wideband radar data

The performance of the proposed Bayesian estimation is

firstly assessed on synthetic data. The observation vector y is

generated according to the linear model

y =
N

∑

n=1

αnan + n

where

N is the number of scatterers in the scene;

αn,an are the amplitude and steering vector of the nth

scatterer (see [2] for more details);

n is generated independently subband-by-subband

according to an AR model of order 1 driven by

a white Gaussian noise.

Numerical values of the simulation parameters can be found

in Table I. Note that the AR coefficients φ are chosen slightly

differently from one subband to another in order to test the

robustness of the estimation technique towards slight AR-

coefficient fluctuation.

Fig. 2 compares the true target scene with the range-velocity

maps of the amplitudes estimated from the Bayesian technique

proposed in [2] and the augmented algorithm proposed herein

(i.e., x̂MMSE/
√

KM̄ ). The output of the matched filter defined

in [1] is also depicted in Fig. 2(b). As expected, due to the high

sidelobes of the wideband ambiguity function, the matched

filter allows neither the blind velocities nor the target sidelobes

to be removed. Moreover the algorithm of [2] which assumes

TABLE I
PARAMETERS FOR THE SYNTHETIC SCENARIO

Data

carrier fc = 10 GHz

bandwidth B = 1 GHz

PRF fr = 1 kHz

# pulses M = 32

LRR segment K = 6

noise power σ2 = 1

AR-order P = 1

AR-coefficients

k = 0 σ2
ǫ = 1.26 φ = [0.997e+j0.0010]

k = 1 σ2
ǫ = 1.71 φ = [0.998e−j0.0035]

k = 2 σ2
ǫ = 1.44 φ = [0.999e+j0.0027]

k = 3 σ2
ǫ = 1.94 φ = [0.996e−j0.0076]

k = 4 σ2
ǫ = 1.65 φ = [0.999e+j0.0030]

k = 5 σ2
ǫ = 1.51 φ = [0.998e+j0.0012]

Processing

AR-order P = 1

σ2
ǫ prior (γ0, γ1) = (0, 0)

σ2
x prior (β0, β1/(KM̄)) ≈ (2.2, 1.2)

virtual PRF fr ≈ 2.4 kHz

virtual # pulses M̄ = 86

a white noise background is unable to deal correctly with the

diffuse component. Numerous false detections are observable

at the location of the usual blind velocities. Note that the

actual target located at the first blind velocity seems to be

identified but is surrounded by false detections. On the other

hand, the augmented algorithm based on an AR noise model

is able to remove clutter sufficiently enough to estimate each

scatterer (even the one located in the first blind velocity). The

clutter spectrum associated with the estimated AR-coefficients

is depicted in Fig. 3, i.e.,

SAR(f) =
σ̂2

ǫ MMSE
∣

∣

∣
1 − ∑P

p=1[φ̂MMSE]pe−j2πfp

∣

∣

∣

2

where f is the slow-frequency. It is compared with the

true AR-spectrum averaged over the K range bins. As can

be seen, the spectrum obtained with the MMSE estimators

σ̂2
ǫ MMSE, φ̂MMSE is very near from the true spectrum which

tends to show that the proposed algorithm is not sensitive to

a slight fluctation of the AR-coefficients along the range.

Interestingly, in presence of an AR-based diffuse clutter, the

burn-in time of the proposed MCMC algorithm is dramatically

decreased compared to that of [2] owing certainly to the better

fit between the model and the data.

B. Experimental PARSAX data

In this section, the proposed algorithm is tested on exper-

imental data collected from the PARSAX radar of the Deflt

University of Technology [6]. The bandwidth is not as high as

thought previously, nonetheless moving targets still migrate of

a few range gates during the CPI. For better results interpre-

tation, a presumably free-target region is chosen and synthetic



TABLE II
PARAMETERS FOR THE PARSAX SCENARIO

Data

carrier fc = 3.315 GHz

bandwidth B = 100 MHz

PRF fr = 1 kHz

# pulses M = 32

LRR segment K = 6

noise power σ2
≈ 1

Processing

AR-order P = 1

σ2
ǫ prior (γ0, γ1) = (0, 0)

σ2
x prior (β0, β1/(KM̄)) ≈ (2.2, 1.2)

virtual PRF fr ≈ 2.4 kHz

virtual # pulses M̄ = 81

targets are injected in the PARSAX data. Results are depicted

in Fig. 4. Similar observations can be made as for the synthetic

data. However, one can notice that the proposed algorithm

identifies “targets” at the zero velocity of each range gate and

estimate a moderate power AR component. The spectrum of

the latter is represented in Fig. 5. A possible interpretation

is that the clutter here may be better described by the sum

of a diffuse component plus discretes (corresponding to the

so-called coherent component [1]). Accordingly, the proposed

algorithm is designed to filter only the diffuse component.

V. CONCLUSION AND PERSPECTIVES

A Bayesian sparse representation technique for migrating

targets in diffuse clutter has been presented in case of wide-

band radar signals. The algorithm performs well on synthetic

data and tends to show the dual nature of the clutter (diffuse

plus discrete) on experimental data. Further analysis should be

performed on other wideband data set to assess the pertinence

of the clutter model. Finally, a robustification towards grid

mismatch should be added to the proposed algorithm for an

application on fully experimental data.
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Fig. 2. Range-velocity map (modulus of the complex amplitude only). The
range resolution is δR = 15 cm. The ambiguous velocity is va = 15 m/s.
(a) Location and amplitude of the synthetic targets. (b) Coherent integration.
(c) Data: Synthetic data with targets and AR-model based clutter. Processing:

White noise model. (d) Data: Synthetic data with tar and AR-model based
clutter. Processing: AR noise model.

Fig. 3. AR spectrum.
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Fig. 4. Range-velocity map (modulus of the complex amplitude only). The
range resolution is δR = 1.5 m. The ambiguous velocity is va = 45.25 m/s.
(a) Location and amplitude of the synthetic targets. (b) Coherent integration.
(c) Data: PARSAX data injected with synthetic targets. Processing: White
noise model. (d) Data: PARSAX data injected with synthetic targets. Pro-

cessing: AR noise model.

Fig. 5. AR spectrum.




