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Abstract

We show in this paper a sufficient condition for the existence of
solution, the synchronized and the periodic locked state in abstract
mean field models or interconnected systems. This condition is true
for a small perturbation independently of the number of oscillators.
We show in addition a numerical example of linear mean field system.
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1 Introduction

This article is a generalization of the result obtained in [8]. The class of
abstract mean field systems that we study in this article is given by the tow
next systems. The periodic not-perturbed system

ẋi = F (X,xi), i = 1, .., N, t ≥ t0, (PNP)

and the perturbed system

ẋi = F (X,xi) +Hi(X), i = 1, .., N, t ≥ t0, (P)

where N ≥ 2 and X = (x1, . . . , xN ) is the state of the system.
F : RN × R → R and H = (H1, . . . ,HN ) : RN → RN are a C1 func-
tions. We note Φt the flow of the system (P) (in particular of the system
(PNP)). We have separated between periodic not-perturbed and perturbed
system because the results seem not trivial for the periodic not-perturbed
system. We prove in this article the existence of solution in one hand and in
the other hand the existence of synchronized and periodic locked solution.
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1.1 Notations and definitions

In this section, we introduce some notations and definitions. For q, p ∈ N∗

let G be a function from Rq to Rp. Put G = (G1, . . . , Gp) we consider the
quasi-norm on the space of continues functions from Rq to Rp defined by the
next quantity

||G||B = sup
Y ∈B

max
1≤i≤p

|Gi(Y )|,

where B = {Y = (y1, . . . , yq) ∈ Rq : max |yi − yj | ≤ 1}.

This quasi-norm is a norm on the space of continues functions from B to
Rp. We note diG, i = 1, 2, . . ., the ith differential of G. We define

||dG||B = max
1≤i≤p
1≤j≤q

||∂jGi(Y )||B, ||d2G||B = max
1≤i≤p

1≤j,k≤q

||∂k∂jGi(Y )||B.

Let G : RN × R→ R, Y = (y1, . . . , yN ) ∈ RN and z ∈ R, We note

∂iG(Y, z) =


∂

∂z
G(Y, z), i = N + 1

∂

∂yi
G(Y, z), i := 1, .., N.

A function G : Rq → Rp is called 1-periodic in the sense of the following
definition

Definition 1. [1-periodic function] Let G : Rq → Rp be a function and note
1 := (1, . . . , 1) ∈ Rq. The function G is called 1-periodic if

G(Y + 1) = G(Y ), ∀Y ∈ Rq.

Remark that the previous definition do not imply that the function G
is periodic relative to each variable. This allows us to get a large class of
mean field systems as a linear system given in a numerical example in the
Section 6. Now we define a positive Φt-invariant set,

Definition 2. Suppose that the flow Φt of system (P) exists for every t ≥ t0.
We say that a open set C ⊂ RN is a positive Φt-invariant if Φt(C) ⊂ C for
all t ≥ t0.

Synchronization and locking may have several meanings or definitions
depending on the authors. We choose the following definitions.
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Definition 3 (Dynamical oscillator). The oscillator xi(t) of a solution
X(t) = (x1(t), .., xN (t)) of system (P) is called dynamical if there exists
t0 ∈ R such that

inf
t≥t0

ẋi(t) > 0.

Definition 4 (Synchronisation). We say that the oscillators {xi(t)}Ni=1 are
synchronized if they are dynamical and if sup1≤i,j≤N |xi(t)−xj(t)| is bounded
from above uniformly in time t ≥ t0.

Definition 5 (Periodic locked solution). We say that the oscillators
{xi(t)}Ni=1 are periodically locked to the frequency ρ > 0 if they are syn-
chronized and if there exist a periodic functions Ψi(t) such that

xi(t) = ρt+ Ψi(t), ∀i = 1 . . . N, ∀t ≥ t0.

1.2 Synchronization Hypothesis (H) et (H∗)

We consider tow hypotheses (H) and (H∗),

(H)

{
F is C2, and max{||F ||B, ||dF ||B, ||d2F ||B} < +∞,
F is 1-periodic and mins∈[0,1] F (s1, s) > 0,

(H∗)

∫ 1

0

∂N+1F (s1, s)
F (s1, s)

ds < 0.

We call the hypothesis (H∗) the synchronization hypothesis provided that
hypothesis (H) is satisfied. The hypothesis (H∗) comes from the fact that
when H ≈ 0 and xi ≈ xj(≈ x) the system (P) is equivalent to

d

dt
xi ≈ F (x1, x), and

d

dt
(xi − xj) ≈ ∂N+1F (x1, x)(xi − xj).

The condition mins∈[0,1] F (s1, s) > 0 allow to have a dynamical oscillators
as defined in definition 3.

1.3 Main Results

The following main result I shows the existence of the solution and a syn-
chronized solution in the sense of definition 4

Main Result (I). We consider the system (P). Suppose that F satisfies
the hypotheses (H) and (H∗) then there exists D∗ > 0 such that for all
D ∈ (0, D∗] there exists r > 0 and a open set Cr of the form,

Cr :=
{
X = (xi)

N
i=1 ∈ RN : ∃ν ∈ R, max

i
|xi − ν| < ∆r (ν)

}
,
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where ∆r : R → (0, D] is a C1 and 1-periodic function, such that for every
C1 function H satisfying ||H||B < r we have

1. Existence of solution. The flow Φt of the system (P) exists for all
initial condition X ∈ Cr and for all t ≥ t0.

2. Synchronization. The open set Cr is positive Φt-invariant . Further,
for every X ∈ Cr we have

min
1≤i≤N

inf
t≥t0

d

dt
Φt
i(X) > 0 and |Φt

i(X)−Φt
j(X)| < 2D,∀1 ≤ i, j ≤ N, ∀t ≥ t0.

The next main result II shows the existence of a periodic locked solution
in the sense of definition 5

Main Result (II). We consider the system (P). Suppose that F satisfies
the hypotheses (H) and (H∗) then there exists D∗ > 0 such that for all
D ∈ (0, D∗] there exists r > 0 such that for every C1 and 1-periodic function
H satisfying ||H||B < r , there exists an open set Cr (same in main result
(I)) and a initial condition X∗ ∈ Cr such that

Φt
i(X∗) = ρt+ Ψi,X∗(t), ∀i = 1, .., N, ∀t ≥ t0,

where ρ > 0 and Ψi,X∗ : R→ R are a C1 and 1
ρ -periodic functions.

Remark. The result I can be generalized to a function H(t,X) which de-
pend on time t.

1.4 Remarks and motivation

Our results can be applied to the model of coupled oscillators to study the
synchronization of biological oscillators as the Winfree [13] and the Ku-
ramoto model [11] as illustrated in the following example.

Example 6. [Winfree and Kuramoto Models] Winfree [13] proposed a
model describing the synchronization of a population of organisms or os-
cillators that interact simultaneously. The Winfree model is also studied in
[10, 6, 12, 5, 2, 7, 9]. Kuramoto model is a refined model of the Winfree
model . The Kuramoto model is applied for example in the Neurosciences
to study the synchronization of neurones in the brain [3, 4]. We call natural
frequency, the frequency of each oscillator, as if it were isolated from the
others. The explicit Winfree [1] and Kuramoto model are defined by the
following equation respectively

ẋi = ωi + Win(X,xi), i = 1 . . . N , t ≥ t0, (W)
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ẋi = ωi + Kur(X,xi), i = 1 . . . N, t ≥ t0, (K)

where for (ω, κ) ∈ R2
+, Win(Y, z) = ω − κ 1

N

∑N
j=1[1 + cos(yj)] sin(z) and

Kur(Y, z) = ω − κ 1
N

∑N
j=1 sin(yj − z) for all Y = (y1, . . . , yN ) ∈ RN and

z ∈ R. X(t) = (x1(t), . . . , xN (t)) is the state of the systems, and xi(t) is the
phase of the ith-oscillator. The parameter κ ≥ 0 is the strong coupling; the
vector (ω1 + ω, . . . , ωN + ω) ∈ RN is the vector of the natural frequencies.

Proposition 7. There exists an open set of parameters (κ, ω) ∈ R2
+, such

that the functions Win and Kur of the systems (W) and (K) respectively,
satisfies both hypotheses (H) and (H∗).

Proof. The function Win is C2 and 2π1-periodic. Further

min
s∈[0,2π]

Win(s1, s) > 0 ⇐⇒ ∀ω > (1 + cos(
π

3
)) sin(

π

3
)κ, ∀s ∈ [0, 2π].

For every ω > (1 + cos(π3 )) sin(π3 )κ we have∫ 2π

0

∂N+1Win(s1, s)
Win(s1, s)

ds = −
∫ 2π

0

κ[1 + cos(s)] cos(s)

ω − κ(1 + cos(s)) sin(s)
ds

= −
∫ 2π

0

κ sin2(s)

ω − κ(1 + cos(s)) sin(s)
ds < 0.

Same for the Kuramoto model, we have Kur is 2π1-periodic, and

min
s∈[0,2π]

Kur(s1, s) > 0, ∀ω > 0, ∀s ∈ [0, 2π],

For every ω > 0 and κ > 0 we have∫ 2π

0

∂N+1Kur(s1, s)
Kur(s1, s)

ds = −
∫ 2π

0

κ

ω
ds = −2πκ

ω
< 0.

2 Dispersion curve

The strategy to prove the mains results is to use the comparison theorem of
differentials equations. We assumed a priori that the distance between the
oscillators is small and find some differential equation estimation to deduce
that the distance between oscillators is bounded uniformly on time. We call
the “upper-solution” the dispersion curve. We have the following lemma
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Lemma 8. Let Σ = (Σ1,Σ2,Σ3) ∈ R3
+/{(0, 0, 0)}. Let P1(a, b) = Σ1a+Σ2b

2

a polynomial defined for all (a, b) ∈ R × R and let Λ : R → R a C1 and 1-
periodic function satisfying ∫ 1

0
Λ(s)ds < 0.

Then for all (a, b) ∈ R∗+ × (0,Σ3) the following differential equation

d

ds
z(s) =

P1(a, b)

Σ3 − b
+ Λ(s)z(s), (1)

admits a positive solution C1 and 1-periodic solution that we note ∆a,b(s).
Further, there exists DΣ,∆ ∈ (0,Σ3) such that for all D ∈ (0, DΣ,∆] there
exists r > 0 such that the solution ∆r := ∆r ,D satisfies

max
s∈[0,1]

∆r (s) ≤ D.

Proof. Remark that for all (a, b) ∈ R∗+× (0,Σ3), the differential equation (1)
admit a positive C2 and 1-periodic solution ∆a,b(s) of the form

∆a,b(s) =
P1(a, b)

Σ3 − b

∫ 1+s
s exp

( ∫ 1+s
t Λ(v)dv

)
dt

1− exp
( ∫ 1

0 Λ(v)dv
)

Put

λ1 = −
∫ 1

0
Λ(s)ds and λ2 = max

0≤s,t≤1

∫ 1+s

t
Λ(v)dv.

max
s∈[0,1]

∆a,b(s) ≤
P1(a, b)

Σ3 − b
exp(λ2)

1− exp(−λ1)
.

To get maxs∈[0,1] ∆r (s) ≤ D it sufficient to choose r and D such that

P1(r , D)

Σ3 −D
exp(λ2)

1− exp(−λ1)
= D, (2)

which is satisfied for all D ∈ (0, DΣ,Λ] such that

DΣ,Λ =
Σ3

2

1− exp(−λ1)

1− exp(−λ1) + Σ2 exp(λ2)
.

where r > 0 is given by the following formula

r =
D

Σ1

[
Σ3

1− exp(−λ1)

exp(λ2)
− [

1− exp(−λ1)

exp(λ2)
+ Σ2]D

]
.
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Definition 9. Let D ∈ (0, DΣ,Λ]. We call the dispersion curve associated
to D the solution

∆r := ∆r ,D(s),

of the differential equation (1) where r is defined by

r =
D

Σ1

[
Σ3

1− exp(−λ1)

exp(λ2)
− [

1− exp(−λ1)

exp(λ2)
+ Σ2]D

]
, (3)

where

λ1 = −
∫ 1

0
Λ(s)ds et λ2 = max

0≤s,t≤1

∫ 1+s

t
Λ(v)dv.

Definition 10. Let D ∈ (0, DΣ,Λ]. We call the synchronization open set
associated to D and we note Cr the open set on RN defined by

Cr :=
{
X = (xi)

N
i=1 ∈ RN : ∃νX ∈ R, max

i
|xi − νX | < ∆r (νX)

}
, (4)

where ∆r is the dispersion curve associated to D.

Remark 11. Remark that

D < DΣ,Λ <
Σ3

2Σ2
exp(−λ2) and r < D

Σ3

Σ1
exp(−λ2).

3 Reduction of the system (P )

The goal of this Section is to prove that the perturbed system (P) in par-
ticular the periodic not-perturbed system (PNP) can be studied using a
scalar periodic differential equation such as equation (1) of lemma 8. Now
we define a new system

Definition 12. Let X ∈ RN and let µ0 ∈ R, we call the (NPS) system
associated to Φt(X) the not-perturbed following system

µ̇X = F (Φt(X), µX), t ∈ IX , (NPS)

where IX = [t0, TX) is the maximal interval of the solution X(t) := Φt(X)
of the system (P) of initial condition φt0(X) = X. We say that µX(t) is
the solution of the system (NPS) associated to Φt(X) of initial condition
µX(t0) ∈ R.
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We note

L := ||F ||B + ||dF ||B + ||d2F ||B, and α := min
s∈[0,1]

F (s1, s). (5)

Let X ∈ RN and let µX(t) be the solution of the system (NPS) associ-
ated to Φt(X) of initial condition µ0 ∈ R. We also note X := Φt(X) and
µX := µX(t) without loss of generality. We consider the following quantities

δi,1(X) := xi − µX , δi,2(X) := µX − xi,
and δ(X) := max

1≤i≤N
|δi,1(X)| = max

1≤i≤N
|δi,2(X)|.

We have the next lemma

Proposition 13. We consider the system (P). Suppose that the function
F satisfies the hypothesis (H) and suppose that Φt(X) is defined for all
t ∈ [t1, t2]. Let D ∈ (0, αL) and suppose that δ(X) < D for all t ∈ [t1, t2],
then

µ̇X > −LD + α > 0, ∀t ∈ [t1, t2].

In particular, t→ µX(t) is a diffeomorphism from [t1, t2] to [µX(t1), µX(t2)].

Proof. The strategy is to use the Mean value theorem . Since δ(X) < D we
get, |F (X,µX)− F (µX1, µX)| ≤ ||dF ||BD < LD. Hence

µ̇X = F (X,µX) = [F (X,µX)− F (µX1, µX)] + F (µX1, µX) > −LD + α.

Thanks to hypothesis 0 < D < α
L to get µ̇X(t) > −LD + α > 0 for all

t ∈ [t1, t2].

Proposition 14. We consider the system (P). Suuppose that F satisfies
the hypothesis (H) and suppose that Φt(X) is defined for all t ∈ [t1, t2]. Let
D ∈ (0, αL) and r > 0. Suppose that

||H||B < r , and δ(X) < D, ∀t ∈ [t1, t2].

Then for all 1 ≤ i ≤ N , k ∈ {1, 2} and s ∈ [µX(t1), µX(t2)] we have

d

ds
δ∗i,k(s) <

1

α

αr + LD2(L+ 2α)

α− LD
+
∂FN+1(s1, s)
F (s1, s)

δ∗i,k(s), (6)

where
δ∗i,k(s) := δi,k(X(µ−1

X (s))) and X(µ−1
X (s)) = (x1(µ−1

X (s)), . . . , xN (µ−1
X (s))).
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Proof. The strategy is to use several times the Taylor formula. Let
D ∈ (0, αL) and suppose that δ(X) < D for all t ∈ [t1, t2]. Use the Tay-
lor formula, there exists ci ∈ [xi, µX ] such that for all 1 ≤ i ≤ N

F (X,xi)− F (X,µX) = ∂N+1F (X,µX)δi,1 +
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,1

< ∂N+1F (X,µX)δi,1 +
1

2
||d∂N+1F ||BD2

< ∂N+1F (X,µX)δi,1 +
1

2
LD2

< ∂N+1F (X,µX)δi,1 + LD2.

For k = 2 we also obtain

F (X,µX)− F (X,xi) = −∂N+1F (X,µX)δi,1 −
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,1

= ∂N+1F (X,µX)δi,2 −
1

2
∂N+1[∂N+1F (X, ci)]δ

2
i,2

< ∂N+1F (X,µX)δi,2 + LD2.

In other hand we have ||H||B < r . Use equations (P) and (NPS) we obtain
for all 1 ≤ i ≤ N and k ∈ {1, 2}

d

dt
δi,k = Hi(X,xi) + [F (X,xi)− F (X,µX)] < r + LD2 + ∂N+1F (X,µX)δi,k.

(7)

Use again the Taylor formula to get

∂N+1F (X,µX)δi,k = [∂N+1F (X,µX)− ∂N+1F (µX1, µX) + ∂N+1F (µX1, µX)]δi,k

< ||d∂N+1F ||BD|δi,j |+ ∂N+1F (µX1, µX)δi,k

< LD2 + ∂N+1F (µX1, µX)δi,k.

Equation (7) implies that for all 1 ≤ i ≤ N and k ∈ {1, 2}

d

dt
δi,k < r + 2LD2 + ∂N+1F (µX1, µX)δi,k.

Thanks to proposition 13, µ̇X > α − LD. We consider the change of vari-
able : t → s := µX(t) for t ∈ [t1, t2]. Put δ∗i,k(s) := δi,k(X(µ−1

X (s)))

and X(µ−1
X (s)) = (x1(µ−1

X (s)), . . . , xN (µ−1
X (s))). We deduce that for all
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s ∈ [µX(t1), µX(t2)]

d

dt
δi,k(X) =

d

ds
δ∗i,k(s)

d

dt
µX(t) < r + 2LD2 + ∂N+1F (s1, s)δ∗i,k(s)

d

ds
δ∗i,k(s) =

r + 2LD2

µ̇X
+
∂N+1F (s1, s)

µ̇X
δ∗i,k(s) <

r + 2LD2

α− LD
+
∂N+1F (s1, s)

µ̇X
δ∗i,k(s)

=
r + 2LD2

α− LD
+
∂N+1F (s1, s)
F (s1, s)

F (s1, s)
µ̇X

δ∗i,k(s).

Use the Mean value theorem and the change of variable t→ s := µX(t) we
get

|F (µX1, µX)− µ̇X | = |F (µX1, µX)− F (X,µX)| < ||dF ||BD < LD,

which is equivalent to

F (s1, s)
µ̇X

= 1 + θ(s), |θ(s)| < LD

α− LD
, ∀s ∈ [µX(t1), µX(t2)].

Finlay, since |∂N+1F (s1,s)
F (s1,s) | < L

α and since |δi,k(t)| ≤ δ(X) < D for all

t ∈ [t1, t2] we obtain for all s ∈ [µX(t1), µX(t2)]

d

ds
δ∗i,k(s) <

r + 2LD2

α− LD
+
∂N+1F (s1, s)
F (s1, s)

[1 + θ(s)]δ∗i,k(s)

<
r + 2LD2

α− LD
+
L2

α

D2

α− LD
+
∂N+1F (s1, s)
F (s1, s)

δ∗i,k(s)

=
1

α

α(r + 2LD2) + L2D2

α− LD
+
∂N+1F (s1, s)
F (s1, s)

δ∗i,k(s).

The previous lemma allows us to prove the existence of un open Φt-
invariant set. We have the following proposition

Proposition 15. Let F be a function satisfying hypotheses (H) and (H∗).
Then there exists D∗ ∈ (0, 1) such that for all D ∈ (0, D∗], there exists
r > 0 and an open set Cr (as in definition 10), such that for any function
H satisfying ||H||B < r we have

∀X ∈ Cr : Φt(X) ∈ Cr , ∀t ∈ IX .



Synchronization in mean field systems 11

Proof. Use equation (5) and hypothesis (H)

max{
∫ t2

t1

∂N+1F (s1, s)
F (s1, s)

ds : 0 ≤ t1 ≤ t2 ≤ 1} ≤ L

α
.

Let DΣ,Λ the constant defined by lemma 8 such that Σ et λ are defined by

Σ = (
1

L
, 2 +

L

α
,
α

L
), and Λ(s) =

∂N+1F (s1, s)
F (s1, s)

.

Put D∗ := DΣ,Λ. Let D ∈ (0, D∗] and the dispersion function ∆r associated
to D (See definition 9). The dispersion curve ∆r is solution of the periodic
scalar differential equation

d

ds
∆r (s) =

1

α

αr + LD2(L+ 2α)

α− LD
+
FN+1(s1, s)
F (s1, s)

∆r (s),

and satisfies the folioing estimation

max
s∈[0,1]

∆r (s) ≤ D.

Let Cr be the synchronization open set associated to D, as defined in defi-
nition 10.
For any function H satisfying ||H||B < r , where r is given by formula (3),
let X(t) = (x1(t), . . . , xN (t)) := Φt(X) be the solution of the system (P)
of initial condition X = (x1, . . . , xN ) ∈ Cr . There exists νX ∈ R such
that max1≤i≤N |xi − νX | < ∆r (νX) ≤ D. Let µX(t) be the solution of the
system (NPS) associated to X(t) of initial condition µX(t0) = νX , then
δ(X) < ∆r (µX(t0)). Let

T ∗ := sup{t ∈ IX : ∀ t0 < s < t, max
i
|xi(s)− µX(s)| < ∆r (µX(s))}.

By continuity we have t0 6= T ∗. The proposition is proved if we shows
that T ∗ = sup{t ∈ IX}. By contradiction, suppose that T ∗ ∈ IX . Using
the change of variable s = µX(t) the proposition 14 implies that for all
s ∈ [νX , µ

∗
X := µX(T ∗)]

d

ds
δ∗i,k(s) <

1

α

αr + LD2(L+ 2α)

α− LD
+
FN+1(s1, s)
F (s1, s)

δ∗i,k(s), ∀s ∈ [µX , µ
∗
X ].

Hence there exists 1 ≤ i0 ≤ N and k ∈ {1, 2} such that
|δ∗i0,k0(µ∗X)| = ∆r (µ

∗
X). Suppose that δ∗i0,k0(µ∗X) = ∆r (µ

∗
X) without loss
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of generality. We get

d

ds
δ∗i0,k0(µ∗X) <

1

α

αr + LD2(L+ 2α)

α− LD
+
FN+1(µ∗X1, µ∗X)

F (µ∗X1, µ∗X)
δ∗i0,k0(µ∗X)

=
1

α

αr + LD2(L+ 2α)

α− LD
+
FN+1(µ∗X1, µ∗X)

F (µ∗X1, µ∗X)
∆r (µ

∗
X) =

d

ds
∆r (µ

∗
X).

There exists s < µ∗X close enough to µ∗X such that δ∗i0,k0(s) > ∆r (s)
or in other words there exists t < T ∗ close enough to T ∗ such that
δi0,k0(t) > ∆r (µX(t)). We have obtained a contradiction.

4 Proof of main result I : Existence of solution and
the synchronized state

Now we prove the main result I ( which shows the existence of solution for
all t ≥ t0 and the existence of a synchronized state) by proving the next
theorem

Theorem 16. Let F be a function satisfying the hypotheses (H) and (H∗).
Then there exists D∗ ∈ (0, 1) such that for all D ∈ (0, D∗], there exists r > 0
and an synchronization open set Cr (as defined in the definition 10), such
that for any function H satisfying ||H||B < r , and for all X ∈ Cr we have
IX = [t0,+∞[. Further Cr is positive Φt-invariant and

∀X ∈ Cr , ∃νX ∈ R : |Φt
i(X)− µX(t)| < D,∀i = 1, .., N, ∀t ≥ t0,

where µX(t) is the solution of the system (NPS) associated to Φt(X) of
initial condition µX(t0) = νX .

Proof. Thanks to proposition 15, it is sufficient to prove that IX = [t0,+∞[.
By contradiction suppose that there exists t0 < tX < +∞ such that the
solution X(t) is defined only on IX = [t0, tX [. Then limt→tX ||Φt(t)|| = +∞.
Proposition 15 implies that

|Φt
i(X)− Φt

j(X)| < D,∀1 ≤ i, j ≤ N, ∀tX > t ≥ t0,

For all i = 1, .., N ,

α− LD − r <
d

dt
xi < max

s∈[0,1]
F (s1, s) + LD + r , ∀tX > t ≥ t0.

Hence ||Φt(X)|| < +∞ for all t ∈ [t0, tX ], in particular
limt→tX ||Φt(t)|| < +∞. We have obtained a contradiction.
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5 Proof of main result II : Periodic locked solution

We use the fixed point theorem to prove the existence of periodic locked
state as follow

Lemma 17. Let F be a function satisfying the hypotheses (H)and (H∗).
For any 1-periodic C1 function H satisfying ||H||B < r let Cr the synchro-
nization Φt-invariant open set given by theorem 16. Let the set Σ defined
by

Σ = {X ∈ RN , max
i
|xi| < ∆r (0)} ⊂ Cr .

Then there exists a C1 function P : Σ → Σ (the Poincaré map) and a C1

function θ : Σ→ R+ (the return time map) such that

Φt0+θ(X)(X) = P (X) + 1, 1 = (1, · · · , 1) ∈ RN ,
1

L
< θ(X) <

2

α
.

Proof. Let X ∈ Σ ⊂ Cr . Let µX(t) be the solution of the system (NPS)
associated to X(t) of initial condition µX(t0) = 0. Let τX be the inverse
function of the function µX := µX(t) . By the proposition 13 and the
theorem 16 we obtain

α− LD < µ̇X(t) < L.

Remark (11) in the Section 2 shows that for all D < α
2L we have

α

2
< µ̇X(t) < L.

Let θ(X) := τX(1) − t0. Then
∫ τX(1)
t0

µ̇X(t)dt = 1
which implies the second estimation of lemma. Recall that
max1≤i≤N |Φt

i(X) − µX(t)| < ∆(µX(t)) < D for all t ≥ t0. Put
P (X) := Φt0+θ(X)(X)−1, P = (P1, . . . , PN ). Since µX(t0 + θ(X)) = 1 then

max
1≤i≤N

|Pi(X)| = max
1≤i≤N

|Φt0+θ(X)
i (X)− 1| < ∆(1) = ∆(0).

We have shown that P is a map from Σ into itself.

Corollary 18. The Poincaré map P defined in lemma 17 admits a fixed
point X∗ ∈ Σ.
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Proof. Σ̄ is compact and convex; P : Σ̄ → Σ̄ is continuous. By Brouwer
fixed point theorem, P admits a fixed point in X∗ ∈ Σ̄. We claim that
X∗ 6∈ ∂Σ̄. Suppose by contradiction X∗ ∈ ∂Σ̄. There exists 1 ≤ i0 ≤ N ,
such that |xi0,∗| = ∆r (0); Put

X∗(t) = Φt(X∗), X∗(t) = (x1,∗(t), . . . , xN,∗(t)).

Let µX∗(t) the solution of the system (NPS) associated to the solution X∗(t)
of initial condition µX∗(t0) = 0. We note

δi,1(X∗(t)) = xi,∗(t)− µX∗(t), and δi,2(X∗(t)) = µX∗(t)− xi,∗(t).

There exists 1 ≤ i ≤ N , k ∈ {1, 2}, and t′ > t0 close to t0
such that δi0,k(X∗(t)) < ∆r (µX∗(t)) for all t′ > t > t0. By re-
peating this argument for every 1 ≤ i1 ≤ N and k ∈ {1, 2}
satisfying the equality δi1,k(X∗(t)) = ∆r (µX∗(t)) we obtain for
some t∗ > t0, δ(X∗(t

∗)) < ∆r (µX∗(t∗)). But 16 implies that
max1≤i≤N |xi,∗(t)− µX∗(t)| < ∆r (µX∗(t)) for all t > t∗. We have obtained a
contradiction with the fact that

max
1≤i≤N

|Φt0+θ(X∗)
i (X∗)− µX∗(t0 + θ(X∗))| = max

1≤i≤N
|xi,∗ + 1− 1|

= ∆r (0) = ∆r (µX∗(t0 + θ(X∗))),

knowing that µX∗(t0 + θ(X∗)) = 1 and Φt0+θ(X∗)(X∗) = X∗ + 1.

The main result II which show the existence of periodic locked solution
is a consequence of previous corollary.

Proof of the main result II. Corollary 18 implies the existence of a fixed
point X∗ ∈ Cr and return time θ∗ > 0 such that

Φt0+θ∗(X∗) = X∗ + 1.

Thanks to periodicity and uniqueness of solution of differential equation, we
obtain

Φθ∗+t(X∗) = Φt(X∗) + 1, ∀t ≥ t0.
Let Ψ : RN → RN the function defined by

Ψ(s) := Φs(X∗)−
s

θ∗
1 = (Ψ1(s), · · · ,ΨN (s)), ∀s ≥ t0.

The theorem is proved if we show that Ψi are θ∗-periodic. We have

Ψ(s+ θ∗) = Φs+θ∗(X∗)−
s+ θ∗
θ∗

1 = Φs(X∗) + 1− s+ θ∗
θ∗

1 = Ψ(s).

Lemma 17 implies that θ∗ is uniformly bounded.
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6 Numerical Example : Linear mean field system

We see in [8] that the hypothesis (H∗) called the “synchronization hypothe-
sis” seems to be a bifurcation criterion for the existence of synchronization
domain for the Winfree model. When the Winfree model is not perturbed
the N oscillators are always synchronized, independently of their initial con-
ditions, thanks to the uniqueness property of periodic solutions of an ODE,
since the system is periodic relative to each variable. Now we show an
example of a 1-periodic system but not periodic relative to each variable.
Numerically the hypothesis (H∗) seems again to be a bifurcation criterion
for the existence of synchronization also when the system is not perturbed.

We consider the linear mean field system

ẋi = ωi + β
1

N

N∑
j=1

(xi − xj), t ≥ t0, (8)

where N ≥ 2, (ωi)i are the natural frequencies on [1−γ, 1+γ] and γ ∈ [0, 1[
the spectrum width. β is a parameter in [−0.5, 0.5]. The model (8) satisfies
the hypothesis (H). In fact we can take the function F as

F (Y, z) = 1 + β
1

N

N∑
j=1

(z − yj), ∀Y = (y1, . . . , yN ) ∈ RN , z ∈ R,

which is C∞ and F (s1, s) = 1 is a constant (periodic) function such that
mins∈R F (s1, s) = 1 > 0. Remark that the hypothesis (H∗) is satisfied if
and only if β < 0. Unlike the case of the Winfree model in [8] we observe in
Figure 1 that the dispersion is not bounded when (H∗) is not satisfied also
when γ = 0.

7 Conclusion and open problem

We have generalized the result obtained in [8] to a class of abstract mean
field models. We have proved for a small perturbations the existence of so-
lution and the existence of the synchronized solution. When the system is
periodic we have proved in addition the existence periodic locked state. In
the numerical results of [8] and the Section 6 of this article the hypothesis
(H∗) seems to be a bifurcation criterion for the existence of synchronization,
we conjecture that the hypothesis (H∗) is necessary to get the synchroniza-
tion of the oscillators of the mean field systems defined in this article. More
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(a) γ2 = 0.0412

(b) γ1 = 0.011

(c) γ0 = 0

Figure 1: We choose on the model 8 a random initial conditions X in
[−1, 1].We fix N = 100 oscillators and we choose a uniform distribution
of the natural infrequences ωi in [1 − γ, 1 + γ]. We plot the dispersion
dX(t) := δ(X) for t ∈ [0,×104]. We choose vertically from botton to
top, γ0 = 0, γ1 = 0.001 and γ2 = 0.002, horizontally from left to right,
β = −0.001, β = −0.0005, β = 0, β = 0.0005 and β = 0.001.
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precisely : when∫ 1

0

∂N+1F (s1, s)
F (s1, s)

ds < 0 the oscillators are synchronized for small perturbations.∫ 1

0

∂N+1F (s1, s)
F (s1, s)

ds > 0 the oscillators are desynchronized.∫ 1

0

∂N+1F (s1, s)
F (s1, s)

ds = 0 the test is inconclusive.
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